1
|
Caponnetto A, Ferrara C, Fazzio A, Agosta N, Scribano M, Vento ME, Borzì P, Barbagallo C, Stella M, Ragusa M, Scollo P, Barbagallo D, Purrello M, Di Pietro C, Battaglia R. A Circular RNA Derived from the Pumilio 1 Gene Could Regulate PTEN in Human Cumulus Cells. Genes (Basel) 2024; 15:124. [PMID: 38275605 PMCID: PMC10815046 DOI: 10.3390/genes15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women's health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation.
Collapse
Affiliation(s)
- Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Noemi Agosta
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Marianna Scribano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Maria Elena Vento
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Placido Borzì
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Paolo Scollo
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy;
- Maternal and Child Department, Obstetrics and Gynecology Unit, Cannizzaro Hospital, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| |
Collapse
|
2
|
Mammalian pumilio proteins control cellular morphology, migration, and adhesion. Sci Rep 2023; 13:3002. [PMID: 36810759 PMCID: PMC9944931 DOI: 10.1038/s41598-023-30004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Pumilio proteins are RNA-binding proteins that control mRNA translation and stability by binding to the 3' UTR of target mRNAs. Mammals have two canonical Pumilio proteins, PUM1 and PUM2, which are known to act in many biological processes, including embryonic development, neurogenesis, cell cycle regulation and genomic stability. Here, we characterized a new role of both PUM1 and PUM2 in regulating cell morphology, migration, and adhesion in T-REx-293 cells, in addition to previously known defects in growth rate. Gene ontology analysis of differentially expressed genes in PUM double knockout (PDKO) cells for both cellular component and biological process showed enrichment in categories related to adhesion and migration. PDKO cells had a collective cell migration rate significantly lower than that of WT cells and displayed changes in actin morphology. In addition, during growth, PDKO cells aggregated into clusters (clumps) due to an inability to escape cell-cell contacts. Addition of extracellular matrix (Matrigel) alleviated the clumping phenotype. Collagen IV (ColIV), a major component of Matrigel, was shown to be the driving force in allowing PDKO cells to monolayer appropriately, however, ColIV protein levels remained unperturbed in PDKO cells. This study characterizes a novel cellular phenotype associated with cellular morphology, migration, and adhesion which can aid in developing better models for PUM function in both developmental processes and disease.
Collapse
|
3
|
Piccinini G, Milani L. Germline-related molecular phenotype in Metazoa: conservation and innovation highlighted by comparative transcriptomics. EvoDevo 2023; 14:2. [PMID: 36717890 PMCID: PMC9885605 DOI: 10.1186/s13227-022-00207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In Metazoa, the germline represents the cell lineage devoted to the transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in organism development and species evolution, and its establishment is tightly tied to animal multicellularity itself. The molecular toolkit expressed in germ cells has a high degree of conservation between species, and it also shares many components with the molecular phenotype of some animal totipotent cell lineages, like planarian neoblasts and sponge archaeocytes. The present study stems from these observations and represents a transcriptome-wide comparative analysis between germline-related samples of 9 animal species (7 phyla), comprehending also totipotent lineages classically considered somatic. RESULTS Differential expression analyses were performed for each species between germline-related and control somatic tissues. We then compared the different germline-related transcriptional profiles across the species without the need for an a priori set of genes. Through a phylostratigraphic analysis, we observed that the proportion of phylum- and Metazoa-specific genes among germline-related upregulated transcripts was lower than expected by chance for almost all species. Moreover, homologous genes related to proper DNA replication resulted the most common when comparing the considered species, while the regulation of transcription and post-transcriptional mechanisms appeared more variable, showing shared upregulated functions and domains, but very few homologous whole-length sequences. CONCLUSIONS Our wide-scale comparative analysis mostly confirmed previous molecular characterizations of specific germline-related lineages. Additionally, we observed a consistent signal throughout the whole data set, therefore comprehending both canonically defined germline samples (germ cells), and totipotent cell lineages classically considered somatic (neoblasts and archaeocytes). The phylostratigraphic analysis supported the less probable involvement of novel molecular factors in the germline-related transcriptional phenotype and highlighted the early origin of such cell programming and its conservation throughout evolution. Moreover, the fact that the mostly shared molecular factors were involved in DNA replication and repair suggests how fidelity in genetic material inheritance is a strong and conserved driver of germline-related molecular phenotype, while transcriptional and post-transcriptional regulations appear differently tuned among the lineages.
Collapse
Affiliation(s)
- Giovanni Piccinini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Zhou Y, Ng DY, Richards AM, Wang P. Loss of full-length pumilio 1 abrogates miRNA-221-induced gene p27 silencing-mediated cell proliferation in the heart. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:456-470. [PMID: 35036057 PMCID: PMC8728526 DOI: 10.1016/j.omtn.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022]
Abstract
Upregulated expression of microRNA (miR)-221 is associated with downregulation of p27 and subsequent increased cell proliferation in a variety of human cancers. It is unknown whether miR-221 mimics could trigger neoplastic cellular proliferation. In vitro, we demonstrated miR-221 significantly downregulates the expression of P27 and increases proliferation of H9c2 and cardiac fibroblasts. The knockdown of PUM1 but not PUM2 abolished such effects by miR-221, as verified by RT-qPCR and western blot, direct binding of p27 3′ UTR by luciferase reporter assay and cell proliferation by Ki67. In vivo expression of P27 in the rat liver, heart, kidney, spleen, and muscle were not affected by miR-221 at 1 and 4 mg/kg and concurrently full-length (FL) PUM1 (140 kDa) was not detected. Instead, isoforms of 105 and 90 kDa were observed and generated through alternative RNA slicing verified by cDNA cloning and sequencing and cathepsin K cleavage confirmed by studies with the inhibitor odanacatib. This is the first study to address the possible pro-proliferative effects of miR-221 mimic therapeutics in cardiovascular applications. Loss of FL PUM1 expression is a key factor abrogating miR-221-mediated p27 regulation, although other concurrent mechanisms cannot be excluded. Our findings provide essential insights into the context-dependent nature of miRNA functionality.
Collapse
|
5
|
GWAS reveal a role for the central nervous system in regulating weight and weight change in response to exercise. Sci Rep 2021; 11:5144. [PMID: 33664357 PMCID: PMC7933348 DOI: 10.1038/s41598-021-84534-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 01/16/2023] Open
Abstract
Body size and weight show considerable variation both within and between species. This variation is controlled in part by genetics, but also strongly influenced by environmental factors including diet and the level of activity experienced by the individual. Due to the increasing obesity epidemic in much of the world, there is considerable interest in the genetic factors that control body weight and how weight changes in response to exercise treatments. Here, we address this question in the Drosophila model system, utilizing 38 strains of the Drosophila Genetics Reference Panel. We use GWAS to identify the molecular pathways that control weight and weight changes in response to exercise. We find that there is a complex set of molecular pathways controlling weight, with many genes linked to the central nervous system (CNS). The CNS also plays a role in the weight change with exercise, in particular, signaling from the CNS. Additional analyses revealed that weight in Drosophila is driven by two factors, animal size, and body composition, as the amount of fat mass versus lean mass impacts the density. Thus, while the CNS appears to be important for weight and exercise-induced weight change, signaling pathways are particularly important for determining how exercise impacts weight.
Collapse
|
6
|
Silva ILZ, Robert AW, Cabo GC, Spangenberg L, Stimamiglio MA, Dallagiovanna B, Gradia DF, Shigunov P. Effects of PUMILIO1 and PUMILIO2 knockdown on cardiomyogenic differentiation of human embryonic stem cells culture. PLoS One 2020; 15:e0222373. [PMID: 32437472 PMCID: PMC7241771 DOI: 10.1371/journal.pone.0222373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/28/2020] [Indexed: 01/31/2023] Open
Abstract
Posttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA-binding proteins (RBPs) that orchestrate mRNA expression. A family of RBPs, which is known as the Pumilio-FBF (PUF) family, is highly conserved among different species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first assessed the influence of the silencing of PUM1 and PUM2 on pluripotency genes and found that the knockdown of Pumilio genes significantly decreased the OCT4 and NANOG mRNA levels and reduced the amount of nuclear OCT4, which suggests that Pumilio proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that PUM1-and-PUM2-silenced hESCs exhibited improved efficiency of in vitro cardiomyogenic differentiation. Through an in silico analysis, we identified mRNA targets of PUM1 and PUM2 that are expressed at the early stages of cardiomyogenesis, and further investigation will determine whether these target mRNAs are active and involved in the progression of cardiomyogenesis. Our findings contribute to the understanding of the role of Pumilio proteins in hESC maintenance and differentiation.
Collapse
Affiliation(s)
| | - Anny Waloski Robert
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | | | - Lucia Spangenberg
- Bioinformatics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Marco Augusto Stimamiglio
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Daniela Fiori Gradia
- Department of Genetics, Federal University of Parana (UFPR), Curitiba, Paraná, Brazil
| | - Patrícia Shigunov
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Pumilio proteins utilize distinct regulatory mechanisms to achieve complementary functions required for pluripotency and embryogenesis. Proc Natl Acad Sci U S A 2020; 117:7851-7862. [PMID: 32198202 DOI: 10.1073/pnas.1916471117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene regulation in embryonic stem cells (ESCs) has been extensively studied at the epigenetic-transcriptional level, but not at the posttranscriptional level. Pumilio (Pum) proteins are among the few known translational regulators required for stem-cell maintenance in invertebrates and plants. Here we report the essential function of two murine Pum proteins, Pum1 and Pum2, in ESCs and early embryogenesis. Pum1/2 double-mutant ESCs display severely reduced self-renewal and differentiation, and Pum1/2 double-mutant mice are developmentally delayed at the morula stage and lethal by embryonic day 8.5. Remarkably, Pum1-deficient ESCs show increased expression of pluripotency genes but not differentiation genes, whereas Pum2-deficient ESCs show decreased pluripotency markers and accelerated differentiation. Thus, despite their high homology and overlapping target messenger RNAs (mRNAs), Pum1 promotes differentiation while Pum2 promotes self-renewal in ESCs. Pum1 and Pum2 achieve these two complementary aspects of pluripotency by forming a negative interregulatory feedback loop that directly regulates at least 1,486 mRNAs. Pum1 and Pum2 regulate target mRNAs not only by repressing translation, but also by promoting translation and enhancing or reducing mRNA stability of different target mRNAs. Together, these findings reveal distinct roles of individual mammalian Pum proteins in ESCs and their essential functions in ESC pluripotency and embryogenesis.
Collapse
|
8
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
9
|
Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Mol Biol Rep 2019; 47:785-807. [PMID: 31643042 DOI: 10.1007/s11033-019-05142-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The Pumilio (Pum)/Puf family proteins are ubiquitously present across eukaryotes, including yeast, plants and humans. They generally bind to the 3' untranslated regions of single stranded RNA targets in a sequence specific manner and destabilize them, although a few reports suggest their role in stabilizing the target transcripts. The Pum isoforms are implicated in a wide array of biological processes including stem cell maintenance, development, ribosome biogenesis as well as human diseases. Further studies on Pum would be interesting and important to understand their evolutionarily conserved and divergent features across species, which can have potential implications in medicine, plant sciences as well as basic molecular and cell biological studies. A large number of research reports exists, pertaining to various aspects of Pum, in individual experimental systems. This review is a comprehensive summary of the functions, types, mechanism of action as well as the regulation of Pum in various species. Also, the research questions to be addressed in future are discussed.
Collapse
|
10
|
Antagonistic and cooperative AGO2-PUM interactions in regulating mRNAs. Sci Rep 2018; 8:15316. [PMID: 30333515 PMCID: PMC6192998 DOI: 10.1038/s41598-018-33596-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Approximately 1500 RNA-binding proteins (RBPs) profoundly impact mammalian cellular function by controlling distinct sets of transcripts, often using sequence-specific binding to 3′ untranslated regions (UTRs) to regulate mRNA stability and translation. Aside from their individual effects, higher-order combinatorial interactions between RBPs on specific mRNAs have been proposed to underpin the regulatory network. To assess the extent of such co-regulatory control, we took a global experimental approach followed by targeted validation to examine interactions between two well-characterized and highly conserved RBPs, Argonaute2 (AGO2) and Pumilio (PUM1 and PUM2). Transcriptome-wide changes in AGO2-mRNA binding upon PUM knockdown were quantified by CLIP-seq, and the presence of PUM binding on the same 3′UTR corresponded with cooperative and antagonistic effects on AGO2 occupancy. In addition, PUM binding sites that overlap with AGO2 showed differential, weakened binding profiles upon abrogation of AGO2 association, indicative of cooperative interactions. In luciferase reporter validation of candidate 3′UTR sites where AGO2 and PUM colocalized, three sites were identified to host antagonistic interactions, where PUM counteracts miRNA-guided repression. Interestingly, the binding sites for the two proteins are too far for potential antagonism due to steric hindrance, suggesting an alternate mechanism. Our data experimentally confirms the combinatorial regulatory model and indicates that the mostly repressive PUM proteins can change their behavior in a context-dependent manner. Overall, the approach underscores the importance of further elucidation of complex interactions between RBPs and their transcriptome-wide extent.
Collapse
|
11
|
Wang M, Ogé L, Perez-Garcia MD, Hamama L, Sakr S. The PUF Protein Family: Overview on PUF RNA Targets, Biological Functions, and Post Transcriptional Regulation. Int J Mol Sci 2018; 19:ijms19020410. [PMID: 29385744 PMCID: PMC5855632 DOI: 10.3390/ijms19020410] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a crucial role in many processes. In cells, it is mediated by diverse RNA-binding proteins. These proteins can influence mRNA stability, translation, and localization. The PUF protein family (Pumilio and FBF) is composed of RNA-binding proteins highly conserved among most eukaryotic organisms. Previous investigations indicated that they could be involved in many processes by binding corresponding motifs in the 3′UTR or by interacting with other proteins. To date, most of the investigations on PUF proteins have been focused on Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae, while only a few have been conducted on Arabidopsis thaliana. The present article provides an overview of the PUF protein family. It addresses their RNA-binding motifs, biological functions, and post-transcriptional control mechanisms in Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, and Arabidopsis thaliana. These items of knowledge open onto new investigations into the relevance of PUF proteins in specific plant developmental processes.
Collapse
Affiliation(s)
- Ming Wang
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | | | - Latifa Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Soulaiman Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| |
Collapse
|
12
|
Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, Goldstrohm AC. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res 2018; 46:362-386. [PMID: 29165587 PMCID: PMC5758885 DOI: 10.1093/nar/gkx1120] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Human Pumilio proteins, PUM1 and PUM2, are sequence specific RNA-binding proteins that regulate protein expression. We used RNA-seq, rigorous statistical testing and an experimentally derived fold change cut-off to identify nearly 1000 target RNAs-including mRNAs and non-coding RNAs-that are functionally regulated by PUMs. Bioinformatic analysis defined a PUM Response Element (PRE) that was significantly enriched in transcripts that increased in abundance and matches the PUM RNA-binding consensus. We created a computational model that incorporates PRE position and frequency within an RNA relative to the magnitude of regulation. The model reveals significant correlation of PUM regulation with PREs in 3' untranslated regions (UTRs), coding sequences and non-coding RNAs, but not 5' UTRs. To define direct, high confidence PUM targets, we cross-referenced PUM-regulated RNAs with all PRE-containing RNAs and experimentally defined PUM-bound RNAs. The results define nearly 300 direct targets that include both PUM-repressed and, surprisingly, PUM-activated target RNAs. Annotation enrichment analysis reveal that PUMs regulate genes from multiple signaling pathways and developmental and neurological processes. Moreover, PUM target mRNAs impinge on human disease genes linked to cancer, neurological disorders and cardiovascular disease. These discoveries pave the way for determining how the PUM-dependent regulatory network impacts biological functions and disease states.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie L Van Etten
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trista L Schagat
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Promega Corporation, Madison, WI 53711, USA
| | - Brittany M Bowman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Luo W, Ke H, Liu R, Qin Y, Mak W, Ma J, Zhao S, Chen ZJ. Variation analysis of PUM1 gene in Chinese women with primary ovarian insufficiency. J Assist Reprod Genet 2018; 35:727-731. [PMID: 29297114 DOI: 10.1007/s10815-017-1110-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence has indicated that the genes involved in meiosis are highly correlated with ovarian function. Pumilio 1 (PUM1) is a RNA-binding protein which is involved in the meiotic process. It has been reported that the Pum1 knockout female mice displayed subfertility due to the decrease in primordial follicle pool. The aim of our study is to investigate whether variants of the PUM1 gene are responsible for primary ovarian insufficiency (POI) in Chinese women. We analyzed coding sequence and untranslated regions of the PUM1 gene in 196 Han Chinese women with non-syndromic POI and 192 controls. Seven novel variants were identified, but one of them was synonymous and six were intronic. Besides, seven known single-nucleotide polymorphisms (SNPs) were found, and there were no significant differences in genotype and allele frequencies of the SNPs between patients and controls. The results suggest that the variants in PUM1 may not contribute to POI in Han Chinese women.
Collapse
Affiliation(s)
- Wei Luo
- Center for Reproductive Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Ministry of Education, The Key Laboratory of Reproductive Endocrinology (Shandong University), Jinan, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Ministry of Education, The Key Laboratory of Reproductive Endocrinology (Shandong University), Jinan, China
| | - Ran Liu
- Center for Reproductive Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Ministry of Education, The Key Laboratory of Reproductive Endocrinology (Shandong University), Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Ministry of Education, The Key Laboratory of Reproductive Endocrinology (Shandong University), Jinan, China
| | - Winifred Mak
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Ministry of Education, The Key Laboratory of Reproductive Endocrinology (Shandong University), Jinan, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, China. .,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,Ministry of Education, The Key Laboratory of Reproductive Endocrinology (Shandong University), Jinan, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Ministry of Education, The Key Laboratory of Reproductive Endocrinology (Shandong University), Jinan, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
14
|
Zhang Q, Wu KH, He JY, Zeng Y, Greenbaum J, Xia X, Liu HM, Lv WQ, Lin X, Zhang WD, Xi YL, Shi XZ, Sun CQ, Deng HW. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Sci Rep 2017; 7:16397. [PMID: 29180724 PMCID: PMC5703959 DOI: 10.1038/s41598-017-16722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have been performed extensively in diverse populations to identify single nucleotide polymorphisms (SNPs) associated with complex diseases or traits. However, to date, the SNPs identified fail to explain a large proportion of the variance of the traits/diseases. GWASs on type 2 diabetes (T2D) and obesity are generally focused on individual traits independently, and genetic intercommunity (common genetic contributions or the product of over correlated phenotypic world) between them are largely unknown, despite extensive data showing that these two phenotypes share both genetic and environmental risk factors. Here, we applied a recently developed genetic pleiotropic conditional false discovery rate (cFDR) approach to discover novel loci associated with BMI and T2D by incorporating the summary statistics from existing GWASs of these two traits. Conditional Q-Q and fold enrichment plots were used to visually demonstrate the strength of pleiotropic enrichment. Adopting a cFDR nominal significance level of 0.05, 287 loci were identified for BMI and 75 loci for T2D, 23 of which for both traits. By incorporating related traits into a conditional analysis framework, we observed significant pleiotropic enrichment between obesity and T2D. These findings may provide novel insights into the etiology of obesity and T2D, individually and jointly.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Ke-Hao Wu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jing-Yang He
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Yong Zeng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.,College of Sciences, Beijing Jiao Tong University, Beijing, China
| | - Jonathan Greenbaum
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xin Xia
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Hui-Min Liu
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Wan-Qiang Lv
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Xu Lin
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Southern Medical University, Guang Zhou, P.R. China
| | - Wei-Dong Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Yuan-Lin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Xue-Zhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Chang-Qing Sun
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China.
| | - Hong-Wen Deng
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China. .,Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
Júnior GAO, Perez BC, Cole JB, Santana MHA, Silveira J, Mazzoni G, Ventura RV, Júnior MLS, Kadarmideen HN, Garrick DJ, Ferraz JBS. Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers. J Anim Sci 2017; 95:4796-4812. [PMID: 29293733 PMCID: PMC6292327 DOI: 10.2527/jas2017.1752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Zebu animals () are known to take longer to reach puberty compared with taurine animals (), limiting the supply of animals for harvest or breeding and impacting profitability. Genomic information can be a helpful tool to better understand complex traits and improve genetic gains. In this study, we performed a genomewide association study (GWAS) to identify genetic variants associated with reproductive traits in Nelore beef cattle. Heifer pregnancy (HP) was recorded for 1,267 genotyped animals distributed in 12 contemporary groups (CG) with an average pregnancy rate of 0.35 (±0.01). Disregarding one of these CG, the number of antral follicles (NF) was also collected for 937 of these animals, with an average of 11.53 (±4.43). The animals were organized in CG: 12 and 11 for HP and NF, respectively. Genes in linkage disequilibrium (LD) with the associated variants can be considered in a functional enrichment analysis to identify biological mechanisms involved in fertility. Medical Subject Headings (MeSH) were detected using the MESHR package, allowing the extraction of broad meanings from the gene lists provided by the GWAS. The estimated heritability for HP was 0.28 ± 0.07 and for NF was 0.49 ± 0.09, with the genomic correlation being -0.21 ± 0.29. The average LD between adjacent markers was 0.23 ± 0.01, and GWAS identified genomic windows that accounted for >1% of total genetic variance on chromosomes 5, 14, and 18 for HP and on chromosomes 2, 8, 11, 14, 15, 16, and 22 for NF. The MeSH enrichment analyses revealed significant ( < 0.05) terms associated with HP-"Munc18 Proteins," "Fucose," and "Hemoglobins"-and with NF-"Cathepsin B," "Receptors, Neuropeptide," and "Palmitic Acid." This is the first study in Nelore cattle introducing the concept of MeSH analysis. The genomic analyses contributed to a better understanding of the genetic control of the reproductive traits HP and NF and provide new selection strategies to improve beef production.
Collapse
Affiliation(s)
| | - B. C. Perez
- Universidade de São Paulo (USP), Pirassununga, SP, Brazil
| | - J. B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | | | - J. Silveira
- Universidade de São Paulo (USP), Pirassununga, SP, Brazil
| | - G. Mazzoni
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - R. V. Ventura
- Beef Improvement Opportunities, Guelph, ON N1K1E5, Canada
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON N1G2W1, Canada
| | | | - H. N. Kadarmideen
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
16
|
Zhang M, Chen D, Xia J, Han W, Cui X, Neuenkirchen N, Hermes G, Sestan N, Lin H. Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins. Genes Dev 2017; 31:1354-1369. [PMID: 28794184 PMCID: PMC5580656 DOI: 10.1101/gad.298752.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Abstract
Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another's mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.
Collapse
Affiliation(s)
- Meng Zhang
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Dong Chen
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA
| | - Jing Xia
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Wenqi Han
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Xiekui Cui
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Gretchen Hermes
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Section of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
17
|
Tichon A, Gil N, Lubelsky Y, Havkin Solomon T, Lemze D, Itzkovitz S, Stern-Ginossar N, Ulitsky I. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun 2016. [PMID: 27406171 DOI: 10.1101/033423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD-an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways.
Collapse
Affiliation(s)
- Ailone Tichon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Gil
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Havkin Solomon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Doron Lemze
- Department of Molecular Cell Biology,Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology,Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun 2016; 7:12209. [PMID: 27406171 PMCID: PMC4947167 DOI: 10.1038/ncomms12209] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD—an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways. The human genome contains thousands of long noncoding RNAs which have been preserved by evolution, through their functions are poorly described. Here the authors show that NORAD binds the Pumilo homologues PUM1 and PUM2 to regulate mRNA levels of genes involved in chromosome segregation.
Collapse
|
19
|
Mak W, Fang C, Holden T, Dratver MB, Lin H. An Important Role of Pumilio 1 in Regulating the Development of the Mammalian Female Germline. Biol Reprod 2016; 94:134. [PMID: 27170441 PMCID: PMC4946805 DOI: 10.1095/biolreprod.115.137497] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Pumilio/FBF (PUF) proteins are a highly conserved family of translational regulators. The Drosophila PUF protein, Pumilio, is crucial for germline establishment and fertility. In mammals, primordial folliculogenesis is a key process that establishes the initial cohort of female mammalian germ cells prior to birth, and this primordial follicle pool is a prerequisite for female reproductive competence. We sought to understand whether PUF proteins have a conserved role in mammals during primordial folliculogenesis and female reproductive competency. In mammals, two homologs of Pumilio exist: Pumilio 1 (Pum1) and Pum2. Here, we report that PUMILIO (PUM) 1 plays an important role in the establishment of the primordial follicle pool, meiosis, and female reproductive competency, whereas PUM2 does not have a detectable function in these processes. Furthermore, we show that PUM1 facilitates the transition of the late meiotic prophase I oocyte from pachytene to diplotene stage by regulating SYCP1 protein. Our study reveals an important role of translational regulation in mammalian female germ cell development.
Collapse
Affiliation(s)
- Winifred Mak
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Caodi Fang
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Tobias Holden
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut Department of Genetics, Yale University School of Medicine, New Haven, Connecticut Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
20
|
Laver JD, Li X, Ray D, Cook KB, Hahn NA, Nabeel-Shah S, Kekis M, Luo H, Marsolais AJ, Fung KY, Hughes TR, Westwood JT, Sidhu SS, Morris Q, Lipshitz HD, Smibert CA. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biol 2015; 16:94. [PMID: 25962635 PMCID: PMC4460960 DOI: 10.1186/s13059-015-0659-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
Background Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. Results Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. Conclusions Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0659-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Xiao Li
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Debashish Ray
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Kate B Cook
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Noah A Hahn
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Mariana Kekis
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Alexander J Marsolais
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Karen Yy Fung
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - J Timothy Westwood
- Department of Biology, University of Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada.
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada. .,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada. .,Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, M5S 2E4, Canada.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
21
|
Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2015; 5:1025-34. [PMID: 25834215 PMCID: PMC4478533 DOI: 10.1534/g3.115.017517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior–posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal–ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity.
Collapse
|
22
|
Russo J, Olivas WM. Conditional regulation of Puf1p, Puf4p, and Puf5p activity alters YHB1 mRNA stability for a rapid response to toxic nitric oxide stress in yeast. Mol Biol Cell 2015; 26:1015-29. [PMID: 25631823 PMCID: PMC4357503 DOI: 10.1091/mbc.e14-10-1452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Puf RNA-binding proteins regulate mRNA stability and translation. This work elucidates the role of three yeast Puf proteins in regulating YHB1 mRNA stability in response to cell stress. Without stress, a precise balance of Puf1p, Puf4p, and Puf5p promotes decay of YHB1. Stress conditions inactivate Pufs to stabilize YHB1 and promote cell fitness. Puf proteins regulate mRNA degradation and translation through interactions with 3′ untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3′ UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499
| | - Wendy M Olivas
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499
| |
Collapse
|
23
|
Narita R, Takahasi K, Murakami E, Hirano E, Yamamoto SP, Yoneyama M, Kato H, Fujita T. A novel function of human Pumilio proteins in cytoplasmic sensing of viral infection. PLoS Pathog 2014; 10:e1004417. [PMID: 25340845 PMCID: PMC4207803 DOI: 10.1371/journal.ppat.1004417] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/21/2014] [Indexed: 12/24/2022] Open
Abstract
RIG-I-like receptor (RLR) plays a pivotal role in the detection of invading pathogens to initiate type I interferon (IFN) gene transcription. Since aberrant IFN production is harmful, RLR signaling is strictly regulated. However, the regulatory mechanisms are not fully understood. By expression cloning, we identified Pumilio proteins, PUM1 and PUM2, as candidate positive regulators of RIG-I signaling. Overexpression of Pumilio proteins and their knockdown augmented and diminished IFN-β promoter activity induced by Newcastle disease virus (NDV), respectively. Both proteins showed a specific association with LGP2, but not with RIG-I or MDA5. Furthermore, all of these components were recruited to NDV-induced antiviral stress granules. Interestingly, biochemical analyses revealed that Pumilio increased double-stranded (ds) RNA binding affinity of LGP2; however, Pumilio was absent in the dsRNA-LGP2 complex, suggesting that Pumilio facilitates viral RNA recognition by LGP2 through its chaperon-like function. Collectively, our results demonstrate an unknown function of Pumilio in viral recognition by LGP2. Mammals utilize innate immune system to counteract viral infections. The host pattern-recognition receptors, such as RIG-I-like receptors (RLRs), sense invading pathogens and initiate innate immune responses. RLRs are composed of three RNA helicases, RIG-I, MDA5 and LGP2, and detect a series of RNA viruses, such as influenza or hepatitis C virus, in the cytoplasm. Upon RNA virus infection, RLRs transmit signals through mitochondrial adaptor protein, IPS-1, to activate transcription factor IRF-3/7, resulting in the production of type I interferon (IFN). Type I IFN plays a crucial role in innate immune system by inducing a hundreds of interferon-stimulated genes and its induction is tightly controlled at transcriptional and translational steps. Pumilio proteins are originally identified as translational repressor through direct binding to specific sequence motifs in the 3′ untranslated regions of specific mRNA, and regulate critical biological processes, such as development and differentiation. In this report, we identified human Pumilio proteins, PUM1 and PUM2, as candidate regulators of IFN signaling. Our results demonstrated an unknown function of Pumilio in viral recognition by LGP2.
Collapse
Affiliation(s)
- Ryo Narita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kiyohiro Takahasi
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Institute for Innovative NanoBio Drug Discovery and Development, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Etsu Murakami
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Emi Hirano
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Seiji P. Yamamoto
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
24
|
Ghezzi A, Krishnan HR, Lew L, Prado FJ, Ong DS, Atkinson NS. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance. PLoS Genet 2013; 9:e1003986. [PMID: 24348266 PMCID: PMC3861128 DOI: 10.1371/journal.pgen.1003986] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] Open
Abstract
Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AG); (NSA)
| | - Harish R. Krishnan
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Linda Lew
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Francisco J. Prado
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Darryl S. Ong
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Nigel S. Atkinson
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AG); (NSA)
| |
Collapse
|
25
|
Menon KP, Carrillo RA, Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:647-70. [PMID: 24014452 DOI: 10.1002/wdev.108] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) have been studied extensively. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine as its primary neurotransmitter. The larval NMJ synapses use ionotropic glutamate receptors (GluRs) that are homologous to AMPA-type GluRs in the mammalian brain, and they have postsynaptic scaffolds that resemble those found in mammalian postsynaptic densities. These features make the Drosophila neuromuscular system an excellent genetic model for the study of excitatory synapses in the mammalian central nervous system. The first section of the review presents an overview of NMJ development. The second section describes genes that regulate NMJ development, including: (1) genes that positively and negatively regulate growth of the NMJ, (2) genes required for maintenance of NMJ bouton structure, (3) genes that modulate neuronal activity and alter NMJ growth, (4) genes involved in transsynaptic signaling at the NMJ. The third section describes genes that regulate acute plasticity, focusing on translational regulatory mechanisms. As this review is intended for a developmental biology audience, it does not cover NMJ electrophysiology in detail, and does not review genes for which mutations produce only electrophysiological but no structural phenotypes.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Broad Center, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
26
|
Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC. Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 2012; 287:36370-83. [PMID: 22955276 PMCID: PMC3476303 DOI: 10.1074/jbc.m112.373522] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/05/2012] [Indexed: 11/06/2022] Open
Abstract
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.
Collapse
Affiliation(s)
- Jamie Van Etten
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Trista L. Schagat
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
- the Promega Corporation, Madison, Wisconsin 53711, and
| | - Joel Hrit
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Chase A. Weidmann
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Justin Brumbaugh
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Joshua J. Coon
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Aaron C. Goldstrohm
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
27
|
A eukaryotic translation initiation factor 4E-binding protein promotes mRNA decapping and is required for PUF repression. Mol Cell Biol 2012; 32:4181-94. [PMID: 22890846 DOI: 10.1128/mcb.00483-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PUF proteins are eukaryotic RNA-binding proteins that repress specific mRNAs. The mechanisms and corepressors involved in PUF repression remain to be fully identified. Here, we investigated the mode of repression by Saccharomyces cerevisiae Puf5p and Puf4p and found that Puf5p specifically requires Eap1p to repress mRNAs, whereas Puf4p does not. Surprisingly, we observed that Eap1p, which is a member of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP) class of translational inhibitors, does not inhibit the efficient polyribosome association of a Puf5p target mRNA. Rather, we found that Eap1p accelerates mRNA degradation by promoting decapping, and the ability of Eap1p to interact with eIF4E facilitates this activity. Deletion of EAP1 dramatically reduces decapping, resulting in accumulation of deadenylated, capped mRNA. In support of this phenotype, Eap1p associates both with Puf5p and the Dhh1p decapping factor. Furthermore, recruitment of Eap1p to downregulated mRNA is mediated by Puf5p. On the basis of these results, we propose that Puf5p promotes decapping by recruiting Eap1p and associated decapping factors to mRNAs. The implication of these findings is that a 4E-BP can repress protein expression by promoting specific mRNA degradation steps in addition to or in lieu of inhibiting translation initiation.
Collapse
|
28
|
Takahashi KH, Okada Y, Teramura K. Deficiency screening for genomic regions with effects on environmental sensitivity of the sensory bristles of Drosophila melanogaster. Evolution 2012; 66:2878-90. [PMID: 22946809 DOI: 10.1111/j.1558-5646.2012.01636.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Environmental canalization is defined as a reduction in the effect of external environmental perturbations on a phenotype, while phenotypic plasticity is defined as the production of different phenotypes in alternative environments. These terms describe different aspects of the same phenomenon, that is, the sensitivity of the phenotype to the environment. Genetic regulation of the environmental sensitivity has been a central topic in the field of evolutionary biology. In this study, we performed deficiency screening to detect genomic regions with effects on the environmental sensitivity of Drosophila melanogaster sensory bristles. We used a collection of isogenic deficiency strains established by the DrosDel Project for screening. We screened 423 genomic deficiencies that encompassed approximately 63.6% of the entire D. melanogaster genome. We identified 29 genomic deficiencies showing significant effects on environmental sensitivity, suggesting that multiple genomic regions may influence phenotypic variation. We also found significant correlations among the effects of deficiencies on environmental sensitivity for different bristle traits, suggesting that the same genetic mechanism can regulate environmental sensitivity of multiple traits. Current high-resolution mapping will facilitate the examination of individual candidate genes using mutations or RNAi approaches in future studies.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushima-naka 3-1-1, Kita-ku, Okayama 700-8530, Japan.
| | | | | |
Collapse
|
29
|
Kim SY, Kim JY, Malik S, Son W, Kwon KS, Kim C. Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster. PLoS One 2012; 7:e34016. [PMID: 22514614 PMCID: PMC3326002 DOI: 10.1371/journal.pone.0034016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 02/21/2012] [Indexed: 12/19/2022] Open
Abstract
In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP) cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum), an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE)–like sequences in their 3’UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.
Collapse
Affiliation(s)
- Sung Yun Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
| | - Ji Young Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea
| | - Sumira Malik
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
| | - Wonseok Son
- Department of Biological Science, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, South Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea
| | - Changsoo Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
- * E-mail:
| |
Collapse
|
30
|
Chen D, Zheng W, Lin A, Uyhazi K, Zhao H, Lin H. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. Curr Biol 2012; 22:420-5. [PMID: 22342750 DOI: 10.1016/j.cub.2012.01.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
Abstract
During spermatogenesis, germ cells initially expand exponentially through mitoses. A majority of these cells are then eliminated through p53-mediated apoptosis to maintain germline homeostasis. However, the activity of p53 must be precisely modulated, especially suppressed in postmitotic spermatogenic cells, to guarantee robustness of spermatogenesis. Currently, how the suppression is achieved is not understood. Here, we show that Pumilio 1, a posttranscriptional regulator, binds to mRNAs representing 1,527 genes, with significant enrichment for mRNAs involved in pathways regulating p53, cell cycle, and MAPK signaling. In particular, eight mRNAs encoding activators of p53 are repressed by Pumilio 1. Deleting Pumilio 1 results in strong activation of p53 and apoptosis mostly in spermatocytes, which disrupts sperm production and fertility. Removing p53 reduces apoptosis and rescues testicular hypotrophy in Pumilio 1 null mice. These results indicate that key components of the p53 pathway are coordinately regulated by Pumilio 1 at the posttranscriptional level, which may exemplify an RNA operon.
Collapse
Affiliation(s)
- Dong Chen
- Yale Stem Cell Center and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
31
|
Marrero E, Rossi SG, Darr A, Tsoulfas P, Rotundo RL. Translational regulation of acetylcholinesterase by the RNA-binding protein Pumilio-2 at the neuromuscular synapse. J Biol Chem 2011; 286:36492-9. [PMID: 21865157 PMCID: PMC3196106 DOI: 10.1074/jbc.m111.285510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/22/2011] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase (AChE) is highly expressed at sites of nerve-muscle contact where it is regulated at both the transcriptional and post-transcriptional levels. Our understanding of the molecular mechanisms underlying its regulation is incomplete, but they appear to involve both translational and post-translational events as well. Here, we show that Pumilio-2 (PUM2), an RNA binding translational repressor, is highly localized at the neuromuscular junction where AChE mRNA concentrates. Immunoprecipitation of muscle cell extracts with a PUM2 specific antibody precipitated AChE mRNA, suggesting that PUM2 binds to the AChE transcripts in a complex. Gel shift assays using a bacterially expressed PUM2 RNA binding domain showed specific binding using wild type AChE 3'-UTR RNA segment that was abrogated by mutation of the consensus recognition site. Transfecting skeletal muscle cells with shRNAs specific for PUM2 up-regulated AChE expression, whereas overexpression of PUM2 decreased AChE activity. We conclude that PUM2 binds to AChE mRNA and regulates AChE expression translationally at the neuromuscular synapse. Finally, we found that PUM2 is regulated by the motor nerve suggesting a trans-synaptic mechanism for locally regulating translation of specific proteins involved in modulating synaptic transmission, analogous to CNS synapses.
Collapse
Affiliation(s)
| | | | | | - Pantelis Tsoulfas
- From the Department of Cell Biology and Anatomy
- Neuroscience Program
- Department of Neurosurgery, and
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | |
Collapse
|
32
|
Shigunov P, Sotelo-Silveira J, Kuligovski C, de Aguiar AM, Rebelatto CK, Moutinho JA, Brofman PS, Krieger MA, Goldenberg S, Munroe D, Correa A, Dallagiovanna B. PUMILIO-2 is involved in the positive regulation of cellular proliferation in human adipose-derived stem cells. Stem Cells Dev 2011; 21:217-27. [PMID: 21649561 DOI: 10.1089/scd.2011.0143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells can either differentiate into more specialized cells or undergo self-renewal. Several lines of evidence from different organisms suggest that these processes depend on the post-transcriptional regulation of gene expression. The presence of the PUF [Pumilio/FBF (fem-3 binding factor)] domain defines a conserved family of RNA binding proteins involved in repressing gene expression. It has been suggested that a conserved function of PUF proteins is to repress differentiation and sustain the mitotic proliferation of stem cells. In humans, Pumilio-2 (PUM2) is expressed in embryonic stem cells and adult germ cells. Here we show that PUM2 is expressed in a subpopulation of adipose-derived stem cell (ASC) cultures, with a granular pattern of staining in the cytoplasm. Protein levels of PUM2 showed no changes during the differentiation of ASCs into adipocytes. Moreover, RNAi knockdown of pum2 did not alter the rate of adipogenic differentiation compared with wild-type control cells. A ribonomic approach was used to identify PUM2-associated mRNAs. Microarray analysis showed that PUM2-bound mRNAs are part of gene networks involved in cell proliferation and gene expression control. We studied pum2 expression in cell cultures with low or very high levels of proliferation and found that changes in pum2 production were dependent on the proliferation status of the cell. Transient knockdown of pum2 expression by RNAi impaired proliferation of ASCs in vitro. Our results suggest that PUM2 does not repress differentiation of ASCs but rather is involved in the positive control of ASCs division and proliferation.
Collapse
Affiliation(s)
- Patrícia Shigunov
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Julaton VTA, Reijo Pera RA. NANOS3 function in human germ cell development. Hum Mol Genet 2011; 20:2238-50. [PMID: 21421998 PMCID: PMC3090199 DOI: 10.1093/hmg/ddr114] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/15/2011] [Indexed: 11/29/2022] Open
Abstract
Human infertility is common and frequently linked to poor germ cell development. Yet, human germ cell development is poorly understood, at least in part due to the inaccessibility of germ cells to study especially during fetal development. Here, we explored the function of a highly conserved family of genes, the NANOS genes, in the differentiation of human germ cells from human embryonic stem cells. We observed that NANOS-1, -2 and -3 mRNAs and proteins were expressed in human gonads. We also noted that NANOS3 was expressed in germ cells throughout spermatogenesis and oogenesis and thus, focused further efforts on this family member. NANOS3 expression was highest in human germ cell nuclei where the protein co-localized with chromosomal DNA during mitosis/meiosis. Reduced expression of NANOS3 (via morpholinos or short hairpin RNA) resulted in a reduction in germ cell numbers and decreased expression of germ cell-intrinsic genes required for the maintenance of pluripotency and meiotic initiation and progression. These data provide the first direct experimental evidence that NANOS3 functions in human germ cell development; indeed, NANOS3 is now one of just two genes that has been directly shown to function in germ cell development across diverse species from flies, worms, frogs and mice to humans [the other is BOULE, a member of the Deleted in Azoospermia (DAZ) gene family]. Findings may contribute to our understanding of the basic biology of human germ cell development and may provide clinical insights regarding infertility.
Collapse
Affiliation(s)
| | - Renee A. Reijo Pera
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
34
|
Perinthottathil S, Kim C. Bam and Bgcn in Drosophila germline stem cell differentiation. VITAMINS AND HORMONES 2011; 87:399-416. [PMID: 22127253 DOI: 10.1016/b978-0-12-386015-6.00038-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The female Drosophila reproductive organ, the ovary, has provided researchers with an incisive genetic system with which principle regulation of stem cell maintenance and differentiation has been delineated. An environmental niche regulates a stem cell's asymmetric self-renewal division that produces a daughter stem cell and a differentiated daughter cell, which further differentiate into eggs. A number of extrinsic and intrinsic factors have been identified that are required either for stem cell maintenance or differentiation. Bam/Bgcn complex plays a pivotal role in promoting stem cell differentiation. Recent papers suggest that Bam/Bgcn complex regulates translation of important maintenance factors and is also involved in the regulation of microRNA-dependent translational repression. Here, we focus on Bam and Bgcn repression of stem cell maintenance factors in the differentiation of germline stem cells (GSCs).
Collapse
Affiliation(s)
- Sreejith Perinthottathil
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | | |
Collapse
|
35
|
Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:471-92. [PMID: 21957038 DOI: 10.1002/wrna.69] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Puf proteins are regulators of diverse eukaryotic processes including stem cell maintenance, organelle biogenesis, oogenesis, neuron function, and memory formation. At the molecular level, Puf proteins promote translational repression and/or degradation of target mRNAs by first interacting with conserved cis-elements in the 3' untranslated region (UTR). Once bound to an mRNA, Puf proteins elicit RNA repression by complex interactions with protein cofactors and regulatory machinery involved in translation and degradation. Recent work has dramatically increased our understanding of the targets of Puf protein regulation, as well as the mechanisms by which Puf proteins recognize and regulate those mRNA targets. Crystal structure analysis of several Puf-RNA complexes has demonstrated that while Puf proteins are extremely conserved in their RNA-binding domains, Pufs attain target specificity by utilizing different structural conformations to recognize 8-10 nt sequences. Puf proteins have also evolved modes of protein interactions that are organism and transcript-specific, yet two common mechanisms of repression have emerged: inhibition of cap-binding events to block translation initiation, and recruitment of the CCR4-POP2-NOT deadenylase complex for poly(A) tail removal. Finally, multiple schemes to regulate Puf protein activity have been identified, including post-translational mechanisms that allow rapid changes in the repression of mRNA targets.
Collapse
Affiliation(s)
- Melanie A Miller
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
36
|
Abstract
The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency.
Collapse
Affiliation(s)
- Celina E. Juliano
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - S. Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
37
|
Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biol 2010; 11:R93. [PMID: 20858238 PMCID: PMC2965385 DOI: 10.1186/gb-2010-11-9-r93] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/08/2010] [Accepted: 09/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The modulation of mRNA levels across tissues and time is key for the establishment and operation of the developmental programs that transform the fertilized egg into a fully formed embryo. Although the developmental mechanisms leading to differential mRNA synthesis are heavily investigated, comparatively little attention is given to the processes of mRNA degradation and how these relate to the molecular programs controlling development. RESULTS Here we combine timed collection of Drosophila embryos and unfertilized eggs with genome-wide microarray technology to determine the degradation patterns of all mRNAs present during early fruit fly development. Our work studies the kinetics of mRNA decay, the contributions of maternally and zygotically encoded factors to mRNA degradation, and the ways in which mRNA decay profiles relate to gene function, mRNA localization patterns, translation rates and protein turnover. We also detect cis-regulatory sequences enriched in transcripts with common degradation patterns and propose several proteins and microRNAs as developmental regulators of mRNA decay during early fruit fly development. Finally, we experimentally validate the effects of a subset of cis-regulatory sequences and trans-regulators in vivo. CONCLUSIONS Our work advances the current understanding of the processes controlling mRNA degradation during early Drosophila development, taking us one step closer to the understanding of mRNA decay processes in all animals. Our data also provide a valuable resource for further experimental and computational studies investigating the process of mRNA decay.
Collapse
|
38
|
Shibata N, Rouhana L, Agata K. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Dev Growth Differ 2010; 52:27-41. [PMID: 20078652 DOI: 10.1111/j.1440-169x.2009.01155.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Freshwater planarians, Plathelminthes, have been an intriguing model animal of regeneration studies for more than 100 years. Their robust regenerative ability is one of asexual reproductive capacity, in which complete animals develop from tiny body fragments within a week. Pluripotent adult somatic stem cells, called neoblasts, assure this regenerative ability. Neoblasts give rise to not only all types of somatic cells, but also germline cells. During the last decade, several experimental techniques for the analysis of planarian neoblasts at the molecular level, such as in situ hybridization, RNAi and fluorescence activated cell sorting, have been established. Moreover, information about genes involved in maintenance and differentiation of neoblasts has been accumulated. One of the molecular features of neoblasts is the expression of many RNA regulators, which are involved in germline development in other animals, such as vasa and piwi family genes. In this review, we introduce physiological and molecular features of the neoblast, and discuss how germline genes regulate planarian neoblasts and what differences exist between neoblasts and germline cells.
Collapse
Affiliation(s)
- Norito Shibata
- Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
39
|
Miao J, Li J, Fan Q, Li X, Li X, Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010; 123:1039-49. [PMID: 20197405 DOI: 10.1242/jcs.059824] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation regulation plays an important role during gametocytogenesis in the malaria parasite, a process that is obligatory for the transmission of the parasite through mosquito vectors. In this study we determined the function of PfPuf2, a member of the Puf family of translational repressors, in gametocytogenesis of Plasmodium falciparum. Tagging of the endogenous PfPuf2 protein with green fluorescent protein showed that PfPuf2 was expressed in both male and female gametocytes, and the protein was localized in the cytoplasm of the parasite. Targeted disruption of the PfPuf2 gene did not affect asexual growth of the parasite, but promoted the formation of gametocytes and differentiation of male gametocytes. Complementation studies were performed to confirm that the resultant phenotypic changes were due to disruption of the PfPuf2 gene. Episomal expression of PfPuf2 under its cognate promoter almost restored the gametocytogenesis rate in a PfPuf2 disruptant to the level of the wild-type parasite. It also partially restored the effect of PfPuf2 disruption on male-female sex ratio. In addition, episomal overexpression of PfPuf2 under its cognate promoter but with a higher concentration of the selection drug or under the constitutive hsp86 promoter in both the PfPuf2-disruptant and wild-type 3D7 lines, further dramatically reduced gametocytogenesis rates and sex ratios. These findings suggest that in this early branch of eukaryotes the function of PfPuf2 is consistent with the ancestral function of suppressing differentiation proposed for Puf-family proteins.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kim JY, Lee YC, Kim C. Direct inhibition of Pumilo activity by Bam and Bgcn in Drosophila germ line stem cell differentiation. J Biol Chem 2009; 285:4741-6. [PMID: 20018853 DOI: 10.1074/jbc.m109.002014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The fate of stem cells is intricately regulated by numerous extrinsic and intrinsic factors that promote maintenance or differentiation. The RNA-binding translational repressor Pumilio (Pum) in conjunction with Nanos (Nos) is required for self-renewal, whereas Bam (bag-of-marbles) and Bgcn (benign gonial cell neoplasm) promote differentiation of germ line stem cells in the Drosophila ovary. Genetic analysis suggests that Bam and Bgcn antagonize Pum/Nos function to promote differentiation; however, the molecular basis of this epistatic relationship is currently unknown. Here, we show that Bam and Bgcn inhibit Pum function through direct binding. We identified a ternary complex involving Bam, Bgcn, and Pum in which Bam, but not Bgcn, directly interacts with Pum, and this interaction is greatly increased by the presence of Bgcn. In a heterologous reporter assay to monitor Pum activity, Bam, but not Bgcn, inhibits Pum activity. Notably, the N-terminal region of Pum, which lacks the C-terminal RNA-binding Puf domain, mediates both the ternary protein interaction and the Bam inhibition of Pum function. These studies suggest that, in cystoblasts, Bam and Bgcn may directly inhibit Pum/Nos activity to promote differentiation of germ line stem cells.
Collapse
Affiliation(s)
- Ji Young Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | | | | |
Collapse
|
41
|
Francischini CW, Quaggio RB. Molecular characterization of Arabidopsis thaliana PUF proteins - binding specificity and target candidates. FEBS J 2009; 276:5456-70. [DOI: 10.1111/j.1742-4658.2009.07230.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Unhavaithaya Y, Hao Y, Beyret E, Yin H, Kuramochi-Miyagawa S, Nakano T, Lin H. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 2008; 284:6507-19. [PMID: 19114715 DOI: 10.1074/jbc.m809104200] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Argonaute/PIWI protein family consists of Argonaute and PIWI subfamilies. Argonautes function in RNA interference and micro-RNA pathways; whereas PIWIs bind to PIWI-interacting RNAs and regulate germ line development, stem cell maintenance, epigenetic regulation, and transposition. However, the role of PIWIs in mammalian stem cells has not been demonstrated, and molecular mechanisms mediated by PIWIs remain elusive. Here we show that MILI, a murine PIWI protein, is expressed in the cytoplasm of testicular germ line stem cells, spermatogonia, and early spermatocytes, where it is enriched in chromatoid bodies. MILI is essential for the self-renewing division and differentiation of germ line stem cells but does not affect initial establishment of the germ line stem cell population at 7 days postpartum. Furthermore, MILI forms a stable RNA-independent complex with eIF3a and associates with the eIF4E- and eIF4G-containing m7G cap-binding complex. In isolated 7 days postpartum seminiferous tubules containing mostly germ line stem cells, the mili mutation has no effect on the cellular mRNA level yet significantly reduces the rate of protein synthesis. These observations indicate that MILI may positively regulate translation and that such regulation is required for germ line stem cell self-renewal.
Collapse
Affiliation(s)
- Yingdee Unhavaithaya
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol Cell Biol 2008; 28:4093-103. [PMID: 18411299 DOI: 10.1128/mcb.00155-08] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PUF family proteins are among the best-characterized regulatory RNA-binding proteins in nonmammalian species, but relatively little is known about mRNA targets or functions of mammalian PUF proteins. In this study, we used ribonomic analysis to identify and analyze mRNAs associated with ribonucleoproteins containing an endogenous human PUF protein, Pum1. Pum1-associated mRNAs were highly enriched for genes encoding proteins that function in transcriptional regulation and cell cycle/proliferation, results consistent with the posttranscriptional RNA regulon model and the proposed ancestral functions of PUF proteins in stem cell biology. Analysis of 3' untranslated region sequences of Pum1-associated mRNAs revealed a core Pum1 consensus sequence, UGUAHAUA. Pum1 knockdown demonstrated that Pum1 enhances decay of associated mRNAs, and relocalization of Pum1 to stress granules suggested that Pum1 functions in repression of translation. This study is the first in vivo genome-wide mRNA target identification of a mammalian PUF protein and provides direct evidence that human PUF proteins regulate stability of associated mRNAs. Comparison of Pum1-associated mRNAs to mRNA targets of PUF proteins from Saccharomyces cerevisiae and Drosophila melanogaster demonstrates how a well-conserved RNA-binding domain and cognate binding sequence have been evolutionarily rewired to regulate the collective expression of different sets of functionally related genes.
Collapse
|
44
|
Ulbricht RJ, Olivas WM. Puf1p acts in combination with other yeast Puf proteins to control mRNA stability. RNA (NEW YORK, N.Y.) 2008; 14:246-62. [PMID: 18094119 PMCID: PMC2212245 DOI: 10.1261/rna.847408] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The eukaryotic Puf proteins bind 3' untranslated region (UTR) sequence elements to regulate the stability and translation of their target transcripts, and such regulatory events are critical for cell growth and development. Several global genome analyses have identified hundreds of potential mRNA targets of the Saccharomyces cerevisiae Puf proteins; however, only three mRNA targets for these proteins have been characterized thus far. After direct testing of nearly 40 candidate mRNAs, we established two of these as true mRNA targets of Puf-mediated decay in yeast, HXK1 and TIF1. In a novel finding, multiple Puf proteins, including Puf1p, regulate both of these mRNAs in combination. TIF1 mRNA decay can be stimulated individually by Puf1p and Puf5p, but the combination of both proteins is required for full regulation. This Puf-mediated decay requires the presence of two UGUA binding sites within the TIF1 3' UTR, with one site regulated by Puf5p and the other by both Puf1p and Puf5p. Alteration of the UGUA site in the tif1 3' UTR to more closely resemble the Puf3p binding site broadens the specificity to include regulation by Puf3p. The stability of the endogenously transcribed HXK1 mRNA, cellular levels of Hxk1 protein activity, and HXK1 3' UTR-directed decay are affected by Puf1p and Puf5p as well as Puf4p. Together these results identify the first mRNA targets of Puf1p-mediated decay, describe similar yet distinct combinatorial control of two new target mRNAs by the yeast Puf proteins, and suggest the importance of direct testing to evaluate RNA-regulatory mechanisms.
Collapse
Affiliation(s)
- Randi J Ulbricht
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| | | |
Collapse
|
45
|
Xu EY, Chang R, Salmon NA, Reijo Pera RA. A gene trap mutation of a murine homolog of the Drosophila stem cell factor Pumilio results in smaller testes but does not affect litter size or fertility. Mol Reprod Dev 2007; 74:912-21. [PMID: 17219433 DOI: 10.1002/mrd.20687] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the Pumilio (also called PUF) gene family belong to a class of highly conserved developmental regulators that are present in both flies and humans. Much is known about the function of Pumilio genes in invertebrate development, in particular their role as stem cell factors required for maintenance and/or self-renewal of germline stem cells in Drosophila and Caenorhabditis elegans. It remains unknown whether Pumilio genes are also required for development in mammals; however, several lines of evidence suggest similar functions based on extensive sequence homology, similar RNA-binding properties to their invertebrate counterparts and well-documented interactions with germ cell factors required for fertility. Here we report characterization of a gene trap mutation that disrupts the mouse Pumilio-2 (Pum2) gene. Our data confirm that Pumilio-2 is expressed most abundantly in germ cells with the highest expression in undifferentiated gonocytes and spermatogonia. Furthermore, the mutation in Pum2 results in significantly smaller testes although the mutants are otherwise viable and fertile. In addition, we observed no stronger reproductive defects on a genetic background homozygous for a Pum2 null mutation and heterozygous for a Dazl mutation than Pum2 mutant alone. Thus, as in C. elegans where single members of the Pumilio gene family are dispensable for reproductive development and viability, this individual member of the Pumilio gene family in mice is also not essential for reproduction or viability.
Collapse
Affiliation(s)
- Eugene Yujun Xu
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, and Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Fox MS, Clark AT, El Majdoubi M, Vigne JL, Urano J, Hostetler CE, Griswold MD, Weiner RI, Reijo Pera RA. Intermolecular interactions of homologs of germ plasm components in mammalian germ cells. Dev Biol 2006; 301:417-31. [PMID: 16996493 PMCID: PMC2563953 DOI: 10.1016/j.ydbio.2006.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/02/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
In some species such as flies, worms, frogs and fish, the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that, although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell-specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells.
Collapse
Affiliation(s)
- Mark S Fox
- Center for Reproductive Sciences, Human Embryonic Stem Cell Research Center, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143-0556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Waskar M, Li Y, Tower J. Stem cell aging in the Drosophila ovary. AGE (DORDRECHT, NETHERLANDS) 2005; 27:201-212. [PMID: 23598653 PMCID: PMC3458490 DOI: 10.1007/s11357-005-2914-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 06/02/2023]
Abstract
Accumulating evidence suggests that with time human stem cells may become defective or depleted, thereby contributing to aging and aging-related diseases. Drosophila provides a convenient model system in which to study stem cell aging. The adult Drosophila ovary contains two types of stem cells: the germ-line stem cells give rise to the oocyte and its supporting nurse cells, while the somatic stem cells give rise to the follicular epithelium-a highly differentiated tissue that surrounds each oocyte as it develops. Genetic and transgenic analyses have identified several conserved signaling pathways that function in the ovary to regulate stem cell maintenance, division and differentiation, including the wingless, hedgehog, JAK/STAT, insulin and TGF-β pathways. During Drosophila aging the division of the stem cells decreases dramatically, coincident with reduced egg production. It is unknown if this reproductive senescence is due to a defect in the stem cells themselves, or due to the lack of signals normally sent to the stem cells from elsewhere in the animal, such as from the central nervous system or the stem cell niche. Methods are being developed to genetically mark stem cells in adult Drosophila and measure their survival, division rate and function during aging.
Collapse
Affiliation(s)
- Morris Waskar
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| | - Yishi Li
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| |
Collapse
|
49
|
Szakmary A, Cox DN, Wang Z, Lin H. Regulatory relationship among piwi, pumilio, and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr Biol 2005; 15:171-8. [PMID: 15668175 DOI: 10.1016/j.cub.2005.01.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/07/2004] [Accepted: 10/29/2004] [Indexed: 01/14/2023]
Abstract
The transition from a Drosophila ovarian germline stem cell (GSC) to its differentiated daughter cell, the cystoblast, is controlled by both niche signals and intrinsic factors. piwi and pumilio (pum) are essential for GSC self-renewal, whereas bag-of-marbles (bam) is required for cystoblast differentiation. We demonstrate that Piwi and Bam proteins are expressed independently of each other in reciprocal patterns in GSCs and cystoblasts. However, overexpression of either one antagonizes the other in these cells. Furthermore, piwi;bam double mutants phenocopy the bam mutant. This epistasis reflects the niche signaling function of piwi because depleting piwi from niche cells in bam mutant ovaries also phenocopies bam mutants. Thus, bam is epistatic to niche Piwi, but not germline Piwi function. Despite this, bam- ovaries lacking germline Piwi contain approximately 4-fold fewer germ cells than bam- ovaries, consistent with the role of germline Piwi in promoting GSC mitosis by 4-fold. Finally, pum is epistatic to bam, indicating that niche Piwi does not regulate Bam-C through Pum. We propose that niche Piwi maintains GSCs by repressing bam expression in GSCs, which consequently prevents Bam from downregulating Pum/Nos function in repressing the translation of differentiation genes and germline Piwi function in promoting germ cell division.
Collapse
Affiliation(s)
- Akos Szakmary
- Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
50
|
Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, Locci MT, Evangelista M, Gremigni V. DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 2005; 132:1863-74. [PMID: 15772127 DOI: 10.1242/dev.01785] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As stem cells are rare and difficult to study in vivo in adults, the use of classical models of regeneration to address fundamental aspects of the stem cell biology is emerging. Planarian regeneration, which is based upon totipotent stem cells present in the adult--the so-called neoblasts--provides a unique opportunity to study in vivo the molecular program that defines a stem cell. The choice of a stem cell to self-renew or differentiate involves regulatory molecules that also operate as translational repressors, such as members of PUF proteins. In this study, we identified a homologue of the Drosophila PUF gene Pumilio (DjPum) in the planarian Dugesia japonica, with an expression pattern preferentially restricted to neoblasts. Through RNA interference (RNAi), we demonstrate that gene silencing of DjPum dramatically reduces the number of neoblasts, thus supporting the intriguing hypothesis that stem cell maintenance may be an ancestral function of PUF proteins.
Collapse
Affiliation(s)
- Alessandra Salvetti
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|