1
|
Veltsos P, Madrigal-Roca LJ, Kelly JK. Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus). Nat Commun 2024; 15:10397. [PMID: 39613756 PMCID: PMC11607379 DOI: 10.1038/s41467-024-54534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Chromosomal inversions have been implicated in a remarkable range of natural phenomena, but it remains unclear how much they contribute to standing genetic variation. Here, we evaluate 64 inversions that segregate within a single natural population of the yellow monkeyflower (Mimulus guttatus). Nucleotide diversity patterns confirm low internal variation for the derived orientation (predicted by recent origin), elevated diversity between orientations (predicted by natural selection), and localized fluctuations (predicted by gene flux). Sequence divergence between orientations varies idiosyncratically by position, not following the suspension bridge pattern predicted if the breakpoints are the targets of selection. Genetic variation in gene expression is not inflated close to inversion breakpoints but is clearly partitioned between orientations. Like sequence variation, the pattern of expression variation suggests that the capture of coadapted alleles is more important than the breakpoints for the fitness effects of inversions. This work confirms several evolutionary predictions for inversion polymorphisms, but clarity emerges only by synthesizing estimates across many loci.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Ecology, Evolution and Genetics Research Group, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Luis J Madrigal-Roca
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
2
|
Marie-Orleach L, Glémin S, Brandrud MK, Brysting AK, Gizaw A, Gustafsson ALS, Rieseberg LH, Brochmann C, Birkeland S. How Does Selfing Affect the Pace and Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041426. [PMID: 38503508 PMCID: PMC11529850 DOI: 10.1101/cshperspect.a041426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours 37200, France
| | - Sylvain Glémin
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Evolutionsbiologiskt Centrum EBC, Uppsala, Sweden
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Siri Birkeland
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
3
|
Tshilate TS, Ishengoma E, Rhode C. Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Anim Genet 2024; 55:744-760. [PMID: 38945682 DOI: 10.1111/age.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/23/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Haliotis midae is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for H. midae. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (r = 0.862-0.970; p < 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the H. midae draft genome and BLAST searches revealed the identity of candidate genes, such as egf-1, megf10, megf6, tnx, sevp1, kcp, notch1, and scube2 with possible functional roles in H. midae growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.
Collapse
Affiliation(s)
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Matieland, South Africa
- Mkwawa University College of Education, University of Dar es Salaam, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
4
|
Cutter AD. Beyond Haldane's rule: Sex-biased hybrid dysfunction for all modes of sex determination. eLife 2024; 13:e96652. [PMID: 39158559 PMCID: PMC11333046 DOI: 10.7554/elife.96652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
5
|
Mantel SJ, Sweigart AL. Postzygotic barriers persist despite ongoing introgression in hybridizing Mimulus species. Mol Ecol 2024; 33:e17261. [PMID: 38174628 PMCID: PMC10922885 DOI: 10.1111/mec.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in naturally hybridizing species are not well understood. Here, we explore these issues using genetic mapping in three independent populations of recombinant inbred lines between naturally hybridizing monkeyflowers, Mimulus guttatus and Mimulus nasutus, from the sympatric Catherine Creek population. We discover that the three M. guttatus founders differ dramatically in admixture history, with nearly a quarter of one founder's genome introgressed from M. nasutus. Comparative genetic mapping in the three RIL populations reveals three new putative inversions, each one segregating among the M. guttatus founders, two due to admixture. We find strong, genome-wide transmission ratio distortion in all RILs, but patterns are highly variable among the three populations. At least some of this distortion appears to be explained by epistatic selection favouring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid pollen viability, including two interacting pairs that coincide with peaks of distortion. Remarkably, even with this limited sample of three M. guttatus lines, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbours diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
Collapse
Affiliation(s)
- Samuel J. Mantel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
6
|
Johansen M, Saenko S, Schilthuizen M, Blaxter M, Davison A. Fine mapping of the Cepaea nemoralis shell colour and mid-banded loci using a high-density linkage map. Heredity (Edinb) 2023; 131:327-337. [PMID: 37758900 PMCID: PMC10673960 DOI: 10.1038/s41437-023-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Molluscs are a highly speciose phylum that exhibits an astonishing array of colours and patterns, yet relatively little progress has been made in identifying the underlying genes that determine phenotypic variation. One prominent example is the land snail Cepaea nemoralis for which classical genetic studies have shown that around nine loci, several physically linked and inherited together as a 'supergene', control the shell colour and banding polymorphism. As a first step towards identifying the genes involved, we used whole-genome resequencing of individuals from a laboratory cross to construct a high-density linkage map, and then trait mapping to identify 95% confidence intervals for the chromosomal region that contains the supergene, specifically the colour locus (C), and the unlinked mid-banded locus (U). The linkage map is made up of 215,593 markers, ordered into 22 linkage groups, with one large group making up ~27% of the genome. The C locus was mapped to a ~1.3 cM region on linkage group 11, and the U locus was mapped to a ~0.7 cM region on linkage group 15. The linkage map will serve as an important resource for further evolutionary and population genomic studies of C. nemoralis and related species, as well as the identification of candidate genes within the supergene and for the mid-banding phenotype.
Collapse
Affiliation(s)
- Margrethe Johansen
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Suzanne Saenko
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Menno Schilthuizen
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Mark Blaxter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
Favre F, Jourda C, Grisoni M, Chiroleu F, Dijoux JB, Jade K, Rivallan R, Besse P, Charron C. First Vanilla planifolia High-Density Genetic Linkage Map Provides Quantitative Trait Loci for Resistance to Fusarium oxysporum. PLANT DISEASE 2023; 107:2997-3006. [PMID: 36856646 DOI: 10.1094/pdis-10-22-2386-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium oxysporum f. sp. radicis-vanillae (Forv), the causal agent of root and stem rot disease, is the main pathogen affecting vanilla production. Sources of resistance have been reported in Vanilla planifolia G. Jackson ex Andrews, the main cultivated vanilla species. In this study, we developed the first high-density genetic map in this species with 1,804 genotyping-by-sequencing (GBS)-generated single nucleotide polymorphism (SNP) markers using 125 selfed progenies of the CR0040 traditional vanilla cultivar. Sixteen linkage groups (LG) were successfully constructed, with a mean of 113 SNPs and an average length of 207 cM per LG. The map had a high density with an average of 5.45 SNP every 10 cM and an average distance of 1.85 cM between adjacent markers. The first three LG were aligned against the first assembled chromosome of CR0040, and the other 13 LG were correctly associated with the other 13 assembled chromosomes. The population was challenged with the highly pathogenic Forv strain Fo072 using the root-dip inoculation method. Five traits were mapped, and 20 QTLs were associated with resistance to Fo072. Among the genes retrieved in the CR0040 physical regions associated with QTLs, genes potentially involved in biotic resistance mechanisms, coding for kinases, E3 ubiquitin ligases, pentatricopeptide repeat-containing proteins, and one leucine-rich repeat receptor underlying the qFo72_08.1 QTL have been highlighted. This study should provide useful resources for marker-assisted selection in V. planifolia.
Collapse
Affiliation(s)
- Félicien Favre
- University of Reunion Island, UMR PVBMT, F-97410 St. Pierre, Reunion Island, France
| | - Cyril Jourda
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| | | | | | | | - Katia Jade
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pascale Besse
- University of Reunion Island, UMR PVBMT, F-97410 St. Pierre, Reunion Island, France
| | - Carine Charron
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| |
Collapse
|
8
|
Maan SS, Brar JS, Mittal A, Gill MIS, Arora NK, Sohi HS, Chhuneja P, Dhillon GS, Singh N, Thakur S. Construction of a genetic linkage map and QTL mapping of fruit quality traits in guava ( Psidium guajava L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1123274. [PMID: 37426984 PMCID: PMC10324979 DOI: 10.3389/fpls.2023.1123274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/08/2023] [Indexed: 07/11/2023]
Abstract
Guava (Psidium guajava L.) is an important fruit crop of the Indian sub-continent, with potential for improvements in quality and yield. The goal of the present study was to construct a genetic linkage map in an intraspecific cross between the elite cultivar 'Allahabad Safeda' and the Purple Guava landrace to identify the genomic regions responsible for important fruit quality traits, viz., total soluble solids, titratable acidity, vitamin C, and sugars. This population was phenotyped in field trials (as a winter crop) for three consecutive years, and showed moderate-to-high values of heterogeneity coefficients along with higher heritability (60.0%-97.0%) and genetic-advance-over-mean values (13.23%-31.17%), suggesting minimal environmental influence on the expression of fruit-quality traits and indicating that these traits can be improved by phenotypic selection methods. Significant correlations and strong associations were also detected among fruit physico-chemical traits in segregating progeny. The constructed linkage map consisted of 195 markers distributed across 11 chromosomes, spanning a length of 1,604.47 cM (average inter-loci distance of 8.80 markers) and with 88.00% coverage of the guava genome. Fifty-eight quantitative trait loci (QTLs) were detected in three environments with best linear unbiased prediction (BLUP) values using the composite interval mapping algorithm of the BIP (biparental populations) module. The QTLs were distributed on seven different chromosomes, explaining 10.95%-17.77% of phenotypic variance, with the highest LOD score being 5.96 for qTSS.AS.pau-6.2. Thirteen QTLs detected across multiple environments with BLUPs indicate stability and utility in a future breeding program for guava. Furthermore, seven QTL clusters with stable or common individual QTLs affecting two or more different traits were located on six linkage groups (LGs), explaining the correlation among fruit-quality traits. Thus, the multiple environmental evaluations conducted here have increased our understanding of the molecular basis of phenotypic variation, providing the basis for future high-resolution fine-mapping and paving the way for marker-assisted breeding of fruit-quality traits.
Collapse
Affiliation(s)
| | | | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Naresh Kumar Arora
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, India
| | - Harjot Singh Sohi
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Sciences University, Barnala, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Navdeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sujata Thakur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
9
|
Caeiro-Dias G, Brelsford A, Meneses-Ribeiro M, Crochet PA, Pinho C. Hybridization in late stages of speciation: Strong but incomplete genome-wide reproductive isolation and 'large Z-effect' in a moving hybrid zone. Mol Ecol 2023. [PMID: 37316984 DOI: 10.1111/mec.17035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
In organisms reproducing sexually, speciation occurs when increasing divergence results in pre- or post-zygotic reproductive isolation between lineages. Studies focusing on reproductive isolation origin in early stages of speciation are common and many rely on genomic scans to infer introgression providing limited information on the genomic architecture of reproductive isolation long-term maintenance. This study analyses a natural hybrid zone between two species in a late stage of speciation. We used ddRADseq genotyping in the contact between Podarcis bocagei and P. carbonelli to examine admixture extent, analyse hybrid zone stability and assess genome-wide variation in selection against introgression. We confirmed strong but incomplete reproductive isolation in a bimodal hybrid zone. New findings revealed population genetic structure within P. carbonelli in the contact zone; geographical and genomic clines analysis suggested strong selection against gene flow, but a relatively small proportion of the loci can introgress, mostly within the narrow contact zone. However, geographical clines revealed that a few introgressed loci show signs of potential positive selection, particularly into P. bocagei. Geographical clines also detected a signal of hybrid zone movement towards P. bocagei distribution. Genomic cline analysis revealed heterogeneous patterns of introgression among loci within the syntopy zone, but the majority maintain a strong association with the genomic background of origin. However, incongruences between both cline approaches were found, potentially driven by confounding effects on genomic clines. Last, an important role of the Z chromosome in reproductive isolation is suggested. Importantly, overall patterns of restricted introgression seem to result from numerous strong intrinsic barriers across the genome.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Biology Department, University of California Riverside, Riverside, California, USA
| | - Mariana Meneses-Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pierre-André Crochet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Catarina Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
10
|
Kumar K, Yu Q, Bhatia D, Honsho C, Gmitter FG. Construction of a high density genetic linkage map to define the locus conferring seedlessness from Mukaku Kishu mandarin. FRONTIERS IN PLANT SCIENCE 2023; 14:1087023. [PMID: 36875618 PMCID: PMC9976630 DOI: 10.3389/fpls.2023.1087023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mukaku Kishu ('MK'), a small sized mandarin, is an important source of seedlessness in citrus breeding. Identification and mapping the gene(s) governing 'MK' seedlessness will expedite seedless cultivar development. In this study, two 'MK'-derived mapping populations- LB8-9 Sugar Belle® ('SB') × 'MK' (N=97) and Daisy ('D') × 'MK' (N=68) were genotyped using an Axiom_Citrus56 Array encompassing 58,433 SNP probe sets, and population specific male and female parent linkage maps were constructed. The parental maps of each population were integrated to produce sub-composite maps, which were further merged to develop a consensus linkage map. All the parental maps (except 'MK_D') had nine major linkage groups, and contained 930 ('SB'), 810 ('MK_SB'), 776 ('D') and 707 ('MK_D') SNPs. The linkage maps displayed 96.9 ('MK_D') to 98.5% ('SB') chromosomal synteny with the reference Clementine genome. The consensus map was comprised of 2588 markers including a phenotypic seedless (Fs)-locus and spanned a genetic distance of 1406.84 cM, with an average marker distance of 0.54 cM, which is substantially lower than the reference Clementine map. For the phenotypic Fs-locus, the distribution of seedy and seedless progenies in both 'SB' × 'MK' (55:42, χ2 = 1.74) and 'D' × 'MK' populations (33:35, χ2 = 0.06) followed a test cross pattern. The Fs-locus mapped on chromosome 5 with SNP marker 'AX-160417325' at 7.4 cM in 'MK_SB' map and between two SNP markers 'AX-160536283' and 'AX-160906995' at a distance of 2.4 and 4.9 cM, respectively in 'MK_D' map. The SNPs 'AX-160417325' and 'AX-160536283' correctly predicted seedlessness of 25-91.9% progenies in this study. Based on the alignment of flanking SNP markers to the Clementine reference genome, the candidate gene for seedlessness hovered in a ~ 6.0 Mb region between 3.97 Mb (AX-160906995) to 10.00 Mb (AX-160536283). This region has 131 genes of which 13 genes (belonging to seven gene families) reportedly express in seed coat or developing embryo. The findings of the study will prove helpful in directing future research for fine mapping this region and eventually underpinning the exact causative gene governing seedlessness in 'MK'.
Collapse
Affiliation(s)
- Krishan Kumar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Punjab Agricultural University, Dr. JC Bakhshi Regional Research Station, Abohar, India
| | - Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chitose Honsho
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Laboratory of Pomology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
11
|
Schoen DJ, Baldwin SJ. Self-incompatibility and the genetic architecture of inbreeding depression. THE NEW PHYTOLOGIST 2023; 237:1040-1049. [PMID: 36263709 DOI: 10.1111/nph.18550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Inbreeding depression plays a fundamental role in evolution. To help detect and characterize the loci that underlie inbreeding depression, we used bud pollination and salt treatments to circumvent self-incompatibility (SI) in plants from populations of Leavenworthia alabamica and produced families of progeny that were then genotyped at genetically mapped single-nucleotide polymorphism (SNP) loci. Using Bayesian inference, the segregation patterns for each SNP were used to explore support for different dominance and selection coefficients at linked viability loci in different genomic regions. There was support for several partially recessive viability loci in one of the populations, and one such locus mapped to the genomic region of the novel SI locus in L. alabamica. These results are consistent with earlier findings that showed purging of inbreeding depression for germination rate in L. alabamica. They are also consistent with expectations from evolutionary genetic theory that recessive, deleterious alleles linked to loci under balancing selection can be sheltered from selection.
Collapse
Affiliation(s)
- Daniel J Schoen
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Sarah J Baldwin
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
12
|
Velazco-Cruz L, Ross JA. Genetic architecture and temporal analysis of Caenorhabditis briggsae hybrid developmental delay. PLoS One 2022; 17:e0272843. [PMID: 35951524 PMCID: PMC9371335 DOI: 10.1371/journal.pone.0272843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying the alleles that reduce hybrid fitness is a major goal in the study of speciation genetics. It is rare to identify systems in which hybrid incompatibilities with minor phenotypic effects are segregating in genetically diverse populations of the same biological species. Such traits do not themselves cause reproductive isolation but might initiate the process. In the nematode Caenorhabditis briggsae, a small percent of F2 generation hybrids between two natural populations suffer from developmental delay, in which adulthood is reached after approximately 33% more time than their wild-type siblings. Prior efforts to identify the genetic basis for this hybrid incompatibility assessed linkage using one or two genetic markers on chromosome III and suggested that delay is caused by a toxin-antidote element. Here, we have genotyped F2 hybrids using multiple chromosome III markers to refine the developmental delay locus. Also, to better define the developmental delay phenotype, we measured the development rate of 66 F2 hybrids and found that delay is not restricted to a particular larval developmental stage. Deviation of the developmental delay frequency from hypothetical expectations for a toxin-antidote element adds support to the assertion that the epistatic interaction is not fully penetrant. Our mapping and refinement of the delay phenotype motivates future efforts to study the genetic architecture of hybrid dysfunction between genetically distinct populations of one species by identifying the underlying loci.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Department of Biology, California State University, Fresno, California, United States of America
| | - Joseph A. Ross
- Department of Biology, California State University, Fresno, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Dudka D, Lampson MA. Centromere drive: model systems and experimental progress. Chromosome Res 2022; 30:187-203. [PMID: 35731424 DOI: 10.1007/s10577-022-09696-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
Centromeres connect chromosomes and spindle microtubules to ensure faithful chromosome segregation. Paradoxically, despite this conserved function, centromeric DNA evolves rapidly and centromeric proteins show signatures of positive selection. The centromere drive hypothesis proposes that centromeric DNA can act like a selfish genetic element and drive non-Mendelian segregation during asymmetric female meiosis. Resulting fitness costs lead to genetic conflict with the rest of the genome and impose a selective pressure for centromeric proteins to adapt by suppressing the costs. Here, we describe experimental model systems for centromere drive in yellow monkeyflowers and mice, summarize key findings demonstrating centromere drive, and explain molecular mechanisms. We further discuss efforts to test if centromeric proteins are involved in suppressing drive-associated fitness costs, highlight a model for centromere drive and suppression in mice, and put forth outstanding questions for future research.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Guo XF, Zhou YL, Liu M, Li Z, Zhou L, Wang ZW, Gui JF. A High-Density Genetic Map and QTL Fine Mapping for Growth- and Sex-Related Traits in Red Swamp Crayfish ( Procambarus clarkii). Front Genet 2022; 13:852280. [PMID: 35242171 PMCID: PMC8886229 DOI: 10.3389/fgene.2022.852280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 01/24/2023] Open
Abstract
Red swamp crayfish (Procambarus clarkii) is a commercially important species in global aquaculture and most successfully invasive freshwater shrimp in China. In order to determine the genetic basis of growth- and sex-related traits, a high-density genetic linkage map was constructed using 2b-RAD sequencing technology in a full-sib family. The consensus map contains 4,878 SNP markers assigned to 94 linkage groups (LGs) and spanned 6,157.737 cM with an average marker interval of 1.26 cM and 96.93% genome coverage. The quantitative trait locus (QTL) mapping for growth and sex traits was performed for the first time. QTL mapping uncovers 28 QTLs for growth-related traits in nine LGs, explaining 7.9-14.4% of the phenotypic variation, and identifies some potential candidate growth-related genes such as mih, lamr, golgb1, nurf301, and tbcd1 within the QTL intervals. A single major locus for sex determination was revealed in LG20 that explains 59.3-63.7% of the phenotypic variations. Some candidate sex-related genes, such as vps4bl, ssrf, and acot1, were identified in the QTL intervals and found to be differentially expressed in the muscle tissues between the females and the males. Furthermore, the identified SNPs were revealed to be female heterozygotes, suggesting that red swamp crayfish might have the female heterogametic ZZ/ZW sex determination system. The present study provides a valuable resource for marker-assisted selection and genetic improvement and for further genetic and genomic research in red swamp crayfish.
Collapse
Affiliation(s)
- Xin-Fen Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Key Laboratory of Ministry of Water Resources for Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources, Chinese Academy of Sciences, Wuhan, China
| | - Min Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Zhong-Wei Wang,
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Pal N, Saini DK, Kumar S. Meta-QTLs, ortho-MQTLs and candidate genes for the traits contributing to salinity stress tolerance in common wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2767-2786. [PMID: 35035135 PMCID: PMC8720133 DOI: 10.1007/s12298-021-01112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
A meta-analysis of QTLs associated with the traits contributing to salinity tolerance was undertaken in wheat to detect consensus and robust meta-QTLs (MQTLs) using 844 known QTLs retrieved from 26 earlier studies. A consensus map with a total length of 4621.56 cM including 7710 markers was constructed using 21 individual linkage maps and three previously published integrated genetic maps. Out of 844 QTLs, 571 QTLs were projected on the consensus map which gave origin to 100 MQTLs. Interestingly, 49 MQTLs were co-located with marker-trait associations reported in wheat genome-wide association studies for the traits contributing to salinity stress tolerance. Five potential MQTLs associated with the major salinity-responsive traits were also identified to be utilized in the breeding programme. In the resulted MQTLs, the average confidence interval (CI, 3.58 cM) was reduced up to 4.16 folds compared to the mean CI of the initial QTLs. Furthermore, as many as 617 gene models including 81 most likely candidate genes (CGs) were identified in the high confidence MQTL regions. These most likely CGs encoded proteins mainly belonging to the following families: B-box-type zinc finger, cytochrome P450 protein, pentatricopeptide repeat, phospholipid/glycerol acyltransferase, F-box protein, small auxin-up RNA, UDP-glucosyltransferase, glutathione S-transferase protein, etc. In addition, ortho-MQTL analysis based on synteny among wheat, rice and barley was also performed which permitted the identification of six ortho-MQTLs among these three cereals. This meta-analysis defines a genome-wide landscape on the most stable and consistent loci associated with reliable molecular markers and candidate genes for salinity tolerance in wheat. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01112-0.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
16
|
Shariatipour N, Heidari B, Ravi S, Stevanato P. Genomic analysis of ionome-related QTLs in Arabidopsis thaliana. Sci Rep 2021; 11:19194. [PMID: 34584138 PMCID: PMC8479127 DOI: 10.1038/s41598-021-98592-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Ionome contributes to maintain cell integrity and acts as cofactors for catalyzing regulatory pathways. Identifying ionome contributing genomic regions provides a practical framework to dissect the genetic architecture of ionomic traits for use in biofortification. Meta-QTL (MQTL) analysis is a robust method to discover stable genomic regions for traits regardless of the genetic background. This study used information of 483 QTLs for ionomic traits identified from 12 populations for MQTL analysis in Arabidopsis thaliana. The selected QTLs were projected onto the newly constructed genetic consensus map and 33 MQTLs distributed on A. thaliana chromosomes were identified. The average confidence interval (CI) of the drafted MQTLs was 1.30 cM, reduced eight folds from a mean CI of 10.88 cM for the original QTLs. Four MQTLs were considered as stable MQTLs over different genetic backgrounds and environments. In parallel to the gene density over the A. thaliana genome, the genomic distribution of MQTLs over the genetic and physical maps indicated the highest density at non- and sub-telomeric chromosomal regions, respectively. Several candidate genes identified in the MQTLs intervals were associated with ion transportation, tolerance, and homeostasis. The genomic context of the identified MQTLs suggested nine chromosomal regions for Zn, Mn, and Fe control. The QTLs for potassium (K) and phosphorus (P) were the most frequently co-located with Zn (78.3%), Mn (76.2%), and Fe (88.2% and 70.6%) QTLs. The current MQTL analysis demonstrates that meta-QTL analysis is cheaper than, and as informative as genome-wide association study (GWAS) in refining the known QTLs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Bahram Heidari
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Samathmika Ravi
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| | - Piergiorgio Stevanato
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| |
Collapse
|
17
|
Sawayama E, Handa Y, Nakano K, Noguchi D, Takagi M, Akiba Y, Sanada S, Yoshizaki G, Usui H, Kawamoto K, Suzuki M, Asahina K. Identification of the causative gene of a transparent phenotype of juvenile red sea bream Pagrus major. Heredity (Edinb) 2021; 127:167-175. [PMID: 34175895 PMCID: PMC8322342 DOI: 10.1038/s41437-021-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deformities in cultured fish species may be genetic, and identifying causative genes is essential to expand production and maintain farmed animal welfare. We previously reported a genetic deformity in juvenile red sea bream, designated a transparent phenotype. To identify its causative gene, we conducted genome-wide linkage analysis and identified two single nucleotide polymorphisms (SNP) located on LG23 directly linked to the transparent phenotype. The scaffold on which the two SNPs were located contained two candidate genes, duox and duoxa, which are related to thyroid hormone synthesis. Four missense mutations were found in duox and one in duoxa, with that in duoxa showing perfect association with the transparent phenotype. The mutation of duoxa was suggested to affect the transmembrane structure and thyroid-related traits, including an enlarged thyroid gland and immature erythrocytes, and lower thyroxine (T4) concentrations were observed in the transparent phenotype. The transparent phenotype was rescued by T4 immersion. Loss-of-function of duoxa by CRISPR-Cas9 induced the transparent phenotype in zebrafish. Evidence suggests that the transparent phenotype of juvenile red sea bream is caused by the missense mutation of duoxa and that this mutation disrupts thyroid hormone synthesis. The newly identified missense mutation will contribute to effective selective breeding of red sea bream to purge the causative gene of the undesirable phenotype and improve seed production of red sea bream as well as provide basic information of the mechanisms of thyroid hormones and its related diseases in fish and humans.
Collapse
Affiliation(s)
- Eitaro Sawayama
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | | | | | - Daiki Noguchi
- Nippon Total Science, Inc., Fukuyama, Hiroshima Japan
| | - Motohiro Takagi
- grid.255464.40000 0001 1011 3808South Ehime Fisheries Research Center, Ehime University, Ehime, Japan
| | - Yosuke Akiba
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shuwa Sanada
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hayato Usui
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kenta Kawamoto
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Miwa Suzuki
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kiyoshi Asahina
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| |
Collapse
|
18
|
Ottenlips MV, Mansfield DH, Buerki S, Feist MAE, Downie SR, Dodsworth S, Forest F, Plunkett GM, Smith JF. Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the Lomatium packardiae/L. anomalum clade of the L. triternatum (Apiaceae) complex. AMERICAN JOURNAL OF BOTANY 2021; 108:1217-1233. [PMID: 34105148 PMCID: PMC8362113 DOI: 10.1002/ajb2.1676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/26/2021] [Indexed: 05/29/2023]
Abstract
PREMISE Speciation not associated with morphological shifts is challenging to detect unless molecular data are employed. Using Sanger-sequencing approaches, the Lomatium packardiae/L. anomalum subcomplex within the larger Lomatium triternatum complex could not be resolved. Therefore, we attempt to resolve these boundaries here. METHODS The Angiosperms353 probe set was employed to resolve the ambiguity within Lomatium triternatum species complex using 48 accessions assigned to L. packardiae, L. anomalum, or L. triternatum. In addition to exon data, 54 nuclear introns were extracted and were complete for all samples. Three approaches were used to estimate evolutionary relationships and define species boundaries: STACEY, a Bayesian coalescent-based species tree analysis that takes incomplete lineage sorting into account; ASTRAL-III, another coalescent-based species tree analysis; and a concatenated approach using MrBayes. Climatic factors, morphological characters, and soil variables were measured and analyzed to provide additional support for recovered groups. RESULTS The STACEY analysis recovered three major clades and seven subclades, all of which are geographically structured, and some correspond to previously named taxa. No other analysis had full agreement between recovered clades and other parameters. Climatic niche and leaflet width and length provide some predictive ability for the major clades. CONCLUSIONS The results suggest that these groups are in the process of incipient speciation and incomplete lineage sorting has been a major barrier to resolving boundaries within this lineage previously. These results are hypothesized through sequencing of multiple loci and analyzing data using coalescent-based processes.
Collapse
Affiliation(s)
| | | | - Sven Buerki
- Department of Biological SciencesBoise State UniversityBoiseID83725USA
| | | | - Stephen R. Downie
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Steven Dodsworth
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUK
- School of Life SciencesUniversity of BedfordshireLutonLU1 3JUUK
| | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUK
| | - Gregory M. Plunkett
- Cullman Program for Molecular SystematicsNew York Botanical Garden2900 Southern BoulevardBronxNY10458USA
| | - James F. Smith
- Department of Biological SciencesBoise State UniversityBoiseID83725USA
| |
Collapse
|
19
|
Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers. PLoS Genet 2021; 17:e1009418. [PMID: 33886547 PMCID: PMC8061799 DOI: 10.1371/journal.pgen.1009418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Centromeres are essential mediators of chromosomal segregation, but both centromeric DNA sequences and associated kinetochore proteins are paradoxically diverse across species. The selfish centromere model explains rapid evolution by both components via an arms-race scenario: centromeric DNA variants drive by distorting chromosomal transmission in female meiosis and attendant fitness costs select on interacting proteins to restore Mendelian inheritance. Although it is clear than centromeres can drive and that drive often carries costs, female meiotic drive has not been directly linked to selection on kinetochore proteins in any natural system. Here, we test the selfish model of centromere evolution in a yellow monkeyflower (Mimulus guttatus) population polymorphic for a costly driving centromere (D). We show that the D haplotype is structurally and genetically distinct and swept to a high stable frequency within the past 1500 years. We use quantitative genetic mapping to demonstrate that context-dependence in the strength of drive (from near-100% D transmission in interspecific hybrids to near-Mendelian in within-population crosses) primarily reflects variable vulnerability of the non-driving competitor chromosomes, but also map an unlinked modifier of drive coincident with kinetochore protein Centromere-specific Histone 3 A (CenH3A). Finally, CenH3A exhibits a recent (<1000 years) selective sweep in our focal population, implicating local interactions with D in ongoing adaptive evolution of this kinetochore protein. Together, our results demonstrate an active co-evolutionary arms race between DNA and protein components of the meiotic machinery in Mimulus, with important consequences for individual fitness and molecular divergence. Centromeres must mediate faithful chromosomal transmission during cell division and sexual reproduction, but both the DNA and protein components of centromeres diverge rapidly across species. The selfish centromere model argues that this paradoxical diversity results from a genetic conflict between centromeric DNA variants driving through female meiosis to gain over-transmission and kinetochore proteins co-evolving to re-establish Mendelian segregation. We use whole genome sequencing and genetic crossing experiments to demonstrate active evolutionary interactions between a selfish centromere and a key kinetochore protein (CenH3A) in the wildflower Mimulus guttatus. We show that both inter-specific and intra-population differences in CenH3A affect centromeric drive in hybrids, and that adaptive evolution of CenH3A has followed the recent and costly spread of the driver in a wild population. This work provides novel empirical support for the proposed antagonistic co-evolution of the DNA and protein components of centromeres, with important consequences for understanding cellular function, individual fitness, and species divergence.
Collapse
|
20
|
Okada T, Jayasinghe JEARM, Eckermann P, Watson-Haigh NS, Warner P, Williams ME, Albertsen MC, Baumann U, Whitford R. Genetic factors associated with favourable pollinator traits in the wheat cultivar Piko. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:434-447. [PMID: 33332999 DOI: 10.1071/fp20181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Hybrid breeding in wheat has the potential to boost yields. An efficient hybrid seed production system requires elite pollinators; however, such germplasm is limited among modern cultivars. Piko, a winter wheat (Triticum aestivum L.) cultivar, has been identified as a superior pollinator and has been used in Europe. Piko has favourable pollinator traits for anther extrusion, anther length, pollen mass and hybrid seed set. However, the genetic factors responsible for Piko's favourable traits are largely unknown. Here, we report on the genetic analysis of a Piko-derived F2 mapping population. We confirmed that Piko's Rht-D1a allele for tall stature is associated with large anthers and high anther extrusion. However, Rht-D1 was not found to be associated with anther filament length, confirmed by near isogenic lines. Piko's photoperiod sensitive Ppd-B1b allele shows an association with increased spike length, more spikelets and spike architecture traits, while the insensitive Ppd-B1a allele is linked with high anther extrusion and larger anthers. We identified an anther extrusion quantitative trait locus (QTL) on chromosome 6A that showed significantly biased transmission of the favourable Piko allele amongst F2 progenies. The Piko allele is completely absent in the distal 6AS region and the central 6A region revealed a significantly lower ratio (<8%) of F2 with homozygous Piko alleles. Our study provided further evidence for the effects of Rht-D1 and Ppd-B1 loci on multiple pollinator traits and a novel anther extrusion QTL that exhibits segregation distortion.
Collapse
Affiliation(s)
- Takashi Okada
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA 5064, Australia; and Present address: The Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, SA 5000, Australia; and Corresponding author.
| | - J E A Ridma M Jayasinghe
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Paul Eckermann
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Nathan S Watson-Haigh
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Patricia Warner
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Mark E Williams
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | - Marc C Albertsen
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Ryan Whitford
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA 5064, Australia
| |
Collapse
|
21
|
Guo W, He S, Liang X, Tian C, Dou Y, Lv L. A high-density genetic linkage map for Chinese perch (Siniperca chuatsi) using 2.3K genotyping-by-sequencing SNPs. Anim Genet 2021; 52:311-320. [PMID: 33598959 DOI: 10.1111/age.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2021] [Indexed: 11/27/2022]
Abstract
Chinese perch, Siniperca chuatsi (Basilewsky), is one of the most commercially important cultured fishes in China. In the present study, a high-density genetic linkage map of Chinese perch was constructed by genotyping-by-sequencing technique with an F1 mapping panel containing 190 progenies. A total of 2328 SNPs were assigned to 24 linkage groups (LGs), agreeing with the chromosome haploid number in this species (n = 24). The sex-averaged map covered 97.9% of the Chinese perch genome, with the length of 1694.3 cM and a marker density of 0.7 cM/locus. The number of markers per LG ranged from 57 to 222, with a mean of 97. The length of LGs varied from 43.2 to 108.2 cM, with a mean size of 70.6 cM. The recombination rate of females was 1.5:1, which was higher than that of males. To better understand the distribution pattern of segregation distortion between the two sexes of Chinese perch, the skewed markers were retained and used to reconstruct the sex-specific maps. The 16 segregation distortion regions were identified on 10 LGs of the female map, while 12 segregation distortion regions on eight LGs of the male map. Among these LGs, six LGs matched between the sex-specific maps. This high-density linkage map could provide a solid basis for identifying QTL associated with economically important traits, and for implementing marker-assisted selection breeding of Chinese perch.
Collapse
Affiliation(s)
- Wenjie Guo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shan He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xufang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxu Tian
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaqi Dou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Liyuan Lv
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Maternal Transmission Ratio Distortion in Two Iberian Pig Varieties. Genes (Basel) 2020; 11:genes11091050. [PMID: 32899475 PMCID: PMC7563664 DOI: 10.3390/genes11091050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds.
Collapse
|
23
|
Talukder SK, Bhamidimarri S, Chekhovskiy K, Saha MC. Mapping QTL for summer dormancy related traits in tall fescue (Festuca arundinacea Schreb.). Sci Rep 2020; 10:14539. [PMID: 32884044 PMCID: PMC7471293 DOI: 10.1038/s41598-020-71488-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/14/2020] [Indexed: 11/15/2022] Open
Abstract
Summer dormancy is an important stress avoidance mechanism of cool season perennial grasses to persist well under harsh summer conditions. QTL associated with summer-dormancy related traits in tall fescue has significant breeding implications. An F1 pseudo testcross population was developed by crossing a Mediterranean (103-2) to a Continental parent (R43-64). The population was genotyped using 2,000 SSR and DArT markers. Phenotyping was done in growth chambers and in two Oklahoma, USA locations. Total length of R43-64 and 103-2 maps were 1,956 cM and 1,535 cM, respectively. Seventy-seven QTL were identified in the male and 46 in the female parent maps. The phenotypic variability explained by the QTL ranged between 9.91 and 32.67%. Among all the QTL, five summer dormancy related putative QTL were identified in R43-64 linkage groups (LGs) 4, 5, 12, 20 and 22 and two in 103-2 LGs 5 and 17. All the putative summer dormant QTL regions in male map showed pleiotropic responses and epistatic interactions with other summer dormant and stress responsive QTL regions for plant height, new leaf and dry biomass weight. The flanking markers related to the QTL reported in this study will be useful to improve tall fescue persistence in dry areas through marker-assisted breeding.
Collapse
Affiliation(s)
- Shyamal K Talukder
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- California Cooperative Rice Research Foundation, Rice Expt. Station, 955 Butte City Highway, Biggs, CA, USA
| | - Suresh Bhamidimarri
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Corteva Agriscience, 1040 Settler Rd., Connell, WA, USA
| | | | - Malay C Saha
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
| |
Collapse
|
24
|
Yang W, Wang Y, Jiang D, Tian C, Zhu C, Li G, Chen H. ddRADseq-assisted construction of a high-density SNP genetic map and QTL fine mapping for growth-related traits in the spotted scat (Scatophagus argus). BMC Genomics 2020; 21:278. [PMID: 32245399 PMCID: PMC7126399 DOI: 10.1186/s12864-020-6658-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Scatophagus argus is a popular farmed fish in several countries of Southeast Asia, including China. Although S. argus has a highly promising economic value, a significant lag of breeding research severely obstructs the sustainable development of aquaculture industry. As one of the most important economic traits, growth traits are controlled by multiple gene loci called quantitative trait loci (QTLs). It is urgently needed to launch a marker assisted selection (MAS) breeding program to improve growth and other pivotal traits. Thus a high-density genetic linkage map is necessary for the fine mapping of QTLs associated with target traits. RESULTS Using restriction site-associated DNA sequencing, 6196 single nucleotide polymorphism (SNP) markers were developed from a full-sib mapping population for genetic map construction. A total of 6193 SNPs were grouped into 24 linkage groups (LGs), and the total length reached 2191.65 cM with an average marker interval of 0.35 cM. Comparative genome mapping revealed 23 one-to-one and 1 one-to-two syntenic relationships between S. argus LGs and Larimichthys crocea chromosomes. Based on the high-quality linkage map, a total of 44 QTLs associated with growth-related traits were identified on 11 LGs. Of which, 19 significant QTLs for body weight were detected on 9 LGs, explaining 8.8-19.6% of phenotypic variances. Within genomic regions flanking the SNP markers in QTL intervals, we predicted 15 candidate genes showing potential relationships with growth, such as Hbp1, Vgll4 and Pim3, which merit further functional exploration. CONCLUSIONS The first SNP genetic map with a fine resolution of 0.35 cM for S. argus has been developed, which shows a high level of syntenic relationship with L. crocea genomes. This map can provide valuable information for future genetic, genomic and evolutionary studies. The QTLs and SNP markers significantly associated with growth-related traits will act as useful tools in gene mapping, map-based cloning and MAS breeding to speed up the genetic improvement in important traits of S. argus. The interesting candidate genes are promising for further investigations and have the potential to provide deeper insights into growth regulation in the future.
Collapse
Affiliation(s)
- Wei Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Food and Environmental Engineering Department, Yangjiang Polytechnic, Yangjiang, 529566, China
| | - Yaorong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongneng Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Changxu Tian
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Guangli Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huapu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
25
|
Zhou Y, Liu H, Wang X, Fu B, Yu X, Tong J. QTL Fine Mapping for Sex Determination Region in Bighead Carp (Hypophthalmichthys nobilis) and Comparison with Silver Carp (Hypophthalmichthys molitrix). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:41-53. [PMID: 31776800 DOI: 10.1007/s10126-019-09929-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix) are genetically close aquaculture fish in the Cyprinidae, which have been confirmed to hold XX/XY sex determination. However, genomic locations of potential sex-related loci in these two fishes are still unknown. In this study, a high-resolution genetic linkage map was constructed by using 2976 SNP and 924 microsatellite markers in a F1 full-sib family of bighead carp, the length of which spanned 2022.34 cM with an average inter-marker distance of 0.52 cM. Comparative genomics revealed a high level of genomic synteny between bighead carp and zebrafish as well as grass carp. QTL fine mapping for sex trait was performed based on this linkage map of bighead carp and an unpublished linkage map of silver carp. A map distance of 3.863 cM (69.787-73.650 cM) on LG19 of bighead carp and 4.705 cM (79.096-83.801 cM) on LG21 of silver carp was significantly associated with sex phenotypes, and these two LGs are homologous between two fish species. Fourteen markers harboring in these regions were in strong linkage disequilibrium with the sex phenotype variance explained (PVE) varying from 89 to 100%. Two common markers were mapped on the QTL regions of bighead carp and silver carp, suggesting that these two carp species may have similar genetic bases for sex determination. Eleven potentially sex-related genes were identified within or near the sex QTL markers in two species. This study provided insights into elucidating mechanisms and evolution of sex determination in cyprinid fishes.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinhua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
26
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
27
|
Dong H, Shang X, Zhao X, Yu H, Jiang N, Zhang M, Tan Q, Zhou C, Zhang L. Construction of a genetic linkage map of Lentinula edodes based on SSR, SRAP and TRAP markers. BREEDING SCIENCE 2019; 69:585-591. [PMID: 31988622 PMCID: PMC6977451 DOI: 10.1270/jsbbs.18123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. It allows the localization of genes or quantitative trait loci (QTLs) and map-based cloning. In this study, we constructed a linkage map based on DNA samples from a commercial strain L808, including two parental monokaryons and 93 single spore isolates considered with segregating to 1:1:1:1 at four mating types (A1B1, A1B2, A2B1 and A2B2). Using Simple Sequence Repeats (SSR), Sequence Related Amplified Polymorphism (SRAP), Target Region Amplified Polymorphism (TRAP) molecular markers, 182 molecular markers and two mating factors were located on 11 linkage groups (LGs). The total length of the map was 948.083 centimorgan (cM), with an average marker interval distance of 4.817 cM. Only two gaps spanning more than 20 cM was observed. The probability of 20 cM, 10 cM, 5 cM genetic distance cover one marker was 99.68%, 94.36%, 76.43% in our genetic linkage map, respectively. This is the first linkage map of Lentinula edodes using SSR markers, which provides essential information for quantitative trait analyses and improvement of genome assembly.
Collapse
Affiliation(s)
- Hui Dong
- Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Laboratory of Agro-Food Quality and Safety Risk Assessment at Shanghai,
Shanghai, 201403,
China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Xiaoyan Zhao
- Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Laboratory of Agro-Food Quality and Safety Risk Assessment at Shanghai,
Shanghai, 201403,
China
| | - Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Ning Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Meiyan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Changyan Zhou
- Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Laboratory of Agro-Food Quality and Safety Risk Assessment at Shanghai,
Shanghai, 201403,
China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| |
Collapse
|
28
|
Wang X, Liu H, Pang M, Fu B, Yu X, He S, Tong J. Construction of a high-density genetic linkage map and mapping of quantitative trait loci for growth-related traits in silver carp (Hypophthalmichthys molitrix). Sci Rep 2019; 9:17506. [PMID: 31767872 PMCID: PMC6877629 DOI: 10.1038/s41598-019-53469-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/29/2019] [Indexed: 01/26/2023] Open
Abstract
High-density genetic map and quantitative trait loci (QTL) mapping are powerful tools for identifying genomic regions that may be responsible for such polygenic trait as growth. A high-density genetic linkage map was constructed by sequencing 198 individuals in a F1 family of silver carp (Hypophthalmichthys molitrix) in this study. This genetic map spans a length of 2,721.07 cM with 3,134 SNPs distributed on 24 linkage groups (LGs). Comparative genomic mapping presented a high level of syntenic relationship between silver carp and zebrafish. We detected one major and nineteen suggestive QTL for 4 growth-related traits (body length, body height, head length and body weight) at 6, 12 and 18 months post hatch (mph), explaining 10.2~19.5% of phenotypic variation. All six QTL for growth traits of 12 mph generally overlapped with QTL for 6 mph, while the majority of QTL for 18 mph were identified on two additional LGs, which may reveal a different genetic modulation during early and late muscle growth stages. Four potential candidate genes were identified from the QTL regions by homology searching of marker sequences against zebrafish genome. Hepcidin, a potential candidate gene identified from a QTL interval on LG16, was significantly associated with growth traits in the analyses of both phenotype-SNP association and mRNA expression between small-size and large-size groups of silver carp. These results provide a basis for elucidating the genetic mechanisms for growth and body formation in silver carp, a world aquaculture fish.
Collapse
Affiliation(s)
- Xinhua Wang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of the CAS, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
29
|
Baena-Díaz F, Zemp N, Widmer A. Insights into the genetic architecture of sexual dimorphism from an interspecific cross between two diverging Silene (Caryophyllaceae) species. Mol Ecol 2019; 28:5052-5067. [PMID: 31605646 DOI: 10.1111/mec.15271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex-biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.
Collapse
Affiliation(s)
| | | | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
30
|
Yang Z, Xu F, Zhang Z, Li J, Jia Y, Li H, Liu X. Genetic determination of sex and shell color in the Pacific abalone Haliotis discus hannai revealed by an integrated linkage map. Anim Genet 2019; 50:733-739. [PMID: 31571283 DOI: 10.1111/age.12860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2019] [Indexed: 11/29/2022]
Abstract
Integrated linkage maps for each sex have been constructed for the Pacific abalone Haliotis discus hannai using three F1 mapping families based on co-dominant markers. A total of 273 markers were placed on the female map, spanning 927.3 cM with an average interval of 3.64 cM, whereas 277 markers were mapped on the male map, covering 727.0 cM with an average spacing of 2.80 cM. Both female and male maps consisted of 18 linkage groups, corresponding well with the number of chromosomes. Furthermore, the sex-determining locus and the green/orange shell color controlling locus were mapped to the linkage group 3 (LG3) and LG9 respectively. A marker completely linked to phenotypic sex was identified, and the sex determination system was further concluded as paternal heterogametic (males XY and females XX). Based on the segregation ratio of the shell color in the progeny, a simple recessive model of epistasis was proposed to explain the distribution of different color morphs (green, orange and blue): the recessive allele determining orange type masks the effect of the locus controlling green and blue types, whereas the dominant allele at the green/orange locus permits the expression of green and blue types controlled by another locus. The current consensus map provides a useful framework for genetic studies in the Pacific abalone. Mapping of the sex-determining locus and the shell color-controlling locus leads to further understanding of the mechanisms underlying these important traits.
Collapse
Affiliation(s)
- Z Yang
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - F Xu
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Z Zhang
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - J Li
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Y Jia
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - H Li
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - X Liu
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
31
|
Flagel LE, Blackman BK, Fishman L, Monnahan PJ, Sweigart A, Kelly JK. GOOGA: A platform to synthesize mapping experiments and identify genomic structural diversity. PLoS Comput Biol 2019; 15:e1006949. [PMID: 30986215 PMCID: PMC6483263 DOI: 10.1371/journal.pcbi.1006949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 04/25/2019] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding genomic structural variation such as inversions and translocations is a key challenge in evolutionary genetics. We develop a novel statistical approach to comparative genetic mapping to detect large-scale structural mutations from low-level sequencing data. The procedure, called Genome Order Optimization by Genetic Algorithm (GOOGA), couples a Hidden Markov Model with a Genetic Algorithm to analyze data from genetic mapping populations. We demonstrate the method using both simulated data (calibrated from experiments on Drosophila melanogaster) and real data from five distinct crosses within the flowering plant genus Mimulus. Application of GOOGA to the Mimulus data corrects numerous errors (misplaced sequences) in the M. guttatus reference genome and confirms or detects eight large inversions polymorphic within the species complex. Finally, we show how this method can be applied in genomic scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.
Collapse
Affiliation(s)
- Lex E. Flagel
- Bayer Crop Science, Chesterfield, MO, United States of America
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States of America
- * E-mail: (LEF); (JKK)
| | - Benjamin K. Blackman
- Department of Plant and Microbial Biology, University of California—Berkeley, Berkeley, CA, United States of America
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT, United States of America
| | - Patrick J. Monnahan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States of America
| | - Andrea Sweigart
- Department of Genetics, University of Georgia, Athens, GA, United States of America
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- * E-mail: (LEF); (JKK)
| |
Collapse
|
32
|
Guo L, Xu YH, Zhang N, Zhou FL, Huang JH, Liu BS, Jiang SG, Zhang DC. A High-Density Genetic Linkage Map and QTL Mapping for Sex in Black Tiger Shrimp ( Penaeus monodon). Front Genet 2019; 10:326. [PMID: 31024632 PMCID: PMC6465554 DOI: 10.3389/fgene.2019.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The black tiger shrimp, Penaeus monodon, is important in both fishery and aquaculture and is the second-most widely cultured shrimp species in the world. However, the current strains cannot meet the market needs in various cultural environments, and the genome resources for P. monodon are still lacking. Restriction-site associated DNA sequencing (RADseq) has been widely used in genetic linkage map construction and in quantitative trait loci (QTL) mapping. We constructed a high-density genetic linkage map with RADseq in a full-sib family. This map contained 6524 single nucleotide polymorphisms (SNPs) and 2208 unique loci. The total length was 3275.4 cM, and the genetic distance was estimated to be 1.1 Mb/cM. The sex trait is a dichotomous phenotype, and the same interval was detected as a QTL using QTL mapping and genome-wide association analysis. The most significant locus explained 77.4% of the phenotype variance. The sex locus was speculated to be the same in this species based on the sequence alignments in Mozambique, India, and Hawaii populations. The constructed genetic linkage map provided a valuable resource for QTL mapping, genome assembly, and genome comparison for shrimp. The demonstrated common sex locus is a step closer to locating the underlying gene.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China
| | - Yu-Hui Xu
- Biomarker Technologies Corporation, Beijing, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China
| | - Fa-Lin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China
| | - Jian-Hua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China
| |
Collapse
|
33
|
Huang L, Yan X. Construction of a genetic linkage map in Pyropia yezoensis (Bangiales, Rhodophyta) and QTL analysis of several economic traits of blades. PLoS One 2019; 14:e0209128. [PMID: 30849086 PMCID: PMC6407771 DOI: 10.1371/journal.pone.0209128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/20/2019] [Indexed: 11/18/2022] Open
Abstract
Pyropia yezoensis is an economically important seaweed but its molecular genetics is poorly understood. In the present study, we used a doubled haploid (DH) population that was established in our previous work to construct a genetic linkage map of P. yezoensis and analyze the quantitative trait loci (QTLs) of blades. The DH population was genotyped with fluorescent sequence-related amplified polymorphism (SRAP) markers. A chi-square test identified 301 loci with normal segregation (P ≥ 0.01) and 96 loci (24.18%) with low-level skewed segregation (0.001 ≤ P < 0.01). The genetic map was constructed after a total of 92 loci were assembled into three linkage groups (LGs). The map spanned 557.36 cM covering 93.71% of the estimated genome, with a mean interlocus space of 6.23 cM. Kolmogorov-Smirnov test (α = 5%) showed a uniform distribution of the markers along each LG. On the genetic map, 10 QTLs associated with five economic traits of blades were detected. One QTL was for length, one for width, two for fresh weight, two for specific growth rate of length and four for specific growth rate of fresh weight. These QTLs could explain 2.29–7.87% of the trait variations, indicating that their effects were all minor. The results may serve as a framework for future marker-assisted breeding in P. yezoensis.
Collapse
Affiliation(s)
- Linbin Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, P. R. China
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, P. R. China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, P. R. China
| | - Xinghong Yan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, P. R. China
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, P. R. China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
34
|
Brennan AC, Hiscock SJ, Abbott RJ. Completing the hybridization triangle: the inheritance of genetic incompatibilities during homoploid hybrid speciation in ragworts ( Senecio). AOB PLANTS 2019; 11:ply078. [PMID: 30740200 PMCID: PMC6360072 DOI: 10.1093/aobpla/ply078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/04/2019] [Indexed: 05/24/2023]
Abstract
A new homoploid hybrid lineage needs to establish a degree of reproductive isolation from its parent species if it is to persist as an independent entity, but the role hybridization plays in this process is known in only a handful of cases. The homoploid hybrid ragwort species, Senecio squalidus (Oxford ragwort), originated following the introduction of hybrid plants to the UK approximately 320 years ago. The source of the hybrid plants was from a naturally occurring hybrid zone between S. aethnensis and S. chrysanthemifolius on Mount Etna, Sicily. Previous studies of the parent species found evidence for multiple incompatibility loci causing transmission ratio distortion of genetic markers in their hybrid progeny. This study closes the hybridization triangle by reporting a genetic mapping analysis of the remaining two paired cross combinations between S. squalidus and its parents. Genetic maps produced from F2 mapping families were generally collinear but with half of the linkage groups showing evidence of genomic reorganization between genetic maps. The new maps produced from crosses between S. squalidus and each parent showed multiple incompatibility loci distributed across the genome, some of which co-locate with previously reported incompatibility loci between the parents. These findings suggest that this young homoploid hybrid species has inherited a unique combination of genomic rearrangements and incompatibilities from its parents that contribute to its reproductive isolation.
Collapse
Affiliation(s)
- Adrian C Brennan
- Department of Biosciences, University of Durham, South Road, Durham, UK
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Simon J Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| |
Collapse
|
35
|
Giesbers AKJ, den Boer E, Ulen JJWEH, van Kaauwen MPW, Visser RGF, Niks RE, Jeuken MJW. Patterns of Transmission Ratio Distortion in Interspecific Lettuce Hybrids Reveal a Sex-Independent Gametophytic Barrier. Genetics 2019; 211:263-276. [PMID: 30401697 PMCID: PMC6325705 DOI: 10.1534/genetics.118.301566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022] Open
Abstract
Interspecific crosses can result in progeny with reduced vitality or fertility due to genetic incompatibilities between species, a phenomenon known as hybrid incompatibility (HI). HI is often caused by a bias against deleterious allele combinations, which results in transmission ratio distortion (TRD). Here, we determined the genome-wide distribution of HI between wild lettuce, Lactuca saligna, and cultivated lettuce, L. sativa, in a set of backcross inbred lines (BILs) with single introgression segments from L. saligna introgressed into a L. sativa genetic background. Almost all BILs contained an introgression segment in a homozygous state except a few BILs, for which we were able to obtain only a single heterozygous introgression. Their inbred progenies displayed severe TRD with a bias toward the L. sativa allele and complete nontransmission of the homozygous L. saligna introgression, i.e., absolute HI. These HI might be caused by deleterious heterospecific allele combinations at two loci. We used an multilocus segregating interspecific F2 population to identify candidate conspecific loci that can nullify the HI in BILs. Segregation analysis of developed double-introgression progenies showed nullification of three HI and proved that these HI are explained by nuclear pairwise incompatibilities. One of these digenic HI showed 29% reduced seed set and its pattern of TRD pointed to a sex-independent gametophytic barrier. Namely, this HI was caused by complete nontransmission of one heterospecific allele combination at the haploid stage, surprisingly in both male and female gametophytes. Our study shows that two-locus incompatibility systems contribute to reproductive barriers among Lactuca species.
Collapse
Affiliation(s)
- Anne K J Giesbers
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Erik den Boer
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | | | | | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Rients E Niks
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Marieke J W Jeuken
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
36
|
Xu LY, Wang LY, Wei K, Tan LQ, Su JJ, Cheng H. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genomics 2018; 19:955. [PMID: 30577813 PMCID: PMC6304016 DOI: 10.1186/s12864-018-5291-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Flavonoids are important components that confer upon tea plants a unique flavour and health functions. However, the traditional breeding method for selecting a cultivar with a high or unique flavonoid content is time consuming and labour intensive. High-density genetic map construction associated with quantitative trait locus (QTL) mapping provides an effective way to facilitate trait improvement in plant breeding. In this study, an F1 population (LJ43×BHZ) was genotyped using 2b-restriction site-associated DNA (2b-RAD) sequencing to obtain massive single nucleotide polymorphism (SNP) markers to construct a high-density genetic map for a tea plant. Furthermore, QTLs related to flavonoids were identified using our new genetic map. RESULTS A total of 13,446 polymorphic SNP markers were developed using 2b-RAD sequencing, and 4,463 of these markers were available for constructing the genetic linkage map. A 1,678.52-cM high-density map at an average interval of 0.40 cM with 4,217 markers, including 427 frameset simple sequence repeats (SSRs) and 3,800 novel SNPs, mapped into 15 linkage groups was successfully constructed. After QTL analysis, a total of 27 QTLs related to flavonoids or caffeine content (CAF) were mapped to 8 different linkage groups, LG01, LG03, LG06, LG08, LG10, LG11, LG12, and LG13, with an LOD from 3.14 to 39.54, constituting 7.5% to 42.8% of the phenotypic variation. CONCLUSIONS To our knowledge, the highest density genetic map ever reported was constructed since the largest mapping population of tea plants was adopted in present study. Moreover, novel QTLs related to flavonoids and CAF were identified based on the new high-density genetic map. In addition, two markers were located in candidate genes that may be involved in flavonoid metabolism. The present study provides valuable information for gene discovery, marker-assisted selection breeding and map-based cloning for functional genes that are related to flavonoid content in tea plants.
Collapse
Affiliation(s)
- Li-Yi Xu
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li-Yuan Wang
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Kang Wei
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Li-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jing-Jing Su
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Hao Cheng
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| |
Collapse
|
37
|
Gramlich S, Wagner ND, Hörandl E. RAD-seq reveals genetic structure of the F 2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC PLANT BIOLOGY 2018; 18:317. [PMID: 30509159 PMCID: PMC6276181 DOI: 10.1186/s12870-018-1552-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Hybridization of species with porous genomes can eventually lead to introgression via repeated backcrossing. The potential for introgression between species is reflected by the extent of segregation distortion in later generation hybrids. Here we studied a population of hybrids between Salix purpurea and S. helvetica that has emerged within the last 30 years on a glacier forefield in the European Alps due to secondary contact of the parental species. We used 5758 biallelic SNPs produced by RAD sequencing with the aim to ascertain the predominance of backcrosses (F1 hybrid x parent) or F2 hybrids (F1 hybrid x F1 hybrid) among hybrid offspring. Further, the SNPs were used to study segregation distortion in the second hybrid generation. RESULTS The analyses in STRUCTURE and NewHybrids revealed that the population consisted of parents and F1 hybrids, whereas hybrid offspring consisted mainly of backcrosses to either parental species, but also some F2 hybrids. Although there was a clear genetic differentiation between S. purpurea and S. helvetica (FST = 0.24), there was no significant segregation distortion in the backcrosses or the F2 hybrids. Plant height of the backcrosses resembled the respective parental species, whereas F2 hybrids were more similar to the subalpine S. helvetica. CONCLUSIONS The co-occurrence of the parental species and the hybrids on the glacier forefield, the high frequency of backcrossing, and the low resistance to gene flow via backcrossing make a scenario of introgression in this young hybrid population highly likely, potentially leading to the transfer of adaptive traits. We further suggest that this willow hybrid population may serve as a model for the evolutionary processes initiated by recent global warming.
Collapse
Affiliation(s)
- Susanne Gramlich
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Natascha Dorothea Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| |
Collapse
|
38
|
Ge C, Ai X, Jia S, Yang Y, Che L, Yi Z, Chen C. Interspecific genetic maps in Miscanthus floridulus and M. sacchariflorus accelerate detection of QTLs associated with plant height and inflorescence. Mol Genet Genomics 2018; 294:35-45. [PMID: 30159617 DOI: 10.1007/s00438-018-1486-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
Abstract
Miscanthus is recognized as a promising lignocellulosic crop for the production of bioethanol and bioproducts worldwide. To facilitate the identification of agronomical important traits and establish genetics knowledge, two genetic maps were developed from a controlled interspecific cross between M. floridulus and M. sacchariflorus. A total of 650 SSR markers were mapped in M. floridulus, spanning 19 linkage groups and 2053.31 cM with an average interval of 3.25 cM. The map of M. sacchariflorus comprised 495 SSR markers in 19 linkage groups covering 1684.86 cM with an average interval of 3.54 cM. The estimation on genome length indicated that the genome coverage of parental genetic maps were 93.87% and 89.91%, respectively. Eighty-eight bi-parental common markers were allowed to connect the two maps, and six pairs of syntenic linkage groups were recognized. Furthermore, quantitative trait loci (QTL) mapping of three agronomic traits, namely, plant height (PH), heading time (HT), and flowering time (FT), demonstrated that a total of 66 QTLs were identified in four consecutive years using interval mapping and multiple-QTL model. The LOD value of these QTLs ranged from 2.51 to 10.60, and the phenotypic variation explained varied from 9.50 to 37.10%. QTL cluster in syntenic groups MF19/MS7 contained six stable QTLs associated with PH, HT, and FT. In conclusion, we report for the first time the genetic mapping of biomass traits in M. floridulus and M. sacchariflorus. These results will be a valuable genetic resource, facilitating the discovery of essential genes and breeding of Miscanthus.
Collapse
Affiliation(s)
- Chunxia Ge
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Ai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shengfeng Jia
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yinqing Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Lu Che
- Network Information Technology Center, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Cuixia Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China. .,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
39
|
Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts. 3 Biotech 2018; 8:242. [PMID: 29744274 DOI: 10.1007/s13205-018-1276-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023] Open
Abstract
The eucalypt species, Eucalyptus tereticornis and Eucalyptus camaldulensis, show tolerance to drought and salinity conditions, respectively, and are widely cultivated in arid and semiarid regions of tropical countries. In this study, genetic linkage map was developed for interspecific cross E. tereticornis × E. camaldulensis using pseudo-testcross strategy with simple sequence repeats (SSRs), intersimple sequence repeats (ISSRs), and sequence-related amplified polymorphism (SRAP) markers. The consensus genetic map comprised totally 283 markers with 84 SSRs, 94 ISSRs, and 105 SRAP markers on 11 linkage groups spanning 1163.4 cM genetic distance. Blasting the SSR sequences against E. grandis sequences allowed an alignment of 64% and the average ratio of genetic-to-physical distance was 1.7 Mbp/cM, which strengths the evidence that high amount of synteny and colinearity exists among eucalypts genome. Blast searches also revealed that 37% of SSRs had homologies with genes, which could potentially be used in the variety of downstream applications including candidate gene polymorphism. Quantitative trait loci (QTL) analysis for adventitious rooting traits revealed six QTL for rooting percent and root length on five chromosomes with interval and composite interval mapping. All the QTL explained 12.0-14.7% of the phenotypic variance, showing the involvement of major effect QTL on adventitious rooting traits. Increasing the density of markers would facilitate the detection of more number of small-effect QTL and also underpinning the genes involved in rooting process.
Collapse
|
40
|
Liu X, Karrenberg S. Genetic architecture of traits associated with reproductive barriers in Silene: Coupling, sex chromosomes and variation. Mol Ecol 2018; 27:3889-3904. [PMID: 29577481 DOI: 10.1111/mec.14562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
The evolution of reproductive barriers and their underlying genetic architecture is of central importance for the formation of new species. Reproductive barriers can be controlled either by few large-effect loci suggesting strong selection on key traits, or by many small-effect loci, consistent with gradual divergence or with selection on polygenic or multiple traits. Genetic coupling between reproductive barrier loci further promotes divergence, particularly divergence with ongoing gene flow. In this study, we investigated the genetic architectures of ten morphological, phenological and life history traits associated with reproductive barriers between the hybridizing sister species Silene dioica and S. latifolia; both are dioecious with XY-sex determination. We used quantitative trait locus (QTL) mapping in two reciprocal F2 crosses. One to six QTLs per trait, including nine major QTLs (PVE > 20%), were detected on 11 of the 12 linkage groups. We found strong evidence for coupling of QTLs for uncorrelated traits and for an important role of sex chromosomes in the genetic architectures of reproductive barrier traits. Unexpectedly, QTLs detected in the two F2 crosses differed largely, despite limited phenotypic differences between them and sufficient statistical power. The widely dispersed genetic architectures of traits associated with reproductive barriers suggest gradual divergence or multifarious selection. Coupling of the underlying QTLs likely promoted divergence with gene flow in this system. The low congruence of QTLs between the two crosses further points to variable and possibly redundant genetic architectures of traits associated with reproductive barriers, with important implications for the evolutionary dynamics of divergence and speciation.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Feng X, Yu X, Fu B, Wang X, Liu H, Pang M, Tong J. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC Genomics 2018; 19:230. [PMID: 29609551 PMCID: PMC5879560 DOI: 10.1186/s12864-018-4613-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. Results A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. Conclusions We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several candidate growth genes were also identified from the QTL regions by comparative mapping. This genetic map would provide a basis for genome assembly and comparative genomics studies, and those QTL-derived candidate genes and genetic markers are useful genomic resources for marker-assisted selection (MAS) of growth-related traits in the Yangtze River common carp. Electronic supplementary material The online version of this article (10.1186/s12864-018-4613-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiu Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinhua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
42
|
Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R, Vives C, Morata J, Symeonidi A, Hiss M, Muchero W, Kamisugi Y, Saleh O, Blanc G, Decker EL, van Gessel N, Grimwood J, Hayes RD, Graham SW, Gunter LE, McDaniel SF, Hoernstein SNW, Larsson A, Li FW, Perroud PF, Phillips J, Ranjan P, Rokshar DS, Rothfels CJ, Schneider L, Shu S, Stevenson DW, Thümmler F, Tillich M, Villarreal Aguilar JC, Widiez T, Wong GKS, Wymore A, Zhang Y, Zimmer AD, Quatrano RS, Mayer KFX, Goodstein D, Casacuberta JM, Vandepoele K, Reski R, Cuming AC, Tuskan GA, Maumus F, Salse J, Schmutz J, Rensing SA. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:515-533. [PMID: 29237241 DOI: 10.1111/tpj.13801] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 05/18/2023]
Abstract
The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.
Collapse
Affiliation(s)
- Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Florent Murat
- INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals (GDEC), 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, D-06466, Stadt Seeland, Germany
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Mathieu Piednoel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany
| | - Heidrun Gundlach
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Michiel Van Bel
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Cristina Vives
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jordi Morata
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | | | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Omar Saleh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Guillaume Blanc
- Structural and Genomic Information Laboratory (IGS), Aix-Marseille Université, CNRS, UMR 7256 (IMM FR 3479), Marseille, France
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lee E Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Anders Larsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | | | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Daniel S Rokshar
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, 94720-2465, USA
| | - Lucas Schneider
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Shengqiang Shu
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Fritz Thümmler
- Vertis Biotechnologie AG, Lise-Meitner-Str. 30, 85354, Freising, Germany
| | - Michael Tillich
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany
| | | | - Thomas Widiez
- Department of Plant Biology, University of Geneva, Sciences III, Geneva 4, CH-1211, Switzerland
- Department of Plant Biology & Pathology Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Ann Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yong Zhang
- Shenzhen Huahan Gene Life Technology Co. Ltd, Shenzhen, China
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralph S Quatrano
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- WZW, Technical University Munich, Munich, Germany
| | | | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Jérome Salse
- INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals (GDEC), 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany
| |
Collapse
|
43
|
Salgon S, Raynal M, Lebon S, Baptiste JM, Daunay MC, Dintinger J, Jourda C. Genotyping by Sequencing Highlights a Polygenic Resistance to Ralstonia pseudosolanacearum in Eggplant (Solanum melongena L.). Int J Mol Sci 2018; 19:E357. [PMID: 29370090 PMCID: PMC5855579 DOI: 10.3390/ijms19020357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/02/2022] Open
Abstract
Eggplant cultivation is limited by numerous diseases, including the devastating bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC). Within the RSSC, Ralstonia pseudosolanacearum (including phylotypes I and III) causes severe damage to all solanaceous crops, including eggplant. Therefore, the creation of cultivars resistant to R. pseudosolanacearum strains is a major goal for breeders. An intraspecific eggplant population, segregating for resistance, was created from the cross between the susceptible MM738 and the resistant EG203 lines. The population of 123 doubled haploid lines was challenged with two strains belonging to phylotypes I (PSS4) and III (R3598), which both bypass the published EBWR9 BW-resistance quantitative trait locus (QTL). Ten and three QTLs of resistance to PSS4 and to R3598, respectively, were detected and mapped. All were strongly influenced by environmental conditions. The most stable QTLs were found on chromosomes 3 and 6. Given their estimated physical position, these newly detected QTLs are putatively syntenic with BW-resistance QTLs in tomato. In particular, the QTLs' position on chromosome 6 overlaps with that of the major broad-spectrum tomato resistance QTL Bwr-6. The present study is a first step towards understanding the complex polygenic system, which underlies the high level of BW resistance of the EG203 line.
Collapse
Affiliation(s)
- Sylvia Salgon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (UMR PVBMT), F-97410 Saint-Pierre, France.
- Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (UMR PVBMT), Université de la Réunion, F-97410 Saint-Pierre, France.
- Association Réunionnaise pour la Modernisation de l'Economie Fruitière Légumière et Horticole (ARMEFLHOR), F-97410 Saint-Pierre, France.
| | | | - Sylvain Lebon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (UMR PVBMT), F-97410 Saint-Pierre, France.
| | - Jean-Michel Baptiste
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (UMR PVBMT), F-97410 Saint-Pierre, France.
| | - Marie-Christine Daunay
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génétique et Amélioration des Fruits et Légumes (UR GAFL), F-84143 Montfavet, France.
| | - Jacques Dintinger
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (UMR PVBMT), F-97410 Saint-Pierre, France.
| | - Cyril Jourda
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (UMR PVBMT), F-97410 Saint-Pierre, France.
| |
Collapse
|
44
|
Campitelli BE, Kenney AM, Hopkins R, Soule J, Lovell JT, Juenger TE. Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata). Mol Biol Evol 2017; 35:807-822. [DOI: 10.1093/molbev/msx318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brandon E Campitelli
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Amanda M Kenney
- Biotechnology Risk Analysis Programs, USDA-APHIS-BRS, Riverdale, MD
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Robin Hopkins
- Department of Organismic and Evolution Biology, Harvard University, Boston, MA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Jacob Soule
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - John T Lovell
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
45
|
Theodosiou L, McMillan WO, Puebla O. Recombination in the eggs and sperm in a simultaneously hermaphroditic vertebrate. Proc Biol Sci 2017; 283:rspb.2016.1821. [PMID: 27974520 DOI: 10.1098/rspb.2016.1821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 01/15/2023] Open
Abstract
When there is no recombination (achiasmy) in one sex, it is in the heterogametic one. This observation is so consistent that it constitutes one of the few patterns in biology that may be regarded as a 'rule' and Haldane (Haldane 1922 J. Genet. 12, 101-109. (doi:10.1007/BF02983075)) proposed that it might be driven by selection against recombination in the sex chromosomes. Yet differences in recombination rates between the sexes (heterochiasmy) have also been reported in hermaphroditic species that lack sex chromosomes. In plants-the vast majority of which are hermaphroditic-selection at the haploid stage has been proposed to drive heterochiasmy. Yet few data are available for hermaphroditic animals, and barely any for hermaphroditic vertebrates. Here, we leverage reciprocal crosses between two black hamlets (Hypoplectrus nigricans, Serranidae), simultaneously hermaphroditic reef fishes from the wider Caribbean, to generate high-density egg- and sperm-specific linkage maps for each parent. We find globally higher recombination rates in the eggs, with dramatically pronounced heterochiasmy at the chromosome peripheries. We suggest that this pattern may be due to female meiotic drive, and that this process may be an important source of heterochiasmy in animals. We also identify a large non-recombining region that may play a role in speciation and local adaptation in Hypoplectrus.
Collapse
Affiliation(s)
- L Theodosiou
- Max-Planck-Institute for Evolutionary Biology, Research Group for Community Dynamics, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - W O McMillan
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| | - O Puebla
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105 Kiel, Germany .,Faculty of Mathematics and Natural Sciences, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
46
|
Pang M, Fu B, Yu X, Liu H, Wang X, Yin Z, Xie S, Tong J. Quantitative trait loci mapping for feed conversion efficiency in crucian carp (Carassius auratus). Sci Rep 2017; 7:16971. [PMID: 29209087 PMCID: PMC5717303 DOI: 10.1038/s41598-017-17269-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022] Open
Abstract
QTL is a chromosomal region including single gene or gene clusters that determine a quantitative trait. While feed efficiency is highly important in aquaculture fish, little genetic and genomic progresses have been made for this trait. In this study, we constructed a high-resolution genetic linkage map in a full-sib F1 family of crucian carp (Carassius auratus) consisting of 113 progenies with 8,460 SNP markers assigning onto 50 linkage groups (LGs). This genetic map spanned 4,047.824 cM (0.478 cM/marker) and covered 98.76% of the crucian carp genome. 35 chromosome-wide QTL affecting feed conversion efficiency (FCE, 8 QTL), relative growth rate (RGR, 9 QTL), average daily gain (ADG, 13 QTL) and average daily feed intake (ADFI, 5 QTL) were detected on 14 LGs, explaining 14.0–20.9% of the phenotypic variations. In LGs of LG16, LG25, LG36 and LG49, several QTL affecting different traits clustered together at the identical or close regions of the same linkage group. Seven candidate genes, whose biological functions may involve in the energy metabolism, digestion, biosynthesis and signal transduction, were identified from these QTL intervals by comparative genomics analysis. These results provide a basis for elucidating genetic mechanism of feed efficiency and potential marker-assisted selection in crucian carp.
Collapse
Affiliation(s)
- Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xinhua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
47
|
Sawayama E, Tanizawa S, Kitamura SI, Nakayama K, Ohta K, Ozaki A, Takagi M. Identification of Quantitative Trait Loci for Resistance to RSIVD in Red Sea Bream (Pagrus major). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:601-613. [PMID: 29127523 DOI: 10.1007/s10126-017-9779-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Red sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS). Two test families were developed using the candidate male in 2014 (Fam-2014) and 2015 (Fam-2015). These test families were challenged with RSIV, and phenotypes were evaluated. Then, de novo genome sequences of red sea bream were obtained through next-generation sequencing, and microsatellite markers were searched and selected for linkage map construction. One immune-related gene, MHC class IIβ, was also used for linkage map construction. Of the microsatellite markers searched, 148 and 197 were mapped on 23 and 27 linkage groups in the female and male linkage maps, respectively, covering approximately 65% of genomes in both sexes. One QTL linked to an RSIVD-resistant trait was found in linkage group 2 of the candidate male in Fam-2014, and the phenotypic variance of the QTL was 31.1%. The QTL was closely linked to MHC class IIβ. Moreover, the QTL observed in Fam-2014 was also significantly linked to an RSIVD-resistant trait in the candidate male of Fam-2015. Our results suggest that the RSIVD-resistant trait in the candidate male was controlled by one major QTL closely linked to the MHC class IIβ gene and could be useful for MAS of red sea bream.
Collapse
Affiliation(s)
- Eitaro Sawayama
- R&D Division, Marua Suisan Co., Ltd., 4472 Iwagi, Kamijima-cho, Ochi-gun, Ehime, 794-2410, Japan.
| | - Shiho Tanizawa
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Kohei Ohta
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Akiyuki Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhamaura, Minamiise-cho, Watarai-gun, Mie, 516-0193, Japan
| | - Motohiro Takagi
- South Ehime Fisheries Research Center, Ehime University, 1289-1 Funakoshi, Ainan-cho, Ehime, 790-8566, Japan
| |
Collapse
|
48
|
A High-Density Genetic Linkage Map and QTL Fine Mapping for Body Weight in Crucian Carp ( Carassius auratus) Using 2b-RAD Sequencing. G3-GENES GENOMES GENETICS 2017; 7:2473-2487. [PMID: 28600439 PMCID: PMC5555455 DOI: 10.1534/g3.117.041376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A high-resolution genetic linkage map is essential for a wide range of genetics and genomics studies such as comparative genomics analysis and QTL fine mapping. Crucian carp (Carassius auratus) is widely distributed in Eurasia, and is an important aquaculture fish worldwide. In this study, a high-density genetic linkage map was constructed for crucian carp using 2b-RAD technology. The consensus map contains 8487 SNP markers, assigning to 50 linkage groups (LGs) and spanning 3762.88 cM, with an average marker interval of 0.44 cM and genome coverage of 98.8%. The female map had 4410 SNPs, and spanned 3500.42 cM (0.79 cM/marker), while the male map had 4625 SNPs and spanned 3346.33 cM (0.72 cM/marker). The average recombination ratio of female to male was 2.13:1, and significant male-biased recombination suppressions were observed in LG47 and LG49. Comparative genomics analysis revealed a clear 2:1 syntenic relationship between crucian carp LGs and chromosomes of zebrafish and grass carp, and a 1:1 correspondence, but extensive chromosomal rearrangement, between crucian carp and common carp, providing evidence that crucian carp has experienced a fourth round of whole genome duplication (4R-WGD). Eight chromosome-wide QTL for body weight at 2 months after hatch were detected on five LGs, explaining 10.1-13.2% of the phenotypic variations. Potential candidate growth-related genes, such as an EGF-like domain and TGF-β, were identified within the QTL intervals. This high-density genetic map and QTL analysis supplies a basis for genome evolutionary studies in cyprinid fishes, genome assembly, and QTL fine mapping for complex traits in crucian carp.
Collapse
|
49
|
Cytonuclear Epistasis Controls the Density of Symbiont Wolbachia pipientis in Nongonadal Tissues of Mosquito Culex quinquefasciatus. G3-GENES GENOMES GENETICS 2017; 7:2627-2635. [PMID: 28606944 PMCID: PMC5555468 DOI: 10.1534/g3.117.043422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wolbachia pipientis, a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia-mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens, and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus, we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia-mediated phenotypes such as viral pathogen resistance.
Collapse
|
50
|
Cold Fusion: Massive Karyotype Evolution in the Antarctic Bullhead Notothen Notothenia coriiceps. G3-GENES GENOMES GENETICS 2017; 7:2195-2207. [PMID: 28576775 PMCID: PMC5498148 DOI: 10.1534/g3.117.040063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Half of all vertebrate species share a series of chromosome fusions that preceded the teleost genome duplication (TGD), but we do not understand the causative evolutionary mechanisms. The "Robertsonian-translocation hypothesis" suggests a regular fusion of each ancestral acro- or telocentric chromosome to just one other by centromere fusions, thus halving the karyotype. An alternative "genome-stirring hypothesis" posits haphazard and repeated fusions, inversions, and reciprocal and nonreciprocal translocations. To study large-scale karyotype reduction, we investigated the decrease of chromosome numbers in Antarctic notothenioid fish. Most notothenioids have 24 haploid chromosomes, but bullhead notothen (Notothenia coriiceps) has 11. To understand mechanisms, we made a RAD-tag meiotic map with ∼10,000 polymorphic markers. Comparative genomics aligned about a thousand orthologs of platyfish and stickleback genes along bullhead chromosomes. Results revealed that 9 of 11 bullhead chromosomes arose by fusion of just two ancestral chromosomes and two others by fusion of three ancestral chromosomes. All markers from each ancestral chromosome remained contiguous, implying no inversions across fusion borders. Karyotype comparisons support a history of: (1) Robertsonian fusions of 22 ancestral chromosomes in pairs to yield 11 fused plus two small unfused chromosomes, like N. angustata; (2) fusion of one of the remaining two ancestral chromosomes to a preexisting fused pair, giving 12 chromosomes like N. rossii; and (3) fusion of the remaining ancestral chromosome to another fused pair, giving 11 chromosomes in N. coriiceps These results raise the question of what selective forces promoted the systematic fusion of chromosomes in pairs and the suppression of pericentric inversions in this lineage, and provide a model for chromosome fusions in stem teleosts.
Collapse
|