1
|
García-Soto I, Andersen SU, Monroy-Morales E, Robledo-Gamboa M, Guadarrama J, Aviles-Baltazar NY, Serrano M, Stougaard J, Montiel J. A collection of novel Lotus japonicus LORE1 mutants perturbed in the nodulation program induced by the Agrobacterium pusense strain IRBG74. FRONTIERS IN PLANT SCIENCE 2024; 14:1326766. [PMID: 38250449 PMCID: PMC10796720 DOI: 10.3389/fpls.2023.1326766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The Lotus japonicus population carrying new Lotus retrotransposon 1 (LORE1) insertions represents a valuable biological resource for genetic research. New insertions were generated by activation of the endogenous retroelement LORE1a in the germline of the G329-3 plant line and arranged in a 2-D system for reverse genetics. LORE1 mutants identified in this collection contributes substantially to characterize candidate genes involved in symbiotic association of L. japonicus with its cognate symbiont, the nitrogen-fixing bacteria Mesorhizobium loti that infects root nodules intracellularly. In this study we aimed to identify novel players in the poorly explored intercellular infection induced by Agrobacterium pusense IRBG74 sp. For this purpose, a forward screen of > 200,000 LORE1 seedlings, obtained from bulk propagation of G329-3 plants, inoculated with IRBG74 was performed. Plants with perturbed nodulation were scored and the offspring were further tested on plates to confirm the symbiotic phenotype. A total of 110 Lotus mutants with impaired nodulation after inoculation with IRBG74 were obtained. A comparative analysis of nodulation kinetics in a subset of 20 mutants showed that most of the lines were predominantly affected in nodulation by IRBG74. Interestingly, additional defects in the main root growth were observed in some mutant lines. Sequencing of LORE1 flanking regions in 47 mutants revealed that 92 Lotus genes were disrupted by novel LORE1 insertions in these lines. In the IM-S34 mutant, one of the insertions was located in the 5´UTR of the LotjaGi5g1v0179800 gene, which encodes the AUTOPHAGY9 protein. Additional mutant alleles, named atg9-2 and atg9-3, were obtained in the reverse genetic collection. Nodule formation was significantly reduced in these mutant alleles after M. loti and IRBG74 inoculation, confirming the effectiveness of the mutant screening. This study describes an effective forward genetic approach to obtain novel mutants in Lotus with a phenotype of interest and to identify the causative gene(s).
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Elizabeth Monroy-Morales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Mariana Robledo-Gamboa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jesús Guadarrama
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Montiel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
2
|
Dwivedi SL, Chapman MA, Abberton MT, Akpojotor UL, Ortiz R. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front Genet 2023; 14:1193780. [PMID: 37396035 PMCID: PMC10311922 DOI: 10.3389/fgene.2023.1193780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low β-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.
Collapse
Affiliation(s)
| | - Mark A. Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
3
|
Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1397-1410. [PMID: 35792830 DOI: 10.1111/tpj.15896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) constitute a large proportion of genomes of multicellular eukaryotes, including flowering plants. TEs are normally maintained in a silenced state and their transpositions rarely occur. Hybridization between distant species has been regarded as a 'shock' that stimulates genome reorganization, including TE mobilization. However, whether crosses between genetically close parents that result in viable and fertile offspring can induce TE transpositions has remained unclear. Here, we investigated the activation of long terminal repeat (LTR) retrotransposons in three Lotus japonicus recombinant inbred line (RIL) populations. We found that at least six LTR retrotransposon families were activated and transposed in 78% of the RILs investigated. LORE1a, one of the transposed LTR retrotransposons, showed transgenerational epigenetic activation, indicating the long-term effects of epigenetic instability induced by hybridization. Our study highlights TE activation as an unexpectedly common event in plant reproduction.
Collapse
Affiliation(s)
- Eigo Fukai
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, 950-2181, Niigata, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- Plant Cytogenetics, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Manabu Yoshikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Niraj Shah
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Seijiro Ono
- Plant Cytogenetics, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hideki Hirakawa
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Ken-Ichi Nonomura
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Hirohiko Hirochika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Shusei Sato
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | | | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, 950-2181, Niigata, Japan
| |
Collapse
|
4
|
Montiel J, Reid D, Grønbæk TH, Benfeldt CM, James EK, Ott T, Ditengou FA, Nadzieja M, Kelly S, Stougaard J. Distinct signaling routes mediate intercellular and intracellular rhizobial infection in Lotus japonicus. PLANT PHYSIOLOGY 2021; 185:1131-1147. [PMID: 33793909 PMCID: PMC8133683 DOI: 10.1093/plphys/kiaa049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 05/07/2023]
Abstract
Rhizobial infection of legume roots during the development of nitrogen-fixing root nodules can occur intracellularly, through plant-derived infection threads traversing cells, or intercellularly, via bacterial entry between epidermal plant cells. Although it is estimated that around 25% of all legume genera are intercellularly infected, the pathways and mechanisms supporting this process have remained virtually unexplored due to a lack of genetically amenable legumes that exhibit this form of infection. In this study, we report that the model legume Lotus japonicus is infected intercellularly by the IRBG74 strain, recently proposed to belong to the Agrobacterium clade of the Rhizobiaceae. We demonstrate that the resources available for L. japonicus enable insight into the genetic requirements and fine-tuning of the pathway governing intercellular infection in this species. Inoculation of L. japonicus mutants shows that Ethylene-responsive factor required for nodulation 1 (Ern1) and Leu-rich Repeat Receptor-Like Kinase (RinRK1) are dispensable for intercellular infection in contrast to intracellular infection. Other symbiotic genes, including nod factor receptor 5 (NFR5), symbiosis receptor-like kinase (SymRK), Ca2+/calmodulin dependent kinase (CCaMK), exopolysaccharide receptor 3 (Epr3), Cyclops, nodule inception (Nin), nodulation signaling pathway 1 (Nsp1), nodulation signaling pathway 2 (Nsp2), cystathionine-β-synthase (Cbs), and Vapyrin are equally important for both entry modes. Comparative RNAseq analysis of roots inoculated with IRBG74 revealed a distinctive transcriptome response compared with intracellular colonization. In particular, several cytokinin-related genes were differentially regulated. Corroborating this observation, cyp735A and ipt4 cytokinin biosynthesis mutants were significantly affected in their nodulation with IRBG74, whereas lhk1 cytokinin receptor mutants formed no nodules. These results indicate a differential requirement for cytokinin signaling during intercellular rhizobial entry and highlight distinct modalities of inter- and intracellular infection mechanisms in L. japonicus.
Collapse
Affiliation(s)
- Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Thomas H Grønbæk
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Caroline M Benfeldt
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Franck A Ditengou
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
- Author for ommunication:
| |
Collapse
|
5
|
Aoki T, Kawaguchi M, Imaizumi-Anraku H, Akao S, Ayabe SI, Akashi T. Mutants of Lotus japonicus deficient in flavonoid biosynthesis. JOURNAL OF PLANT RESEARCH 2021; 134:341-352. [PMID: 33570676 PMCID: PMC7929969 DOI: 10.1007/s10265-021-01258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Spatiotemporal features of anthocyanin accumulation in a model legume Lotus japonicus (Regel) K.Larsen were elucidated to develop criteria for the genetic analysis of flavonoid biosynthesis. Artificial mutants and wild accessions, with lower anthocyanin accumulation in the stem than the standard wild type (B-129 'Gifu'), were obtained by ethyl methanesulfonate (EMS) mutagenesis and from a collection of wild-grown variants, respectively. The loci responsible for the green stem of the mutants were named as VIRIDICAULIS (VIC). Genetic and chemical analysis identified two loci, namely, VIC1 and VIC2, required for the production of both anthocyanins and proanthocyanidins (condensed tannins), and two loci, namely, VIC3 and VIC4, required for the steps specific to anthocyanin biosynthesis. A mutation in VIC5 significantly reduced the anthocyanin accumulation. These mutants will serve as a useful system for examining the effects of anthocyanins and proanthocyanidins on the interactions with herbivorous pests, pathogenic microorganisms and nitrogen-fixing symbiotic bacteria, Mesorhizobium loti.
Collapse
Affiliation(s)
- Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan.
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Shoichiro Akao
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Shin-Ichi Ayabe
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
6
|
Liu H, Sandal N, Andersen KR, James EK, Stougaard J, Kelly S, Kawaharada Y. A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. THE NEW PHYTOLOGIST 2018; 220:526-538. [PMID: 29959893 DOI: 10.1111/nph.15293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/24/2018] [Indexed: 05/08/2023]
Abstract
Nodule primordia induced by rhizobial glycan mutants often remain uninfected. To identify processes involved in infection and organogenesis we used forward genetics to identify plant genes involved in perception and responses to bacterial glycans. To dissect the mechanisms underlying the negative plant responses to the Mesorhizobium loti R7AexoU and ML001cep mutants, a screen for genetic suppressors of the nodulation phenotypes was performed on a chemically mutagenized Lotus population. Two mutant lines formed infected nitrogen-fixing pink nodules, while five mutant lines developed uninfected large white nodules, presumably altered in processes controlling organogenesis. Genetic mapping identified a mutation in the cytokinin receptor Lhk1 resulting in an alanine to valine substitution adjacent to a coiled-coil motif in the juxta-membrane region of LHK1. This results in a spontaneous nodulation phenotype and increased ethylene production. The allele was renamed snf5, and segregation studies of snf5 together with complementation studies suggest that snf5 is a gain-of-function allele. This forward genetic approach to investigate the role of glycans in the pathway synchronizing infection and organogenesis shows that a combination of plant and bacterial genetics opens new possibilities to study glycan responses in plants as well as identification of mutant alleles affecting nodule organogenesis.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8-Ueda, Morioka, Iwate, Japan
| |
Collapse
|
7
|
Shah N, Hirakawa H, Kusakabe S, Sandal N, Stougaard J, Schierup MH, Sato S, Andersen SU. High-resolution genetic maps of Lotus japonicus and L. burttii based on re-sequencing of recombinant inbred lines. DNA Res 2016; 23:487-494. [PMID: 27374610 PMCID: PMC5066174 DOI: 10.1093/dnares/dsw033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Recombinant inbred lines (RILs) derived from bi-parental populations are stable genetic resources, which are widely used for constructing genetic linkage maps. These genetic maps are essential for QTL mapping and can aid contig and scaffold anchoring in the final stages of genome assembly. In this study, two Lotus sp. RIL populations, Lotus japonicus MG-20 × Gifu and Gifu × L. burttii, were characterized by Illumina re-sequencing. Genotyping of 187 MG-20 × Gifu RILs at 87,140 marker positions and 96 Gifu × L. burttii RILs at 357,973 marker positions allowed us to accurately identify 1,929 recombination breakpoints in the MG-20 × Gifu RILs and 1,044 breakpoints in the Gifu × L. burttii population. The resulting high-density genetic maps now facilitate high-accuracy QTL mapping, identification of reference genome mis-assemblies, and characterization of structural variants.
Collapse
Affiliation(s)
- Niraj Shah
- Center for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Shohei Kusakabe
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Niels Sandal
- Center for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jens Stougaard
- Center for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Shusei Sato
- Kazusa DNA Research Institute, Chiba 292-0818, Japan.,Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Stig Uggerhøj Andersen
- Center for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
8
|
Chaintreuil C, Rivallan R, Bertioli DJ, Klopp C, Gouzy J, Courtois B, Leleux P, Martin G, Rami JF, Gully D, Parrinello H, Séverac D, Patrel D, Fardoux J, Ribière W, Boursot M, Cartieaux F, Czernic P, Ratet P, Mournet P, Giraud E, Arrighi JF. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes. DNA Res 2016; 23:365-76. [PMID: 27298380 PMCID: PMC4991833 DOI: 10.1093/dnares/dsw020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia.
Collapse
Affiliation(s)
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | - David J Bertioli
- University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Christophe Klopp
- INRA, Plateforme GenoToul Bioinfo, UR 875, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | - Jérôme Gouzy
- INRA, UMR441 LIPM, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | | | - Philippe Leleux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France INRA, Plateforme GenoToul Bioinfo, UR 875, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | | | - Djamel Gully
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France
| | - Dany Séverac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France
| | - Delphine Patrel
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France IRD, Centre IRD de Montpellier France Sud, F-34394 Montpellier, France
| | - Joël Fardoux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - William Ribière
- IRD, Centre IRD de Montpellier France Sud, F-34394 Montpellier, France
| | - Marc Boursot
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Fabienne Cartieaux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Pierre Czernic
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405 Orsay, France Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France
| | - Pierre Mournet
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | - Eric Giraud
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | | |
Collapse
|
9
|
Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 2015; 523:308-12. [DOI: 10.1038/nature14611] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
|
10
|
Gentzbittel L, Andersen SU, Ben C, Rickauer M, Stougaard J, Young ND. Naturally occurring diversity helps to reveal genes of adaptive importance in legumes. FRONTIERS IN PLANT SCIENCE 2015; 6:269. [PMID: 25954294 PMCID: PMC4404971 DOI: 10.3389/fpls.2015.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/03/2015] [Indexed: 05/05/2023]
Abstract
Environmental changes challenge plants and drive adaptation to new conditions, suggesting that natural biodiversity may be a source of adaptive alleles acting through phenotypic plasticity and/or micro-evolution. Crosses between accessions differing for a given trait have been the most common way to disentangle genetic and environmental components. Interestingly, such man-made crosses may combine alleles that never meet in nature. Another way to discover adaptive alleles, inspired by evolution, is to survey large ecotype collections and to use association genetics to identify loci of interest. Both of these two genetic approaches are based on the use of biodiversity and may eventually help us in identifying the genes that plants use to respond to challenges such as short-term stresses or those due to global climate change. In legumes, two wild species, Medicago truncatula and Lotus japonicus, plus the cultivated soybean (Glycine max) have been adopted as models for genomic studies. In this review, we will discuss the resources, limitations and future plans for a systematic use of biodiversity resources in model legumes to pinpoint genes of adaptive importance in legumes, and their application in breeding.
Collapse
Affiliation(s)
- Laurent Gentzbittel
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure Agronomique de Toulouse, Université Fédérale de ToulouseCastanet Tolosan, France
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Centre National de la Recherche ScientifiqueCastanet Tolosan, France
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus UniversityAarhus, Denmark
| | - Cécile Ben
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure Agronomique de Toulouse, Université Fédérale de ToulouseCastanet Tolosan, France
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Centre National de la Recherche ScientifiqueCastanet Tolosan, France
| | - Martina Rickauer
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure Agronomique de Toulouse, Université Fédérale de ToulouseCastanet Tolosan, France
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Centre National de la Recherche ScientifiqueCastanet Tolosan, France
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus UniversityAarhus, Denmark
| | - Nevin D. Young
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, USA
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
11
|
Lai D, Abou Hachem M, Robson F, Olsen CE, Wang TL, Møller BL, Takos AM, Rook F. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:299-311. [PMID: 24861854 DOI: 10.1111/tpj.12561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 05/14/2023]
Abstract
Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α-hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β-glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non-cyanogenic γ- and β-hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β-glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site-directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non-flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β-glucosidase, resembling BGD2, and required no more than a single amino acid substitution.
Collapse
Affiliation(s)
- Daniela Lai
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ryu H, Cho H, Choi D, Hwang I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 2012; 34:117-26. [PMID: 22820920 PMCID: PMC3887813 DOI: 10.1007/s10059-012-0131-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Legumes have evolved symbiotic interactions with rhizobial bacteria to efficiently utilize nitrogen. Recent progress in symbiosis has revealed several key components of host plants required for nitrogen-fixing nodule organogenesis, in which complicated metabolic and signaling pathways in the host plant are reprogrammed to generate nodules in the cortex upon perception of the rhizobial Nod factor. Following the recognition of Nod factors, plant hormones are likely to be essential throughout nodule organogenesis for integration of developmental and environmental signaling cues into nodule development. Here, we review the molecular events involved in plant hormonal regulation and signaling cross-talk for nitrogen-fixing nodule development, and discuss how these signaling networks are integrated into Nod factor-mediated signaling during plant-microbe interactions.
Collapse
Affiliation(s)
- Hojin Ryu
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyunwoo Cho
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Daeseok Choi
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Ildoo Hwang
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
13
|
Sandal N, Jin H, Rodriguez-Navarro DN, Temprano F, Cvitanich C, Brachmann A, Sato S, Kawaguchi M, Tabata S, Parniske M, Ruiz-Sainz JE, Andersen SU, Stougaard J. A set of Lotus japonicus Gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping. DNA Res 2012; 19:317-23. [PMID: 22619310 PMCID: PMC3415293 DOI: 10.1093/dnares/dss014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L. japonicus ecotype ‘Gifu’ was used as a common parent for inter-accession crosses to produce F2 mapping populations either with other L. japonicus ecotypes, MG-20 and Funakura, or with the related species L. filicaulis. These populations have all been used for genetic studies but segregation distortion, suppression of recombination, low polymorphism levels, and poor viability have also been observed. More recently, the diploid species L. burttii has been identified as a fertile crossing partner of L. japonicus. To assess its qualities in genetic linkage analysis and to enable quantitative trait locus (QTL) mapping for a wider range of traits in Lotus species, we have generated and genotyped a set of 163 Gifu × L. burttii recombinant inbred lines (RILs). By direct comparisons of RIL and F2 population data, we show that L. burttii is a valid alternative to MG-20 as a Gifu mapping partner. In addition, we demonstrate the utility of the Gifu × L. burttii RILs in QTL mapping by identifying an Nfr1-linked QTL for Sinorhizobium fredii nodulation.
Collapse
Affiliation(s)
- Niels Sandal
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Urbański DF, Małolepszy A, Stougaard J, Andersen SU. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:731-41. [PMID: 22014280 DOI: 10.1111/j.1365-313x.2011.04827.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Use of insertion mutants facilitates functional analysis of genes, but it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics in most plant species. The main challenge is developing efficient high-throughput procedures for both mutagenesis and identification of insertion sites. To date, only floral-dip T-DNA transformation of Arabidopsis has produced independent germinal insertions, thereby allowing generation of mutant populations from seeds of single plants. In addition, advances in insertion detection have been hampered by a lack of protocols, including software for automated data analysis, that take full advantage of high-throughput next-generation sequencing. We have addressed these challenges by developing the FSTpoolit protocol and software package, and here we demonstrate its efficacy by detecting 8935 LORE1 insertions in 3744 Lotus japonicus plants. The identified insertions show that the endogenous LORE1 retrotransposon is well suited for insertion mutagenesis due to homogenous gene targeting and exonic insertion preference. As LORE1 transposition occurs in the germline, harvesting seeds from a single founder line and cultivating progeny generates a complete mutant population. This ease of LORE1 mutagenesis, combined with the efficient FSTpoolit protocol, which exploits 2D pooling, Illumina sequencing and automated data analysis, allows highly cost-efficient development of a comprehensive reverse genetic resource.
Collapse
Affiliation(s)
- Dorian Fabian Urbański
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
15
|
Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ, Castagno LN, Carrasco P, Sanjuán J, Ruiz OA. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:121-33. [PMID: 22118623 DOI: 10.1016/j.plantsci.2011.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 05/04/2023]
Abstract
The genus Lotus comprises around 100 annual and perennial species with worldwide distribution. The relevance of Lotus japonicus as a model plant has been recently demonstrated in numerous studies. In addition, some of the Lotus species show a great potential for adaptation to a number of abiotic stresses. Therefore, they are relevant components of grassland ecosystems in environmentally constrained areas of several South American countries and Australia, where they are used for livestock production. Also, the fact that the roots of these species form rhizobial and mycorrhizal associations makes the annual L. japonicus a suitable model plant for legumes, particularly in studies directed to recognize the mechanisms intervening in the tolerance to abiotic factors in the field, where these interactions occur. These properties justify the increased utilization of some Lotus species as a strategy for dunes revegetation and reclamation of heavy metal-contaminated or burned soils in Europe.
Collapse
Affiliation(s)
- Francisco J Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús UNSAM/CONICET, 7130, Camino circunvalación laguna km 6, Chascomús, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
YANG SHIYING, SAXENA RACHITK, KULWAL PAWANL, ASH GAVINJ, DUBEY ANUJA, HARPER JOHNDI, UPADHYAYA HARID, GOTHALWAL RAGINI, KILIAN ANDRZEJ, VARSHNEY RAJEEVK. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J Genet 2011; 90:103-9. [DOI: 10.1007/s12041-011-0050-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Fraser LG, Tsang GK, Datson PM, De Silva HN, Harvey CF, Gill GP, Crowhurst RN, McNeilage MA. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics 2009; 10:102. [PMID: 19284545 PMCID: PMC2661093 DOI: 10.1186/1471-2164-10-102] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 03/10/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genus Actinidia (kiwifruit) consists of woody, scrambling vines, native to China, and only recently propagated as a commercial crop. All species described are dioecious, but the genetic mechanism for sex-determination is unknown, as is the genetic basis for many of the cluster of characteristics making up the unique fruit. It is, however, an important crop in the New Zealand economy, and a classical breeding program would benefit greatly by knowledge of the trait alleles carried by both female and male parents. The application of marker assisted selection (MAS) in seedling populations would also aid the accurate and efficient development of novel fruit types for the market. RESULTS Gene-rich female, male and consensus linkage maps of the diploid species A. chinensis have been constructed with 644 microsatellite markers. The maps consist of twenty-nine linkage groups corresponding to the haploid number n = 29. We found that sex-linked sequence characterized amplified region (SCAR) markers and the 'Flower-sex' phenotype consistently mapped to a single linkage group, in a subtelomeric region, in a section of inconsistent marker order. The region also contained markers of expressed genes, some of unknown function. Recombination, assessed by allelic distribution and marker order stability, was, in the remainder of the linkage group, in accordance with other linkage groups. Fully informative markers to other genes in this linkage group identified the comparative linkage group in the female map, where recombination ratios determining marker order were similar to the autosomes. CONCLUSION We have created genetic linkage maps that define the 29 linkage groups of the haploid genome, and have revealed the position and extent of the sex-determining locus in A. chinensis. As all Actinidia species are dioecious, we suggest that the sex-determining loci of other Actinidia species will be similar to that region defined in our maps. As the extent of the non-recombining region is limited, our result supports the suggestion that the subtelomeric region of an autosome is in the early stages of developing the characteristics of a sex chromosome. The maps provide a reference of genetic information in Actinidia for use in genetic analysis and breeding programs.
Collapse
Affiliation(s)
- Lena G Fraser
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhukov V, Radutoiu S, Madsen LH, Rychagova T, Ovchinnikova E, Borisov A, Tikhonovich I, Stougaard J. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1600-8. [PMID: 18986256 DOI: 10.1094/mpmi-21-12-1600] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phenotypic characterization of pea symbiotic mutants has provided a detailed description of the symbiosis with Rhizobium leguminosarum bv. viciae strains. We show here that two allelic non-nodulating pea mutants, RisNod4 and K24, are affected in the PsSym37 gene, encoding a LysM receptor kinase similar to Lotus japonicus NFR1 and Medicago truncatula LYK3. Phenotypic analysis of RisNod4 and K24 suggests a role for the SYM37 in regulation of infection-thread initiation and nodule development from cortical-cell division foci. We show that RisNod4 plants carrying an L to F substitution in the LysM1 domain display a restrictive symbiotic phenotype comparable to the PsSym2(A) lines that distinguish 'European' and 'Middle East' Rhizobium leguminosarum bv. viciae strains. RisNod4 mutants develop nodules only in the presence of a 'Middle East' Rhizobium strain producing O-acetylated Nod factors indicating the SYM37 involvement in Nod-factor recognition. Along with the PsSym37, a homologous LysM receptor kinase gene, PsK1, was isolated and characterized. We show that PsK1 and PsSym37 are genetically linked to each other and to the PsSym2 locus. Allelic complementation analyses and sequencing of the extracellular regions of PsSym37 and PsK1 in several 'European' and 'Afghan' pea cultivars point towards PsK1 as possible candidate for the elusive PsSym2 gene.
Collapse
Affiliation(s)
- Vladimir Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, 196608 Saint-Petersburg-Pushkin, Russia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang X, Sato S, Tabata S, Kawasaki S. A high-density linkage map of Lotus japonicus based on AFLP and SSR markers. DNA Res 2008; 15:323-32. [PMID: 18794159 PMCID: PMC2575890 DOI: 10.1093/dnares/dsn022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A collection of 94 F6 individuals derived from crosses between Lotus japonicus, Gifu B-129 (G) and Miyakojima MG-20 (M) were used for mapping. By using the HEGS running system, 427 EcoRI/MseI primer pairs were selected to generate a total of 2053 markers, consisting of 739 G-associated dominant markers, 674 M-associated dominant markers, 640 co-dominant markers, 95 SSR markers and 2 dCAPS markers. Excluding heavily distorted markers, 1588 were mapped to six chromosomes of the L. japonicus genome based on the 97 reference markers. This linkage map consisted of 1023 unique markers (excluding duplicated markers) and covered a total of 508.5 cM of the genome with an average chromosome length of 84.7 cM and interval distance of 0.50 cM. Fifteen quantitative traits loci for eight morphological traits were also mapped. This linkage map will provide a useful framework for physical map construction in L. japonicus in the near future.
Collapse
Affiliation(s)
- Xinwang Wang
- 1 National Institute of Agrobiological Sciences, Kannon-dai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|
20
|
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S. Genome structure of the legume, Lotus japonicus. DNA Res 2008; 15:227-39. [PMID: 18511435 PMCID: PMC2575887 DOI: 10.1093/dnares/dsn008] [Citation(s) in RCA: 430] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.
Collapse
Affiliation(s)
- Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Coram TE, Mantri NL, Ford R, Pang ECK. Functional genomics in chickpea: an emerging frontier for molecular-assisted breeding. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:861-873. [PMID: 32689415 DOI: 10.1071/fp07169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/08/2007] [Indexed: 06/11/2023]
Abstract
Chickpea is a valuable and important agricultural crop, but yield potential is limited by a series of biotic and abiotic stresses, including Ascochyta blight, Fusarium wilt, drought, cold and salinity. To accelerate molecular breeding efforts for the discovery and introgression of stress tolerance genes into cultivated chickpea, functional genomics approaches are rapidly growing. Recently a series of genetic tools for chickpea have become available that have allowed high-powered functional genomics studies to proceed, including a dense genetic map, large insert genome libraries, expressed sequence tag libraries, microarrays, serial analysis of gene expression, transgenics and reverse genetics. This review summarises the development of these genomic tools and the achievements made in initial and emerging functional genomics studies. Much of the initial research focused on Ascochyta blight resistance, and a resistance model has been synthesised based on the results of various studies. Use of the rich comparative genomics resources from the model legumes Medicago truncatula and Lotus japonicus is also discussed. Finally, perspectives on the future directions for chickpea functional genomics, with the goal of developing elite chickpea cultivars, are discussed.
Collapse
Affiliation(s)
- Tristan E Coram
- RMIT University, School of Applied Sciences, Biotechnology and Environmental Biology, Building 223, Level 1, Plenty Road, Bundoora, Victoria 3083, Australia
| | - Nitin L Mantri
- RMIT University, School of Applied Sciences, Biotechnology and Environmental Biology, Building 223, Level 1, Plenty Road, Bundoora, Victoria 3083, Australia
| | - Rebecca Ford
- BioMarka, Faculty of Land and Food Resources, The University of Melbourne, Victoria 3010, Australia
| | - Edwin C K Pang
- RMIT University, School of Applied Sciences, Biotechnology and Environmental Biology, Building 223, Level 1, Plenty Road, Bundoora, Victoria 3083, Australia
| |
Collapse
|
22
|
Abstract
Legumes are members of the family Fabaceae or Leguminosae and include economically important grain legumes, oilseed crops, forage crops, shrubs, and tropical or subtropical trees. Legumes are a rich source of quality protein for humans and animals. They also enrich the soil by producing their own nitrogen in symbiosis with nitrogen-fixing bacteria. International centers and national institutes collect, maintain, distribute, and produce high-yielding legumes (grain-pulses, oilseeds, forages, nutraceuticals, medicinal shrubs, and trees). Legume breeders are confined within the primary gene pools (GP-1) in their varietal improvement programs and have not exploited secondary gene pools (GP-2), tertiary gene pools (GP-3), or quaternary gene pools (GP-4). Legumes are also an excellent source of timber, medicine, nutraceuticals, tannins, gums, insecticides, resins, varnish, paints, dyes, and eco-friendly by-products such as soy diesel. Three forage crops, Medicago truncatula , Lotus japonicus , and Trifolium pratense , are model legumes for phylogenetic studies and genome sequencing. This paper concludes that a “protein revolution” is needed to meet the protein demands of the world.
Collapse
Affiliation(s)
- R J Singh
- Department of Crop Sciences, National Soybean Research Laboratory, University of Illinois, 1101 West Peabody Drive, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
23
|
Lombardo F, Heckmann AB, Miwa H, Perry JA, Yano K, Hayashi M, Parniske M, Wang TL, Downie JA. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1444-50. [PMID: 17153928 DOI: 10.1094/mpmi-19-1444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itdl, itd3, and itd4 mutations identified novel loci. Bacterial release into host cells did occur occasionally in the itdl, itd2, and itd3 mutants suggesting that some infections may succeed after a long period and that infection of nodule cells could occur normally if the few abnormal infection threads that were formed reached the appropriate nodule cells.
Collapse
|
24
|
Chen JH, Pang JL, Wang LL, Luo YH, Li X, Cao XL, Lin K, Ma W, Hu XH, Luo D. Wrinkled petals and stamens 1, is required for the morphogenesis of petals and stamens in Lotus japonicus. Cell Res 2006; 16:499-506. [PMID: 16699545 DOI: 10.1038/sj.cr.7310061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although much progress has been made in understanding how floral organ identity is determined during the floral development, less is known about how floral organ is elaborated in the late floral developmental stages. Here we describe a novel floral mutant, wrinkled petals and stamens1 (wps1), which shows defects in the development of petals and stamens. Genetic analysis indicates that wps1 mutant is corresponding to a single recessive locus at the long arm of chromosome 3. The early development of floral organs in wps1 mutant is similar to that in wild type, and the malfunction of the mutant commences in late developmental stages, displaying a defect on the appearance of petals and stamens. In the mature flower, petals and stamen filaments in the mutant are wrinkled or folded, and the cellular morphology under L1 layer of petals and stamen filaments is abnormal. It is found that the expression patterns of floral organ identity genes are not affected in wps1 mutants compared with that of wild type, consistent with the unaltered development of all floral organs. Furthermore, the identities of epidermal cells in different type of petals are maintained. The histological analysis shows that in wps1 flowers all petals are irregularly folded, and there are knotted structures in the petals, while the shape and arrangement of inner cells are malformed and unorganized. Based on these results, we propose that Wps1 acts downstream to the class B floral organ identity genes, and functions to modulate the cellular differentiation during the late flower developmental stages.
Collapse
Affiliation(s)
- Jiang Hua Chen
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, and Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yano K, Tansengco ML, Hio T, Higashi K, Murooka Y, Imaizumi-Anraku H, Kawaguchi M, Hayashi M. New nodulation mutants responsible for infection thread development in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:801-10. [PMID: 16838792 DOI: 10.1094/mpmi-19-0801] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legume plants develop specialized root organs, the nodules, through a symbiotic interaction with rhizobia. The developmental process of nodulation is triggered by the bacterial microsymbiont but regulated systemically by the host legume plants. Using ethylmethane sulfonate mutagenesis as a tool to identify plant genes involved in symbiotic nodule development, we have isolated and analyzed five nodulation mutants, Ljsym74-3, Ljsym79-2, Ljsym79-3, Ljsym80, and Ljsym82, from the model legume Lotus japonicus. These mutants are defective in developing functional nodules and exhibit nitrogen starvation symptoms after inoculation with Mesorhizobium loti. Detailed observation revealed that infection thread development was aborted in these mutants and the nodules formed were devoid of infected cells. Mapping and complementation tests showed that Ljsym74-3, and Ljsym79-2 and Ljsym79-3, were allelic with reported mutants of L. japonicus, alb1 and crinkle, respectively. The Ljsym82 mutant is unique among the mutants because the infection thread was aborted early in its development. Ljsym74-3 and Ljsym80 were characterized as mutants with thick infection threads in short root hairs. Map-based cloning and molecular characterization of these genes will help us understand the genetic mechanism of infection thread development in L. japonicus.
Collapse
Affiliation(s)
- Koji Yano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Moolhuijzen P, Cakir M, Hunter A, Schibeci D, Macgregor A, Smith C, Francki M, Jones MGK, Appels R, Bellgard M. LegumeDB1 bioinformatics resource: comparative genomic analysis and novel cross-genera marker identification in lupin and pasture legume species. Genome 2006; 49:689-99. [PMID: 16936848 DOI: 10.1139/g06-009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of markers in legume pasture crops, which can be associated with traits such as protein and lipid production, disease resistance, and reduced pod shattering, is generally accepted as an important strategy for improving the agronomic performance of these crops. It has been demonstrated that many quantitative trait loci (QTLs) identified in one species can be found in other plant species. Detailed legume comparative genomic analyses can characterize the genome organization between model legume species (e.g., Medicago truncatula, Lotus japonicus) and economically important crops such as soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer arietinum), and lupin (Lupinus angustifolius), thereby identifying candidate gene markers that can be used to track QTLs in lupin and pasture legume breeding. LegumeDB is a Web-based bioinformatics resource for legume researchers. LegumeDB analysis of Medicago truncatula expressed sequence tags (ESTs) has identified novel simple sequence repeat (SSR) markers (16 tested), some of which have been putatively linked to symbiosome membrane proteins in root nodules and cell-wall proteins important in plant-pathogen defence mechanisms. These novel markers by preliminary PCR assays have been detected in Medicago truncatula and detected in at least one other legume species, Lotus japonicus, Glycine max, Cicer arietinum, and (or) Lupinus angustifolius (15/16 tested). Ongoing research has validated some of these markers to map them in a range of legume species that can then be used to compile composite genetic and physical maps. In this paper, we outline the features and capabilities of LegumeDB as an interactive application that provides legume genetic and physical comparative maps, and the efficient feature identification and annotation of the vast tracks of model legume sequences for convenient data integration and visualization. LegumeDB has been used to identify potential novel cross-genera polymorphic legume markers that map to agronomic traits, supporting the accelerated identification of molecular genetic factors underpinning important agronomic attributes in lupin.
Collapse
Affiliation(s)
- P Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Western Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cogan NOI, Abberton MT, Smith KF, Kearney G, Marshall AH, Williams A, Michaelson-Yeates TPT, Bowen C, Jones ES, Vecchies AC, Forster JW. Individual and multi-environment combined analyses identify QTLs for morphogenetic and reproductive development traits in white clover (Trifolium repens L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1401-15. [PMID: 16699790 DOI: 10.1007/s00122-006-0241-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 02/13/2006] [Indexed: 05/04/2023]
Abstract
White clover (Trifolium repens L.) is a key component legume of temperate pasture agriculture and an important target for molecular marker-assisted plant breeding. A genetic map of white clover has been used to assess genetic control of agronomically important traits that vary in the F2(I.4RxI.5J) mapping family. Phenotypic analysis was performed for a range of vegetative morphogenesis traits (such as leaf area, internode length, plant height and plant spread) and reproductive morphogenesis and development traits (such as flowering date, floral intensity and seed yield), with both spatial and temporal replication. A multi-environment combined analysis (combined analysis) has been performed for traits assessed across multiple experimental datasets in order to identify consistent genetic effects. Quantitative trait locus (QTLs) were detected for the majority of traits, and the locations and magnitudes of QTL effects were compared between individual and combined analyses. This molecular genetic dissection of agronomic traits in white clover provides the basis for equivalent studies in more complex populations, design of marker-assisted selection strategies and comparative genetics with model legume species. Selection for QTLs derived from the combined analysis will permit robust improvement of phenotypic traits over different environments.
Collapse
Affiliation(s)
- N O I Cogan
- Primary Industries Research Victoria and Molecular Plant Breeding Cooperative Research Centre, Victorian AgriBiosciences Centre, La Trobe Research and Development Park, Bundoora, VIC 3083, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tirichine L, James EK, Sandal N, Stougaard J. Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:373-82. [PMID: 16610740 DOI: 10.1094/mpmi-19-0373] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.
Collapse
Affiliation(s)
- Leïla Tirichine
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 C Aarhus, Denmark
| | | | | | | |
Collapse
|
29
|
Sato S, Tabata S. Lotus japonicus as a platform for legume research. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:128-32. [PMID: 16480917 DOI: 10.1016/j.pbi.2006.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/24/2006] [Indexed: 05/06/2023]
Abstract
The major role of 'model plants' is to provide knowledge and technologies obtained in related systems to researchers studying crop plants. Lotus japonicus was chosen as a model system first for legume genetics and then for legume genomics. A large number of L. japonicus mutants that have alterations in legume-specific phenomena have been generated and phenotypically characterized, and genomics has drastically accelerated the molecular characterization of these mutants. Substantial resources of information and experimental materials, including genomic and cDNA sequences, corresponding DNA libraries and high-density linkage maps demonstrate that L. japonicus is an excellent model system. Transfer of knowledge from L. japonicus to other legumes, especially crop legumes, is a matter for urgent consideration.
Collapse
Affiliation(s)
- Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | | |
Collapse
|
30
|
Guo X, Zhao Z, Chen J, Hu X, Luo D. A putative CENTRORADIALIS/TERMINAL FLOWER 1-like gene, Ljcen1, plays a role in phase transition in Lotus japonicus. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:436-44. [PMID: 16455357 DOI: 10.1016/j.jplph.2005.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 04/27/2005] [Indexed: 05/06/2023]
Abstract
CENTRORADIALIS/TERMINAL FLOWER 1 (CEN/TFL1) genes play an important role in the phase transition of plant flowering. Here we characterized the expression pattern of a CEN/TFL1-like gene, Ljcen1, from Lotus japonicus. Sequence analysis revealed that Ljcen1 shared 67-76% identity to its homologs from a variety of plant species. Ljcen1 transcripts could be detected at the young root tip and reproductive shoot apical meristem of L. japonicus. RNA in situ hybridization analysis revealed that Ljcen1 was continuously expressed in the sub-domain of the primary inflorescence meristem and transiently expressed in the secondary inflorescence meristem. The ectopic expression of Ljcen1 in Arabidopsis driven by double CaMV 35S promoter delayed the flowering. These results suggested that Ljcen1 gene was involved in a conserved CEN/TFL1 pathway that functions in phase transition of shoot apical meristem in L. japonicus.
Collapse
Affiliation(s)
- Xizhi Guo
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences.
| | | | | | | | | |
Collapse
|
31
|
Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 2006; 103:359-64. [PMID: 16407163 PMCID: PMC1326171 DOI: 10.1073/pnas.0508883103] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear-cytoplasmic partitioning and traffic between cytoplasmic and nuclear compartments are fundamental processes in eukaryotic cells. Nuclear pore complexes mediate transport of proteins, RNAs and ribonucleoprotein particles in and out of the nucleus. Here we present positional cloning of a plant nucleoporin gene, Nup133, essential for a symbiotic signal transduction pathway shared by Rhizobium bacteria and mycorrhizal fungi. Mutation of Nup133 results in a temperature sensitive nodulation deficient phenotype and absence of mycorrhizal colonization. Root nodules developing with reduced frequency at permissive temperatures are ineffective and electron microscopy show that Rhizobium bacteria are not released from infection threads. Measurement of ion fluxes using a calcium-sensitive dye show that Nup133 is required for the Ca2+ spiking normally detectable within minutes after application of purified rhizobial Nod-factor signal molecules to root hairs. Localization of NUP133 in the nuclear envelope of root cells and root hair cells shown with enhanced yellow fluorescent protein fusion proteins suggests a novel role for NUP133 nucleoporins in a rapid nuclear-cytoplasmic communication after host-plant recognition of symbiotic microbes. Our results identify a component of an intriguing signal process requiring interaction at the cell plasma membrane and at intracellular nuclear and plastid organelle-membranes to induce a second messenger.
Collapse
Affiliation(s)
- Norihito Kanamori
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10 and C.F. Møllers Vej Bldg 130, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sandal N, Petersen TR, Murray J, Umehara Y, Karas B, Yano K, Kumagai H, Yoshikawa M, Saito K, Hayashi M, Murakami Y, Wang X, Hakoyama T, Imaizumi-Anraku H, Sato S, Kato T, Chen W, Hossain MS, Shibata S, Wang TL, Yokota K, Larsen K, Kanamori N, Madsen E, Radutoiu S, Madsen LH, Radu TG, Krusell L, Ooki Y, Banba M, Betti M, Rispail N, Skøt L, Tuck E, Perry J, Yoshida S, Vickers K, Pike J, Mulder L, Charpentier M, Müller J, Ohtomo R, Kojima T, Ando S, Marquez AJ, Gresshoff PM, Harada K, Webb J, Hata S, Suganuma N, Kouchi H, Kawasaki S, Tabata S, Hayashi M, Parniske M, Szczyglowski K, Kawaguchi M, Stougaard J. Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:80-91. [PMID: 16404956 DOI: 10.1094/mpmi-19-0080] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.
Collapse
Affiliation(s)
- Niels Sandal
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej, Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kevei Z, Seres A, Kereszt A, Kaló P, Kiss P, Tóth G, Endre G, Kiss GB. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Mol Genet Genomics 2005; 274:644-57. [PMID: 16273388 DOI: 10.1007/s00438-005-0057-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
The increased amount of data produced by large genome sequencing projects allows scientists to carry out important syntenic studies to a great extent. Detailed genetic maps and entirely or partially sequenced genomes are compared, and macro- and microsyntenic relations can be determined for different species. In our study, the syntenic relationships between key legume plants and two model plants, Arabidopsis thaliana and Populus trichocarpa were investigated. The comparison of the map position of 172 gene-based Medicago sativa markers to the organization of homologous A. thaliana genes could not identify any sign of macrosynteny between the two genomes. A 276 kb long section of chromosome 5 of the model legume Medicago truncatula was used to investigate potential microsynteny with the other legume Lotus japonicus, as well as with Arabidopsis and Populus. Besides the overall correlation found between the legume plants, the comparison revealed several microsyntenic regions in the two more distant plants with significant resemblance. Despite the large phylogenetic distance, clear microsyntenic regions between Medicago and Arabidopsis or Populus were detected unraveling new intragenomic evolutionary relations in Arabidopsis.
Collapse
Affiliation(s)
- Zoltán Kevei
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, P. O. Box 521, 6701, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J. LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:372-81. [PMID: 16236148 DOI: 10.1111/j.1365-313x.2005.02534.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have identified a low-copy-number retrotransposon family present in nine to 10 copies in the Lotus japonicus model legume genome, and characterized its activity. LORE1 (Lotus retrotransposon 1) belongs to the Ty3-gypsy group of elements, and is a long terminal repeat (LTR) retrotransposon. Genetic mapping located LORE1 elements in gene-rich regions of Lotus chromosomes, and analysis of native as well as new insertion sites revealed integration outside the highly repetitive sequences of centromeres and telomeres. Sequencing of individual LORE1 family members identified several intact elements, and analysis of new insertions showed that at least one member is active and reinserts into functional genes, creating gene-disruption mutations. Southern blot analysis and SSAP on a selection of symbiotic mutants revealed up to 12 new insertion sites in individual mutant lines and a Mendelian segregation of new inserts. Expression analysis showed that LORE1 elements are transcribed in all organs analysed and, in contrast to other active retrotransposons, LORE1 appears not to be transcriptionally upregulated during in vitro tissue culture. Activity of LORE1 in callus and whole plants suggests that a simple insertion mutagenesis based on endogenous LORE1 elements can be established for Lotus.
Collapse
Affiliation(s)
- Lene Heegaard Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
35
|
Asamizu E, Nakamura Y, Sato S, Tabata S. Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:487-98. [PMID: 15915647 DOI: 10.1094/mpmi-18-0487] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We performed a comprehensive transcript analysis on the early stage of root nodulation in the model legume Lotus japonicus by serial analysis of gene expression (SAGE). SAGE libraries were made from uninfected roots and nodulating roots abundant in nodule primordia, and 85,482 and 80,233 SAGE tags were recovered, respectively. Comparison of the tag frequency identified 407 tag species that appeared in significantly greater numbers in the nodulating root than in the uninfected root, and the converse was found for 428 tag species. Gene identification of the tags was performed by matching them to L. japonicus expressed sequence tag sequences. We made several novel findings by applying SAGE to transcript analysis of legume root nodulation. A gene that showed the most significant increase in tag number upon nodulation has not been described previously. Different levels of transcription induction among leghemoglobin gene paralogs were found, indicating the effectiveness of SAGE in discriminating different gene family members. We identified genes for 44 unknown tags by means of reverse SAGE. We found 11 antisense tags that increased during nodulation, indicating that regulation of gene expression by antisense transcripts may occur in an organ-dependent manner.
Collapse
Affiliation(s)
- Erika Asamizu
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan.
| | | | | | | |
Collapse
|
36
|
Udvardi MK, Tabata S, Parniske M, Stougaard J. Lotus japonicus: legume research in the fast lane. TRENDS IN PLANT SCIENCE 2005; 10:222-8. [PMID: 15882654 DOI: 10.1016/j.tplants.2005.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Legumes are of immense importance to humanity and a key to sustainable agriculture. Two model species, Lotus japonicus and Medicago truncatula, are the focus of genome sequencing and functional genomics programmes, but most researchers focus exclusively on one or the other. In spite of this, legume researchers now have a unique opportunity to integrate work on these and other legume species, including soybean, common bean and pea to create a platform for comparative genomics second to none of any other plant family. The question is: do we have the scientific fortitude and political will to achieve this?
Collapse
Affiliation(s)
- Michael K Udvardi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany.
| | | | | | | |
Collapse
|
37
|
Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK. The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. THE PLANT CELL 2005; 17:1625-36. [PMID: 15805486 PMCID: PMC1091779 DOI: 10.1105/tpc.104.030106] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Symbiotic nitrogen fixation (SNF) by intracellular rhizobia within legume root nodules requires the exchange of nutrients between host plant cells and their resident bacteria. Little is known at the molecular level about plant transporters that mediate such exchanges. Several mutants of the model legume Lotus japonicus have been identified that develop nodules with metabolic defects that cannot fix nitrogen efficiently and exhibit retarded growth under symbiotic conditions. Map-based cloning of defective genes in two such mutants, sst1-1 and sst1-2 (for symbiotic sulfate transporter), revealed two alleles of the same gene. The gene is expressed in a nodule-specific manner and encodes a protein homologous with eukaryotic sulfate transporters. Full-length cDNA of the gene complemented a yeast mutant defective in sulfate transport. Hence, the gene was named Sst1. The sst1-1 and sst1-2 mutants exhibited normal growth and development under nonsymbiotic growth conditions, a result consistent with the nodule-specific expression of Sst1. Data from a previous proteomic study indicate that SST1 is located on the symbiosome membrane in Lotus nodules. Together, these results suggest that SST1 transports sulfate from the plant cell cytoplasm to the intracellular rhizobia, where the nutrient is essential for protein and cofactor synthesis, including nitrogenase biosynthesis. This work shows the importance of plant sulfate transport in SNF and the specialization of a eukaryotic transporter gene for this purpose.
Collapse
Affiliation(s)
- Lene Krusell
- Max Planck Institute of Molecular Plant Physiology, 14476 Golm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Garcia GM, Stalker HT, Schroeder E, Lyerly JH, Kochert G. A RAPD-based Linkage Map of Peanut Based on a Backcross Population Between the Two Diploid Species Arachis stenosperma and A. cardenasii. ACTA ACUST UNITED AC 2005. [DOI: 10.3146/0095-3679(2005)32[1:arlmop]2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Tobler A, Kapan D, Flanagan NS, Gonzalez C, Peterson E, Jiggins CD, Johntson JS, Heckel DG, McMillan WO. First-generation linkage map of the warningly colored butterfly Heliconius erato. Heredity (Edinb) 2004; 94:408-17. [PMID: 15592446 DOI: 10.1038/sj.hdy.6800619] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We report the first genetic linkage map of Heliconius erato, a species that shows remarkable variation in its warningly colored wing patterns. We use crosses between H. erato and its sister species, H. himera, to place two major color pattern genes, D and Cr, on a linkage map containing AFLP, allozyme, microsatellite and single-copy nuclear loci. We identified all 21 linkage groups in an initial genetic screen of 22 progeny from an F1 female x male H. himera family. Of the 229 markers, 87 used to identify linkage groups were also informative in 35 progeny from a sibling backcross (H. himera female x F1 male). With these, and an additional 33 markers informative in the second family, we constructed recombinational maps for 19 of the 21 linkage groups. These maps varied in length from 18.1 to 431.1 centimorgans (cM) and yielded an estimated total length of 2400 cM. The average distance between markers was 23 cM, and eight of the 19 linkage groups, including the sex chromosome (Z) and the chromosome containing the Cr locus, contained two or more codominant anchor loci. Of the three potential candidate genes mapped here, Cubitus interruptus (Ci), Decapentaplegic (Dpp) and Wingless (Wg), only Ci was linked, although loosely, to a known Heliconius color pattern locus. This work is an important first step for constructing a denser genetic map of the H. erato color pattern radiation and for a comparative genomic study of the architecture of mimicry in Heliconius butterflies.
Collapse
Affiliation(s)
- A Tobler
- Department of Biology, University of Puerto Rico, PO Box 23360, San Juan 00931, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Asamizu E, Nakamura Y, Sato S, Tabata S. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. PLANT MOLECULAR BIOLOGY 2004; 54:405-14. [PMID: 15284495 DOI: 10.1023/b:plan.0000036372.46942.b8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To perform a comprehensive analysis of genes expressed in a model legume, Lotus japonicus, a total of 74472 3'-end expressed sequence tags (EST) were generated from cDNA libraries produced from six different organs. Clustering of sequences was performed with an identity criterion of 95% for 50 bases, and a total of 20457 non-redundant sequences, 8503 contigs and 11954 singletons were generated. EST sequence coverage was analyzed by using the annotated L. japonicus genomic sequence and 1093 of the 1889 predicted protein-encoding genes (57.9%) were hit by the EST sequence(s). Gene content was compared to several plant species. Among the 8503 contigs, 471 were identified as sequences conserved only in leguminous species and these included several disease resistance-related genes. This suggested that in legumes, these genes may have evolved specifically to resist pathogen attack. The rate of gene sequence divergence was assessed by comparing similarity level and functional category based on the Gene Ontology (GO) annotation of Arabidopsis genes. This revealed that genes encoding ribosomal proteins, as well as those related to translation, photosynthesis, and cellular structure were more abundantly represented in the highly conserved class, and that genes encoding transcription factors and receptor protein kinases were abundantly represented in the less conserved class. To make the sequence information and the cDNA clones available to the research community, a Web database with useful services was created at http://www.kazusa.or.jp/en/plant/lotus/EST/.
Collapse
Affiliation(s)
- Erika Asamizu
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan.
| | | | | | | |
Collapse
|
41
|
Stracke S, Sato S, Sandal N, Koyama M, Kaneko T, Tabata S, Parniske M. Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:442-9. [PMID: 14557858 DOI: 10.1007/s00122-003-1438-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/11/2003] [Indexed: 05/21/2023]
Abstract
The Lotus japonicus LjSYM2 gene, and the Pisum sativum orthologue PsSYM19, are required for the formation of nitrogen-fixing root nodules and arbuscular mycorrhiza. Here we describe the map-based cloning procedure leading to the isolation of both genes. Marker information from a classical AFLP marker-screen in Lotus was integrated with a comparative genomics approach, utilizing Arabidopsis genome sequence information and the pea genetic map. A network of gene-based markers linked in all three species was identified, suggesting local colinearity in the region around LjSYM2/PsSYM19. The closest AFLP marker was located just over 200 kb from the LjSYM2 gene, the marker SHMT, which was converted from a marker on the pea map, was only 7.9 kb away. The LjSYM2/PsSYM19 region corresponds to two duplicated segments of the Arabidopsis chromosomes AtII and AtIV. Lotus homologues of Arabidopsis genes within these segments were mapped to three clusters on LjI, LjII and LjVI, suggesting that during evolution the genomic segment surrounding LjSYM2 has been subjected to duplication events. However, one marker, AUX-1, was identified based on colinearity between Lotus and Arabidopsis that mapped in physical proximity of the LjSym2 gene.
Collapse
Affiliation(s)
- S Stracke
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 2003; 425:637-40. [PMID: 14534591 DOI: 10.1038/nature02045] [Citation(s) in RCA: 581] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/11/2003] [Indexed: 11/08/2022]
Abstract
Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.
Collapse
Affiliation(s)
- Esben Bjørn Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 2003; 425:585-92. [PMID: 14534578 DOI: 10.1038/nature02039] [Citation(s) in RCA: 704] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/11/2003] [Indexed: 11/09/2022]
Abstract
Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.
Collapse
Affiliation(s)
- Simona Radutoiu
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, Stougaard J. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. PLANT PHYSIOLOGY 2003; 131:1009-17. [PMID: 12644653 PMCID: PMC166866 DOI: 10.1104/pp.102.016071] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Revised: 11/24/2002] [Accepted: 12/17/2002] [Indexed: 05/14/2023]
Abstract
Comparative phenotypic analysis of pea (Pisum sativum) sym35 mutants and Lotus japonicus nin mutants suggested a similar function for the PsSym35 and LjNin genes in early stages of root nodule formation. Both the pea and L. japonicus mutants are non-nodulating but normal in their arbuscular mycorrhizal association. Both are characterized by excessive root hair curling in response to the bacterial microsymbiont, lack of infection thread initiation, and absence of cortical cell divisions. To investigate the molecular basis for the similarity, we cloned and sequenced the PsNin gene, taking advantage of sequence information from the previously cloned LjNin gene. An RFLP analysis on recombinant inbred lines mapped PsNin to the same chromosome arm as the PsSym35 locus and direct evidence demonstrating that PsNin is the PsSym35 gene was subsequently obtained by cosegregation analysis and sequencing of three independent Pssym35 mutant alleles. L. japonicus and pea root nodules develop through different organogenic pathways, so it was of interest to compare the expression of the two orthologous genes during nodule formation. Overall, a similar developmental regulation of the PsNin and LjNin genes was shown by the transcriptional activation in root nodules of L. japonicus and pea. In the indeterminate pea nodules, PsNin is highly expressed in the meristematic cells of zone I and in the cells of infection zone II, corroborating expression of LjNin in determinate nodule primordia. At the protein level, seven domains, including the putative DNA binding/dimerization RWP-RK motif and the PB1 heterodimerization domain, are conserved between the LjNIN and PsNIN proteins.
Collapse
Affiliation(s)
- Alexey Y Borisov
- All-Russia Research Institute for Agricultural Microbiology, St Petersburg, Pushkin 8, Podbelsky Chaussee, 3, 196608, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 2002; 420:422-6. [PMID: 12442170 DOI: 10.1038/nature01207] [Citation(s) in RCA: 342] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Accepted: 10/11/2002] [Indexed: 11/08/2022]
Abstract
In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root. Furthermore, a feedback mechanism controls the temporal and spatial susceptibility to infection of the root system. This mechanism is referred to as autoregulation of nodulation, as earlier nodulation events inhibit nodulation of younger root tissues. Lotus japonicus plants homozygous for a mutation in the hypernodulation aberrant root (har1) locus escape this regulation and form an excessive number of nodules. Here we report the molecular cloning and expression analysis of the HAR1 gene and the pea orthologue, Pisum sativum, SYM29. HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.
Collapse
Affiliation(s)
- Lene Krusell
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A. Chromosomal map of the model legume Lotus japonicus. Genetics 2002; 161:1661-72. [PMID: 12196409 PMCID: PMC1462223 DOI: 10.1093/genetics/161.4.1661] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F(1) hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.
Collapse
Affiliation(s)
- Andrea Pedrosa
- Department of Cell Biology and Genetics, Institute of Botany, University of Vienna, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|