1
|
Jin J, Guang M, Ogbuehi AC, Li S, Zhang K, Ma Y, Acharya A, Guo B, Peng Z, Liu X, Deng Y, Fang Z, Zhu X, Hua S, Li C, Haak R, Ziebolz D, Schmalz G, Liu L, Xu B, Huang X. Shared Molecular Mechanisms between Alzheimer's Disease and Periodontitis Revealed by Transcriptomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6633563. [PMID: 33869630 PMCID: PMC8032519 DOI: 10.1155/2021/6633563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the genetic crosstalk mechanisms that link periodontitis and Alzheimer's disease (AD). BACKGROUND Periodontitis, a common oral infectious disease, is associated with Alzheimer's disease (AD) and considered a putative contributory factor to its progression. However, a comprehensive investigation of potential shared genetic mechanisms between these diseases has not yet been reported. METHODS Gene expression datasets related to periodontitis were downloaded from the Gene Expression Omnibus (GEO) database, and differential expression analysis was performed to identify differentially expressed genes (DEGs). Genes associated with AD were downloaded from the DisGeNET database. Overlapping genes among the DEGs in periodontitis and the AD-related genes were defined as crosstalk genes between periodontitis and AD. The Boruta algorithm was applied to perform feature selection from these crosstalk genes, and representative crosstalk genes were thus obtained. In addition, a support vector machine (SVM) model was constructed by using the scikit-learn algorithm in Python. Next, the crosstalk gene-TF network and crosstalk gene-DEP (differentially expressed pathway) network were each constructed. As a final step, shared genes among the crosstalk genes and periodontitis-related genes in DisGeNET were identified and denoted as the core crosstalk genes. RESULTS Four datasets (GSE23586, GSE16134, GSE10334, and GSE79705) pertaining to periodontitis were included in the analysis. A total of 48 representative crosstalk genes were identified by using the Boruta algorithm. Three TFs (FOS, MEF2C, and USF2) and several pathways (i.e., JAK-STAT, MAPK, NF-kappa B, and natural killer cell-mediated cytotoxicity) were identified as regulators of these crosstalk genes. Among these 48 crosstalk genes and the chronic periodontitis-related genes in DisGeNET, C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3 were shared and identified as the most pivotal candidate links between periodontitis and AD. CONCLUSIONS Exploration of available transcriptomic datasets revealed C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3 as the top candidate molecular linkage genes between periodontitis and AD.
Collapse
Affiliation(s)
- Jieqi Jin
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Mengkai Guang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | | | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Kai Zhang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Aneesha Acharya
- Dr. D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - Bihan Guo
- Faculty of Electrical Engineering, Information Technology, and Physics, University Braunschweig, Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Zongwu Peng
- Faculty of Electrical Engineering, Information Technology, and Physics, University Braunschweig, Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Zhaobi Fang
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiongjie Zhu
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shiting Hua
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Cong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Lei Liu
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 10091 Shandong Province, China
| | - Baohua Xu
- Department of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
2
|
Irrelevance of USF2 rs916145 polymorphism with the risk of biliary atresia susceptibility in Southern Chinese children. Biosci Rep 2020; 40:222122. [PMID: 32109289 PMCID: PMC7048685 DOI: 10.1042/bsr20193623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Backgrounds: Biliary atresia (BA) is a very rare neonatal disease, however, it has been the most common cause of obstructive jaundice in infancy. The complex pathogenesis of BA is not entirely clear and a lot of possible pathogenic mechanisms have been proposed to explain the etiology of BA, including genetic, inflammatory, environmental and developmental abnormalities. As a transcription factor, USF2 gene rs916145 polymorphism has been shown to be related to the risk of BA. Methods: We examined the USF2 rs916145 genotype in a large case–control study consisting of 506 BA patients and 1473 healthy controls, using the MassARRAY iPLEX Gold system (Sequenom). Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the association between the USF2 gene rs916145 polymorphism and BA susceptibility. Results: The frequency of different genotypes showed no statistical significance (GG/GC, OR: 1.09, P=0.470, 95% CI: 0.87–1.35; GG/CC, OR: 0.86, P=0.378, 95% CI: 0.62–1.20). No obvious association was revealed between the USF2 gene rs916145 polymorphism and BA susceptibility. Conclusion:USF2 rs916145 polymorphism may not be the best predictor of BA.
Collapse
|
3
|
Faisal I, Cisneros-Montalvo S, Hamer G, Tuominen MM, Laurila PP, Tumiati M, Jauhiainen M, Kotaja N, Toppari J, Mäkelä JA, Kauppi L. Transcription Factor USF1 Is Required for Maintenance of Germline Stem Cells in Male Mice. Endocrinology 2019; 160:1119-1136. [PMID: 30759202 DOI: 10.1210/en.2018-01088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022]
Abstract
A prerequisite for lifelong sperm production is that spermatogonial stem cells (SSCs) balance self-renewal and differentiation, yet factors required for this balance remain largely undefined. Using mouse genetics, we now demonstrate that the ubiquitously expressed transcription factor upstream stimulatory factor (USF)1 is critical for the maintenance of SSCs. We show that USF1 is not only detected in Sertoli cells as previously reported, but also in SSCs. Usf1-deficient mice display progressive spermatogenic decline as a result of age-dependent loss of SSCs. According to our data, the germ cell defect in Usf1-/- mice cannot be attributed to impairment of Sertoli cell development, maturation, or function, but instead is likely due to an inability of SSCs to maintain a quiescent state. SSCs of Usf1-/- mice undergo continuous proliferation, which provides an explanation for their age-dependent depletion. The proliferation-coupled exhaustion of SSCs in turn results in progressive degeneration of the seminiferous epithelium, gradual decrease in sperm production, and testicular atrophy. We conclude that the general transcription factor USF1 is indispensable for the proper maintenance of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Imrul Faisal
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Doctoral Program in Biomedicine, Doctoral School in Health Sciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sheyla Cisneros-Montalvo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Minna M Tuominen
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirkka-Pekka Laurila
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Manuela Tumiati
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Liisa Kauppi
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Isotalo K, Kok EH, Luoto TM, Haikonen S, Haapasalo H, Lehtimäki T, Karhunen PJ. Upstream transcription factor 1 (USF1) polymorphisms associate with Alzheimer's disease-related neuropathological lesions: Tampere Autopsy Study. Brain Pathol 2012; 22:765-75. [PMID: 22390463 DOI: 10.1111/j.1750-3639.2012.00586.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The apolipoprotein E (APOE) gene associates with Alzheimer's disease (AD) and cholesterol levels. Upstream transcription factor 1 (USF1) regulates lipid metabolism genes, including APOE, and the AD Aβ-precursor protein. We investigated associations between 6 haplotype-tagging USF1 single-nucleotide polymorphisms (and haplotypes) and AD-related neuropathological lesions [senile plaques (SP), neurofibrillary tangles (NFT) ] in an autopsy series comprising 603 cases (ages 0-97, mean 62 years, 215 women) that died out-of-hospital. In age- and APOE-adjusted analyses, the minor G-allele of rs2774276, previously linked to elevated cholesterol, associated with late-stage burnt out SP among women and early non-neuritic SP among men. The G-allele of the previously unreported rs10908821 showed significant risk of having SP, especially neuritic and burnt out SP, among women but not men. USF1 haplotype GCGCAC carriers (risk alleles of rs2774276 and rs10908821) associated with SP risk, especially neuritic and late-stage burnt out SP, among women but not men. Younger CCGCAC carriers (risk allele of rs2774276 and protective of rs10908821) were more likely to have non-neuritic and diffuse SP. Conversely, USF1 CCGCAC haplotype carriers had lower NFT prevalence among 65+ year-olds. These results suggest USF1 has an independent but gender- and age-associated effect on AD-related brain lesion development.
Collapse
Affiliation(s)
- Karita Isotalo
- Department of Forensic Medicine, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|