1
|
Li C, Fu Y, Tian Y, Zang Z, Gentekaki E, Wang Z, Warren A, Li L. Comparative transcriptome and antioxidant biomarker response reveal molecular mechanisms to cope with zinc ion exposure in the unicellular eukaryote Paramecium. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131364. [PMID: 37080029 DOI: 10.1016/j.jhazmat.2023.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of industry has resulted in excessive environmental zinc exposure which has caused various health problems in a wide range of organisms including humans. The mechanisms by which aquatic microorganisms respond to environmental zinc stress are still poorly understood. Paramecium, a well-known ciliated protozoan and a popular cell model in heavy metal stress response studies, was chosen as the test unicellular eukaryotic organism in the present research. In this work, Paramecium cf. multimicronucleatum cells were exposed in different levels of zinc ion (0.1 and 1.0 mg/L) for different periods of exposure (1 and 4 days), and then analyzed population growth, transcriptomic profiles and physiological changes in antioxidant enzymes to explore the toxicity and detoxification mechanisms during the zinc stress response. Results demonstrated that long-term zinc exposure could have restrained population growth in ciliates, however, the response mechanism to zinc exposure in ciliates is likely to show a dosage-dependent and time-dependent manner. The differentially expressed genes (DEGs) were identified the characters by high-throughput sequencing, which remarkably enriched in the phagosome, indicating that the phagosome pathway might mediate the uptake of zinc, while the pathways of ABC transporters and Na+/K+-transporting ATPase contributed to the efflux transport of excessive zinc ions and the maintenance of osmotic balance, respectively. The accumulation of zinc ions triggered a series of adverse effects, including damage to DNA and proteins, disturbance of mitochondrial function, and oxidative stress. In addition, we found that gene expression changed significantly for metal ion binding, energy metabolism, and oxidation-reduction processes. RT-qPCR of ten genes involved in important biological functions further validated the results of the transcriptome analysis. We also continuously monitored changes in activity of four antioxidant enzymes (SOD, CAT, POD and GSH-PX), all of which peaked on day 4 in cells subjected to zinc stress. Collectively, our results indicate that excessive environmental zinc exposure initially causes damage to cellular structure and function and then initiates detoxification mechanisms to maintain homeostasis in P. cf. multimicronucleatum cells.
Collapse
Affiliation(s)
- Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yingxuan Tian
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Zihan Zang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zhenyuan Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China.
| |
Collapse
|
2
|
Xiao K, Song L, Li Y, Li C, Zhang S. Dietary intake of microplastics impairs digestive performance, induces hepatic dysfunction, and shortens lifespan in the annual fish Nothobranchius guentheri. Biogerontology 2023; 24:207-223. [PMID: 36592268 DOI: 10.1007/s10522-022-10007-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
Microplastics (MPs) are ubiquitous in aquatic and terrestrial ecosystem, increasingly becoming a serious concern of human health. Many studies have explored the biological effects of MPs on animal and plant life in recent years. However, information regarding the effects of MPs on aging and lifespan is completely lacking in vertebrate species to date. Here we first confirm the bioavailability of MPs by oral delivery in the annual fish N. guentheri. We then show for the first time that administration of MPs not only shortens the lifespan but also accelerates the development of age-related biomarkers in N. guentheri. We also demonstrate that administration of MPs induces oxidative stress, suppresses antioxidant enzymes, reduces digestive enzymes, and causes hepatic dysfunction. Therefore, we propose that administration of MPs reduces lifespan of N. guentheri via induction of both suppressed antioxidant system and digestive disturbance as well as hepatic damage. Our results also suggest that smaller MPs appear more toxic to digestion, metabolism and growth of animals.
Collapse
Affiliation(s)
- Kun Xiao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yishuai Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
3
|
Zheng J, Li C, Zheng X. Toxic effects of polystyrene microplastics on the intestine of Amphioctopus fangsiao (Mollusca: Cephalopoda): From physiological responses to underlying molecular mechanisms. CHEMOSPHERE 2022; 308:136362. [PMID: 36087715 DOI: 10.1016/j.chemosphere.2022.136362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are broadly used and among the most studied environmental pollutants due to their potential impacts on organisms and human health. Amphioctopus fangsiao (Cephalopoda: Octopodidae) is an important commercial species in the Pacific Northwest and is very popular among consumers owing to its rich nutritional value and fresh flavor. However, the toxic effects of microplastic exposure on A. fangsiao, including phenotypical effect and underlying molecular mechanism, remain limited. In this study, the octopus A. fangsiao were exposed to microplastics (polystyrene microplastics, Micro-PS) at concentrations of 100 and 1000 μg/L for 21 days, and then the physiological response, histopathological analysis, biomarkers of oxidative stress and glycolipid metabolism, microbiome perturbations and transcriptomic profiles in the intestines were performed. Results demonstrated that Micro-PS exposure had distinct adverse effects on the food intake of A. fangsiao. Histological analysis revealed that Micro-PS exposure has resulted in histopathological damage, thus causing early inflammation of the intestine. Oxidative stresses, metabolic disorders and microbiome perturbations were also detected in the intestine of A. fangsiao based on physiological biomarkers and microbiome analyses. Moreover, transcriptome analysis detected the differentially expressed genes (DEGs) and significantly enriched KEGG pathways in response to oxidative stress, glycolipid metabolism, DNA damage and transmembrane transport of intestinal cells, revealing distinct toxic effects at the molecular level. In summary, Micro-PS exposure has a strong impact on the intestines of A. fangsiao. For the first time, this study uses multiple approaches based on the physiological and biochemical response as well as transcriptional regulation analysis. The first assessment of the toxic impact of this species under Micro-PS exposure is also reported.
Collapse
Affiliation(s)
- Jian Zheng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Xiaodong Zheng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Song L, Leng K, Xiao K, Zhang S. Administration of krill oil extends lifespan of fish Nothobranchius guentheri via enhancement of antioxidant system and suppression of NF-κB pathway. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1057-1073. [PMID: 35834112 DOI: 10.1007/s10695-022-01102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Krill oil (KO) extracted from Antarctic krill (Euphausia superba) mainly comprises phospholipids and triglycerides. KO has been shown to prolong the median lifespan of the nematode Caenorhabditis elegans, but to shorten the lifespan of long-lived F1 mice; therefore, it remains controversial over the life-extending property of KO. In this study, we clearly demonstrated that dietary intake of KO extended both the mean and maximum lifespans of aged male Nothobranchius guentheri (p < 0.05), reduced the accumulation of lipofuscin (LF) (p < 0.05) in the gills and senescence-associated β-galactosidase (SA-β-Gal) (p < 0.05) in the caudal fins, and lowered the levels of protein oxidation (p < 0.05), lipid peroxidation (p < 0.01), and reactive oxygen species (ROS) (p < 0.01) in the muscles and livers, indicating that KO possesses rejuvenation and anti-aging activity. We also showed that KO enhanced the activities of antioxidant enzymes catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05), and glutathione peroxidase (GPX) (p < 0.05) in aged male N. guentheri. In addition, KO administration effectively reversed histological lesions including inflammatory cell infiltration and structural collapse in the muscles and livers of aged N. guentheri and suppressed the nuclear factor kappa-B (NF-κB) signaling pathway (p < 0.05), a master regulator of inflammation. Altogether, our study indicates that KO has anti-aging and rejuvenation property. It also suggests that KO exerts its anti-aging and rejuvenation effects via enhancement of the antioxidant system and suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, 266071, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China
| | - Kun Xiao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
5
|
Song L, Wu F, Li C, Zhang S. Dietary intake of GDF11 delays the onset of several biomarkers of aging in male mice through anti-oxidant system via Smad2/3 pathway. Biogerontology 2022; 23:341-362. [PMID: 35604508 PMCID: PMC9125541 DOI: 10.1007/s10522-022-09967-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Current studies have generated controversy over the age-related change in concentration of growth differentiation factor 11 (GDF11) and its role in the genesis of rejuvenation conditions. In this study, we displayed rGDF11 on the surface of Yarrowic Lipolytica (Y. lipolytica), and proved the bioavailability of the yeast-displayed rGDF11 by oral delivery in aged male mice. On the basis of these findings, we started to explore the anti-aging activity and underlying mechanisms of displayed rGDF11. It was found that dietary intake of displayed rGDF11 had little influence on the body weight and biochemical parameters of aged male mice, but delayed the occurrence and development of age-related biomarkers such as lipofuscin (LF) and senescence-associated-β-galactosidase, and to some extent, prolonged the lifespan of aged male mice. Moreover, we demonstrated once again that dietary intake of displayed rGDF11 enhanced the activity of anti-oxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX), reduced the reactive oxygen species (ROS) level, and slowed down the protein oxidation and lipid peroxidation. Importantly, we showed for the first time that rGDF11 enhanced the activity of CAT, SOD and GPX through activation of the Smad2/3 signaling pathway. Our study also provided a simple and safe route for delivery of recombinant GDF11, facilitating its therapeutic application in the future.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fei Wu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
6
|
Song L, Li C, Wu F, Zhang S. Dietary intake of diosgenin delays aging of male fish Nothobranchius guentheri through modulation of multiple pathways that play prominent roles in ROS production. Biogerontology 2022; 23:201-213. [PMID: 35102470 DOI: 10.1007/s10522-022-09955-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Oxidative stress including DNA damage, increased lipid and protein oxidation, is an important feature of aging. Diosgenin (DG) has been shown to have diverse biological effects, including amelioration of aging-related cognition deficits, but the anti-aging activity of DG has not been tested before in animal models. In the present study, we clearly demonstrated that dietary intake of DG extended both mean and maximum lifespans of the male fish Nothobranchius guentheri by approximately 3.23 and 3.67 weeks, respectively, reduced the accumulation of lipofuscin (LF) in the gills and senescence-associated-β-galactosidase (SA-β-Gal) in the caudal fins, and lowered the levels of protein oxidation, lipid peroxidation and reactive oxygen species (ROS) in the muscles, indicating that DG possesses rejuvenation and anti-aging property. We also showed that DG enhanced the activity of antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase, promoted the proteolytic activity of the ubiquitin-proteasome pathway, and suppressed the phosphatidylinositol 3-kinase/protein kinase/molecular target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Altogether, this study highlights for the first time the rejuvenation and anti-aging property of the naturally occurring steroidal sapogenin DG. It also suggests that DG exerts its rejuvenation and anti-aging activity through modulation of multiple signaling pathways that play prominent roles in ROS production.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fei Wu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
7
|
Evaluation of Age-Dependent Changes in the Coloration of Male Killifish Nothobranchius Guentheri Using New Photoprocessing Methods. BIOLOGY 2022; 11:biology11020205. [PMID: 35205071 PMCID: PMC8869725 DOI: 10.3390/biology11020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary This paper proposes a new methodology for evaluating fish coloration, which allows us to identify differences in the intensity of coloration of specific areas of the body. Changes in fish coloration occur during growth and under the influence of environmental factors. Male fish belonging to the family Nothobranchius are characterized by extremely diverse coloration, depending on the age of the fish, environmental factors, and social hierarchical status. As the lifespan of this genus of fish is very short (12–14 months), studies on age-dependent changes are possible. In this study, we demonstrate correlations between the coloration of particular body zones of male Nothobranchius guentheri and age using new photofixation methods and image processing software. This methodology can be applied to other fish with unique coloration patterns, for example, family Cichlidae and order Cyprinodontiformes. Abstract Fish as model objects have found wide applications in biology and fundamental medicine and allow studies of behavioral and physiological responses to various environmental factors. Representatives of the genus Nothobranchius are one of the most convenient objects for such studies. Male fish belonging to the family Nothobranchiidae are characterized by extremely diverse coloration, which constantly changes, depending on the age of the fish, environmental factors, and social hierarchical status. These fish species are characterized by a short life cycle, which allows changes in coloration, an indicator of the ontogenesis stage, to be estimated. Existing methods of fish color assessments do not allow the intensity of coloration of particular body zones to be clearly differentiated. In the present study, we suggest a method of two-factor assessment of specific fish body zones using modified methods of photofixation and image processing software. We describe the protocol of the method and the results of its application to different-aged groups of male Nothobranchius guentheri. The coloration of selected areas (i.e., red spot on the gill cover (RSGC), black border on the caudal fin (BBCF), and white border on the dorsal fin (WBDF)) differed significantly according to the size and age of the fish (p < 0.05). The data obtained suggest that N. guentheri can be a model for studying aging by the intensity of body coloration in males.
Collapse
|
8
|
Li C, Song L, Zhou Y, Yuan J, Zhang S. Identification of Isthmin1 in the small annual fish, Nothobranchius guentheri, as a novel biomarker of aging and its potential rejuvenation activity. Biogerontology 2022; 23:99-114. [PMID: 34988750 DOI: 10.1007/s10522-021-09948-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Isthmin 1 (Ism1) has been shown to play roles in multiple biological processes including morphogenesis, hematopoiesis, antiviral immune response and suppression of tumor growth. However, it remains unknown if it plays any role in aging process. Here we showed for the first time that Ism1 was a new age-related biomarker, which decreased with age in fish, mice and humans. Interestingly, Ism1 was also useful to measure the "rejuvenated" age of fish Nothobranchius guentheri reversed by salidroside treatment and temperature reduction, providing additional evidence that Ism1 was an aging biomarker. In addition, we clearly showed that dietary intake of recombinant Ism1 had little effects on the body length and weight of aging N. guentheri, but it retarded the onset of age-related biomarkers and prolonged both the maximum and median lifespan of the fish. We also showed that Ism1 exerted its rejuvenation activity via the enhancement of antioxidant system. Collectively, our results indicate that Ism1 is not only is a novel biomarker of aging but also a potential rejuvenation factor capable of reversing aging of N. guentheri.
Collapse
Affiliation(s)
- Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yang Zhou
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiangshui Yuan
- Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
9
|
Zhou Y, Ni S, Li C, Song L, Zhang S. Gonadal rejuvenation of mice by GDF11. J Gerontol A Biol Sci Med Sci 2021; 77:892-901. [PMID: 34791251 DOI: 10.1093/gerona/glab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been shown to have rejuvenation and anti-aging properties, but little information is available regarding the role of GDF11 in reproductive system to date. In this study, we first confirmed the bioavailability of recombinant GDF11 (rGDF11) by oral delivery in mice. We also showed that dietary intake of rGDF11 had little influence on body and gonadal (ovary/testis) weights of recipient mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the function of rGDF11 in ovary and testis of mice and to explore the underlying mechanisms. It was found that to some extent, rGDF11 could attenuate the senescence of ovarian and testicular cells, and contribute to the recovery of ovarian and testicular endocrine functions. Moreover, rGDF11 could rescue the diminished ovarian reserve in female mice and enhance the activities of marker enzymes of testicular function (SDH and G6PD) in male mice, suggesting a potential improvement of fertility. Notably, rGDF11 markedly promoted the activities of antioxidant enzymes in the ovary and testis, and remarkably reduced the levels of lipid peroxidation, protein oxidation and ROS in the ovary and testis. Collectively, these results suggest that GDF11 can protect ovarian and testicular functions of aged mice via slowing down the generation of ROS through enhancing activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shousheng Ni
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
10
|
Vanhunsel S, Bergmans S, Beckers A, Etienne I, Van Houcke J, Seuntjens E, Arckens L, De Groef L, Moons L. The killifish visual system as an in vivo model to study brain aging and rejuvenation. NPJ Aging Mech Dis 2021; 7:22. [PMID: 34404797 PMCID: PMC8371010 DOI: 10.1038/s41514-021-00077-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, people are getting older, and this prolonged lifespan unfortunately also results in an increased prevalence of age-related neurodegenerative diseases, contributing to a diminished life quality of elderly. Age-associated neuropathies typically include diseases leading to dementia (Alzheimer's and Parkinson's disease), as well as eye diseases such as glaucoma and age-related macular degeneration. Despite many research attempts aiming to unravel aging processes and their involvement in neurodegeneration and functional decline, achieving healthy brain aging remains a challenge. The African turquoise killifish (Nothobranchius furzeri) is the shortest-lived reported vertebrate that can be bred in captivity and displays many of the aging hallmarks that have been described for human aging, which makes it a very promising biogerontology model. As vision decline is an important hallmark of aging as well as a manifestation of many neurodegenerative diseases, we performed a comprehensive characterization of this fish's aging visual system. Our work reveals several aging hallmarks in the killifish retina and brain that eventually result in a diminished visual performance. Moreover, we found evidence for the occurrence of neurodegenerative events in the old killifish retina. Altogether, we introduce the visual system of the fast-aging killifish as a valuable model to understand the cellular and molecular mechanisms underlying aging in the vertebrate central nervous system. These findings put forward the killifish for target validation as well as drug discovery for rejuvenating or neuroprotective therapies ensuring healthy aging.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jolien Van Houcke
- Neuroplasticity and Neuroproteomics Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Developmental Neurobiology Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
11
|
de Castro BD, Wingen NMDA, Dos Santos SHD, Godoy RS, Maltchik L, Lanés LEK, Oliveira GT. Biomarkers of oxidative stress in the post-embryonic characterization of the neotropical annual killifish. Biogerontology 2021; 22:507-530. [PMID: 34302586 DOI: 10.1007/s10522-021-09931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Annual killifish are among the most remarkable extremophile species with the shortest vertebrate life span. Few studies have reported on the oxidative balance throughout their life cycle and its association to the natural aging process of these neotropical animals in a natural environment. We standardized and analyzed physiological markers related to the redox balance of the annual killifish (Cynopoecilus fulgens) throughout the post-embryonic life cycle (enzyme activity of Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione S-transferase, as well as the determination of the levels of Lipoperoxidation, Carbonylated Proteins, and Total Proteins). We tested the influence of environmental variables on these biomarkers. Individuals were collected, including juveniles, adults, and seniles, in three sampling units around the Parque Nacional da Lagoa do Peixe, located in the Coastal Plain of Rio Grande do Sul. We observed that males and females used different physiological strategies of their redox balance during their life cycle, and their oxidative balance was influenced by their reproductive period and environmental variables (water temperature, abundance of predators, abundance of another sympatric annual killifish species, and abundance of C. fulgens). The population of each temporary pond presented different physiological responses to the adaptation of their life cycle, and there was an influence of environmental component as a modulator of this cycle. Our study offers reference values that will be useful for comparison in future research with short-lived organisms.
Collapse
Affiliation(s)
- Bruna Dutra de Castro
- Conservation Physiology Laboratory, School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil
| | | | | | - Robson Souza Godoy
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, Health Sciences Center, UNISINOS, São Leopoldo, RS, Brazil
| | - Leonardo Maltchik
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, Health Sciences Center, UNISINOS, São Leopoldo, RS, Brazil
| | - Luis Esteban Krause Lanés
- Conservation Physiology Laboratory, School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil.
- Conservation Physiology Laboratory, Department of Morphophysiological Sciences, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Ipiranga Avenue, 6681 Pd. 12, Block C, class 270, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
12
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
13
|
Oxidative stress resistance in a short-lived Neotropical annual killifish. Biogerontology 2019; 21:217-229. [DOI: 10.1007/s10522-019-09855-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
14
|
Song L, Zhou Y, Ni S, Wang X, Yuan J, Zhang Y, Zhang S. Dietary Intake of β-Glucans Can Prolong Lifespan and Exert an Antioxidant Action on Aged Fish Nothobranchius guentheri. Rejuvenation Res 2019; 23:293-301. [PMID: 31591931 DOI: 10.1089/rej.2019.2223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the widely accepted conjectures regarding mechanisms of aging is probably the oxidative stress hypothesis. β-1,3-Glucans, well-known immunostimulants, have been shown to increase nonspecific immunity and resistance against infections or pathogenic bacteria in several fish species, but its antiaging function remains poorly understood. By feeding of β-1,3-glucans to the annual fish, Nothobranchius guentheri, we detected the survivorship of the fish and estimated the development of age-related biomarkers at different stages. We first showed that administration of β-1,3-glucans was able to prolong the lifespan of the fish (p < 0.05). We then showed that β-1,3-glucans clearly reduced the accumulation of lipofuscin in the gills and the senescence-associated β-galactosidase in the caudal fins. Moreover, β-1,3-glucans were able to lower the levels of protein oxidation, lipid peroxidation, and reactive oxygen species (ROS) in the muscles. Finally, β-1,3-glucans could promote the activities of the antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase in the fish, and slow down the increase of P66shc, a critical factor involved in the regulation of intracellular ROS contents. These data together suggest for the first time that β-1,3-glucans can extend the lifespan, delay the onset of age-related biomarkers and exert an antioxidant action of the aged fish, N. guentheri. It also implies that β-1,3-glucans may be potentially useful for health care in the elderly, including extension of the lifespan.
Collapse
Affiliation(s)
- Lili Song
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shousheng Ni
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jiangshui Yuan
- The Third Clinical College Department, Qingdao University, Qingdao, China.,Clinical Laboratory Department, Qingdao Municipal Hospital, Qingdao, China
| | - Yu Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
15
|
Age-associated liver alterations in wild populations of Austrolebias minuano, a short-lived Neotropical annual killifish. Biogerontology 2019; 20:687-698. [DOI: 10.1007/s10522-019-09822-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
|
16
|
Administration of rGDF11 retards the aging process in male mice via action of anti-oxidant system. Biogerontology 2019; 20:433-443. [PMID: 30726519 DOI: 10.1007/s10522-019-09799-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
One of the most studied and widely accepted conjectures of aging process is the oxidative stress theory. Current studies have generated disputes on the effects of GDF11 and GDF8, a closely related member of GDF11, on rejuvenation and anti-aging properties. In this study, we first demonstrated that when recombinant GDF8 (rGDF8) and GDF11 (rGDF11) of the fish Nothobranchius guentheri were injected into 20-month-old male mice, their serum GDF8 and GDF11 levels were clearly increased. We also showed that injection of rGDF8 and rGDF11 had little influences on the body weight and serological parameters of the mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the effects of administration of piscine rGDF11 and rGDF8 on the aging process of male mice and to explore the underlying mechanisms. It was found that rGDF11 was able to reduce the levels of AGEs, protein oxidation and lipid peroxidation, and to slow down the accumulation of age-related histological markers, while rGDF8 was not. Moreover, rGDF11 significantly prevented the decrease in CAT, GPX and SOD activities, but rGDF8 did not. Collectively, these results suggest that it is GDF11 but not GDF8 that can exert rejuvenation and anti-aging activities via the action of antioxidant system. It is also the first report that shows the activity of GDF11 is not species-specific, implicating potential usefulness of piscine GDF11 in prolonging the lifespan of the elderly.
Collapse
|
17
|
Zhou Y, Ni S, Song L, Wang X, Zhang Y, Zhang S. Late-onset administration of GDF11 extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri. Biogerontology 2018; 20:225-239. [DOI: 10.1007/s10522-018-09789-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
|
18
|
Almaida-Pagan PF, Ortega-Sabater C, Lucas-Sanchez A, Gonzalez-Silvera D, Martinez-Nicolas A, Rol de Lama MA, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius furzeri.: comparison with a longer-living Nothobranchius species. Biogerontology 2018; 20:83-92. [PMID: 30306289 DOI: 10.1007/s10522-018-9778-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Membrane compositions, particularly of mitochondria, could be critical factors in the mechanisms of growth and aging, especially during phases of high oxidative stress that result in molecular damage. Changes affecting lipid class or fatty acid (FA) compositions could affect phospholipid (PL) properties and alter mitochondrial function. In the present study, mitochondrial membrane PL compositions were analysed throughout the life-cycle of Nothobranchius furzeri, a species with explosive growth and one of the shortest-lived vertebrates. Mitochondrial PLs showed several changes with age. Proportions of total PLs and PC were reduced while an increase in PS, CL and PE was observed, mainly between the 2.5 and 5 months of fish age, the time during which animals doubled their weight. FA compositions of individual PLs in mitochondria were also significantly affected with age suggesting the existence of increasing damage to mitochondrial lipids during the life-cycle of N. furzeri that could be one of the main contributors to degraded mitochondrial function associated with aging. The peroxidation index values from N. furzeri mitochondrial PLs were significantly lower than those reported in N. rachovii, a species with a twofold longer life span than N. furzeri, which seems to contradict the membrane pacemaker theory of animal metabolism.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain. .,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain. .,Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Carmen Ortega-Sabater
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sanchez
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maria Angeles Rol de Lama
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Pilar Mendiola
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jorge de Costa
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
19
|
Liu S, Zheng Z, Ji S, Liu T, Hou Y, Li S, Li G. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri. FISH & SHELLFISH IMMUNOLOGY 2018; 80:473-479. [PMID: 29908321 DOI: 10.1016/j.fsi.2018.06.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Senescent cells display a senescence-associated secretory phenotype (SASP), which contributes to aging. Resveratrol, an activator of SIRT1, has anti-aging, anti-inflammatory, anti-oxidant, anti-free radical and other pharmacological effects. The genus of the annual fish Nothobranchius has become an emerging animal model for studying aging. However, the underlying mechanism for resveratrol to delay aging by SASP regulation has not been elucidated in vertebrates. In this study, the annual fish N. guentheri were fed with resveratrol for long-term treatment. The results showed that resveratrol reversed intensive senescence-associated β-galactosidase activity with aging process, down-regulated levels of SASP-associated proinflammatory cytokines IL-8 and TNFα, and up-regulated expression of anti-inflammatory cytokine IL-10 in gut of the fish. Resveratrol increased SIRT1 expression, and inhibited NF-κB by decreasing RelA/p65, Ac-RelA/p65 and p-IκBα levels and by increasing the interaction between SIRT1 and RelA/p65. Moreover, resveratrol reversed the decline of intestinal epithelial cells (IECs) and intestinal stem cells (ISCs) caused by aging in gut of the fish. Together, our results implied that resveratrol inhibited SASP through SIRT1/NF-κB signaling pathway and delayed aging of the annual fish N. guentheri.
Collapse
Affiliation(s)
- Shan Liu
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Shuhua Ji
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanhan Hou
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Shasha Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
20
|
Milinkovitch T, Lefrançois C, Durollet M, Thomas-Guyon H. Influence of temperature on age-related lipid peroxidation in a short-lived vertebrate (Nothobranchius furzeri). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:343-347. [PMID: 29098471 DOI: 10.1007/s10695-017-0439-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
In ectotherms, temperature modulates oxidative stress, a key driver of aging. However, the effects of temperature on oxidative stress have not been investigated at several life stages of an ectotherm. In order to improve understanding of aging processes, we conducted a cross-sectional study in short-lived ectotherm vertebrates, the killifish Nothobranchius furzeri. Malondialdehyde contents were assessed at three stages of life, in the liver and muscles of fish acclimatized to optimal or sub-optimal temperatures during all their life cycle. In accordance with the "free-radical theory," our results highlighted an increase in lipid peroxidation in senescent organisms. In the liver, this lipid peroxidation increase was more intense in senescent fish acclimatized to sub-optimal temperature than in fish acclimatized to their optimal temperature.
Collapse
Affiliation(s)
- Thomas Milinkovitch
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France.
- IAMC-CNR, Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, 09170, Torregrande, Oristano, Italy.
| | - Christel Lefrançois
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France
| | - Marie Durollet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France
| | - Hélène Thomas-Guyon
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France
| |
Collapse
|
21
|
Chen H, Guo Z, Zhou Y, Li D, Mu L, Klerks PL, Luo Y, Xie L. Accumulation, depuration dynamics and effects of dissolved hexavalent chromium in juvenile Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:254-260. [PMID: 29069612 DOI: 10.1016/j.ecoenv.2017.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
We previously demonstrated that chronic exposure to hexavalent chromium (Cr(VI)) causes a variety of adverse effects in the Japanese medaka (Oryzias latipes). The present study investigated the transition of acute to chronic effects by assessing the influences of Cr(VI) exposure concentration and exposure duration on Cr accumulation and their effects on fish growth and antioxidant physiology. Juvenile fish were exposed to 0.05, 0.5, 4 or 8mg/L Cr(VI) for 28 days. Endpoints were evaluated on days 3, 7, 14, 21 and 28. In addition, Cr depuration was examined for fish from two exposure groups (0.5 and 8mg/L). Chromium accumulation was rapid initially, then continued at a slower rate till the end of the exposure period without showing signs of reaching a steady state. Depuration patterns differed between the two exposure groups, but both reached 50% in 14 days. The rapid initial accumulation was accompanied by increased lipid peroxidation and elevated activities of antioxidants (e.g., GST, SOD and CAT). Activities of these enzymes had mostly returned to baseline levels by day 7, but there was no evidence of further cellular damage from ROS. Effects on fish length and weight continued to be evident over the 28-day exposure period. Our study suggest that the initial effects of Cr(VI) exposure may not be a good predictor of more-chronic effects in fish as a consequence of an efficient acclimation response by the antioxidant system that limits ROS-mediated toxicity.
Collapse
Affiliation(s)
- Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Yu Zhou
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Dan Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
| | - Lei Mu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
| | - Paul L Klerks
- Department of Biology, University of Louisiana at Lafayette, P.O. Box 43602, Lafayette, LA 70504-3602, United States
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Time-dependent effects of late-onset dietary intake of salidroside on lifespan and age-related biomarkers of the annual fish Nothobranchius guentheri. Oncotarget 2018; 9:14882-14894. [PMID: 29599913 PMCID: PMC5871084 DOI: 10.18632/oncotarget.23957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
One of the most studied and widely accepted conjectures of aging process is the oxidative stress theory. Previous studies have shown that salidroside can protect D-galactose-induced mouse model against aging and a formulation of Rhodiola rosea extracts (SHR-5) containing salidroside increases lifespan of fruit fly. However, direct evidence linking salidroside itself with the observed anti-aging effect in vivo and relevant molecular mechanisms are poorly defined. In this study, we first demonstrated that salidroside exhibited a time-dependent effect, and late-onset long-term salidroside dietary intake extended the lifespan in the annual fish Nothobranchius guentheri. We then showed that salidroside reduced the accumulation of lipofuscin in the gills as well as the levels of protein oxidation, lipid peroxidation and reactive oxygen species in the muscles; enhanced the activities of catalase, glutathione peroxidase, and superoxide dismutase in the fish; and decelerated the increase of P66shc, a critical factor for regulation of intracellular reactive oxygen species contents. Collectively, these data indicate that salidroside can prolong the lifespan and retard the onset of age-related biomarkers via the antioxidant system in aging fish. It also suggests that salidroside may have a potential usefulness in prolonging the lifespan of the elderly.
Collapse
|
23
|
Liu T, Ma L, Zheng Z, Li F, Liu S, Xie Y, Li G. Resveratrol inhibits age-dependent spontaneous tumorigenesis by SIRT1-mediated post-translational modulations in the annual fish Nothobranchius guentheri. Oncotarget 2017; 8:55422-55434. [PMID: 28903430 PMCID: PMC5589669 DOI: 10.18632/oncotarget.19268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Resveratrol, SIRT1 activator, inhibits carcinogenesis predominantly performed in transgenic animal models, orthotopic cancers of nude mice or different cancer cell lines, but its effects during process of spontaneous tumors using vertebrate models remain untested. Spontaneous liver neoplasm is an age-related disease and is inhibited by resveratrol in the annual fish Nothobranchius guentheri, which indicates that the fish can act as an excellent model to study spontaneous tumorigenesis. Totally, 175 fish were fed with resveratrol and another 175 fish for controls. Treated fish were fed with resveratrol (25 μg/fish/day) from sexual maturity (4-month-old) until they were sacrificed at 6-, 9- and 12-month-old. Immunoblot, immunohistochemistry and co-immunoprecipitation were employed to investigate the underlying mechanisms that resveratrol inhibited age-dependent spontaneous tumorigenesis in the fish. Results showed that resveratrol increased protein level of SIRT1 and alleviated age-associated tumorigenesis in liver. With SIRT1 up-regulation, resveratrol reduced proliferation by deacetylating K-Ras and inactivating K-Ras/PI3K/AKT pathway; and promoted apoptosis through deacetylation and dephosphorylation of FoxOs, up-regulation of DLC1 and interaction between SIRT1 and DLC1, and dephosphorylation of DLC1 in spontaneous neoplasms. We established a novel short-lived fish model for understanding the molecular mechanisms of drugs on age-dependent spontaneous tumorigenesis.
Collapse
Affiliation(s)
- Tingting Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Long Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Fenglin Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Shan Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yingbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Liu T, Liu S, Ma L, Li F, Zheng Z, Chai R, Hou Y, Xie Y, Li G. Oogenesis, vitellogenin-mediated ovarian degeneration and immune response in the annual fish Nothobranchius guentheri. FISH & SHELLFISH IMMUNOLOGY 2017; 66:86-92. [PMID: 28478259 DOI: 10.1016/j.fsi.2017.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 05/05/2023]
Abstract
Annual fishes of the genus Nothobranchius show expression of age-related biomarkers at behavioral and histological levels. They therefore represent an excellent animal model for aging studies. However, oocyte development, histological and biochemical degeneration and immune response of ovary in the annual fishes remain unclear. Here, using one of these short-lived fishes, Nothobranchius guentheri, we reported that oogenesis process was divided into four stages (oogonium, primary growth stage, cortical alveolus stage and vitellogenesis stage), and old ovaries showed histological degeneration (with decreased mature oocytes and increased atretic oocytes) accompaning with high levels of senescence-associated beta-galactosidase and lipofuscin by down-regulation of vitellogenin (the precursor of yolk proteins). Moreover, poly(I:C) induced inflammation with overexpression of NF-κB and IL-8, and up-regulated vitellogenin expression. It was a first analysis for vitellogenin to participate in ovarian degeneration and immune response in ovary of fish, indicating that vitellogenin fulfilled a critical role in ovary development and innate immune system.
Collapse
Affiliation(s)
- Tingting Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Shan Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Long Ma
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Fenglin Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Rongfei Chai
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Yanhan Hou
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Yingbo Xie
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China.
| |
Collapse
|
25
|
Wang X, Du X, Zhou Y, Wang S, Su F, Zhang S. Intermittent food restriction initiated late in life prolongs lifespan and retards the onset of age-related markers in the annual fish Nothobranchius guentheri. Biogerontology 2017; 18:383-396. [DOI: 10.1007/s10522-017-9699-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
|
26
|
Dong Y, Cui P, Li Z, Zhang S. Aging asymmetry: systematic survey of changes in age-related biomarkers in the annual fish Nothobranchius guentheri. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:309-319. [PMID: 27614442 DOI: 10.1007/s10695-016-0288-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Aging asymmetry is the observation that different tissues age in different ways and at different rates. This has not been assessed in a single organism using multiple biomarkers of aging. Here we clearly demonstrated that the levels of protein oxidation and lipid peroxidation as well as CAT, SOD and GPX activities all showed a tissue-dependent change with advancing age; and DNA repair ability, as revealed by the expression of ercc1 and its protein levels, also exhibited a tissue-specific variation with age. We also found that protein oxidation and lipid peroxidation levels remained relatively stable in the liver, intestine, skin and testis as well as in the brain, eye and heart of young, adult and aged fishes; SOD and GPX activities displayed little variation in the intestine, eye and skin as well as in the brain and skin of young, adult and aged fishes; and low and stable expression of ercc1 was observed in the spleen, eye and heart of young, adult and aged fishes. Collectively, these results indicate that aging is tissue specific and asymmetric in N. guentheri. The observation of aging asymmetry may have practical implications for the application of non-intrusion intervention approaches to prolong lifespan.
Collapse
Affiliation(s)
- Yuan Dong
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Cui
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhijian Li
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
27
|
de Abechuco EL, Hartmann N, Soto M, Díez G. Assessing the variability of telomere length measures by means of Telomeric Restriction Fragments (TRF) in different tissues of cod Gadus morhua. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Khor ES, Noor SM, Wong PF. Expression of zTOR-associated microRNAs in zebrafish embryo treated with rapamycin. Life Sci 2016; 150:67-75. [PMID: 26916825 DOI: 10.1016/j.lfs.2016.02.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 01/24/2023]
Abstract
AIMS MicroRNAs (miRNAs) are vital in modulating lifespan and various biological processes including vascular function. The pivotal roles of mammalian target of rapamycin (mTOR) in regulating senescence and angiogenesis have been extensively described. However, the roles of its orthologue, zebrafish target of rapamycin (zTOR) in senescence and angiogenesis remain to be unravelled. In the present study, we aimed to investigate the role of zTOR and identify miRNAs associated with senescence and angiogenesis. MAIN METHODS Zebrafish embryos were treated with rapamycin and the inhibition of zTOR and its downstream proteins were validated by immunoblotting. Following the treatment, melanocyte density was quantitated, and senescence and angiogenic responses were determined by senescence-associated beta-galactosidase (SA-β-gal) and endogenous alkaline phosphatase (ALP) staining, respectively. Relative expression of microRNAs were determined by quantitative RT-PCR. KEY FINDINGS Rapamycin (400 nM) suppressed zTOR pathway by down-regulating the phosphorylation of zTOR-associated proteins such as P70S6K and S6K at both 4h post-fertilisation (hpf) and 8hpf while 4E-BP1 was only down-regulated at 8hpf when compared to their respective vehicle controls. Treatment with rapamycin also resulted in significant suppression of melanocyte development and senescence-associated beta-galactosidase (SA-β-gal) activity, and perturbed the development of intersegmental vessels (ISVs) of zebrafish embryos. In addition, the expressions of dre-miR-9-5p and -3p, dre-miR-25-3p and dre-miR-124-3p were significantly up-regulated in embryos treated with rapamycin from 4hpf. SIGNIFICANCE Our findings suggest the involvement of zTOR in embryonic senescence and angiogenesis which could be potentially mediated by selected miRNAs.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Wang X, Chang Q, Wang Y, Su F, Zhang S. Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway. Rejuvenation Res 2015; 17:507-17. [PMID: 25298234 DOI: 10.1089/rej.2014.1581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two different mechanisms are considered to be related to aging. Cumulative molecular damage caused by reactive oxygen species (ROS), the by-products of oxidative phosphorylation, is one of these mechanisms (ROS concept). Deregulated nutrient sensing by the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway is the second mechanism (IIS concept). Temperature reduction (TR) is known to modulate aging and prolong life span in a variety of organisms, but the mechanisms remain poorly defined. Here we first demonstrate that late-onset TR from 26 °C to 22 °C extends mean life span and maximum life span by approximately 5.2 and 3 weeks, respectively, in the annual fish Nothobranchius guentheri. We then show that TR is able to decrease the accumulation of the histological aging markers senescence-associated β-galactosidase (SA-β-Gal) in the epithelium and lipofuscin (LF) in the liver and to reduce protein oxidation and lipid peroxidation levels in the muscle. We also show that TR can enhance the activities of catalase, glutathione peroxidase, and superoxide dismutase, and stimulate the synthesis of SirT1 and FOXO3A/FOXO1A, both of which are the downstream regulators of the IIS pathway. Taken together, our findings suggest that late-onset TR, a simple non-intrusion intervention, can retard the aging process in aged fish, resulting in their life span extension, via a synergistic action of an anti-oxidant system and the IIS pathway. This also suggests that combined assessment of the ROS and IIS concepts will contribute to providing a more comprehensive view of the anti-aging process.
Collapse
Affiliation(s)
- Xia Wang
- 1 Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China , Qingdao, China
| | | | | | | | | |
Collapse
|
30
|
Liu T, Qi H, Ma L, Liu Z, Fu H, Zhu W, Song T, Yang B, Li G. Resveratrol Attenuates Oxidative Stress and Extends Life Span in the Annual Fish Nothobranchius guentheri. Rejuvenation Res 2015; 18:225-33. [DOI: 10.1089/rej.2014.1618] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tingting Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - He Qi
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Long Ma
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Huiling Fu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenzhen Zhu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Taiyu Song
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Bingwu Yang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
31
|
Furness AI. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause. Biol Rev Camb Philos Soc 2015; 91:796-812. [DOI: 10.1111/brv.12194] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Andrew I. Furness
- Department of Biology; University of California; Riverside CA 92521 U.S.A
| |
Collapse
|
32
|
Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: the annual
Nothobranchius
fishes as a new model system in biology. Biol Rev Camb Philos Soc 2015; 91:511-33. [DOI: 10.1111/brv.12183] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Alessandro Cellerino
- Bio@SNS, Scuola Normale Superiore Department of Neurosciences Piazza dei Cavalieri 7 56126 Pisa Italy
- Fritz Lipmann Institute for Age Research, Leibniz Institute Beutenbergstr. 11 D‐07745 Jena Germany
| | - Dario R. Valenzano
- Max Planck Institute for Biology of Ageing Joseph‐Stelzmann‐Str. 9b D‐50931 Cologne Germany
| | - Martin Reichard
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic Květná 8 603 65 Brno Czech Republic
| |
Collapse
|
33
|
Lu CY, Hsu CY. Ambient temperature reduction extends lifespan via activating cellular degradation activity in an annual fish (Nothobranchius rachovii). AGE (DORDRECHT, NETHERLANDS) 2015; 37:33. [PMID: 25864186 PMCID: PMC4393827 DOI: 10.1007/s11357-015-9775-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
Ambient temperature reduction (ATR) can extend the lifespan of organisms, but the underlying mechanism is poorly understood. In this study, cellular degradation activity was evaluated in the muscle of an annual fish (Nothobranchius rachovii) reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures. The results showed the following: (i) the activity of the 20S proteasome and the expression of polyubiquitin aggregates increased with ATR, whereas 20S proteasome expression did not change; (ii) the expression of microtubule-associated protein 1 light chain 3-II (LC3-II) increased with ATR; (iii) the expression of lysosome-associated membrane protein type 2a (Lamp 2a) increased with ATR, whereas the expression of the 70-kD heat shock cognate protein (Hsc 70) decreased with ATR; (iv) lysosome activity increased with ATR, whereas the expression of lysosome-associated membrane protein type 1 (Lamp 1) did not change with ATR; and (v) the expression of molecular target of rapamycin (mTOR) and phosphorylated mTOR (p-mTOR) as well as the p-mTOR/mTOR ratio did not change with ATR. These findings indicate that ATR activates cellular degradation activity, constituting part of the mechanism underlying the longevity-promoting effects of ATR in N. rachovii.
Collapse
Affiliation(s)
- Cheng-Yen Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chin-Yuan Hsu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333 Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
34
|
Lucas-Sánchez A, Martínez-Nicolás A, Madrid JA, Almaida-Pagán PF, Mendiola P, de Costa J. Circadian activity rhythms during the last days ofNothobranchius rachovii’s life: A descriptive model of circadian system breakdown. Chronobiol Int 2014; 32:395-404. [DOI: 10.3109/07420528.2014.984040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Baumgart M, Di Cicco E, Rossi G, Cellerino A, Tozzini ET. Comparison of captive lifespan, age-associated liver neoplasias and age-dependent gene expression between two annual fish species: Nothobranchius furzeri and Nothobranchius korthause. Biogerontology 2014; 16:63-9. [PMID: 25315356 DOI: 10.1007/s10522-014-9535-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/09/2014] [Indexed: 11/25/2022]
Abstract
Nothobranchius is a genus of annual fish broadly distributed in South-Eastern Africa and found into temporary ponds generated during the rain seasons and their lifespan is limited by the duration of their habitats. Here we compared two Nothobranchius species from radically different environments: N. furzeri and N. korthausae. We found a large difference in life expectancy (29- against 71-weeks of median life span, 40- against 80-weeks of maximum lifespan, respectively), which correlates with a diverse timing in the onset of several age dependent processes: our data show that N. korthause longer lifespan is associated to retarded onset of age-dependent liver-neoplasia and slower down-regulation of collagen 1 alpha 2 (COL1A2) expression in the skin. On the other hand, the expression of cyclin B1 (CCNB1) in the brain was strongly age-regulated, but with similar profiles in N. furzeri and N. korthausae. In conclusion, our data suggest that the different ageing rate of two species of the same genus could be used as novel tool to investigate and better understand the genetic bases of some general mechanism leading to the complex ageing process, providing a strategy to unravel some of the genetic mechanisms regulating longevity and age-associate pathologies including neoplasias.
Collapse
Affiliation(s)
- Mario Baumgart
- Biology of Aging, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | | | | | | | | |
Collapse
|
36
|
Lucas-Sánchez A, Almaida-Pagán PF, Mendiola P, de Costa J. Nothobranchius as a model for aging studies. A review. Aging Dis 2014; 5:281-91. [PMID: 25110612 PMCID: PMC4113518 DOI: 10.14336/ad.2014.0500281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
In recent decades, the increase in human longevity has made it increasingly important to expand our knowledge on aging. To accomplish this, the use of animal models is essential, with the most common being mouse (phylogenetically similar to humans, and a model with a long life expectancy) and Caenorhabditis elegans (an invertebrate with a short life span, but quite removed from us in evolutionary terms). However, some sort of model is needed to bridge the differences between those mentioned above, achieving a balance between phylogenetic distance and life span. Fish of the genus Nothobranchius were suggested 10 years ago as a possible alternative for the study of the aging process. In the meantime, numerous studies have been conducted at different levels: behavioral (including the study of the rest-activity rhythm), populational, histochemical, biochemical and genetic, among others, with very positive results. This review compiles what we know about Nothobranchius to date, and examines its future prospects as a true alternative to the classic models for studies on aging.
Collapse
Affiliation(s)
| | | | - Pilar Mendiola
- Department of Physiology. Faculty of Biology. University of Murcia. 30100 Murcia, Spain
| | - Jorge de Costa
- Department of Physiology. Faculty of Biology. University of Murcia. 30100 Murcia, Spain
| |
Collapse
|
37
|
Hsieh YS, Hsu CY. Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera). Rejuvenation Res 2014; 16:295-303. [PMID: 23738955 DOI: 10.1089/rej.2013.1420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trophocytes and fat cells of queen honeybees have been used for delayed cellular senescence studies, but their oxidative stress and anti-oxidant enzyme activities with advancing age are unknown. In this study, we assayed reactive oxygen species (ROS) and anti-oxidant enzymes in the trophocytes and fat cells of young and old queens. Young queens had lower ROS levels, lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and higher thioredoxin reductase (TR) activity compared to old queens. These results show that oxidative stress and anti-oxidant enzyme activities in trophocytes and fat cells increase with advancing age in queens and suggest that an increase in oxidative stress and a consequent increase in stress defense mechanisms are associated with the longevity of queen honeybees.
Collapse
Affiliation(s)
- Yu-Shan Hsieh
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | |
Collapse
|
38
|
Storer CS, Quinn TP, Roberts SB. Quantitative PCR analysis used to characterize physiological changes in brain tissue of senescent sockeye salmon. Biogerontology 2013; 14:483-90. [PMID: 23948798 DOI: 10.1007/s10522-013-9448-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/24/2013] [Indexed: 11/24/2022]
Abstract
Senescence varies considerably among fishes, and understanding the evolutionary basis for this diversity has become an important area of study. For rapidly senescing species such as Pacific salmon, senescence is a complex process as these fish are initiating anorexia while migrating to natal spawning grounds, and die within days of reproduction. To better understand senescence in Pacific salmon we examined expression patterns for a suite of genes in brain tissue of pre-senescent and senescent sockeye salmon. Interestingly, a significant increase in expression of genes involved in telomere repair and immune activity was observed in senescent salmon. These data provide insight into physiological changes in salmon undergoing senescence and the factors contributing to variation in observed senescence rates among individuals and populations.
Collapse
Affiliation(s)
- C S Storer
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, P.O. Box 355020, Seattle, WA, 98195, USA,
| | | | | |
Collapse
|
39
|
Lucas-Sánchez A, Almaida-Pagán PF, Tocher DR, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 2013; 69:142-51. [PMID: 23685767 DOI: 10.1093/gerona/glt066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial membrane composition may be a critical factor in the mechanisms of the aging process by influencing the propagation of reactions involved in mitochondrial function during periods of high stress. Changes affecting either lipid class or fatty acid compositions could affect phospholipid properties and alter mitochondrial function and cell viability. In the present study, mitochondrial membrane phospholipid compositions were analyzed throughout the life cycle of Nothobranchius rachovii. Mitochondrial phospholipids showed several changes with age. Proportions of cardiolipin decreased and those of sphingomyelin increased between 11- and 14-month-old fish. Fatty acid compositions of individual phospholipids in mitochondria were also significantly affected with age. These data suggest increasing damage to mitochondrial lipids during the life cycle of N. rachovii that could be one of the main factors related with and contributing to degraded mitochondrial function associated with the aging process.
Collapse
Affiliation(s)
- Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | | | | | | | | |
Collapse
|
40
|
Lucas-Sánchez A, Almaida-Pagán PF, Martinez-Nicolas A, Madrid JA, Mendiola P, de Costa J. Rest-activity circadian rhythms in aged Nothobranchius korthausae. The effects of melatonin. Exp Gerontol 2013; 48:507-16. [DOI: 10.1016/j.exger.2013.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/05/2013] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
|
41
|
Hsu CY, Chan YP. The use of honeybees reared in a thermostatic chamber for aging studies. AGE (DORDRECHT, NETHERLANDS) 2013; 35:149-158. [PMID: 22124884 PMCID: PMC3543731 DOI: 10.1007/s11357-011-9344-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Honeybees (Apis mellifera) are an attractive model system for studying aging. However, the aging level of worker honeybees from the field hive is in dispute. To eliminate the influence of task performance and confirm the relationship between chronological age and aging, we reared newly emerged workers in a thermostat at 34°C throughout their lives. A survivorship curve was obtained, indicating that workers can be reared away from the field hive, and the only difference between these workers is age. To confirm that these workers can be used for aging studies, we assayed age-related molecules in the trophocytes and fat cells of young and old workers. Old workers expressed more senescence-associated β-galactosidase, lipofuscin granules, lipid peroxidation, and protein oxidation than young workers. Furthermore, cellular energy metabolism molecules were also assayed. Old workers exhibited less ATP concentration, β-oxidation, and microtubule-associated protein light chain 3 (LC3) than young workers. These results demonstrate that honeybees reared in a thermostatic chamber can be used for aging studies and cellular energy metabolism in the trophocytes and fat cells of workers changes with advancing age.
Collapse
Affiliation(s)
- Chin-Yuan Hsu
- Department of Biomedical Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| | | |
Collapse
|
42
|
Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp Gerontol 2012; 47:940-9. [PMID: 22960591 DOI: 10.1016/j.exger.2012.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/29/2022]
Abstract
Aging research was hindered because of the long lifespan of available vertebrates. Annual fishes of Nothobranchius have become a new model organism for aging studies. Resveratrol, a natural plant-derived chemical, prolongs lifespan in many animals. Here we used the wild strain of N. guentheri, which has the mean lifespan of 12months, to detect the effects of resveratrol on the longevity, cognitive ability and aging-related histological markers. Our results showed that the pharmaceutical treatment of resveratrol prolonged the lifespan of N. guentheri but did not affect their body size. Three behavioral assays for cognitive ability and locomotor activity demonstrated that the resveratrol-treated fish exhibited the higher rate of performances than the fish in the control group. Further data indicated that resveratrol not only had the property of protecting N. guentheri from neurodegeneration, but retarded the aging-related histological markers in lipofuscin formation and in the expression of senescence-associated beta-galactosidase activity.
Collapse
|
43
|
Liu C, Wang X, Feng W, Li G, Su F, Zhang S. Differential expression of aging biomarkers at different life stages of the annual fish Nothobranchius guentheri. Biogerontology 2012; 13:501-10. [DOI: 10.1007/s10522-012-9395-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/16/2012] [Indexed: 12/27/2022]
|
44
|
Carney Almroth B, Sköld M, Nilsson Sköld H. Gender differences in health and aging of Atlantic cod subject to size selective fishery. Biol Open 2012; 1:922-8. [PMID: 23213487 PMCID: PMC3507242 DOI: 10.1242/bio.20121446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/13/2012] [Indexed: 11/20/2022] Open
Abstract
We have analyzed health and physiological aging parameters in male and female Atlantic cod, Gadus morhua, captured in Kattegat, Skagerrak and in Öresund. Gender differences were clearly evident in a number of variables. Males had longer liver telomeres and higher catalase activities than females, while females had higher superoxide dismutase activity, liver somatic index and condition factor. Effects of age were found for males where levels of the antioxidant glutathione and telomere length declined with age, indicating physiological aging. Liver somatic index increased and percentage oxidized glutathione decreased with age. Between-site comparisons of males show that percentage oxidized glutathione and catalase were lowest in Kattegat, whereas protein carbonyls and condition factor were higher in Skagerrak. Females, on the other hand, showed no differences between sites or indications of somatic aging or age-related effects in egg quality, indicating that older and larger female cod are healthy and show no changes in eggs with age. In contrast, males showed indications of physiological aging and lower condition than females. The results emphasize the importance of conserving old mature fish, in particular high egg-productive females, when managing fisheries.
Collapse
Affiliation(s)
- Bethanie Carney Almroth
- University of Gothenburg, Department of Biological and Environmental Sciences - Zoology , Box 463, SE 405 30 Göteborg , Sweden
| | | | | |
Collapse
|
45
|
Carney Almroth B, Johnsson JI, Devlin R, Sturve J. Oxidative stress in growth hormone transgenic coho salmon with compressed lifespan--a model for addressing aging. Free Radic Res 2012; 46:1183-9. [PMID: 22655913 DOI: 10.3109/10715762.2012.698009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Growth hormone (GH) transgenic fish have dramatically enhanced growth rates, increased oxygen demands and reactive oxygen species production. GH-transgenic coho salmon provide an opportunity to address effects of increased metabolism on physiological aging. The objective of this study was to compare oxidative stress in wild-type (WT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch) of different ages (1 and 2 years). Antioxidant enzyme activity, protein carbonyls (PC) and glutathione (GSH, GSSG) were measured. PC correlated to growth rates in individual fish. T fish exhibited lower antioxidant enzyme activities and GSH levels compared to the WT, while levels of PC and GSSG were higher. Age affects were observed in both WT and T fish; enzyme activities and GSH decreased while PC and GSSG increased. Our results support the metabolic rate theory of aging. This study aims to be a platform for continued studies of the theories of aging using fish as model organisms.
Collapse
Affiliation(s)
- Bethanie Carney Almroth
- University of Gothenburg, Department of Biological and Environmental Sciences, Göteborg, Sweden.
| | | | | | | |
Collapse
|
46
|
Almaida-Pagán PF, de Costa J, Mendiola P, Tocher DR. Changes in tissue and mitochondrial membrane composition during rapid growth, maturation and aging in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:404-12. [DOI: 10.1016/j.cbpb.2012.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
47
|
Lucas-Sánchez A, Almaida-Pagán P, Madrid J, de Costa J, Mendiola P. Age-related changes in fatty acid profile and locomotor activity rhythms in Nothobranchius korthausae. Exp Gerontol 2011; 46:970-8. [DOI: 10.1016/j.exger.2011.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 01/01/2023]
|
48
|
Potential for clonal animals in longevity and ageing studies. Biogerontology 2011; 12:387-96. [DOI: 10.1007/s10522-011-9333-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/28/2011] [Indexed: 12/25/2022]
|
49
|
Polačik M, Donner MT, Reichard M. Age structure of annual Nothobranchius fishes in Mozambique: is there a hatching synchrony? JOURNAL OF FISH BIOLOGY 2011; 78:796-809. [PMID: 21366573 DOI: 10.1111/j.1095-8649.2010.02893.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The age structures of populations of African annual Nothobranchius spp. were examined for the first time. Daily increments in sagittal otoliths of Nothobranchius furzeri, Nothobranchius kadleci, Nothobranchius orthonotus and Nothobranchius rachovii from southern and central Mozambique were used for age determination. Four hypotheses were tested: (1) timing of hatching is consistent with the calendar onset of the rainy season, (2) hatching is synchronized within a population in a pool, (3) there is a difference in hatching date between geographical regions differing in mean total annual precipitation and (4) sympatric Nothobranchius spp. hatch at the same time. The results show that daily increment analysis represents an applicable method for age determination in Nothobranchius spp. Despite a significant positive relationship between age and size of fishes, a pronounced variation in fish size at an age precluded the use of fish size as a valid age marker. Timing of hatching was not consistent with the calendar onset of the rainy season. Interpopulation variability was observed in the degree of hatching date synchronization within a population. Hatching dates were relatively uniform in some populations, while there was considerable variability in others. Differences in timing of hatching date were found in only 1 of 2 years within the three regions investigated (Chefu, lower Limpopo and Sofala regions), each of which differed in mean total annual rainfall. The hatching dates of sympatric Nothobranchius spp. were marginally different, but further testing on a larger sample is needed for conclusive results.
Collapse
Affiliation(s)
- M Polačik
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic.
| | | | | |
Collapse
|
50
|
Sköld HN, Asplund ME, Wood CA, Bishop JD. Telomerase deficiency in a colonial ascidian after prolonged asexual propagation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:276-83. [DOI: 10.1002/jez.b.21399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/15/2010] [Accepted: 12/07/2010] [Indexed: 12/27/2022]
|