1
|
How-Kit A, Sahbatou M, Hardy LM, Tessier NP, Schiavon V, Le Buanec H, Sebaoun JM, Blanché H, Zagury JF, Deleuze JF. The CEPH aging cohort and biobank: a valuable collection of biological samples from exceptionally long-lived French individuals and their offspring for longevity studies. GeroScience 2024; 46:2681-2695. [PMID: 38141157 PMCID: PMC10828222 DOI: 10.1007/s11357-023-01037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing aging of the human population is currently and for the coming decades a major public health issue in many countries, requiring the implementation of global public health policies promoting healthy and successful aging. Individuals are not equal in the face of aging and some can present exceptional healthspan and/or lifespan, which are notably influenced by both genetic and environmental factors. Research and studies on human aging, healthy aging and longevity should rely in particular on cohorts of long-lived individuals, also including biological samples allowing studies on the biology of aging and longevity. In this manuscript, we provide for the first time a complete description of the CEPH (Centre d'Etude du Polymophisme Humain) Aging cohort, an exceptional cohort recruited during the 90s to 2000s, including more than 1700 French long-lived individuals (≥ 90 years old) born between 1875 and 1916 as well as for some of them their siblings and offspring. Among the participants, 1265 were centenarians, including 255 semi-supercentenarians ([105-110] years old) and 25 supercentenarians (≥ 110 years old). The available anthropometric, epidemiologic and clinical data for the cohort participants are described and especially the collection of blood-derived biological samples associated with the cohort which includes DNA, cryopreserved cells and cell lines, plasma, and serum. This biological collection from the first cohort of centenarians in the world is an inestimable resource for ongoing and future molecular, cellular, and functional studies aimed at deciphering the mechanisms of human (successful) aging and longevity.
Collapse
Affiliation(s)
- Alexandre How-Kit
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France.
- Laboratory of Excellence GenMed, Paris, France.
| | - Mourad Sahbatou
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France
| | - Lise M Hardy
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France
- Laboratory of Excellence GenMed, Paris, France
| | - Nicolas P Tessier
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France
- Laboratory of Excellence GenMed, Paris, France
| | - Valérie Schiavon
- INSERM U976 - HIPI Unit, Saint-Louis Research Institute, University of Paris, Paris, France
| | - Hélène Le Buanec
- INSERM U976 - HIPI Unit, Saint-Louis Research Institute, University of Paris, Paris, France
| | - Jean-Marc Sebaoun
- Centre de Ressources Biologiques, Foundation Jean Dausset - CEPH, Paris, France
| | - Hélène Blanché
- Laboratory of Excellence GenMed, Paris, France
- Centre de Ressources Biologiques, Foundation Jean Dausset - CEPH, Paris, France
| | - Jean-François Zagury
- Équipe Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National Des Arts et Métiers, HESAM Université, Paris, France
| | - Jean-François Deleuze
- Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, France.
- Laboratory of Excellence GenMed, Paris, France.
- Centre de Ressources Biologiques, Foundation Jean Dausset - CEPH, Paris, France.
- Centre National de Recherche en Génomique Humaine, CEA, Institut François Jacob, Evry, France.
| |
Collapse
|
2
|
Broadwin M, Aghagoli G, Sabe SA, Harris DD, Wallace J, Lawson J, Ragayendran A, Fedulov AV, Sellke FW. Extracellular vesicle treatment partially reverts epigenetic alterations in chronically ischemic porcine myocardium. VESSEL PLUS 2023; 7:25. [PMID: 37982029 PMCID: PMC10656099 DOI: 10.20517/2574-1209.2023.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Introduction Research has shown epigenetic change via alternation of the methylation profile of human skeletal muscle DNA after Cardio-Pulmonary Bypass (CPB). In this study, we investigated the change in epigenome-wide DNA methylation profiles of porcine myocardium after ischemic insult in the setting of treatment with extracellular vesicle (EV) therapy in normal vs. high-fat diet (HFD) pigs. Methods Four groups of three pigs underwent ameroid constrictor placement to the left circumflex artery (LCx) and were assigned to the following groups: (1) normal diet saline injection; (2) normal diet EV injection; (3) HFD saline injection; and (4) HFD EV injection. DNA methylation was profiled via reduced-representation bisulfite sequencing (RRBS) and compared using a custom bioinformatic pipeline. Results After initial analysis, 441 loci had a nominal P value < 0.05 when examining the effect of ischemia vs. normal heart tissue on a normal diet in the absence of treatment. 426 loci at P value threshold < 0.05 were identified when comparing the ischemic vs. normal tissue from high-fat diet animals. When examining the effect of EV treatment in ischemic tissue in subjects on a normal diet, there were 574 loci with nominal P value < 0.05 with two loci Fructosamine 3 kinase related protein [(FN3KRP) (P < 0.001)] and SNTG1 (P = 0.03) significant after Bonferroni correction. When examining the effect of EV treatment in ischemic tissue in HFD, there were 511 loci with nominal P values < 0.05. After Bonferroni correction, two loci had P values less than 0.05, betacellulin [(BTC) (P = 0.008)] and [proprotein convertase subtilisin/kexin type 7 (PCSK7) (P = 0.01)]. Conclusions Alterations in DNA methylation were identified in pig myocardium after ischemic insult, change in diet, and treatment with EVs. Hundreds of differentially methylated loci were detected, but the magnitude of the effects was low. These changes represent significant alterations in DNA methylation and merit further investigation.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02909, USA
| | - Ghazal Aghagoli
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02909, USA
| | - Sharif A. Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02909, USA
| | - Dwight D. Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02909, USA
| | - Joselynn Wallace
- Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Jordan Lawson
- Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Ashok Ragayendran
- Center for Computational Biology of Human Disease, Brown University, Providence, RI 02912, USA
| | - Alexey V. Fedulov
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02909, USA
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02909, USA
| |
Collapse
|
3
|
Pan Y, Sun X, Mi X, Huang Z, Hsu Y, Hixson JE, Munzy D, Metcalf G, Franceschini N, Tin A, Köttgen A, Francis M, Brody JA, Kestenbaum B, Sitlani CM, Mychaleckyj JC, Kramer H, Lange LA, Guo X, Hwang SJ, Irvin MR, Smith JA, Yanek LR, Vaidya D, Chen YDI, Fornage M, Lloyd-Jones DM, Hou L, Mathias RA, Mitchell BD, Peyser PA, Kardia SLR, Arnett DK, Correa A, Raffield LM, Vasan RS, Cupple LA, Levy D, Kaplan RC, North KE, Rotter JI, Kooperberg C, Reiner AP, Psaty BM, Tracy RP, Gibbs RA, Morrison AC, Feldman H, Boerwinkle E, He J, Kelly TN. Whole-exome sequencing study identifies four novel gene loci associated with diabetic kidney disease. Hum Mol Genet 2023; 32:1048-1060. [PMID: 36444934 PMCID: PMC9990994 DOI: 10.1093/hmg/ddac290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.
Collapse
Affiliation(s)
- Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiao Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xuenan Mi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zhijie Huang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yenchih Hsu
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James E Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Donna Munzy
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nora Franceschini
- Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Adrienne Tin
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg 79106, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Michael Francis
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | - Jennifer A Brody
- Cardiovascular Health Research Unit, Departments of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bryan Kestenbaum
- University of Washington, Department of Medicine, Division of Nephrology, Kidney Research Institute, Seattle, WA 98195, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Departments of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Charlottesville, VA 22903, USA
| | - Holly Kramer
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL 60153, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Centre, Torrance, CA 90502, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL 35233, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Centre, Torrance, CA 90502, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donna K Arnett
- Department of Epidemiology, University of Kentucky, Lexington, KY 40506, USA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA 01702, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - L Adrienne Cupple
- Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Robert C Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kari E North
- Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Centre, Torrance, CA 90502, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Department of Health Services, University of Washington, Seattle, WA 98195, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Harold Feldman
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiang He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
4
|
Revelas M, Thalamuthu A, Zettergren A, Oldmeadow C, Najar J, Seidu NM, Armstrong NJ, Riveros C, Kwok JB, Schofield PR, Trollor JN, Waern M, Wright MJ, Zetterberg H, Ames D, Belnnow K, Brodaty H, Scott RJ, Skoog I, Attia JR, Sachdev PS, Mather KA. High polygenic risk score for exceptional longevity is associated with a healthy metabolic profile. GeroScience 2023; 45:399-413. [PMID: 35972662 PMCID: PMC9886704 DOI: 10.1007/s11357-022-00643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/08/2022] [Indexed: 02/03/2023] Open
Abstract
Healthy metabolic measures in humans are associated with longevity. Dysregulation leads to metabolic syndrome (MetS) and negative health outcomes. Recent exceptional longevity (EL) genome wide association studies have facilitated estimation of an individual's polygenic risk score (PRS) for EL. We tested the hypothesis that individuals with high ELPRS have a low prevalence of MetS. Participants were from five cohorts of middle-aged to older adults. The primary analyses were performed in the UK Biobank (UKBB) (n = 407,800, 40-69 years). Replication analyses were undertaken using three Australian studies: Hunter Community Study (n = 2122, 55-85 years), Older Australian Twins Study (n = 539, 65-90 years) and Sydney Memory and Ageing Study (n = 925, 70-90 years), as well as the Swedish Gothenburg H70 Birth Cohort Studies (n = 2273, 70-93 years). MetS was defined using established criteria. Regressions and meta-analyses were performed with the ELPRS and MetS and its components. Generally, MetS prevalence (22-30%) was higher in the older cohorts. In the UKBB, high EL polygenic risk was associated with lower MetS prevalence (OR = 0.94, p = 1.84 × 10-42) and its components (p < 2.30 × 10-8). Meta-analyses of the replication cohorts showed nominal associations with MetS (p = 0.028) and 3 MetS components (p < 0.05). This work suggests individuals with a high polygenic risk for EL have a healthy metabolic profile promoting longevity.
Collapse
Affiliation(s)
- Mary Revelas
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia.
- Neuroscience Research Australia, Sydney, NSW, Australia.
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | | | - Jenna Najar
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Nazib M Seidu
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia
- Mathematics and Statistics, Curtin University, Perth, Australia
| | - Carlos Riveros
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - John B Kwok
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, UNSW, Sydney, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, UNSW, Sydney, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Clinic, Gothenburg, Sweden
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Kew, VIC, Australia
- National Ageing Research Institute, Parkville Victoria, Australia
| | - Kaj Belnnow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia
- Dementia Centre for Research Collaboration, UNSW, Sydney, Australia
| | - Rodney J Scott
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Pathology North, John Hunter Hospital, Newcastle, NSW, Australia
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - John R Attia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Pathology North, John Hunter Hospital, Newcastle, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine & Health, UNSW, Sydney, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
5
|
Kunizheva SS, Volobaev VP, Plotnikova MY, Kupriyanova DA, Kuznetsova IL, Tyazhelova TV, Rogaev EI. Current Trends and Approaches to the Search for Genetic Determinants of Aging and Longevity. RUSS J GENET+ 2022; 58:1427-1443. [PMID: 36590179 PMCID: PMC9794410 DOI: 10.1134/s1022795422120067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/29/2022]
Abstract
Aging is a natural process of extinction of the body and the main aspect that determines the life expectancy for individuals who have survived to the post-reproductive period. The process of aging is accompanied by certain physiological, immune, and metabolic changes in the body, as well as the development of age-related diseases. The contribution of genetic factors to human life expectancy is estimated at about 25-30%. Despite the success in identifying genes and metabolic pathways that may be involved in the life extension process in model organisms, the key question remains to what extent these data can be extrapolated to humans, for example, because of the complexity of its biological and sociocultural systems, as well as possible species differences in life expectancy and causes of mortality. New molecular genetic methods have significantly expanded the possibilities for searching for genetic factors of human life expectancy and identifying metabolic pathways of aging, the interaction of genes and transcription factors, the regulation of gene expression at the level of transcription, and epigenetic modifications. The review presents the latest research and current strategies for studying the genetic basis of human aging and longevity: the study of individual candidate genes in genetic population studies, variations identified by the GWAS method, immunogenetic differences in aging, and genomic studies to identify factors of "healthy aging." Understanding the mechanisms of the interaction between factors affecting the life expectancy and the possibility of their regulation can become the basis for developing comprehensive measures to achieve healthy longevity. Supplementary Information The online version contains supplementary material available at 10.1134/S1022795422120067.
Collapse
Affiliation(s)
- S. S. Kunizheva
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. P. Volobaev
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - M. Yu. Plotnikova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
| | - D. A. Kupriyanova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - I. L. Kuznetsova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. V. Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E. I. Rogaev
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- University of Massachusetts Chan Medical School, 01545 Shrewsbury, MA United States
| |
Collapse
|
6
|
Torres GG, Dose J, Hasenbein TP, Nygaard M, Krause-Kyora B, Mengel-From J, Christensen K, Andersen-Ranberg K, Kolbe D, Lieb W, Laudes M, Görg S, Schreiber S, Franke A, Caliebe A, Kuhlenbäumer G, Nebel A. Long-Lived Individuals Show a Lower Burden of Variants Predisposing to Age-Related Diseases and a Higher Polygenic Longevity Score. Int J Mol Sci 2022; 23:10949. [PMID: 36142858 PMCID: PMC9504529 DOI: 10.3390/ijms231810949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Longevity is a complex phenotype influenced by both environmental and genetic factors. The genetic contribution is estimated at about 25%. Despite extensive research efforts, only a few longevity genes have been validated across populations. Long-lived individuals (LLI) reach extreme ages with a relative low prevalence of chronic disability and major age-related diseases (ARDs). We tested whether the protection from ARDs in LLI can partly be attributed to genetic factors by calculating polygenic risk scores (PRSs) for seven common late-life diseases (Alzheimer's disease (AD), atrial fibrillation (AF), coronary artery disease (CAD), colorectal cancer (CRC), ischemic stroke (ISS), Parkinson's disease (PD) and type 2 diabetes (T2D)). The examined sample comprised 1351 German LLI (≥94 years, including 643 centenarians) and 4680 German younger controls. For all ARD-PRSs tested, the LLI had significantly lower scores than the younger control individuals (areas under the curve (AUCs): ISS = 0.59, p = 2.84 × 10-35; AD = 0.59, p = 3.16 × 10-25; AF = 0.57, p = 1.07 × 10-16; CAD = 0.56, p = 1.88 × 10-12; CRC = 0.52, p = 5.85 × 10-3; PD = 0.52, p = 1.91 × 10-3; T2D = 0.51, p = 2.61 × 10-3). We combined the individual ARD-PRSs into a meta-PRS (AUC = 0.64, p = 6.45 × 10-15). We also generated two genome-wide polygenic scores for longevity, one with and one without the TOMM40/APOE/APOC1 gene region (AUC (incl. TOMM40/APOE/APOC1) = 0.56, p = 1.45 × 10-5, seven variants; AUC (excl. TOMM40/APOE/APOC1) = 0.55, p = 9.85 × 10-3, 10,361 variants). Furthermore, the inclusion of nine markers from the excluded region (not in LD with each other) plus the APOE haplotype into the model raised the AUC from 0.55 to 0.61. Thus, our results highlight the importance of TOMM40/APOE/APOC1 as a longevity hub.
Collapse
Affiliation(s)
- Guillermo G. Torres
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Tim P. Hasenbein
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- Institute of Pharmacology and Toxicology, Technical University Munich, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Marianne Nygaard
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Jonas Mengel-From
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Kaare Christensen
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000 Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Kløvervænget 47, 5000 Odense, Denmark
| | - Karen Andersen-Ranberg
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern, Denmark, J.B. Winsloews Vej 9B, 5000 Odense, Denmark
- Department of Geriatric Medicine, Odense University Hospital, Kløvervænget 23, 5000 Odense, Denmark
| | - Daniel Kolbe
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Niemannsweg 11, 24105 Kiel, Germany
| | - Matthias Laudes
- Clinic for Internal Medicine I, Division of Endocrinology, Diabetes and Clinical Nutrition, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| |
Collapse
|
7
|
Huang XY, Yang LJ, Hu X, Zhang XX, Gu X, Du LJ, He ZY, Gu XJ. Elevated levels of fructosamine are independently associated with SARS-CoV-2 reinfection: A 12-mo follow-up study. World J Diabetes 2022; 13:543-552. [PMID: 36051424 PMCID: PMC9329841 DOI: 10.4239/wjd.v13.i7.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/29/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The association between blood levels of fructosamine (FMN) and recurrent coronavirus disease 2019 (COVID-19) is currently unclear.
AIM To investigate a prospective relationship between blood levels of FMN and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection.
METHODS A total of 146 Chinese hospitalized patients infected with SARS-CoV-2 were consecutively collectively recruited and followed from January 2020 to May 2021. Diagnosis of COVID-19 and SARS-CoV-2 reinfection was based on the diagnostic criteria and treatment protocol in China. The levels of FMN were determined in blood and divided into tertiles based on their distribution in the cohort of COVID-19 patients. Multivariate-adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated for SARS-CoV-2 reinfection across the tertiles of FMN levels. A Cox regression model was used to generate the HR for SARS-CoV-2 reinfection in the participants in the top tertile of FMN levels compared with those at the bottom. Disease-free survival was used as the time variable, and relapse was used as the state variable, adjusted for age, gender, influencing factors such as diabetes mellitus, hypertension, and corticosteroid therapy, and clinical indexes such as acute liver failure, acute kidney failure, white blood cell (WBC) count, C-reactive protein, prognostic nutritional index (PNI), and blood lipids. Kaplan-Meier analysis with log-rank tests was used to compare the survival rate between patients with elevated FMN levels (FMN > 1.93 mmol/L, the top tertile) and those with nonelevated levels.
RESULTS Clinical data for the 146 patients with confirmed COVID-19 [age 49 (39-55) years; 49% males] were analyzed. Eleven patients had SARS-CoV-2 reinfection. The SARS-CoV-2 reinfection rate in patients with elevated FMN levels was significantly higher than that in patients with nonelevated FMN (17% vs 3%; P = 0.008) at the end of the 12-mo follow-up. After adjustments for gender, age, diabetes mellitus, hypertension, corticosteroid therapy, WBC count, PNI, indexes of liver and renal function, and blood lipids, patients with nonelevated FMN levels had a lower risk of SARS-CoV-2 reinfection than those with elevated FMN levels (HR = 6.249, 95%CI: 1.377-28.351; P = 0.018). Kaplan-Meier analysis showed that the cumulative survival rate of patients infected with SARS-CoV-2 was higher in patients with nonelevated FMN levels than in those with elevated FMN levels (97% vs 83%; log rank P = 0.002).
CONCLUSION Elevated levels of FMN are independently associated with SARS-CoV-2 reinfection, which highlights that patients with elevated FMN should be cautiously monitored after hospital discharge.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrine and Metabolic Disease, Yueqing People’s Hospital, Affiliated Hospital of Wenzhou Medical University, Wenzhou 325600, Zhejiang Province, China
| | - Li-Juan Yang
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiang Hu
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xing-Xing Zhang
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiao Gu
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Lin-Jia Du
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhi-Ying He
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xue-Jiang Gu
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
8
|
Gerdes Gyuricza I, Chick JM, Keele GR, Deighan AG, Munger SC, Korstanje R, Gygi SP, Churchill GA. Genome-wide transcript and protein analysis highlights the role of protein homeostasis in the aging mouse heart. Genome Res 2022; 32:838-852. [PMID: 35277432 PMCID: PMC9104701 DOI: 10.1101/gr.275672.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Investigation of the molecular mechanisms of aging in the human heart is challenging because of confounding factors, such as diet and medications, as well as limited access to tissues from healthy aging individuals. The laboratory mouse provides an ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have examined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyze transcriptome and proteome data from 185 genetically diverse male and female mice at ages 6, 12, and 18 mo to characterize molecular changes that occur in the aging heart. Transcripts and proteins reveal activation of pathways related to exocytosis and cellular transport with age, whereas processes involved in protein folding decrease with age. Additional changes are apparent only in the protein data including reduced fatty acid oxidation and increased autophagy. For proteins that form complexes, we see a decline in correlation between their component subunits with age, suggesting age-related loss of stoichiometry. The most affected complexes are themselves involved in protein homeostasis, which potentially contributes to a cycle of progressive breakdown in protein quality control with age. Our findings highlight the important role of post-transcriptional regulation in aging. In addition, we identify genetic loci that modulate age-related changes in protein homeostasis, suggesting that genetic variation can alter the molecular aging process.
Collapse
Affiliation(s)
| | - Joel M Chick
- Vividion Therapeutics, San Diego, California 92121, USA
| | | | | | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Steven P Gygi
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
9
|
Glycerol-3-phosphate phosphatase operates a glycerol shunt in pancreatic β-cells that controls insulin secretion and metabolic stress. Mol Metab 2022; 60:101471. [PMID: 35272070 PMCID: PMC8972011 DOI: 10.1016/j.molmet.2022.101471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The recently identified glycerol-3-phosphate (Gro3P) phosphatase (G3PP) in mammalian cells, encoded by the PGP gene, was shown to regulate glucose, lipid and energy metabolism by hydrolyzing Gro3P and to control glucose-stimulated insulin secretion (GSIS) in β-cells, in vitro. However, whether G3PP regulates β-cell function and insulin secretion in vivo is not known. Methods We now examined the role of G3PP in the control of insulin secretion in vivo, β-cell function and glucotoxicity in inducible β-cell specific G3PP-KO (BKO) mice. Inducible BKO mice were generated by crossing floxed-G3PP mice with Mip-Cre-ERT (MCre) mice. All the in vivo studies were done using BKO and control mice fed normal diet and the ex vivo studies were done using pancreatic islets from these mice. Results BKO mice, compared to MCre controls, showed increased body weight, adiposity, fed insulinemia, enhanced in vivo GSIS, reduced plasma triglycerides and mild glucose intolerance. Isolated BKO mouse islets incubated at high (16.7 mM), but not at low or intermediate glucose (3 and 8 mM), showed elevated GSIS, Gro3P content as well as increased levels of metabolites and signaling coupling factors known to reflect β-cell activation for insulin secretion. BKO islets also showed reduced glycerol release and increased O2 consumption and ATP production at high glucose only. BKO islets chronically exposed to elevated glucose levels showed increased apoptosis, reduced insulin content and decreased mRNA expression of β-cell differentiation markers, Pdx-1, MafA and Ins-2. Conclusions The results demonstrate that β-cells are endowed with a “glycerol shunt”, operated by G3PP that regulates β-cell metabolism, signaling and insulin secretion in vivo, primarily at elevated glucose concentrations. We propose that the glycerol shunt plays a role in preventing insulin hypersecretion and excess body weight gain and contributes to β-cell mass preservation in the face of hyperglycemia. G3PP operates a glycerol shunt in β-cells to remove excess glucose as glycerol. Inducible β-cell specific G3PP-KO (BKO) mice show hyperinsulinemia. BKO mice show enhanced body weight and glucose induced insulin secretion. BKO isolated islets show elevated insulin secretion only at high glucose. Chronic exposure of BKO isolated islets to high glucose enhances glucotoxicity.
Collapse
|
10
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
11
|
Javidnia S, Cranwell S, Mueller SH, Selman C, Tullet JM, Kuchenbaecker K, Alic N. Mendelian randomization analyses implicate biogenesis of translation machinery in human aging. Genome Res 2022; 32:258-265. [PMID: 35078808 PMCID: PMC8805714 DOI: 10.1101/gr.275636.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Reduced provision of protein translation machinery promotes healthy aging in a number of animal models. In humans, however, inborn impairments in translation machinery are a known cause of several developmental disorders, collectively termed ribosomopathies. Here, we use casual inference approaches in genetic epidemiology to investigate whether adult, tissue-specific biogenesis of translation machinery drives human aging. We assess naturally occurring variation in the expression of genes encoding subunits specific to the two RNA polymerases (Pols) that transcribe ribosomal and transfer RNAs, namely Pol I and III, and the variation in expression of ribosomal protein (RP) genes, using Mendelian randomization. We find each causally associated with human longevity (β = −0.15 ± 0.047, P = 9.6 × 10−4, q = 0.015; β = −0.13 ± 0.040, P = 1.4 × 10−3, q = 0.023; β = −0.048 ± 0.016, P = 3.5 × 10−3, q = 0.056, respectively), and this does not appear to be mediated by altered susceptibility to a single disease. We find that reduced expression of Pol III, RPs, or Pol I promotes longevity from different organs, namely visceral adipose, liver, and skeletal muscle, echoing the tissue specificity of ribosomopathies. Our study shows the utility of leveraging genetic variation in expression to elucidate how essential cellular processes impact human aging. The findings extend the evolutionary conservation of protein synthesis as a critical process that drives animal aging to include humans.
Collapse
|
12
|
Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans. Nat Commun 2022; 13:177. [PMID: 35017476 PMCID: PMC8752807 DOI: 10.1038/s41467-021-27803-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023] Open
Abstract
Metabolic stress due to nutrient excess and lipid accumulation is at the root of many age-associated disorders and the identification of therapeutic targets that mimic the beneficial effects of calorie restriction has clinical importance. Here, using C. elegans as a model organism, we study the roles of a recently discovered enzyme at the heart of metabolism in mammalian cells, glycerol-3-phosphate phosphatase (G3PP) (gene name Pgp) that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol. We identify three Pgp homologues in C. elegans (pgph) and demonstrate in vivo that their protein products have G3PP activity, essential for glycerol synthesis. We demonstrate that PGPH/G3PP regulates the adaptation to various stresses, in particular hyperosmolarity and glucotoxicity. Enhanced G3PP activity reduces fat accumulation, promotes healthy aging and acts as a calorie restriction mimetic at normal food intake without altering fertility. Thus, PGP/G3PP can be considered as a target for age-related metabolic disorders.
Collapse
|
13
|
Zhou H, Han X, Ding N, Dai X. Comment on "Health Consequences of an Elite Sporting Career: Long‑Term Detriment or Long‑Term Gain? A Meta‑Analysis of 165,000 Former Athletes". Sports Med 2021; 51:2231-2232. [PMID: 34191251 DOI: 10.1007/s40279-021-01506-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 01/17/2023]
Affiliation(s)
- Huixuan Zhou
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China.
| | - Xueyan Han
- Peking University First Hospital, Beijing, People's Republic of China
| | - Ningxin Ding
- School of Government, Victoria University of Wellington, Wellington, New Zealand
| | - Xiaotong Dai
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China
| |
Collapse
|