1
|
Yang Y, Peng Y, Li Y, Shi T, Xu N, Luan Y, Yin C. Sestrin2 balances mitophagy and apoptosis through the PINK1-Parkin pathway to attenuate severe acute pancreatitis. Cell Signal 2025; 126:111518. [PMID: 39577789 DOI: 10.1016/j.cellsig.2024.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Mitophagy serves as a mitochondrial quality control mechanism to maintain the homeostasis of mitochondria and the intracellular environment. Studies have shown that there is a close relationship between mitophagy and apoptosis. Sestrin2 (Sesn2) is a highly conserved class of stress-inducible proteins that play important roles in reducing oxidative stress damage, inflammation, and apoptosis. However, the potential mechanism of how Sesn2 regulates mitophagy and apoptosis in severe acute pancreatitis (SAP) remains unclear. In the study, RAW264.7 (macrophage cell Line) cellular inflammation model established by lipopolysaccharide (LPS) treatment as well as LPS and CAE-induced SAP mouse model (wild-type and Sen2 Knockout mouse) were used. Our study showed that LPS stimulation significantly increased the level of Sesn2 in RAW264.7 cells, Sesn2 increased mitochondrial membrane potential, decreased inflammation levels, mitochondrial superoxide levels and apoptosis, and also promoted monocyte macrophages toward the M2 anti-inflammatory phenotype, suggesting a protective effect of Sesn2 on mitochondria. Further, Sesn2 increased mitophagy and decreased apoptosis via modulating the PINK1-Parkin signaling. Meanwhile, knockout of Sesn2 exacerbated pancreatic, mitochondrial damage and inflammation in a mouse model of SAP. In addition, the protective effect of Sesn2 against SAP was shown to be associated with mitophagy conducted by the PINK1-Parkin pathway via inhibiting apoptosis. These findings reveal that Sesn2 in balancing mitochondrial autophagy and apoptosis by modulating the PINK1-Parkin signaling may present a new therapeutic strategy for the treatment of SAP.
Collapse
Affiliation(s)
- Yuxi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yiqiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Tingjuan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Ning Xu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| |
Collapse
|
2
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Bao F, Zhao X, You J, Liu Y, Xu Z, Wu Y, Wu Y, Xu Z, Yu L, Li J, Wei Y. Aerobic exercise alleviates skeletal muscle aging in male rats by inhibiting apoptosis via regulation of the Trx system. Exp Gerontol 2024; 194:112523. [PMID: 39025384 DOI: 10.1016/j.exger.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Skeletal muscle aging in rats is a reduction in skeletal muscle mass caused by a decrease in the number or volume of skeletal muscle myofibers. Apoptosis has been recognized to play a key role in accelerating the process of skeletal muscle aging in rats. The thioredoxin (Trx) system is a widely expressed oxidoreductase system that controls the cellular reduction/oxidation state and has both potent anti-free radical damage and important pro-growth and apoptosis inhibitory functions. Previous studies have shown that exercise delays skeletal muscle aging. However, it is unclear whether exercise attenuates skeletal muscle aging via the Trx system. Therefore, the present study used the Trx system as an entry point to explore the effect of aerobic exercise to improve skeletal muscle aging in rats and its possible mechanisms, and to provide a theoretical basis for exercise to delay skeletal muscle aging in rats. It was shown that aerobic exercise in senescent rats resulted in increased gastrocnemius index, decreased body weight, increased endurance, decreased skeletal muscle cell apoptosis, increased activity and protein expression of the Trx system, and decreased expression of p38 and ASK1. Based on these findings, we conclude that 10 weeks of aerobic exercise may enhance the anti-apoptotic effect of Trx by up-regulating Trx and Trx reductase (TR) protein expression, which in turn increases Trx activity in rat skeletal muscle, and ultimately alleviates apoptosis in senescent skeletal muscle cells.
Collapse
Affiliation(s)
- Fenmiao Bao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Jiaqi You
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zheng Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yuqing Wu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yufeng Wu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Liang Yu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junping Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yan Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
5
|
Yang Y, Yang X, Huang Y, Liu S, Niu Y, Fu L. Resistance exercise alleviates dexamethasone-induced muscle atrophy via Sestrin2/MSTN pathway in C57BL/6J mice. Exp Cell Res 2023; 432:113779. [PMID: 37709247 DOI: 10.1016/j.yexcr.2023.113779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
AIM It has long been recognized that resistance exercise can substantially increase skeletal muscle mass and strength, but whether it can protect against glucocorticoid-induced muscle atrophy and its potential mechanism is yet to be determined. This study aimed to investigate the protective effects of resistance exercise in dexamethasone-induced muscle atrophy and elucidate the possible function of exercise-induced protein Sestrin2 in this process. METHODS Eight-week-old male C57BL/6J mice carried out the incremental mouse ladder exercise for 11 weeks. Two weeks before the end of the intervention, mice were daily intraperitoneally injected with dexamethasone. Body composition, muscle mass, and exercise performance were examined to evaluate muscle atrophy. In vitro, C2C12 cells were used for RT-qPCR, Western Blot, and immunofluorescence experiments to elucidate the potential mechanism. RESULTS Our results showed that long-term resistance exercise is an effective intervention for dexamethasone-induced muscle atrophy. We also found that Sestrin2 plays a vital role in dexamethasone-induced muscle atrophy. In both animal (P = .0006) and cell models (P = .0266), dexamethasone intervention significantly reduced the protein expression of Sestrin2, which was increased (P = .0112) by resistance exercise. Inversely, overexpression of Sestrin2 improved (P < .0001) dexamethasone-induced myotube cell atrophy by reducing the activation of the ubiquitin-proteasome pathway via inhibiting Forkhead box O3 (FoxO3a) and myostatin (MSTN)/small mother against decapentaplegic (Smad) signaling pathways. CONCLUSION Taken together, our results indicated that Sestrin2 may serve as an effective molecule that mimics the protective effect of resistance exercise on dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuege Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Yating Huang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Tian X, Pan M, Zhou M, Tang Q, Chen M, Hong W, Zhao F, Liu K. Mitochondria Transplantation from Stem Cells for Mitigating Sarcopenia. Aging Dis 2023; 14:1700-1713. [PMID: 37196123 PMCID: PMC10529753 DOI: 10.14336/ad.2023.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcopenia is defined as the age-related loss of muscle mass and function that can lead to prolonged hospital stays and decreased independence. It is a significant health and financial burden for individuals, families, and society as a whole. The accumulation of damaged mitochondria in skeletal muscle contributes to the degeneration of muscles with age. Currently, the treatment of sarcopenia is limited to improving nutrition and physical activity. Studying effective methods to alleviate and treat sarcopenia to improve the quality of life and lifespan of older people is a growing area of interest in geriatric medicine. Therapies targeting mitochondria and restoring mitochondrial function are promising treatment strategies. This article provides an overview of stem cell transplantation for sarcopenia, including the mitochondrial delivery pathway and the protective role of stem cells. It also highlights recent advances in preclinical and clinical research on sarcopenia and presents a new treatment method involving stem cell-derived mitochondrial transplantation, outlining its advantages and challenges.
Collapse
Affiliation(s)
- Xiulin Tian
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengxiong Pan
- Department of Neurology, First People’s Hospital of Huzhou, Huzhou, Zhejiang, China.
| | - Mengting Zhou
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qiaomin Tang
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Miao Chen
- Department of Neurology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, China.
| | - Wenwu Hong
- Department of Neurology, Tiantai People’s Hospital of Zhejiang Province, Tiantai, Taizhou, Zhejiang, China.
| | - Fangling Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kaiming Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Kanzaki K, Wada M. Effects of Leucine Ingestion and Contraction on the Sestrin/GATOR2 Pathway and mTORC1 Activation in Rat Fast-Twitch muscle. J Nutr 2023; 153:2228-2236. [PMID: 37328110 DOI: 10.1016/j.tjnut.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Leucine activates the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in mammalian skeletal muscle. Recent studies have shown that Sestrin, a leucine sensor, might play a role in this process. However, it remains unknown whether Sestrin dissociates from GATOR2 in a dose- and time-dependent manner and whether an acute bout of muscle contraction augments this dissociation. OBJECTIVE This study aimed to examine the effects of leucine ingestion and muscle contraction on the interaction between Sestrin1/2 and GATOR2 and on mTORC1 activation. METHODS Male Wistar rats were randomly assigned to control (C), leucine 3 (L3), or leucine 10 (L10) groups. Intact gastrocnemius muscles were subjected to 30 repetitive unilateral contractions. The L3 and L10 groups were then orally administered 3 and 10 mmol/kg body weight of L-leucine 2 h after the end of the contractions, respectively. Blood and muscle samples were collected 30, 60, or 120 min after the administration. RESULTS The blood and muscle leucine concentrations increased in a dose-dependent manner. The ratio of phosphorylated ribosomal protein S6 kinase (S6K) to total S6K (which indicates mTORC1 signaling activation) was markedly increased by muscle contraction and increased in a dose-dependent manner only in rested muscle. Leucine ingestion but not muscle contraction increased Sestrin1 dissociation from GATOR2 and Sestrin2 association with GATOR2. A negative relationship was observed between the blood and muscle leucine concentrations and the Sestrin1 association with GATOR2. CONCLUSIONS The results suggest that Sestrin1, but not Sestrin2, regulates leucine-related mTORC1 activation via its dissociation from GATOR2 and that acute exercise-induced mTORC1 activation involves pathways other than the leucine-related Sestrin1/GATOR2 pathway.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan.
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Han X, Ashraf M, Tipparaju SM, Xuan W. Muscle-Brain crosstalk in cognitive impairment. Front Aging Neurosci 2023; 15:1221653. [PMID: 37577356 PMCID: PMC10413125 DOI: 10.3389/fnagi.2023.1221653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Sarcopenia is an age-related, involuntary loss of skeletal muscle mass and strength. Alzheimer's disease (AD) is the most common cause of dementia in elderly adults. To date, no effective cures for sarcopenia and AD are available. Physical and cognitive impairments are two major causes of disability in the elderly population, which severely decrease their quality of life and increase their economic burden. Clinically, sarcopenia is strongly associated with AD. However, the underlying factors for this association remain unknown. Mechanistic studies on muscle-brain crosstalk during cognitive impairment might shed light on new insights and novel therapeutic approaches for combating cognitive decline and AD. In this review, we summarize the latest studies emphasizing the association between sarcopenia and cognitive impairment. The underlying mechanisms involved in muscle-brain crosstalk and the potential implications of such crosstalk are discussed. Finally, future directions for drug development to improve age-related cognitive impairment and AD-related cognitive dysfunction are also explored.
Collapse
Affiliation(s)
| | | | | | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
9
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Picca A, Lozanoska-Ochser B, Calvani R, Coelho-Júnior HJ, Leewenburgh C, Marzetti E. Inflammatory, mitochondrial, and senescence-related markers: Underlying biological pathways of muscle aging and new therapeutic targets. Exp Gerontol 2023; 178:112204. [PMID: 37169101 DOI: 10.1016/j.exger.2023.112204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
The maintenance of functional health is pivotal for achieving independent life in older age. The aged muscle is characterized by ultrastructural changes, including loss of type I and type II myofibers and a greater proportion of cytochrome c oxidase deficient and succinate dehydrogenase positive fibers. Both intrinsic (e.g., altered proteostasis, DNA damage, and mitochondrial dysfunction) and extrinsic factors (e.g., denervation, altered metabolic regulation, declines in satellite cells, and inflammation) contribute to muscle aging. Being a hub for several cellular activities, mitochondria are key to myocyte viability and mitochondrial dysfunction has been implicated in age-associated physical decline. The maintenance of functional organelles via mitochondrial quality control (MQC) processes is, therefore, crucial to skeletal myofiber viability and organismal health. The autophagy-lysosome pathway has emerged as a critical step of MQC in muscle by disposing organelles and proteins via their tagging for autophagosome incorporation and delivery to the lysosome for clearance. This pathway was found to be altered in muscle of physically inactive older adults. A relationship between this pathway and muscle tissue composition of the lower extremities as well as physical performance was also identified. Therefore, integrating muscle structure and myocyte quality control measures in the evaluation of muscle health may be a promising strategy for devising interventions fostering muscle health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
11
|
Liu S, Li H, Zhang Y, Song H, Fu L. Exercise ameliorates chronic inflammatory response induced by high-fat diet via Sestrin2 in an Nrf2-dependent manner. Biochim Biophys Acta Mol Basis Dis 2023:166792. [PMID: 37336368 DOI: 10.1016/j.bbadis.2023.166792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Chronic inflammation is a major contributor to the development of metabolic disorders and is commonly seen in studies of diet-induced obesity in humans and rodents. Exercise has been shown to have anti-inflammatory properties, though the exact mechanisms are still not fully understood. Sestrins and Nrf2 are of interest to researchers as they are known to protect against inflammation and oxidative stress. In this study, we aim to explore the interconnection between Sestrin2 (SESN2) and Nrf2 and their roles in exercise benefits on chronic inflammation. Our data showed that SESN2 knockout aggravated the abnormalities of body weight, fat mass, and serum lipid that were induced by a high-fat diet (HFD), and a concomitant increase of TNF-α, IL-1β and IL-6 in both serum and skeletal muscle. Notably, exercise was found to reverse these changes, and SESN2 was found to be necessary for exercise to reduce the inflammatory response in skeletal muscles, though not in serum. Immunoprecipitation and bioinformatics prediction experiments further revealed that SESN2 directly binds to Nrf2, indicating a protein-protein interaction between the two. Furthermore, our data demonstrated that SESN2 protein is necessary for exercise-induced effects on Nrf2 pathway in HFD-fed mice, and Nrf2 protein is necessary to enable SESN2 to reduce the inflammation caused by palmitic acid (PA)+ oleic acid (OA) treatment in vitro. Our findings indicate that exercise mitigates chronic inflammation induced by HFD through SESN2 in an Nrf2-dependent manner. Our study reveals a novel molecular mechanism whereby the SESN2/Nrf2 pathway mediates the positive impact of exercise on chronic inflammation.
Collapse
Affiliation(s)
- Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Huige Li
- Department of Physical Education, Huanghuai University, Zhumadian 463000, China
| | - Yukun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Hualong Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
12
|
Hwang I, Kim M. Muscular Sestrins: Roles in Exercise Physiology and Stress Resistance. Biomolecules 2023; 13:722. [PMID: 37238592 PMCID: PMC10216764 DOI: 10.3390/biom13050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sestrins are a family of stress-inducible proteins that are critical for stress adaptation and the maintenance of metabolic homeostasis. High expression of Sestrins is observed in skeletal and cardiac muscle tissues, suggesting their significance in the physiological homeostasis of these organs. Furthermore, expression of Sestrins is dynamically controlled in the tissues, based on the level of physical activity and the presence or absence of stress insults. Genetic studies in model organisms have shown that muscular Sestrin expression is critical for metabolic homeostasis, exercise adaptation, stress resistance, and repair and may mediate the beneficial effects of some available therapeutics. The current minireview summarizes and discusses recent findings that shed light on the role of Sestrins in regulating muscle physiology and homeostasis.
Collapse
Affiliation(s)
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
14
|
Cai L, Shi L, Peng Z, Sun Y, Chen J. Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann Med 2023; 55:2240707. [PMID: 37643318 PMCID: PMC10732198 DOI: 10.1080/07853890.2023.2240707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Aim: To discuss the progress of extracellular matrix (ECM) characteristics, mitochondrial homeostasis, and their potential crosstalk in the pathogenesis of sarcopenia, a geriatric syndrome characterized by a generalized and progressive reduction in muscle mass, strength, and physical performance.Methods: This review focuses on the anatomy and physiology of skeletal muscle, alterations of ECM and mitochondria during ageing, and the role of the interplay between ECM and mitochondria in the pathogenesis of sarcopenia.Results: Emerging evidence points to a clear interplay between mitochondria and ECM in various tissues and organs. Under the ageing process, the ECM undergoes changes in composition and physical properties that may mediate mitochondrial changes via the systematic metabolism, ROS, SPARC pathway, and AMPK/PGC-1α signalling, which in turn exacerbate muscle degeneration. However, the precise effects of such crosstalk on the pathobiology of ageing, particularly in skeletal muscle, have not yet been fully understood.Conclusion: The changes in skeletal muscle ECM and mitochondria are partially responsible for the worsened muscle function during the ageing process. A deeper understanding of their alterations and interactions in sarcopenic patients can help prevent sarcopenia and improve its prognoses.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luze Shi
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Cheng KYK, Bao Z, Long Y, Liu C, Huang T, Cui C, Chow SKH, Wong RMY, Cheung WH. Sarcopenia and Ageing. Subcell Biochem 2023; 103:95-120. [PMID: 37120466 DOI: 10.1007/978-3-031-26576-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55-60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.
Collapse
Affiliation(s)
- Keith Yu-Kin Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengyuan Bao
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yufeng Long
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chaoran Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Alizadeh Pahlavani H, Laher I, Knechtle B, Zouhal H. Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol 2022; 13:1040381. [PMID: 36561214 PMCID: PMC9767441 DOI: 10.3389/fphys.2022.1040381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is a severe loss of muscle mass and functional decline during aging that can lead to reduced quality of life, limited patient independence, and increased risk of falls. The causes of sarcopenia include inactivity, oxidant production, reduction of antioxidant defense, disruption of mitochondrial activity, disruption of mitophagy, and change in mitochondrial biogenesis. There is evidence that mitochondrial dysfunction is an important cause of sarcopenia. Oxidative stress and reduction of antioxidant defenses in mitochondria form a vicious cycle that leads to the intensification of mitochondrial separation, suppression of mitochondrial fusion/fission, inhibition of electron transport chain, reduction of ATP production, an increase of mitochondrial DNA damage, and mitochondrial biogenesis disorder. On the other hand, exercise adds to the healthy mitochondrial network by increasing markers of mitochondrial fusion and fission, and transforms defective mitochondria into efficient mitochondria. Sarcopenia also leads to a decrease in mitochondrial dynamics, mitophagy markers, and mitochondrial network efficiency by increasing the level of ROS and apoptosis. In contrast, exercise increases mitochondrial biogenesis by activating genes affected by PGC1-ɑ (such as CaMK, AMPK, MAPKs) and altering cellular calcium, ATP-AMP ratio, and cellular stress. Activation of PGC1-ɑ also regulates transcription factors (such as TFAM, MEFs, and NRFs) and leads to the formation of new mitochondrial networks. Hence, moderate-intensity exercise can be used as a non-invasive treatment for sarcopenia by activating pathways that regulate the mitochondrial network in skeletal muscle.
Collapse
Affiliation(s)
- Hamed Alizadeh Pahlavani
- Department of Physical Education, Farhangian University, Tehran, Iran,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland,Medbase St Gallen Am Vadianplatz, St. Gallen, Switzerland,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| | - Hassane Zouhal
- Movement Sport, Health and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Charles Tillon, France,Institut International des Sciences Du Sport (2IS), Irodouer, France,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| |
Collapse
|
17
|
Liang D, Chen C, Huang S, Liu S, Fu L, Niu Y. Alterations of Lysine Acetylation Profile in Murine Skeletal Muscles Upon Exercise. Front Aging Neurosci 2022; 14:859313. [PMID: 35592697 PMCID: PMC9110802 DOI: 10.3389/fnagi.2022.859313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Regular exercise is a powerful tool that enhances skeletal muscle mass and strength. Lysine acetylation is an important post-translational modification (PTM) involved in a broad array of cellular functions. Skeletal muscle protein contains a considerable number of lysine-acetylated (Kac) sites, so we aimed to investigate the effects of exercise-induced lysine acetylation on skeletal muscle proteins. Methods We randomly divided 20 male C57BL/6 mice into exercise and control groups. After 6 weeks of treadmill exercise, a lysine acetylation proteomics analysis of the gastrocnemius muscles of mice was performed. Results A total of 2,254 lysine acetylation sites in 693 protein groups were identified, among which 1,916 sites in 528 proteins were quantified. The enrichment analysis suggested that protein acetylation could influence both structural and functional muscle protein properties. Moreover, molecular docking revealed that mimicking protein deacetylation primarily influenced the interaction between substrates and enzymes. Conclusion Exercise-induced lysine acetylation appears to be a crucial contributor to the alteration of skeletal muscle protein binding free energy, suggesting that its modulation is a potential approach for improving exercise performance.
Collapse
Affiliation(s)
- Dehuan Liang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Cheng Chen
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Song Huang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Wang L, Liu X, Liu S, Niu Y, Fu L. Sestrin2 ablation attenuates the exercise-induced browning of white adipose tissue in C57BL/6J mice. Acta Physiol (Oxf) 2022; 234:e13785. [PMID: 34995401 DOI: 10.1111/apha.13785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 01/11/2023]
Abstract
AIM With exercise, white adipose tissues (WAT) are readily convertible to a "brown-like" state, altering from lipid-storing to energy-catabolizing function, which counteracts obesity and increases insulin sensitivity. Sestrin2 (SESN2) is a stress-inducible protein that can regulate the cold-induced increase of uncoupling protein 1 (UCP1), which is paramount for the thermogenic capacity of brown-like WAT. This study aimed to elucidate the necessity of SESN2 in mediating exercise-induced browning of WAT. METHODS We used 8-week, male wild-type and SESN2 knockout C57BL/6J mice to explore the potential role of SESN2 in the exercise-induced WAT browning process. Over a 3-week intervention (sedentary versus treadmill exercise, normal chow versus 60% high-fat diet), we examined the exercise-induced alterations of the browning phenotype in different depots of white fat. In vitro, 3T3-L1 pre-adipocytes and primary adipocytes were used to determine the potential mechanism. RESULTS Our data revealed that SESN2 was required for the exercise-induced subcutaneous WAT (scWAT) browning. This may be mediated by higher fibronectin type III domain containing 5 (FNDC5) contents in scWAT locally, rather than skeletal muscle FNDC5 expression and circulating serum irisin levels. SESN2 ablation significantly impaired the exercise-improved glucose metabolism, where browning of scWAT may serve as an essential pathway. Moreover, SESN2 ablation significantly attenuated the exercise-promoted respiratory exchange ratio and indexes of energy metabolism (oxygen uptake and energy expenditure). CONCLUSION Taken together, our results provided evidence that SESN2 is a key integrating factor in driving the diverse metabolic benefits conferred by aerobic exercise.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
| | - Xinmeng Liu
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
| | - Sujuan Liu
- Department of Anatomy and Histology School of Basic Medical Science Tianjin Medical University Tianjin China
| | - Yanmei Niu
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
| | - Li Fu
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
- Department of Physiology and Pathophysiology School of Basic Medical Science Tianjin Medical University Tianjin China
| |
Collapse
|
19
|
Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu J, Shi J, Yang G. The functions and roles of sestrins in regulating human diseases. Cell Mol Biol Lett 2022; 27:2. [PMID: 34979914 PMCID: PMC8721191 DOI: 10.1186/s11658-021-00302-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.
Collapse
Affiliation(s)
- Yitong Chen
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ji'an Hu
- Department of Oral Pathology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Jiejun Shi
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
20
|
Wang T, Hu W, Niu Y, Liu S, Fu L. Exercise improves lipid metabolism disorders induced by high-fat diet in a SESN2/JNK-independent manner. Appl Physiol Nutr Metab 2021; 46:1322-1330. [PMID: 34038646 DOI: 10.1139/apnm-2021-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SESN2 and JNK are emerging powerful stress-inducible proteins in regulating lipid metabolism. The aim of this study was to determine the underlying mechanism of SESN2/JNK signaling in exercise to improve lipid disorder induced by high-fat diet (HFD). Our data showed that HFD and SESN2 knockout resulted in abnormalities including elevated body weight, increased fat mass, serum total cholesterol, lipid biosynthesis related proteins, and a concomitant increase of pJNK-Thr183/Tyr185. The above changes were reversed by exercise training. SESN2 silencing or JNK inhibition in palmitate-treated C2C12 further confirmed that SESN2 and JNK play a vital role in lipid biosynthesis. Rescue experiment further demonstrated that SESN2 reduced lipid biosynthesis through inhibition of JNK. SESN2/JNK signaling axis regulates lipid biosynthesis in both animal and cell models with abnormalities of lipid metabolism induced by HFD or palmitate treatment. This study provided evidence that exercise ameliorated lipid metabolic disorder induced by HFD feeding or by SESN2 knockout. SESN2 may improve lipid metabolism through inhibition JNK expression in skeletal muscle cells, providing a molecular mechanism that may represent an attractive target for the treatment of lipid disorder. Novelty: Exercise improved lipid disorder induced by HFD feeding and SESN2 knockout. SESN2 and JNK play a vital role in lipid biosynthesis in vivo and in vitro. SESN2 suppressed JNK to improve lipid metabolism in skeletal muscle cells.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Wenqing Hu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|