1
|
Curley M, Rai M, Chuang CL, Pagala V, Stephan A, Coleman Z, Robles-Murguia M, Wang YD, Peng J, Demontis F. Transgenic sensors reveal compartment-specific effects of aggregation-prone proteins on subcellular proteostasis during aging. CELL REPORTS METHODS 2024; 4:100875. [PMID: 39383859 DOI: 10.1016/j.crmeth.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging that underlies many age-related diseases. Different cell compartments experience distinctive challenges in maintaining protein quality control, but how aging regulates subcellular proteostasis remains underexplored. Here, by targeting the misfolding-prone FlucDM luciferase to the cytoplasm, mitochondria, and nucleus, we established transgenic sensors to examine subcellular proteostasis in Drosophila. Analysis of detergent-insoluble and -soluble levels of compartment-targeted FlucDM variants indicates that thermal stress, cold shock, and pro-longevity inter-organ signaling differentially affect subcellular proteostasis during aging. Moreover, aggregation-prone proteins that cause different neurodegenerative diseases induce a diverse range of outcomes on FlucDM insolubility, suggesting that subcellular proteostasis is impaired in a disease-specific manner. Further analyses with FlucDM and mass spectrometry indicate that pathogenic tauV337M produces an unexpectedly complex regulation of solubility for different FlucDM variants and protein subsets. Altogether, compartment-targeted FlucDM sensors pinpoint a diverse modulation of subcellular proteostasis by aging regulators.
Collapse
Affiliation(s)
- Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chia-Lung Chuang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zane Coleman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Zane F, MacMurray C, Guillermain C, Cansell C, Todd N, Rera M. Ageing as a two-phase process: theoretical framework. FRONTIERS IN AGING 2024; 5:1378351. [PMID: 38651031 PMCID: PMC11034523 DOI: 10.3389/fragi.2024.1378351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Human ageing, along with the ageing of conventional model organisms, is depicted as a continuous and progressive decline of biological capabilities accompanied by an exponentially increasing mortality risk. However, not all organisms experience ageing identically and our understanding of the phenomenon is coloured by human-centric views. Ageing is multifaceted and influences a diverse range of species in varying ways. Some undergo swift declines post-reproduction, while others exhibit insubstantial changes throughout their existence. This vast array renders defining universally applicable "ageing attributes" a daunting task. It is nonetheless essential to recognize that not all ageing features are organism-specific. These common attributes have paved the way for identifying "hallmarks of ageing," processes that are intertwined with age, amplified during accelerated ageing, and manipulations of which can potentially modulate or even reverse the ageing process. Yet, a glaring observation is that individuals within a single population age at varying rates. To address this, demographers have coined the term 'frailty'. Concurrently, scientific advancements have ushered in the era of molecular clocks. These innovations enable a distinction between an individual's chronological age (time since birth) and biological age (physiological status and mortality risk). In 2011, the "Smurf" phenotype was unveiled in Drosophila, delineating an age-linked escalation in intestinal permeability that presages imminent mortality. It not only acts as a predictor of natural death but identifies individuals exhibiting traits normally described as age-related. Subsequent studies have revealed the phenotype in organisms like nematodes, zebrafish, and mice, invariably acting as a death predictor. Collectively, these findings have steered our conception of ageing towards a framework where ageing is not linear and continuous but marked by two distinct, necessary phases, discernible in vivo, courtesy of the Smurf phenotype. This framework includes a mathematical enunciation of longevity trends based on three experimentally measurable parameters. It facilitates a fresh perspective on the evolution of ageing as a function. In this article, we aim to delineate and explore the foundational principles of this innovative framework, emphasising its potential to reshape our understanding of ageing, challenge its conventional definitions, and recalibrate our comprehension of its evolutionary trajectory.
Collapse
Affiliation(s)
- Flaminia Zane
- Université Paris Cité, INSERM UMR U1284, Paris, France
| | | | | | - Céline Cansell
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | - Nicolas Todd
- Eco-Anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Musée de l’Homme, Paris, France
| | - Michael Rera
- Université Paris Cité, Institut Jacques Monod, CNRS UMR 7592, Paris, France
| |
Collapse
|
3
|
Landis GN, Bell HS, Peng O, Bognar B, Tong A, Manea TD, Bao H, Han X, Tower J. Dhr96[1] mutation and maternal tudor[1] mutation increase life span and reduce the beneficial effects of mifepristone in mated female Drosophila. PLoS One 2023; 18:e0292820. [PMID: 38127988 PMCID: PMC10735022 DOI: 10.1371/journal.pone.0292820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 12/23/2023] Open
Abstract
Mating and receipt of male Sex Peptide hormone cause increased egg laying, increased midgut size and decreased life span in female Drosophila. Feeding mated females with the synthetic steroid mifepristone decreases egg production, reduces midgut size, and increases life span. Here, several gene mutations were assayed to investigate possible mechanisms for mifepristone action. Drosophila Dhr96 is a hormone receptor, and a key positive regulator of midgut lipid uptake and metabolism. Dhr96[1] null mutation increased female life span, and reduced the effects of mifepristone on life span, suggesting that Dhr96[1] mutation and mifepristone may act in part through the same mechanism. Consistent with this idea, lipidomics analysis revealed that mating increases whole-body levels of triglycerides and fatty-acids in triglycerides, and these changes are reversed by mifepristone. Maternal tudor[1] mutation results in females that lack the germ-line and produce no eggs. Maternal tudor[1] mutation increased mated female life span, and reduced but did not eliminate the effects of mating and mifepristone on life span. This indicates that decreased egg production may be related to the life span benefits of mifepristone, but is not essential. Mifepristone increases life span in w[1118] mutant mated females, but did not increase life span in w[1118] mutant virgin females. Mifepristone decreased egg production in w[1118] mutant virgin females, indicating that decreased egg production is not sufficient for mifepristone to increase life span. Mifepristone increases life span in virgin females of some, but not all, white[+] and mini-white[+] strains. Backcrossing of mini-white[+] transgenes into the w[1118] background was not sufficient to confer a life span response to mifepristone in virgin females. Taken together, the data support the hypothesis that mechanisms for mifepristone life span increase involve reduced lipid uptake and/or metabolism, and suggest that mifepristone may increase life span in mated females and virgin females through partly different mechanisms.
Collapse
Affiliation(s)
- Gary N. Landis
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hans S. Bell
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Oscar Peng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Brett Bognar
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andy Tong
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Tomás D. Manea
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - John Tower
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Tower J. Markers and mechanisms of death in Drosophila. FRONTIERS IN AGING 2023; 4:1292040. [PMID: 38149028 PMCID: PMC10749947 DOI: 10.3389/fragi.2023.1292040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
Parameters correlated with age and mortality in Drosophila melanogaster include decreased negative geotaxis and centrophobism behaviors, decreased climbing and walking speed, and darkened pigments in oenocytes and eye. Cessation of egg laying predicts death within approximately 5 days. Endogenous green fluorescence in eye and body increases hours prior to death. Many flies exhibit erratic movement hours before death, often leading to falls. Loss of intestinal barrier integrity (IBI) is assayed by feeding blue dye ("Smurf" phenotype), and Smurf flies typically die within 0-48 h. Some studies report most flies exhibit Smurf, whereas multiple groups report most flies die without exhibiting Smurf. Transgenic reporters containing heat shock gene promoters and innate immune response gene promoters progressively increase expression with age, and partly predict remaining life span. Innate immune reporters increase with age in every fly, prior to any Smurf phenotype, in presence or absence of antibiotics. Many flies die on their side or supine (on their back) position. The data suggest three mechanisms for death of Drosophila. One is loss of IBI, as revealed by Smurf assay. The second is nervous system malfunction, leading to erratic behavior, locomotor malfunction, and falls. The aged fly is often unable to right itself after a fall to a side-ways or supine position, leading to inability to access the food and subsequent dehydration/starvation. Finally, some flies die upright without Smurf phenotype, suggesting a possible third mechanism. The frequency of these mechanisms varies between strains and culture conditions, which may affect efficacy of life span interventions.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Zane F, Bouzid H, Sosa Marmol S, Brazane M, Besse S, Molina JL, Cansell C, Aprahamian F, Durand S, Ayache J, Antoniewski C, Todd N, Carré C, Rera M. Smurfness-based two-phase model of ageing helps deconvolve the ageing transcriptional signature. Aging Cell 2023; 22:e13946. [PMID: 37822253 PMCID: PMC10652310 DOI: 10.1111/acel.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ageing is characterised at the molecular level by six transcriptional 'hallmarks of ageing', that are commonly described as progressively affected as time passes. By contrast, the 'Smurf' assay separates high-and-constant-mortality risk individuals from healthy, zero-mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age. We show that transcriptional heterogeneity increases with chronological age in non-Smurf individuals preceding the other five hallmarks of ageing that are specifically associated with the Smurf state. Using this approach, we also devise targeted pro-longevity genetic interventions delaying entry in the Smurf state. We anticipate that increased attention to the evolutionary conserved Smurf phenotype will bring about significant advances in our understanding of the mechanisms of ageing.
Collapse
Affiliation(s)
- Flaminia Zane
- Université Paris Cité, INSERM UMR U1284ParisFrance
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | - Hayet Bouzid
- Université Paris Cité, INSERM UMR U1284ParisFrance
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | | | - Mira Brazane
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | | | | | - Céline Cansell
- Université Paris‐Saclay, AgroParisTech, INRAE, UMR PNCAPalaiseauFrance
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, UMS AMMICaInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le CancerUniversité de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de FranceParisFrance
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, UMS AMMICaInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le CancerUniversité de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de FranceParisFrance
| | - Jessica Ayache
- Institut Jacques Monod, CNRS UMR 7592, Université Paris CitéParisFrance
| | | | - Nicolas Todd
- Eco‐Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRSUniversité de Paris, Musée de l'HommeParisFrance
| | - Clément Carré
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | - Michael Rera
- Université Paris Cité, INSERM UMR U1284ParisFrance
| |
Collapse
|
6
|
Sirocko KT, Angstmann H, Papenmeier S, Wagner C, Spohn M, Indenbirken D, Ehrhardt B, Kovacevic D, Hammer B, Svanes C, Rabe KF, Roeder T, Uliczka K, Krauss-Etschmann S. Early-life exposure to tobacco smoke alters airway signaling pathways and later mortality in D. melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119696. [PMID: 35780997 DOI: 10.1016/j.envpol.2022.119696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Early life environmental influences such as exposure to cigarette smoke (CS) can disturb molecular processes of lung development and thereby increase the risk for later development of chronic respiratory diseases. Among the latter, asthma and chronic obstructive pulmonary disease (COPD) are the most common. The airway epithelium plays a key role in their disease pathophysiology but how CS exposure in early life influences airway developmental pathways and epithelial stress responses or survival is poorly understood. Using Drosophila melanogaster larvae as a model for early life, we demonstrate that CS enters the entire larval airway system, where it activates cyp18a1 which is homologues to human CYP1A1 to metabolize CS-derived polycyclic aromatic hydrocarbons and further induces heat shock protein 70. RNASeq studies of isolated airways showed that CS dysregulates pathways involved in oxidative stress response, innate immune response, xenobiotic and glutathione metabolic processes as well as developmental processes (BMP, FGF signaling) in both sexes, while other pathways were exclusive to females or males. Glutathione S-transferase genes were further validated by qPCR showing upregulation of gstD4, gstD5 and gstD8 in respiratory tracts of females, while gstD8 was downregulated and gstD5 unchanged in males. ROS levels were increased in airways after CS. Exposure to CS further resulted in higher larval mortality, lower larval-pupal transition, and hatching rates in males only as compared to air-exposed controls. Taken together, early life CS induces airway epithelial stress responses and dysregulates pathways involved in the fly's branching morphogenesis as well as in mammalian lung development. CS further affected fitness and development in a highly sex-specific manner.
Collapse
Affiliation(s)
- Karolina-Theresa Sirocko
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | | | - Stephanie Papenmeier
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Christina Wagner
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Draginja Kovacevic
- DZL Laboratory - Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Barbara Hammer
- DZL Laboratory - Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Klaus F Rabe
- LungenClinic, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany; Department of Medicine, Christian Albrechts University, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Germany
| | - Karin Uliczka
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Susanne Krauss-Etschmann
- Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Division of Early Origins of Chronic Lung Disease.
| |
Collapse
|
7
|
Strilbytska OM, Semaniuk UV, Burdyliuk NI, Lushchak OV. Protein content in the parental diet affects cold tolerance and antioxidant system state in the offspring Drosophila. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Shaposhnikov MV, Zakluta AS, Zemskaya NV, Guvatova ZG, Shilova VY, Yakovleva DV, Gorbunova AA, Koval LA, Ulyasheva NS, Evgen'ev MB, Zatsepina OG, Moskalev AA. Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mech Ageing Dev 2022; 203:111656. [PMID: 35247392 DOI: 10.1016/j.mad.2022.111656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is an important biological mediator, playing an essential role in many physiological and pathological processes. It is produced by transsulfuration - an evolutionarily highly conserved pathway for the metabolism of sulfur-containing amino acids methionine and cysteine. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in cysteine metabolism and H2S production. Here we investigated the fitness components (longevity, stress resistance, viability of preimaginal stages, and reproductive function parameters) in D. melanogaster lines containing deletions of the CBS and CSE genes. Surprisingly, in most tests, CSE deletion improved, and CBS worsened the fitness. Lines with deletion of both CBS and CSE demonstrated better stress resistance and longevity than lines with single CBS deletion. At the same time, deletion of both CBS and CSE genes causes more serious disturbances of reproductive function parameters than single CBS deletion. Thus, a complex interaction of H2S-producing pathways and cellular stress response in determining the lifespan and fitness components of the whole organism was revealed.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Alexey S Zakluta
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Zulfiya G Guvatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Victoria Y Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Daria V Yakovleva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Liubov A Koval
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Olga G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation; Center for Precision Genome Editing and Genetic Technologies for Biomedicine Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
9
|
S. Bell H, Tower J. In vivo assay and modelling of protein and mitochondrial turnover during aging. Fly (Austin) 2021; 15:60-72. [PMID: 34002678 PMCID: PMC8143256 DOI: 10.1080/19336934.2021.1911286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
To maintain homoeostasis, cells must degrade damaged or misfolded proteins and synthesize functional replacements. Maintaining a balance between these processes, known as protein turnover, is necessary for stress response and cellular adaptation to a changing environment. Damaged mitochondria must also be removed and replaced. Changes in protein and mitochondrial turnover are associated with aging and neurodegenerative disease, making it important to understand how these processes occur and are regulated in cells. To achieve this, reliable assays of turnover must be developed. Several methods exist, including pulse-labelling with radioactive or stable isotopes and strategies making use of fluorescent proteins, each with their own advantages and limitations. Both cell culture and live animals have been used for these studies, in systems ranging from yeast to mammals. In vivo assays are especially useful for connecting turnover to aging and disease. With its short life cycle, suitability for fluorescent imaging, and availability of genetic tools, Drosophila melanogaster is particularly well suited for this kind of analysis.
Collapse
Affiliation(s)
- Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Gomez CR. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 2021; 43:2515-2532. [PMID: 34241808 PMCID: PMC8599533 DOI: 10.1007/s11357-021-00394-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Advanced age is associated with a decline in response to stress. This contributes to the establishment of chronic inflammation, one of the hallmarks of aging and age-related disease. Heat shock proteins (HSP) are determinants of life span, and their progressive malfunction leads to age-related pathology. To discuss the function of HSP on age-related chronic inflammation and illness. An updated review of literature and discussion of relevant work on the topic of HSP in normal aging and chronic inflammatory pathology was performed. HSP contribute to inflamm-aging. They also play a key role in age-associated pathology linked to chronic inflammation such as autoimmune disorders, neurological disease, cardiovascular disorder, and cancer. HSP may be targeted for control of their effects related to age and chronic inflammation. Research on HSP functions in age-linked chronic inflammatory disorders provides an opportunity to improve health span and delay age-related chronic disorders.
Collapse
Affiliation(s)
- Christian R Gomez
- Department of Pathology, University of Mississippi Medical Cent, er, 2500 N. State St, Jackson, MS, 39216, USA.
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Preclinical Research Unit, Center for Clinical and Translational Science, University of Mississippi, 2500 N. State St, Jackson, MS, 39216, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA.
| |
Collapse
|
11
|
Mendenhall AR, Martin GM, Kaeberlein M, Anderson RM. Cell-to-cell variation in gene expression and the aging process. GeroScience 2021; 43:181-196. [PMID: 33595768 PMCID: PMC8050212 DOI: 10.1007/s11357-021-00339-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
There is tremendous variation in biological traits, and much of it is not accounted for by variation in DNA sequence, including human diseases and lifespan. Emerging evidence points to differences in the execution of the genetic program as a key source of variation, be it stochastic variation or programmed variation. Here we discuss variation in gene expression as an intrinsic property and how it could contribute to variation in traits, including the rate of aging. The review is divided into sections describing the historical context and evidence to date for nongenetic variation, the different approaches that may be used to detect nongenetic variation, and recent findings showing that the amount of variation in gene expression can be both genetically programmed and epigenetically controlled. Finally, we present evidence that changes in cell-to-cell variation in gene expression emerge as part of the aging process and may be linked to disease vulnerability as a function of age. These emerging concepts are likely to be important across the spectrum of biomedical research and may well underpin what we understand as biological aging.
Collapse
Affiliation(s)
- Alexander R Mendenhall
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA.
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA.
| | - George M Martin
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin and Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
12
|
Giannios P, Casanova J. Systemic and local effect of the Drosophila headcase gene and its role in stress protection of Adult Progenitor Cells. PLoS Genet 2021; 17:e1009362. [PMID: 33556132 PMCID: PMC7895379 DOI: 10.1371/journal.pgen.1009362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
During the development of a holometabolous insect such as Drosophila, specific group of cells in the larva survive during metamorphosis, unlike the other larval cells, and finally give rise to the differentiated adult structures. These cells, also known as Adult Progenitor Cells (APCs), maintain their multipotent capacity, differentially respond to hormonal and nutritional signals, survive the intrinsic and environmental stress and respond to the final differentiation cues. However, not much is known about the specific molecular mechanisms that account for their unique characteristics. Here we show that a specific Drosophila APC gene, headcase (hdc), has a dual role in the normal development of these cells. It acts at a systemic level by controlling the hormone ecdysone in the prothoracic gland and at the same time it acts locally as a tissue growth suppressor in the APC clusters, where it modulates the activity of the TOR pathway and promotes their survival by contributing in the regulation of the Unfolded Protein Response. We also show that hdc provides protection against stress in the APCs and that its ectopic expression in cells that do not usually express hdc can confer these cells with an additional stress protection. Hdc is the founding member of a group of homolog proteins identified from C. elegans to humans, where has been found associated with cancer progression. The finding that the Drosophila hdc is specifically expressed in progenitor cells and that it provides protection against stress opens up a new hypothesis to be explored regarding the role of the human Heca and its contribution to carcinogenesis.
Collapse
Affiliation(s)
- Panagiotis Giannios
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Parkhitko AA, Ramesh D, Wang L, Leshchiner D, Filine E, Binari R, Olsen AL, Asara JM, Cracan V, Rabinowitz JD, Brockmann A, Perrimon N. Downregulation of the tyrosine degradation pathway extends Drosophila lifespan. eLife 2020; 9:58053. [PMID: 33319750 PMCID: PMC7744100 DOI: 10.7554/elife.58053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/28/2020] [Indexed: 12/31/2022] Open
Abstract
Aging is characterized by extensive metabolic reprogramming. To identify metabolic pathways associated with aging, we analyzed age-dependent changes in the metabolomes of long-lived Drosophila melanogaster. Among the metabolites that changed, levels of tyrosine were increased with age in long-lived flies. We demonstrate that the levels of enzymes in the tyrosine degradation pathway increase with age in wild-type flies. Whole-body and neuronal-specific downregulation of enzymes in the tyrosine degradation pathway significantly extends Drosophila lifespan, causes alterations of metabolites associated with increased lifespan, and upregulates the levels of tyrosine-derived neuromediators. Moreover, feeding wild-type flies with tyrosine increased their lifespan. Mechanistically, we show that suppression of ETC complex I drives the upregulation of enzymes in the tyrosine degradation pathway, an effect that can be rescued by tigecycline, an FDA-approved drug that specifically suppresses mitochondrial translation. In addition, tyrosine supplementation partially rescued lifespan of flies with ETC complex I suppression. Altogether, our study highlights the tyrosine degradation pathway as a regulator of longevity.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, United States
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lin Wang
- Department of Chemistry, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Dmitry Leshchiner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, United States
| | - Valentin Cracan
- Scintillon Institute, San Diego, United States.,Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
14
|
Russell JC, Burnaevskiy N, Ma B, Mailig MA, Faust F, Crane M, Kaeberlein M, Mendenhall A. Electrophysiological Measures of Aging Pharynx Function in C. elegans Reveal Enhanced Organ Functionality in Older, Long-lived Mutants. J Gerontol A Biol Sci Med Sci 2020; 74:1173-1179. [PMID: 29165668 DOI: 10.1093/gerona/glx230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/16/2017] [Indexed: 02/03/2023] Open
Abstract
The function of the pharynx, an organ in the model system Caenorhabditis elegans, has been correlated with life span and motility (another measure of health) since 1980. In this study, in order to further understand the relationship between organ function and life span, we measured the age-related decline of the pharynx using an electrophysiological approach. We measured and analyzed electropharyngeograms (EPG) of wild type animals, short-lived hsf-1 mutants, and long-lived animals with genetically decreased insulin signaling or increased heat shock pathway signaling; we recorded a total of 2,478 EPGs from 1,374 individuals. As expected, the long-lived daf-2(e1370) and hsf-1OE(uthIs235) animals maintained pharynx function relatively closer to the youthful state during aging, whereas the hsf-1(sy441) and wild type animals' pharynx function deviated significantly further from the youthful state at advanced age. Measures of the amount of variation in organ function can act as biomarkers of youthful physiology as well. Intriguingly, the long-lived animals had greater variation in the duration of pharynx contraction at older ages.
Collapse
Affiliation(s)
| | | | - Bridget Ma
- Department of Pathology, University of Washington, Seattle
| | | | - Franklin Faust
- Department of Pathology, University of Washington, Seattle
| | - Matt Crane
- Department of Pathology, University of Washington, Seattle
| | | | | |
Collapse
|
15
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
16
|
Abstract
The laboratory fruit fly Drosophila melanogaster is one of the leading models for the study of aging. Whereas several behavioral and physiological biomarkers of aging have been identified for Drosophila, lifespan remains the most robust measure of aging rate. Aging and lifespan can be modulated by genetic alterations, as well as by drugs and dietary components, to reveal basic and conserved mechanisms of aging. Here methods are presented for Drosophila lifespan assay, including media preparation, supplementation of media with various drugs, culturing of the flies, passaging flies and recording deaths, and the analysis of lifespan data.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devon Doherty
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Burnaevskiy N, Sands B, Yun S, Tedesco PM, Johnson TE, Kaeberlein M, Brent R, Mendenhall A. Chaperone biomarkers of lifespan and penetrance track the dosages of many other proteins. Nat Commun 2019; 10:5725. [PMID: 31844058 PMCID: PMC6914778 DOI: 10.1038/s41467-019-13664-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/11/2019] [Indexed: 12/27/2022] Open
Abstract
Many traits vary among isogenic individuals in homogeneous environments. In microbes, plants and animals, variation in the protein chaperone system affects many such traits. In the animal model C. elegans, the expression level of hsp-16.2 chaperone biomarkers correlates with or predicts the penetrance of mutations and lifespan after heat shock. But the physiological mechanisms causing cells to express different amounts of the biomarker were unknown. Here, we used an in vivo microscopy approach to dissect different contributions to cell-to-cell variation in hsp-16.2 expression in the intestines of young adult animals, which generate the most lifespan predicting signal. While we detected both cell autonomous intrinsic noise and signaling noise, we found both contributions were relatively unimportant. The major contributor to cell-to-cell variation in biomarker expression was general differences in protein dosage. The hsp-16.2 biomarker reveals states of high or low effective dosage for many genes.
Collapse
Affiliation(s)
| | - Bryan Sands
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Soo Yun
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Patricia M Tedesco
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Thomas E Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | |
Collapse
|
18
|
Expression of Heat Shock Protein 70 Is Insufficient To Extend Drosophila melanogaster Longevity. G3-GENES GENOMES GENETICS 2019; 9:4197-4207. [PMID: 31624139 PMCID: PMC6893204 DOI: 10.1534/g3.119.400782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been known for over 20 years that Drosophila melanogaster flies with twelve additional copies of the hsp70 gene encoding the 70 kD heat shock protein lives longer after a non-lethal heat treatment. Since the heat treatment also induces the expression of additional heat shock proteins, the biological effect can be due either to HSP70 acting alone or in combination. This study used the UAS/GAL4 system to determine whether hsp70 is sufficient to affect the longevity and the resistance to thermal, oxidative or desiccation stresses of the whole organism. We observed that HSP70 expression in the nervous system or muscles has no effect on longevity or stress resistance but ubiquitous expression reduces the life span of males. We also observed that the down-regulation of hsp70 using RNAi did not affect longevity.
Collapse
|
19
|
Tower J, Agrawal S, Alagappan MP, Bell HS, Demeter M, Havanoor N, Hegde VS, Jia Y, Kothawade S, Lin X, Nadig C, Rajashekharappa NS, Rao D, Rao SS, Sancheti P, Saria A, Shantharamu NH, Sharma V, Tadepalli K, Varma A. Behavioral and molecular markers of death in Drosophila melanogaster. Exp Gerontol 2019; 126:110707. [PMID: 31445108 DOI: 10.1016/j.exger.2019.110707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
Abstract
Fly movement was tracked through 3-dimensional (3D) space as the fly died, using either reflected visible light, reflected infrared (IR) light, or fly GFP fluorescence. Behaviors measured included centrophobism, negative geotaxis, velocity, and total activity. In addition, frequency of directional heading changes (FDHC) was calculated as a measure of erratic movement. Nine middle-aged flies were tracked as they died during normal aging, and fifteen young flies were tracked as they died from dehydration/starvation stress. Episodes of increased FDHC were observed 0-8 h prior to death for the majority of the flies. FDHC was also increased with age in flies with neuronal expression of a human Abeta42 protein fragment associated with Alzheimer's disease. Finally, green autofluorescence appeared in the eye and body immediately prior to and coincident with death, and fluorescence of GFP targeted to the retina increased immediately prior to and coincident with death. The results suggest the potential utility of FDHC, green autofluorescence, and retinal GFP as markers of neuronal malfunction and imminent death.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America.
| | - Siddharth Agrawal
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Muthu Palaniappan Alagappan
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Hans S Bell
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Marton Demeter
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Nitin Havanoor
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Vinaykumar S Hegde
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Yiding Jia
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Suraj Kothawade
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Xinyi Lin
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Chaitanya Nadig
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Naveen S Rajashekharappa
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Divyashree Rao
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Sanjay Subba Rao
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Prathamesh Sancheti
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Anuj Saria
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Nagarabhi H Shantharamu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Vatsal Sharma
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Karthik Tadepalli
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| | - Anuj Varma
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States of America
| |
Collapse
|
20
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
21
|
Lashmanova E, Zemskaya N, Proshkina E, Kudryavtseva A, Volosnikova M, Marusich E, Leonov S, Zhavoronkov A, Moskalev A. The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans. Front Pharmacol 2017; 8:884. [PMID: 29375370 PMCID: PMC5770640 DOI: 10.3389/fphar.2017.00884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023] Open
Abstract
Flavonoids is an intensively studied group of natural compounds with antioxidant, antineoplastic, antihyperglycemic, cardioprotective, and neuroprotective properties. The present study intends to investigate the geroprotective action of three selected flavonoids (naringin, luteolin, chrysin) in two model organisms, Caenorhabditis elegans and Drosophila melanogaster. Luteolin and chrysin were shown to improve lifespan parameters when administered to both model organisms. The observed positive effects of these flavonoids in D. melanogaster were limited to females and were not associated with reduced fecundity or locomotor impairment. The life-extending effects of flavonoids were observed in N2 wild-type worms but absent in aak-2(gt33) mutants implying that these effects can be associated with AMP-activated protein kinase activity. Naringin improved lifespan parameters of C. elegans, but had no effect on D. melanogaster females; in some cases, naringin was found to decrease the lifespan of males. Compared to chrysin and luteolin, however, naringin more effectively activates Nrf2 target genes (particularly, GstD1) under oxidative stress. Then we compared molecular mechanisms of studied compounds and a well-known geroprotector rapamycin, using software tool GeroScope. There are no transcriptomic data on luteolin or chrysin provided by LINCS Project database. The bioinformatics comparison of transcriptomics data for A549 and MCF7 human cell lines treated with rapamycin or naringin revealed that these compounds share just a few common signaling pathways and quite distinct in their geroprotective action. Thus, based on C. elegans effects of naringin, luteolin, chrysin on lifespan we have revealed new potential geroprotectors.
Collapse
Affiliation(s)
- Ekaterina Lashmanova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Ekaterina Proshkina
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Volosnikova
- Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Elena Marusich
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alex Zhavoronkov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Alexey Moskalev
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Charmpilas N, Kyriakakis E, Tavernarakis N. Small heat shock proteins in ageing and age-related diseases. Cell Stress Chaperones 2017; 22:481-492. [PMID: 28074336 PMCID: PMC5465026 DOI: 10.1007/s12192-016-0761-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Small heat shock proteins (sHSPs) are gatekeepers of cellular homeostasis across species, preserving proteome integrity under stressful conditions. Nonetheless, recent evidence suggests that sHSPs are more than molecular chaperones with merely auxiliary role. In contrast, sHSPs have emerged as central lifespan determinants, and their malfunction has been associated with the manifestation of neurological disorders, cardiovascular disease and cancer malignancies. In this review, we focus on the role of sHSPs in ageing and age-associated diseases and highlight the most prominent paradigms, where impairment of sHSP function has been implicated in human pathology.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013, Heraklion, Crete, Greece
| | - Emmanouil Kyriakakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Department of Biomedicine, Laboratory for Signal Transduction, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
23
|
Xu C, Luo J, He L, Montell C, Perrimon N. Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca 2+ signaling in the Drosophila midgut. eLife 2017; 6. [PMID: 28561738 PMCID: PMC5451214 DOI: 10.7554/elife.22441] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Precise regulation of stem cell activity is crucial for tissue homeostasis and necessary to prevent overproliferation. In the Drosophila adult gut, high levels of reactive oxygen species (ROS) has been detected with different types of tissue damage, and oxidative stress has been shown to be both necessary and sufficient to trigger intestinal stem cell (ISC) proliferation. However, the connection between oxidative stress and mitogenic signals remains obscure. In a screen for genes required for ISC proliferation in response to oxidative stress, we identified two regulators of cytosolic Ca2+ levels, transient receptor potential A1 (TRPA1) and ryanodine receptor (RyR). Characterization of TRPA1 and RyR demonstrates that Ca2+ signaling is required for oxidative stress-induced activation of the Ras/MAPK pathway, which in turns drives ISC proliferation. Our findings provide a link between redox regulation and Ca2+ signaling and reveal a novel mechanism by which ISCs detect stress signals.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Junjie Luo
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Li He
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
24
|
Kohyama-Koganeya A, Kurosawa M, Hirabayashi Y. Loss of BOSS Causes Shortened Lifespan with Mitochondrial Dysfunction in Drosophila. PLoS One 2017; 12:e0169073. [PMID: 28045997 PMCID: PMC5207625 DOI: 10.1371/journal.pone.0169073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/12/2016] [Indexed: 01/17/2023] Open
Abstract
Aging is a universal process that causes deterioration in biological functions of an organism over its lifetime. There are many risk factors that are thought to contribute to aging rate, with disruption of metabolic homeostasis being one of the main factors that accelerates aging. Previously, we identified a new function for the putative G-protein-coupled receptor, Bride of sevenless (BOSS), in energy metabolism. Since maintaining metabolic homeostasis is a critical factor in aging, we investigated whether BOSS plays a role in the aging process. Here, we show that BOSS affects lifespan regulation. boss null mutants exhibit shortened lifespans, and their locomotor performance and gut lipase activity—two age-sensitive markers—are diminished and similar to those of aged control flies. Reactive oxygen species (ROS) production is also elevated in boss null mutants, and their ROS defense system is impaired. The accumulation of protein adducts (advanced lipoxidation end products [ALEs] and advanced glycation end products [AGEs]) caused by oxidative stress are elevated in boss mutant flies. Furthermore, boss mutant flies are sensitive to oxidative stress challenges, leading to shortened lives under oxidative stress conditions. Expression of superoxide dismutase 2 (SOD2), which is located in mitochondria and normally regulates ROS removal, was decreased in boss mutant flies. Systemic overexpression of SOD2 rescued boss mutant phenotypes. Finally, we observed that mitochondrial mass was greater in boss mutant flies. These results suggest that BOSS affects lifespan by modulating the expression of a set of genes related to oxidative stress resistance and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Ayako Kohyama-Koganeya
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - Mizuki Kurosawa
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - Yoshio Hirabayashi
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
- * E-mail:
| |
Collapse
|
25
|
Shen J, Landis GN, Tower J. Multiple Metazoan Life-span Interventions Exhibit a Sex-specific Strehler-Mildvan Inverse Relationship Between Initial Mortality Rate and Age-dependent Mortality Rate Acceleration. J Gerontol A Biol Sci Med Sci 2017; 72:44-53. [PMID: 26893470 PMCID: PMC6292450 DOI: 10.1093/gerona/glw005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/07/2016] [Indexed: 11/14/2022] Open
Abstract
The Gompertz equation describes survival in terms of initial mortality rate (parameter a), indicative of health, and age-dependent acceleration in mortality rate (parameter b), indicative of aging. Gompertz parameters were analyzed for several published studies. In Drosophila females, mating increases egg production and decreases median life span, consistent with a trade-off between reproduction and longevity. Mating increased parameter a, causing decreased median life span, whereas time parameter b was decreased. The inverse correlation between parameters indicates the Strehler-Mildvan (S-M) relationship, where loss of low-vitality individuals yields a cohort with slower age-dependent mortality acceleration. The steroid hormone antagonist mifepristone/RU486 reversed these effects. Mating and mifepristone showed robust S-M relationships across genotypes, and dietary restriction showed robust S-M relationship across diets. Because nutrient optima differed between females and males, the same manipulation caused opposite effects on mortality rates in females versus males across a range of nutrient concentrations. Similarly, p53 mutation in Drosophila and mTOR mutation in mice caused increased median life span associated with opposite direction changes in mortality rate parameters in females versus males. The data demonstrate that dietary and genetic interventions have sex-specific and sometimes sexually opposite effects on mortality rates consistent with sexual antagonistic pleiotropy.
Collapse
Affiliation(s)
- Jie Shen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles.
| |
Collapse
|
26
|
Zhang ZY, Zhang J, Yang CJ, Lian HY, Yu H, Huang XM, Cai P. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster. PLoS One 2016; 11:e0162675. [PMID: 27611438 PMCID: PMC5017647 DOI: 10.1371/journal.pone.0162675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP) 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect.
Collapse
Affiliation(s)
- Zi-Yan Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jing Zhang
- University of the Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen University, Xiamen, P. R. China
| | - Chuan-Jun Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
| | - Hui-Yong Lian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
| | - Hui Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
| | - Xiao-Mei Huang
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Peng Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- * E-mail:
| |
Collapse
|
27
|
Donovan MR, Marr MT. dFOXO Activates Large and Small Heat Shock Protein Genes in Response to Oxidative Stress to Maintain Proteostasis in Drosophila. J Biol Chem 2016; 291:19042-50. [PMID: 27435672 DOI: 10.1074/jbc.m116.723049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo.
Collapse
Affiliation(s)
- Marissa R Donovan
- From the Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453
| | - Michael T Marr
- From the Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
28
|
Mueller LD, Shahrestani P, Rauser CL, Rose MR. The death spiral: predicting death in Drosophila cohorts. Biogerontology 2016; 17:805-816. [PMID: 26914589 DOI: 10.1007/s10522-016-9639-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
Abstract
Drosophila research has identified a new feature of aging that has been called the death spiral. The death spiral is a period prior to death during which there is a decline in life-history characters, such as fecundity, as well as physiological characters. First, we review the data from the Drosophila and medfly literature that suggest the existence of death spirals. Second, we re-analyze five cases with such data from four laboratories using a generalized statistical framework, a re-analysis that strengthens the case for the salience of the death spiral phenomenon. Third, we raise the issue whether death spirals need to be taken into account in the analysis of functional characters over age, in aging research with model species as well as human data.
Collapse
Affiliation(s)
- Laurence D Mueller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| | - Parvin Shahrestani
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.,Department of Biological Science, California State University Fullerton, 800 North State College Blvd., Fullerton, CA, 92831-3599, USA
| | - Casandra L Rauser
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.,UCLA Office of Vice Chancellor for Research-UCLA Grand Challenges, BOX 951405, 2248 Murphy Hall, Los Angeles, CA, 90095-1405, USA
| | - Michael R Rose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
29
|
Lopez TE, Pham HM, Barbour J, Tran P, Van Nguyen B, Hogan SP, Homo RL, Coskun V, Schriner SE, Jafari M. The impact of green tea polyphenols on development and reproduction in Drosophila melanogaster. J Funct Foods 2016; 20:556-566. [PMID: 26693252 DOI: 10.1016/j.jff.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although, green tea has numerous health benefits, adverse effects with excessive consumption have been reported. Using Drosophila melanogaster, a decrease in male fertility with green tea was evidenced. Here, the extent of green tea toxicity on development and reproduction was investigated. Drosophila melanogaster embryos and larvae were exposed to various doses of green tea polyphenols (GTP). Larvae exposed to 10 mg/mL GTP were slower to develop, emerged smaller, and exhibited a dramatic decline in the number of emerged offspring. GTP protected flies against desiccation but sensitized them to starvation and heat stress. Female offspring exhibited a decline in reproductive output and decreased survival while males were unaffected. GTP had a negative impact on reproductive organs in both males and females (e.g., atrophic testes in males, absence of mature eggs in females). Collectively, the data show that high doses of GTP adversely affect development and reproduction of Drosophila melanogaster.
Collapse
Affiliation(s)
- Terry E Lopez
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Hoang M Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Julia Barbour
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Phillip Tran
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Benjamin Van Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Sean P Hogan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Richelle L Homo
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Volkan Coskun
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Samuel E Schriner
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
30
|
Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2015; 465:845-50. [PMID: 26319556 DOI: 10.1016/j.bbrc.2015.08.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/18/2022]
Abstract
NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan.
Collapse
|
31
|
Sikulu MT, Monkman J, Dave KA, Hastie ML, Dale PE, Kitching RL, Killeen GF, Kay BH, Gorman JJ, Hugo LE. Proteomic changes occurring in the malaria mosquitoes Anopheles gambiae and Anopheles stephensi during aging. J Proteomics 2015; 126:234-44. [PMID: 26100052 DOI: 10.1016/j.jprot.2015.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/14/2015] [Accepted: 06/13/2015] [Indexed: 11/19/2022]
Abstract
UNLABELLED The age of mosquitoes is a crucial determinant of their ability to transmit pathogens and their resistance to insecticides. We investigated changes to the abundance of proteins found in heads and thoraces of the malaria mosquitoes Anopheles gambiae and Anopheles stephensi as they aged. Protein expression changes were assessed using two-dimensional difference gel electrophoresis and the identity of differentially expressed proteins was determined by using either matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry or capillary high-pressure liquid chromatography coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometer. Protein biomarkers were validated by semi quantitative Western blot analysis. Nineteen and nine age dependent protein spots were identified for A. stephensi and A. gambiae, respectively. Among the proteins down-regulated with age were homologs of ADF/Cofilin, cytochome c1, heat shock protein-70 and eukaryotic translation initiation factor 5A (eIF5a). Proteins up-regulated with age included probable methylmalonate-semialdehyde dehydrogenase, voltage-dependent anion-selective channel and fructose bisphosphate aldolase. Semi quantitative Western blot analysis confirmed expression patterns observed by 2-D DIGE for eIF5a and ADF/Cofilin. Further work is recommended to determine whether these biomarkers are robust to infection, blood feeding and insecticide resistance. Robust biomarkers could then be incorporated into rapid diagnostic assays for ecological and epidemiological studies. BIOLOGICAL SIGNIFICANCE In this study, we have identified several proteins with characteristic changes in abundance in both A. gambiae and A. stephensi during their aging process. These changes may highlight underlying mechanisms beneath the relationship between mosquito age and factors affecting Plasmodium transmission and mosquito control. The similarity of changes in protein abundance between these species and the primary dengue vector Aedes aegypti, has revealed conserved patterns of aging-specific protein regulation.
Collapse
Affiliation(s)
- Maggy T Sikulu
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - James Monkman
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Keyur A Dave
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Marcus L Hastie
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Patricia E Dale
- Environmental Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia.
| | - Roger L Kitching
- Environmental Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia.
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, United Republic of Tanzania; Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Brian H Kay
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Jeffery J Gorman
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
32
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
33
|
Morrow G, Tanguay RM. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process. Front Genet 2015; 6:1026. [PMID: 25852752 PMCID: PMC4360758 DOI: 10.3389/fgene.2015.00103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/27/2015] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are involved in many key cellular processes and therefore need to rely on good protein quality control (PQC). Three types of mechanisms are in place to insure mitochondrial protein integrity: reactive oxygen species scavenging by anti-oxidant enzymes, protein folding/degradation by molecular chaperones and proteases and clearance of defective mitochondria by mitophagy. Drosophila melanogaster Hsp22 is part of the molecular chaperone axis of the PQC and is characterized by its intra-mitochondrial localization and preferential expression during aging. As a stress biomarker, the level of its expression during aging has been shown to partially predict the remaining lifespan of flies. Since over-expression of this small heat shock protein increases lifespan and resistance to stress, Hsp22 most likely has a positive effect on mitochondrial integrity. Accordingly, Hsp22 has recently been implicated in the mitochondrial unfolding protein response of flies. This review will summarize the key findings on D. melanogaster Hsp22 and emphasis on its links with the aging process.
Collapse
Affiliation(s)
- Geneviève Morrow
- Laboratoire de Génétique Cellulaire et Développementale, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Institut de Biologie Intégrative et des Systémes and PROTEO, Université Laval Québec, QC, Canada
| | - Robert M Tanguay
- Laboratoire de Génétique Cellulaire et Développementale, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Institut de Biologie Intégrative et des Systémes and PROTEO, Université Laval Québec, QC, Canada
| |
Collapse
|
34
|
Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Huang H, Lu-Bo Y, Haddad GG. A Drosophila ABC transporter regulates lifespan. PLoS Genet 2014; 10:e1004844. [PMID: 25474322 PMCID: PMC4256198 DOI: 10.1371/journal.pgen.1004844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2014] [Indexed: 01/08/2023] Open
Abstract
MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling. The drug transporters are often known for their ability to transport different physiological-related compounds across cell membranes. Although the abnormal up-regulation of some these transporters is believed to be the common cause of the clinic problem called drug resistance, the biological functions of these transporters remain largely unknown. Here we show that a Drosophila homolog of the mammalian drug transporter plays a role in lifespan regulation. Mutations of this gene increase the sensitivity to oxidative stress and reduce lifespan, while overexpression of this gene increases resistance to oxidative stress and extends lifespan. By molecular and genetic analyses, we have linked functions of this gene to a key signaling transduction pathway that has been known to be important in lifespan regulation.
Collapse
Affiliation(s)
- He Huang
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
| | - Ying Lu-Bo
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
| | - Gabriel G. Haddad
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
- Rady Children's Hospital San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Pujol-Lereis LM, Rabossi A, Quesada-Allué LA. Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: effects of population heterogeneity and age. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:156-163. [PMID: 25449902 DOI: 10.1016/j.jinsphys.2014.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/02/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The medfly Ceratitis capitata is an agricultural pest distributed worldwide thanks, in part, to its phenotypic plasticity of thermal tolerance. Cold exposure has been shown to reduce C. capitata survival, which may affect its distribution in areas with subfreezing temperatures. When insects are increasingly cooled, they attain a critical thermal threshold and enter a chill-coma state characterized by cessation of movement. It is not clear how a rapid cold exposure affects the physiological state of medflies, and how this is influenced by age and population heterogeneity. In order to approach these questions, C. capitata single-sex laboratory populations of 15 and 30 days old were subjected to a chill-coma recovery assay, and separated according to their recovery time in three subgroups: Fast-Subgroups, Intermediate-Subgroups, and Slow-Subgroups. Thereafter, we analyzed their survival, behavioral, and gene expression outputs. In female and old male populations, we found that flies with the slowest recovery time had a reduced life expectancy, a higher initial mortality rate, and a worse climbing performance compared with flies that recovered faster. Therefore, we were able to separate subgroups that developed chilling-injury from subgroups that had a reversible full recovery after cold exposure. The gene expression analysis of the heat shock protein genes hsp70 and hsp83 showed no clear association with the parameters studied. Interestingly, thorax expression levels of the Cu/Zn superoxide dismutase gene were elevated during the recovery phase in the Fast-Subgroups, but remained constant in the Slow-Subgroups that developed chilling-injury. On the other hand, none of the young male subgroups seemed to have suffered irreversible damage. Thus, we concluded that depending on age and population heterogeneity, chill-coma recovery time points out significant differences on individual cold tolerance. Moreover, the inability to properly induce the antioxidant defense system to counteract the oxidative damage caused by cold seems to contribute to the development of chilling-injury.
Collapse
Affiliation(s)
- Luciana Mercedes Pujol-Lereis
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir, Buenos Aires, Argentina.
| | - Alejandro Rabossi
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir, Buenos Aires, Argentina.
| | - Luis Alberto Quesada-Allué
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Manière X, Krisko A, Pellay FX, Di Meglio JM, Hersen P, Matic I. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans. Exp Gerontol 2014; 60:12-7. [PMID: 25218444 DOI: 10.1016/j.exger.2014.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Individual lifespans of isogenic organisms, such as Caenorhabditis elegans nematodes, fruit flies, and mice, vary greatly even under identical environmental conditions. To study the molecular mechanisms responsible for such variability, we used an assay based on the measurement of post-reproductive nematode movements stimulated by a moderate electric field. This assay allows for the separation of individual nematodes based on their speed. We show that this phenotype could be used as a biomarker for aging because it is a better predictor of lifespan than chronological age. Fast nematodes have longer lifespans, fewer protein carbonyls, higher heat-shock resistance, and higher transcript levels of the daf-16 and hsf-1 genes, which code for the stress response transcription factors, than slow nematodes. High transcript levels of the genes coding for heat-shock proteins observed in slow nematodes correlate with lower heat-shock resistance, more protein carbonyls, and shorter lifespan. Taken together, our data suggests that shorter lifespan results from early-life damage accumulation that causes subsequent faster age-related deterioration.
Collapse
Affiliation(s)
- X Manière
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France
| | - A Krisko
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France; Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - F X Pellay
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France; NAOS group/Jean-Noël Thorel, 13855 Aix-en-Provence, France
| | - J-M Di Meglio
- Laboratoire Matière et Systèmes Complexes, UMR7057, CNRS & Université Paris Diderot, 75013 Paris, France
| | - P Hersen
- Laboratoire Matière et Systèmes Complexes, UMR7057, CNRS & Université Paris Diderot, 75013 Paris, France; MechanoBiology Institute, National University of Singapore, Singapore
| | - I Matic
- Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France.
| |
Collapse
|
38
|
Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y. Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol A Biol Sci Med Sci 2014; 69:253-9. [PMID: 23723429 PMCID: PMC3976136 DOI: 10.1093/gerona/glt078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 01/10/2023] Open
Abstract
The cytoplasmic chaperone gene Hsp70 and the mitochondrial chaperone gene Hsp22 are upregulated during normal aging in Drosophila in tissue-general patterns. In addition, Hsp22 reporters are dramatically upregulated during aging in a subset of the oenocytes (liver-like cells). Hsp22 reporter expression varied dramatically between individual oenocytes and between groups of oenocytes located in adjacent body segments, and was negatively correlated with accumulation of age pigment, indicating cell-specific and cell-lineage-specific patterns of oenocyte aging. Conditional transgenic systems were used to express 88 transgenes to search for trans-regulators of the Hsp70 and Hsp22 reporters during aging. The wingless gene increased tissue-general upregulation of both Hsp70 and Hsp22 reporters. In contrast, the mitochondrial genes MnSOD and Hsp22 increased expression of Hsp22 reporters in the oenocytes and decreased accumulation of age pigment in these cells. The data suggest that cell-specific and cell lineage-specific patterns of mitochondrial malfunction contribute to oenocyte aging.
Collapse
Affiliation(s)
- John Tower
- University of Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089-2910.
| | | | | | | | | | | |
Collapse
|
39
|
Li SS, Zhang ZY, Yang CJ, Lian HY, Cai P. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutat Res 2013; 758:95-103. [PMID: 24157427 DOI: 10.1016/j.mrgentox.2013.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 10/03/2013] [Accepted: 10/10/2013] [Indexed: 11/24/2022]
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) exposure is attracting increased attention as a possible disease-inducing factor. The in vivo effects of short-term and long-term ELF-EMF exposure on male Drosophila melanogaster were studied using transcriptomic analysis for preliminary screening and QRT-PCR for further verification. Transcriptomic analysis indicated that 439 genes were up-regulated and 874 genes were down-regulated following short-term exposures and that 514 genes were up-regulated and 1206 genes were down-regulated following long-term exposures (expression >2- or <0.5-fold, respectively). In addition, there are 238 up-regulated genes and 598 down-regulated genes in the intersection of short-term and long-term exposure (expression >2- or <0.5-fold). The DEGs (differentially expressed genes) in D. melanogaster following short-term exposures were involved in metabolic processes, cytoskeletal organization, mitotic spindle organization, cell death, protein modification and proteolysis. Long-term exposure let to changes in expression of genes involved in metabolic processes, response to stress, mitotic spindle organization, aging, cell death and cellular respiration. In the intersection of short-term and long-term exposure, a series of DEGs were related to apoptosis, aging, immunological stress and reproduction. To check the ELF-EMF effects on reproduction, some experiments on male reproduction ability were performed. Their results indicated that short-term ELF-EMF exposure may decrease the reproductive ability of males, but long-term exposures had no effect on reproductive ability. Down-regulation of ark gene in the exposed males suggests that the decrease in reproductive capacity may be induced by the effects of ELF-EMF exposure on spermatogenesis through the caspase pathway. QRT-PCR analysis confirmed that jra, ark and decay genes were down regulated in males exposed for 1 Generation (1G) and 72 h, which suggests that apoptosis may be inhibited in vivo. ELF-EMF exposure may have accelerated cell senescence, as suggested by the down-regulation of both cat and jra genes and the up-regulation of hsp22 gene. Up-regulation of totA and hsp22 genes during exposure suggests that exposed flies might induce an in vivo immune response to counter the adverse effects encountered during ELF-EMF exposure. Down-regulation of cat genes suggests that the partial oxidative protection system might be restrained, especially during short-term exposures. This study demonstrates the bioeffects of ELF-EMF exposure and provides evidence for understanding the in vivo mechanisms of ELF-EMF exposure on male D. melanogaster.
Collapse
Affiliation(s)
- Si-Si Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | | | | | | |
Collapse
|
40
|
Landis G, Shen J, Tower J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging (Albany NY) 2013; 4:768-89. [PMID: 23211361 PMCID: PMC3560439 DOI: 10.18632/aging.100499] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.
Collapse
Affiliation(s)
- Gary Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | |
Collapse
|
41
|
Abstract
Heat shock proteins (HSP) are molecular chaperones and have been implicated in longevity and aging in many species. Their major functions include chaperoning misfolded or newly synthesised polypeptides, protecting cells from proteotoxic stress, and processing of immunogenic agents. These proteins are expressed constitutively and can be induced by stresses such as heat, oxidative stress and many more. The induction of HSP in aging could potentially maintain protein homeostasis and longevity by refolding the damaged proteins which accumulate during aging and are toxic to cells. HSP are shown to increase life span in model organisms such as Caenorhabditis elegans and decrease aging-related proteotoxicity. Thus, decrease in HSP in aging is associated with disruption of cellular homeostasis which causes diseases such as cancer, cell senescence and neurodegeneration. HSP levels are decreased with aging in most organs including neurons. Aging also causes attenuation or alteration of many signalling pathways as well as the expression of transcription factors such as heat shock factor (HSF). The alteration in regulation and synthesis of Forkhead box O3a (FoxO3a) family of transcription factors as well as major antioxidant enzymes (manganese superoxide dismutase, catalase) are also seen in aging. Among many signalling mechanisms involved in altering longevity and aging, the insulin/IGF-1 pathway and the Sir2 deacetylase are highly significant. This review enquires into the role of some of these pathways in longevity/aging along with HSP.
Collapse
Affiliation(s)
- Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
42
|
Abstract
Senescence is associated with changes in gene expression, including the upregulation of stress response- and innate immune response-related genes. In addition, aging animals exhibit characteristic changes in movement behaviors including decreased gait speed and a deterioration in sleep/wake rhythms. Here, we describe methods for tracking Drosophila melanogaster movements in 3D with simultaneous quantification of fluorescent transgenic reporters. This approach allows for the assessment of correlations between behavior, aging, and gene expression as well as for the quantification of biomarkers of aging.
Collapse
|
43
|
Physiology declines prior to death in Drosophila melanogaster. Biogerontology 2012; 13:537-45. [DOI: 10.1007/s10522-012-9398-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/21/2012] [Indexed: 01/01/2023]
|
44
|
Xie Z, Zhang Y, Zou K, Brandman O, Luo C, Ouyang Q, Li H. Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell 2012; 11:599-606. [PMID: 22498653 DOI: 10.1111/j.1474-9726.2012.00821.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Budding yeast has served as an important model organism for aging research, and previous genetic studies have led to the discovery of conserved genes/pathways that regulate lifespan across species. However, the molecular causes of aging and death remain elusive, because it is very difficult to directly observe the cellular and molecular events accompanying aging in single yeast cells by the traditional approach based on micromanipulation. We have developed a microfluidic system to track individual mother cells throughout their lifespan, allowing automated lifespan measurement and direct observation of cell cycle dynamics, cell/organelle morphologies, and various molecular markers. We found that aging of the wild-type cells is characterized by an increased general stress and a progressive lengthening of the cell cycle for the last few cell divisions; these features are much less apparent in the long-lived FOB1 deletion mutant. Following the fate of individual cells revealed that there are different forms of cell death that are characterized by different terminal cell morphologies, and associated with different levels of stress and lifespan. We have identified a molecular marker - the level of the expression of Hsp104, as a good predictor for the lifespan of individual cells. Our approach allows detailed molecular phenotyping of single cells in the process of aging and thus provides new insight into its mechanism.
Collapse
Affiliation(s)
- Zhengwei Xie
- Center for Quantitative Biology, and the State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the “other” genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease.
Collapse
|
46
|
Ardekani R, Huang YM, Sancheti P, Stanciauskas R, Tavaré S, Tower J. Using GFP video to track 3D movement and conditional gene expression in free-moving flies. PLoS One 2012; 7:e40506. [PMID: 22829875 PMCID: PMC3400653 DOI: 10.1371/journal.pone.0040506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In vivo imaging and quantification of fluorescent reporter molecules is increasingly useful in biomedical research. For example, tracking animal movement in 3D with simultaneous quantification of fluorescent transgenic reporters allows for correlations between behavior, aging and gene expression. However implementation has been hindered in the past by the complexity of operating the systems. RESULTS We report significant technical improvements and user-friendly software (called FluoreScore) that enables tracking of 3D movement and the dynamics of gene expression in adult Drosophila, using two cameras and recorded GFP videos. Expression of a transgenic construct encoding eGFP was induced in free-moving adult flies using the Gene-Switch system and RU486 drug feeding. The time course of induction of eGFP expression was readily quantified from internal tissues including central nervous tissue. CONCLUSIONS FluoreScore should facilitate a variety of future studies involving quantification of movement behaviors and fluorescent molecules in free-moving animals.
Collapse
Affiliation(s)
- Reza Ardekani
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Yichuan Michelle Huang
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Prathamesh Sancheti
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Ramunas Stanciauskas
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Simon Tavaré
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - John Tower
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Mendenhall AR, Tedesco PM, Taylor LD, Lowe A, Cypser JR, Johnson TE. Expression of a single-copy hsp-16.2 reporter predicts life span. J Gerontol A Biol Sci Med Sci 2012; 67:726-33. [PMID: 22227523 PMCID: PMC3391070 DOI: 10.1093/gerona/glr225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/13/2011] [Indexed: 11/14/2022] Open
Abstract
The level of green fluorescent protein expression from an hsp-16.2-based transcriptional reporter predicts life span and thermotolerance in Caenorhabditis elegans. The initial report used a high-copy number reporter integrated into chromosome IV. There was concern that the life-span prediction power of this reporter was not attributable solely to hsp-16.2 output. Specifically, prediction power could stem from disruption of some critical piece of chromatin on chromosome IV by the gpIs1 insertion, a linked mutation from the process used to create the reporter, or from an artifact of transgene regulation (multicopy transgenes are subject to regulation by C elegans chromatin surveillance machinery). Here we determine if the ability to predict life span and thermotolerance is specific to the gpIs1 insertion or a general property of hsp-16.2-based reporters. New single-copy hsp-16.2-based reporters predict life span and thermotolerance. We conclude that prediction power of hsp-16.2-based transcriptional reporters is not an artifact of any specific transgene configuration or chromatin surveillance mechanism.
Collapse
|
48
|
Hirano Y, Kuriyama Y, Miyashita T, Horiuchi J, Saitoe M. Reactive oxygen species are not involved in the onset of age-related memory impairment in Drosophila. GENES BRAIN AND BEHAVIOR 2011; 11:79-86. [PMID: 22107594 DOI: 10.1111/j.1601-183x.2011.00748.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Damage from reactive oxygen species (ROS) is thought to be a cause of organismal aging. Reactive oxygen species have also been proposed to be responsible for several age-associated phenotypes, including age-related memory impairment (AMI). However, it has not previously been tested whether increasing ROS affects AMI onset. Here we examined the effects of feeding hydrogen peroxide, and the ROS-generating agent, paraquat, on olfactory aversive memory in Drosophila at young ages and during AMI onset. Reactive oxygen species feeding greatly reduced fly survival, and increased oxidized proteins and transcripts of an antioxidant enzyme, catalase (Cat) and a stress-responsive chaperone, heat-shock protein 22 (Hsp22) in fly heads. However, feeding did not impair memory in young wild-type flies, nor did it exacerbate the memory deficits in flies at the onset of AMI. Strikingly ROS feeding did disrupt memory at young ages and accelerated AMI onset was observed when expression of genes involved in the defense system to ROS, including antioxidant enzymes and Hsp22, was reduced in the mushroom bodies, neural centers required for olfactory memory. These results implicate that although ROS production increases upon aging, neuronal functions required for memory processes are sufficiently protected by the defense system to ROS even at the age of AMI onset. Thus we propose that ROS production does not affect AMI onset in Drosophila.
Collapse
Affiliation(s)
- Y Hirano
- Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | | | | | | | | |
Collapse
|
49
|
Extension of Drosophila lifespan by Rosa damascena associated with an increased sensitivity to heat. Biogerontology 2011; 13:105-17. [PMID: 21928072 DOI: 10.1007/s10522-011-9357-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/08/2011] [Indexed: 12/26/2022]
Abstract
Rosa damascena, or Damask rose, is a rose hybrid commonly harvested for rose oil used in perfumery and for rose water used to flavor food. The petal extract of R. damascena was recently found to decrease Drosophila melanogaster mortality without impairing reproductive fitness or metabolic rate. Here, we report that R. damascena extended both mean and maximum lifespan of the fly. The extract also protected against oxidative stress in flies, predominantly in females. However, it did not alter mitochondrial respiration or content, superoxide production, or the major antioxidant defenses, superoxide dismutase and catalase. The extract increased survival in both sexes when exposed to reduced iron, though surprisingly, it sensitized both sexes to heat stress (survival at 37°C), and appeared to down-regulate the major heat shock protein HSP70 and the small mitochondrial heat shock protein HSP22, at 25°C and after heat shock (4 h at 37°C). We hypothesize that R. damascena extends lifespan by protecting against iron, which concomitantly leads to decreased HSP expression and compromising heat tolerance.
Collapse
|
50
|
Sánchez-Blanco A, Kim SK. Variable pathogenicity determines individual lifespan in Caenorhabditis elegans. PLoS Genet 2011; 7:e1002047. [PMID: 21533182 PMCID: PMC3077391 DOI: 10.1371/journal.pgen.1002047] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/23/2011] [Indexed: 11/18/2022] Open
Abstract
A common property of aging in all animals is that chronologically and genetically identical individuals age at different rates. To unveil mechanisms that influence aging variability, we identified markers of remaining lifespan for Caenorhabditis elegans. In transgenic lines, we expressed fluorescent reporter constructs from promoters of C. elegans genes whose expression change with age. The expression levels of aging markers in individual worms from a young synchronous population correlated with their remaining lifespan. We identified eight aging markers, with the superoxide dismutase gene sod-3 expression being the best single predictor of remaining lifespan. Correlation with remaining lifespan became stronger if expression from two aging markers was monitored simultaneously, accounting for up to 49% of the variation in individual lifespan. Visualizing the physiological age of chronologically-identical individuals allowed us to show that a major source of lifespan variability is different pathogenicity from individual to individual and that the mechanism involves variable activation of the insulin-signaling pathway. One of the long-standing mysteries in aging is that some individuals die early whereas others die late. The age at which a specific individual will die is difficult or impossible to predict, and thus a fundamental aspect of aging in all animals is that it is stochastic. Aging stochasticity is particularly interesting in model organisms such as C. elegans because they are genetically inbred, can have the exact same chronological age, and can be grown under standard lab conditions. In this paper, we uncover a major mechanism underlying stochasticity in aging. To do this, we first developed a fluorescent aging marker (sod-3::GFP) whose expression declines with age and can be used to measure physiological age. In young animals, the level of expression of this fluorescent marker indicates which animals will live longer and which will die earlier. We used this fluorescent aging marker to show that variable pathogenicity from individual to individual is a major source of lifespan variability and that the mechanism involves variable activation of the insulin-signaling pathway.
Collapse
Affiliation(s)
- Adolfo Sánchez-Blanco
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|