1
|
Reho G, Menger Y, Goumon Y, Lelièvre V, Cadiou H. Behavioral and pharmacological characterization of planarian nociception. Front Mol Neurosci 2024; 17:1368009. [PMID: 38751713 PMCID: PMC11094297 DOI: 10.3389/fnmol.2024.1368009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Pain mostly arises because specialized cells called nociceptors detect harmful or potentially harmful stimuli. In lower animals with less convoluted nervous system, these responses are believed to be purely nociceptive. Amongst invertebrate animal models, planarians are becoming popular in a wide range of pharmacological and behavioral studies beyond the field of regeneration. Recent publications led the way on pain studies by focusing on nociceptive behaviors such as the 'scrunching' gait displayed under various noxious stimuli, as opposed to the 'gliding' gait planarians usually adopt in normal conditions. Methods In this study, we adapted commonly used nociceptive tests to further explore nociception in planarians of the species Girardia dorotocephala. By using behavioral analysis in open fields and place preferences, we managed to set up chemical, thermal and mechanical nociceptive tests. We also adapted RNA interference protocols and explored the effects of knocking down TRPA1 ion channels, one of the main effectors of chemically and thermally-induced nociceptive responses in vertebrates. Results Consequently, we demonstrated the reliability of the scrunching gait in this planarian species, which they displayed in a dose-dependent manner when exposed to the irritant AITC. We also showed that suppressing the expression of TRPA1 ion channels completely suppressed the scrunching gait, demonstrating the involvement of TRPA1 nociceptors in this nociceptive reaction. Besides, we also explored the effects of two common analgesics that both displayed strong antinociceptive properties. First, morphine reduced the chemically-induced nociceptive scrunching gaits by more than 20% and shifted the E C 50 of the dose-response curve by approximately 10 μM. Secondly, the NSAID meloxicam drastically reduced chemically-induced scrunching by up to 60% and reduced heat avoidance in place preference tests. Discussion Thus, we managed to characterize both behavioral and pharmacological aspects of G. dorotocephala's nociception, further developing the use of planarians as a replacement model in pain studies and more globally the study of invertebrate nociception.
Collapse
Affiliation(s)
| | | | | | | | - Hervé Cadiou
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Messina DN, Peralta ED, Acosta CG. Complex alterations in inflammatory pain and analgesic sensitivity in young and ageing female rats: involvement of ASIC3 and Nav1.8 in primary sensory neurons. Inflamm Res 2024; 73:669-691. [PMID: 38483556 DOI: 10.1007/s00011-024-01862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE AND DESIGN Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1β up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1β had this effect only on young and aged neurons, respectively. CONCLUSION Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.
Collapse
Affiliation(s)
- Diego N Messina
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Emanuel D Peralta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina.
| |
Collapse
|
3
|
Gutierrez A, Taffe MA. Rats chasing the dragon: A new heroin inhalation method. J Neurosci Methods 2024; 402:110013. [PMID: 37989452 DOI: 10.1016/j.jneumeth.2023.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Despite extensive human use of inhalation for ingesting opioids, models in rodents have mostly been limited to parenteral injection and oral dosing. Methods using electronic drug delivery systems (EDDS; "e-cigarettes") have shown efficacy in rodent models but these do not faithfully mimic the most popular human inhalation method of heating heroin to the point of vaporization. NEW METHOD Middle aged rats were exposed to vapor created by direct heating of heroin HCl powder in a ceramic e-cigarette type atomizer. Efficacy was determined with a warm water tail withdrawal nociception assay, rectal temperature and self-administration. RESULTS Ten minutes of inhalation of vaporized heroin slowed response latency in a warm water tail withdrawal assay and increased rectal temperature in male rats, in a dose-dependent manner. Similar antinociceptive effects in female rats were attenuated by the opioid antagonist naloxone (1.0 mg/kg, s.c.). Female rats made operant responses for heroin vapor in 15-minute sessions, increased their response rate when the reinforcement ratio increased from FR1 to FR5, and further increased their responding when vapor delivery was omitted. Anti-nociceptive effects of self-administered volatilized heroin were of a similar magnitude as those produced by the 10-minute non-contingent exposure. COMPARISON WITH EXISTING METHODS Inhalation of directly volatilized heroin successfully produces heroin-typical effects, comparable to EDDS inhalation delivery. CONCLUSIONS This study shows that "chasing the dragon" methods of inhalation of heroin can be modeled successfully in the rat. Inhalation techniques may be particularly useful for longer term studies deep into the middle age of rats.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego, CA, USA.
| |
Collapse
|
4
|
Monopoli MR, Guzman DSM, Paul-Murphy J, Beaufrère H, Hawkins MG. Evaluation of Thermal Antinociceptive Effects of Intramuscular Hydromorphone Hydrochloride in Great Horned Owls ( Bubo virginianus). J Avian Med Surg 2023; 37:209-216. [PMID: 37962314 DOI: 10.1647/jams-d-22-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Across the Americas, great horned owls (Bubo virginianus) are often presented to veterinarians for conditions requiring pain management. Although recent studies have evaluated opioid drugs in raptor species, information in Strigiformes is lacking. The objective of this study was to evaluate the analgesic effect and duration of action of hydromorphone hydrochloride, a full µ-opioid receptor agonist, in great horned owls. In a randomized, blinded, balanced crossover study, 6 adult birds (5 females and 1 male) received hydromorphone (0.3 and 0.6 mg/kg) or saline (0.9% NaCl) solution (0.03 mL/kg; control) in the left pectoral muscle, with a 7-day washout interval between treatments. Each bird was assigned an agitation-sedation score, and the thermal foot withdrawal threshold (TFWT) was measured at predetermined times before (t = 0 hours) and after treatment administration (t = 0.5, 1.5, 3, and 6 hours). Measurements of the TFWT were obtained with a test box equipped with a thermal perch, which delivered a gradually increasing temperature 40-62°C (104-143.6°F) to the right plantar surface of the owl's foot. Compared with controls, hydromorphone at 0.3 mg/kg dose resulted in significantly higher mean TFWT at 0.5 hours (P < 0.001), 1.5 hours (P = 0.003), and 3 hours (P = 0.005), whereas the 0.6 mg/kg dose resulted in significantly higher mean TFWT from 0.5 hours (P = 0.035) to 1.5 hours (P = 0.001). Both hydromorphone doses were associated with a significant change in the agitation-sedation score (P = 0.001), consistent with mild to moderate sedation. Two owls were observed tremoring after administration of the 0.6 mg/kg dose, which was not noted after the 0.5-hour timepoint; no other adverse effects were identified. This study offers scientific evidence to support the use of a µ-opioid agonist in great horned owls for pain management. Pharmacokinetics and other pharmacodynamic studies of other pain models evaluating hydromorphone and other opioid drugs in this species are still needed.
Collapse
Affiliation(s)
- Marissa Rae Monopoli
- University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
5
|
Gutierrez A, Taffe MA. Rats Chasing the Dragon: A new heroin inhalation method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552712. [PMID: 37786688 PMCID: PMC10541576 DOI: 10.1101/2023.08.09.552712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Rationale Despite extensive human use of the inhalation route for ingesting opioids, models in rodents have mostly been limited to parenteral injection and oral dosing. Methods using electronic drug delivery systems (EDDS; "e-cigarettes") have shown efficacy in rodent models but these do not faithfully mimic the most popular human inhalation method of heating heroin to the point of vaporization. Objective This study was designed to determine if direct volatilization of heroin hydrochloride delivers effective heroin doses to rodents. Methods Middle aged rats were exposed to vapor created by direct heating of heroin HCl powder in a ceramic e-cigarette type atomizer. Efficacy was determined with a warm water tail withdrawal nociception assay, rectal temperature and self-administration. Results Ten minutes of inhalation of vaporized heroin slowed response latency in a warm water tail withdrawal assay and increased rectal temperature in male rats, in a dose-dependent manner. Similar antinociceptive effects in female rats were attenuated by the opioid antagonist naloxone (1.0 mg/kg, s.c.). Female rats made operant responses for heroin vapor in 15-minute sessions, increased their response rate when the reinforcement ratio increased from FR1 to FR5, and further increased their responding when vapor delivery was omitted. Anti-nociceptive effects of self-administered volatilized heroin were of a similar magnitude as those produced by the 10-minute non-contingent exposure. Conclusions This study shows that "chasing the dragon" methods of inhalation of heroin can be modeled successfully in the rat. Inhalation techniques may be particularly useful for longer term studies deep into middle age of rat species.
Collapse
|
6
|
Messina DN, Peralta ED, Seltzer AM, Patterson SI, Acosta CG. Age-dependent and modality-specific changes in the phenotypic markers Nav1.8, ASIC3, P2X3 and TRPM8 in male rat primary sensory neurons during healthy aging. Biogerontology 2023; 24:111-136. [PMID: 36478541 DOI: 10.1007/s10522-022-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
The effects during healthy aging of the tetrodotoxin-resistant voltage-gated sodium channel 1.8 (Nav1.8), the acid-sensing ion channel-3 (ASIC3), the purinergic-receptor 2X3 (P2X3) and transient receptor potential of melastatin-8 (TRPM8) on responses to non-noxious stimuli are poorly understood. These effects will influence the transferability to geriatric subjects of findings obtained using young animals. To evaluate the involvement of these functional markers in mechanical and cold sensitivity to non-noxious stimuli and their underlying mechanisms, we used a combination of immunohistochemistry and quantitation of immunostaining in sub-populations of neurons of the dorsal root ganglia (DRG), behavioral tests, pharmacological interventions and Western-blot in healthy male Wistar rats from 3 to 24 months of age. We found significantly decreased sensitivity to mechanical and cold stimuli in geriatric rats. These behavioural alterations occurred simultaneously with differing changes in the expression of Nav1.8, ASIC3, P2X3 and TRPM8 in the DRG at different ages. Using pharmacological blockade in vivo we demonstrated the involvement of ASIC3 and P2X3 in normal mechanosensation and of Nav1.8 and ASIC3 in cold sensitivity. Geriatric rats also exhibited reductions in the number of A-like large neurons and in the proportion of peptidergic to non-peptidergic neurons. The changes in normal sensory physiology in geriatric rats we report here strongly support the inclusion of aged rodents as an important group in the design of pre-clinical studies evaluating pain treatments.
Collapse
Affiliation(s)
- Diego N Messina
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Emanuel D Peralta
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Alicia M Seltzer
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Sean I Patterson
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Histología y Embriología - CONICET, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina. .,Histology Laboratory 107, IHEM-Faculty of Medical Sciences, National University of Cuyo, Av. del Libertador 80, 5500, Mendoza, Argentina.
| |
Collapse
|
7
|
Brain networks and endogenous pain inhibition are modulated by age and sex in healthy rats. Pain 2021; 161:1371-1380. [PMID: 31977940 DOI: 10.1097/j.pain.0000000000001810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endogenous pain inhibition is less efficient in chronic pain patients. Diffuse noxious inhibitory control (DNIC), a form of endogenous pain inhibition, is compromised in women and older people, making them more vulnerable to chronic pain. However, the underlying mechanisms remain unclear. Here, we used a capsaicin-induced DNIC test and resting-state functional MRI to investigate the impact of aging and sex on endogenous pain inhibition and associated brain circuitries in healthy rats. We found that DNIC was less efficient in young females compared with young males. Diffuse noxious inhibitory control response was lost in old rats of both sexes, but the brain networks engaged during DNIC differed in a sex-dependent manner. Young males had the most efficient analgesia with the strongest connectivity between anterior cingulate cortex (ACC) and periaqueductal gray (PAG). The reduced efficiency of DNIC in young females seemed to be driven by widespread brain connectivity. Old males showed increased connectivity between PAG, raphe nuclei, pontine reticular nucleus, and hippocampus, which may not be dependent on connections to ACC, whereas old females showed increased connectivity between ACC, PAG, and more limbic regions. These findings suggest that distinct brain circuitries including the limbic system may contribute to higher susceptibility to pain modulatory deficits in the elderly population, and sex may be a risk factor for developing age-related chronic pain.
Collapse
|
8
|
Bongiovanni AR, Peer K, Carpenter RE, Ellis AS, Duggan MR, Parikh V, Wimmer ME. Aging reduces the sensitivity to the reinforcing efficacy of morphine. Neurobiol Aging 2020; 97:28-32. [PMID: 33120086 DOI: 10.1016/j.neurobiolaging.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022]
Abstract
The US geriatric population is growing and using more opioids than ever before. The purpose of this study was to determine whether aging influenced the reinforcing efficacy of morphine in male and female rats using a rodent intravenous self-administration paradigm. Male and female aged (20-24 months) and young (2-4 months) Wistar rats were tested at 2 doses of morphine (0.75 mg/kg/infusion and 0.25 mg/kg/infusion). During 10 days of self-administration, aged rats took significantly less morphine than their younger counterparts at the 0.25 mg/kg/infusion dose. Aged males also earned significantly fewer infusions on a progressive ration reinforcement schedule at this dose, suggesting that the reinforcing efficacy of morphine is decreased for this group at this dose. These effects dissipated when a separate group of animals had access to the 0.75 mg/kg/infusion dose for both sexes. Our results indicate that morphine is less reinforcing at lower doses in aged male, but not female rats. This research has potential clinical implications for the chronic treatments involving opioids in aged individuals.
Collapse
Affiliation(s)
- Angela R Bongiovanni
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Kyle Peer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Rachel E Carpenter
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Alexandra S Ellis
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Sanchez-Migallon Guzman D, Douglas JM, Beaufrère H, Paul-Murphy JR. Evaluation of the thermal antinociceptive effects of hydromorphone hydrochloride after intramuscular administration to orange-winged Amazon parrots ( Amazona amazonica). Am J Vet Res 2020; 81:775-782. [PMID: 32969733 DOI: 10.2460/ajvr.81.10.775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the thermal antinociceptive effects of hydromorphone hydrochloride after IM administration to orange-winged Amazon parrots (Amazona amazonica). ANIMALS 8 healthy adult parrots (4 males and 4 females). PROCEDURES In a randomized crossover study, each bird received hydromorphone (0.1, 1, and 2 mg/kg) and saline (0.9% NaCl) solution (1 mL/kg; control) IM, with a 7-day interval between treatments. Each bird was assigned an agitation-sedation score, and the thermal foot withdrawal threshold (TFWT) was measured at predetermined times before and after treatment administration. Adverse effects were also monitored. The TFWT, agitation-sedation score, and proportion of birds that developed adverse effects were compared among treatments over time. RESULTS Compared with the mean TFWT for the control treatment, the mean TFWT was significantly increased at 0.5, 1.5, and 3 hours and 1.5, 3, and 6 hours after administration of the 1- and 2-mg/kg hydromorphone doses, respectively. Significant agitation was observed at 0.5, 1.5, and 3 hours after administration of the 1 - and 2-mg/kg hydromorphone doses. Other adverse effects observed after administration of the 1- and 2-mg/kg doses included miosis, ataxia, and nausea-like behavior (opening the beak and moving the tongue back and forth). CONCLUSIONS AND CLINICAL RELEVANCE Although the 1- and 2-mg/kg hydromorphone doses appeared to have antinociceptive effects, they also caused agitation, signs of nausea, and ataxia. Further research is necessary to evaluate administration of lower doses of hydromorphone and other types of stimulation to better elucidate the analgesic and adverse effects of the drug in psittacine species.
Collapse
|
10
|
Scuteri D, Berliocchi L, Rombolà L, Morrone LA, Tonin P, Bagetta G, Corasaniti MT. Effects of Aging on Formalin-Induced Pain Behavior and Analgesic Activity of Gabapentin in C57BL/6 Mice. Front Pharmacol 2020; 11:663. [PMID: 32457634 PMCID: PMC7227482 DOI: 10.3389/fphar.2020.00663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Improved living conditions have induced an increase of lifespan often accompanied by comorbidities, responsible for pain, and by cognitive impairment and dementia, impairing communication capabilities. In most cases, the elderly do not receive pain relief because of underdiagnosis and of aging-induced changes of systems affecting nociceptive response. Unrelieved pain is involved in the development of behavioral symptoms, as agitation, representing a difficult challenge in this fragile population. Aged C57BL/6 mice and amyloid precursor protein (APP) mice display behavioral disturbances that mimic behavioral and psychological symptoms of dementia (BPSD). Therefore, this original study focuses on the influence of aging on nociception to provide insight into the occurrence of BPSD. We have investigated how aging can affect nociception after formalin administration and gabapentin effect in C57BL/6 mice, since it represents one of the treatments of choice for chronic neuropathic pain. Based on our results, changes of nociceptive behavior in response to an algogen stimulus occur during aging. Formalin-induced behavioral pattern in older C57BL/6 mice presents a temporal shift and an increase in the peak amplitudes. Our data show that the effectiveness of gabapentin is influenced by the age of the animal; though preliminary, the latter provide evidence upon which formalin test induced long-lasting mechanical allodynia might be a reliable as rapid and viable persistent pain model. The disclosed differences in effectiveness of gabapentin according to age can form the rational basis to deepen the study of pain treatment in the elderly.
Collapse
Affiliation(s)
- Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Laura Berliocchi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Laura Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | | |
Collapse
|
11
|
The effects of aging on hydromorphone-induced thermal antinociception in healthy female cats. Pain Rep 2019; 4:e722. [PMID: 31041422 PMCID: PMC6455684 DOI: 10.1097/pr9.0000000000000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction: This study aimed to evaluate the effects of aging on hydromorphone-induced thermal antinociception in cats. Methods: In a prospective, randomized, blinded, controlled design, 10 healthy female cats received each of the following treatments intramuscularly: hydromorphone (0.1 mg/kg) and 0.9% saline (0.05 mL/kg) with a 1-week washout between treatments at 6, 9, and 12 months of age. Skin temperature and thermal thresholds (TTs) were recorded before and up to 12 hours after injection. Data were analyzed using a repeated-measures linear mixed model (α = 0.05). Results: After saline treatment, TT was not significantly different from baseline at any time point for any age group. After hydromorphone treatment, TT was significantly higher than baseline at 6 months for up to 1 hour, and at 9 and 12 months for up to 4 hours. Peak TT at 6, 9, and 12 months were 50.4 ± 2.7, 50.9 ± 2.0, and 53.6 ± 2.0°C at 0.5, 1, and 1 hours, respectively. Mean TT was significantly higher after hydromorphone treatment when compared with saline treatment at 9 and 12 months for up to 4 hours but not at 6 months. Magnitude of antinociception was consistently larger at 12 months when compared with 6 months of age. Hydromorphone provided a shorter duration and smaller magnitude of antinociception at 6 months when compared with 9 and 12 months. Conclusion: Pediatric cats may require more frequent dosing of hydromorphone than adults.
Collapse
|
12
|
Guzman DSM, Houck EL, Knych HKD, Beaufrère H, Paul-Murphy JR. Evaluation of the thermal antinociceptive effects and pharmacokinetics after intramuscular administration of buprenorphine hydrochloride to cockatiels (Nymphicus hollandicus). Am J Vet Res 2019; 79:1239-1245. [PMID: 30457903 DOI: 10.2460/ajvr.79.12.1239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate thermal antinociceptive effects and pharmacokinetics of buprenorphine hydrochloride after IM administration to cockatiels (Nymphicus hollandicus). ANIMALS 16 adult (≥ 2 years old) cockatiels (8 males and 8 females). PROCEDURES Buprenorphine hydrochloride (0.3 mg/mL) at each of 3 doses (0.6, 1.2, and 1.8 mg/kg) and saline (0.9% NaCl) solution (control treatment) were administered IM to birds in a randomized within-subject complete crossover study. Foot withdrawal response to a thermal stimulus was determined before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were also determined. For the pharmacokinetic analysis, buprenorphine (0.6 mg/kg) was administered IM to 12 of the birds, and blood samples were collected at 9 time points ranging from 5 minutes to 9 hours after drug administration. Samples were analyzed with liquid chromatography-mass spectrometry. Pharmacokinetic parameters were calculated with commercial software. RESULTS Buprenorphine at 0.6, 1.2, and 1.8 mg/kg did not significantly change the thermal foot withdrawal response, compared with the response for the control treatment. No significant change in agitation-sedation scores was detected between all doses of buprenorphine and the control treatment. Plasma buprenorphine concentrations were > 1 ng/mL in all 4 birds evaluated at 9 hours. CONCLUSIONS AND CLINICAL RELEVANCE Buprenorphine at the doses evaluated did not significantly change the thermal nociceptive threshold for cockatiels or cause sedative or agitative effects. Additional studies with other pain assessments and drug doses are needed to evaluate the analgesic and adverse effects of buprenorphine in cockatiels and other avian species.
Collapse
|
13
|
Houck EL, Guzman DSM, Beaufrère H, Knych HK, Paul-Murphy JR. Evaluation of the thermal antinociceptive effects and pharmacokinetics of hydromorphone hydrochloride after intramuscular administration to cockatiels (Nymphicus hollandicus). Am J Vet Res 2018; 79:820-827. [PMID: 30058846 DOI: 10.2460/ajvr.79.8.820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the thermal antinociceptive effects and pharmacokinetics of hydromorphone hydrochloride after IM administration to cockatiels (Nymphicus hollandicus). ANIMALS 16 healthy adult cockatiels. PROCEDURES During the first of 2 study phases, each cockatiel received each of 4 treatments (hydromorphone at doses of 0.1, 0.3, and 0.6 mg/kg and saline [0.9% NaCl] solution [0.33 mL/kg; control], IM), with a 14-day interval between treatments. For each bird, foot withdrawal to a thermal stimulus was determined following assignment of an agitation-sedation score at predetermined times before and for 6 hours after each treatment. During the second phase, a subset of 12 birds received hydromorphone (0.6 mg/kg, IM), and blood samples were collected at predetermined times for 9 hours after drug administration. Plasma hydromorphone concentration was determined by liquid chromatography-mass spectrometry. Noncompartmental analysis of sparse data was used to calculate pharmacokinetic parameters. RESULTS Thermal withdrawal response did not differ among the 4 treatment groups at any time. Agitation-sedation scores following administration of the 0.3-and 0.6-mg/kg doses of hydromorphone differed significantly from those treated with saline solution and suggested the drug had a sedative effect. Plasma hydromorphone concentrations were > 1 ng/mL for 3 to 6 hours after drug administration in all birds. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that IM administration of hydromorphone at the evaluated doses did not increase the thermal withdrawal threshold of cockatiels despite plasma drug concentrations considered therapeutic for other species. Further research is necessary to evaluate the analgesic effects of hydromorphone in cockatiels.
Collapse
|
14
|
Paul AK, Gueven N, Dietis N. Age-dependent antinociception and behavioral inhibition by morphine. Pharmacol Biochem Behav 2018; 168:8-16. [PMID: 29548597 DOI: 10.1016/j.pbb.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
In current clinical practice, morphine is dosed in older patients based on patient-weight, with different calculations for adjustment. However, at present, neither clinical experience nor the literature offers a clear evidence base for the relationship between antinociception, behavioral effects and morphine administration in older patients. In this study, we compared the nociceptive response of 8 and 24 week old rats after subcutaneous administration of morphine per body weight and analyzed their behavior using an advanced multi-conditioning system. Residual morphine in all major tissues was determined. We observed prolonged morphine-induced antinociception in older rats compared to younger rats. Moreover, morphine significantly stimulated locomotor and rearing behavior 180 min after injection, which was significantly higher in the 8 week compared to 24 week old rats. Tissue analysis from animals extracted 240 min post-injection revealed a significantly higher concentration of residual morphine in the brains of older versus younger animals when standardized on tissue weight. However, this effect was not observed when residual morphine was standardized on protein content. Collectively, our data suggest that in older rats morphine exhibits higher antinociception and increased behavioral inhibition compared to younger animals. This effect is likely due to a significantly higher accumulation of morphine in the brain of older animals.
Collapse
Affiliation(s)
- Alok Kumar Paul
- Division of Pharmacy, School of Medicine, University of Tasmania, Australia.
| | - Nuri Gueven
- Division of Pharmacy, School of Medicine, University of Tasmania, Australia
| | - Nikolas Dietis
- Division of Pharmacy, School of Medicine, University of Tasmania, Australia
| |
Collapse
|
15
|
Rahmati-Ahmadabad S, Azarbayjani M, Nasehi M. The Effects of High-Intensity Interval Training with Supplementation of Flaxseed Oil on BDNF mRNA Expression and Pain Feeling in Male Rats. ANNALS OF APPLIED SPORT SCIENCE 2017; 5:1-12. [DOI: 10.29252/aassjournal.5.4.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
16
|
Deuis JR, Dvorakova LS, Vetter I. Methods Used to Evaluate Pain Behaviors in Rodents. Front Mol Neurosci 2017; 10:284. [PMID: 28932184 PMCID: PMC5592204 DOI: 10.3389/fnmol.2017.00284] [Citation(s) in RCA: 695] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Rodents are commonly used to study the pathophysiological mechanisms of pain as studies in humans may be difficult to perform and ethically limited. As pain cannot be directly measured in rodents, many methods that quantify “pain-like” behaviors or nociception have been developed. These behavioral methods can be divided into stimulus-evoked or non-stimulus evoked (spontaneous) nociception, based on whether or not application of an external stimulus is used to elicit a withdrawal response. Stimulus-evoked methods, which include manual and electronic von Frey, Randall-Selitto and the Hargreaves test, were the first to be developed and continue to be in widespread use. However, concerns over the clinical translatability of stimulus-evoked nociception in recent years has led to the development and increasing implementation of non-stimulus evoked methods, such as grimace scales, burrowing, weight bearing and gait analysis. This review article provides an overview, as well as discussion of the advantages and disadvantages of the most commonly used behavioral methods of stimulus-evoked and non-stimulus-evoked nociception used in rodents.
Collapse
Affiliation(s)
- Jennifer R Deuis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of QueenslandSt. Lucia, QLD, Australia
| | - Lucie S Dvorakova
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of QueenslandSt. Lucia, QLD, Australia
| | - Irina Vetter
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of QueenslandSt. Lucia, QLD, Australia.,School of Pharmacy, The University of QueenslandWoolloongabba, QLD, Australia
| |
Collapse
|
17
|
Assessment of thermal sensitivity in rats using the thermal place preference test: description and application in the study of oxaliplatin-induced acute thermal hypersensitivity and inflammatory pain models. Behav Pharmacol 2014; 25:99-111. [PMID: 24525711 DOI: 10.1097/fbp.0000000000000026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thermal sensitivity is an essential characteristic of some painful states, including oxaliplatin-induced neuropathy. The thermal place preference test (TPPT) was designed to finely assess thermal sensitivity in rodents. The TPPT monitors the time spent by unrestrained rodents on a test plate at fixed temperatures (5-50°C) compared with an adjacent reference plate at a neutral temperature (25°C). Here, we report the results of a study designed (i) to validate the optimal methodological parameters for measuring thermal sensitivity in rats, (ii) to assess the thermal sensitivity of healthy rats and animal models of pain and (iii) to explore the pharmacological effects of analgesic drugs. The most reproducible conditions occurred when the TPPT was performed in the morning and in the dark for 3 min with the reference plate set to 25°C. The temperature preferences of healthy rats were more than 17°C and less than 40°C. When compared with control animals, oxaliplatin-treated rats showed thermal hypersensitivity at 12, 20 and 35°C, and carrageenan-treated rats showed thermal hypersensitivity at 15 and 45°C. Duloxetine (2.5 mg/kg, intraperitoneal) reversed oxaliplatin-induced cold hypersensitivity (20°C) and morphine (1 mg/kg, intravenous) reversed carrageenan-induced heat hypersensitivity (45°C). We conclude that the TPPT enables a fine-grained assessment of thermal sensitivity that is relevant to the pathophysiological exploration of animal pain models and to the pharmacological assessment of analgesic drugs.
Collapse
|
18
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
19
|
Guzman DSM, Drazenovich TL, Olsen GH, Willits NH, Paul-Murphy JR. Evaluation of thermal antinociceptive effects after oral administration of tramadol hydrochloride to American kestrels (Falco sparverius). Am J Vet Res 2014; 75:117-23. [PMID: 24471747 DOI: 10.2460/ajvr.75.2.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the thermal antinociceptive and sedative effects and duration of action of tramadol hydrochloride after oral administration to American kestrels (Falco sparverius). ANIMALS 12 healthy 3-year-old American kestrels. PROCEDURES Tramadol (5, 15, and 30 mg/kg) and a control suspension were administered orally in a masked randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 0.5, 1.5, 3, 6, and 9 hours after treatment. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus test. RESULTS The lowest dose of tramadol evaluated (5 mg/kg) significantly increased the thermal foot withdrawal thresholds for up to 1.5 hours after administration, compared with control treatment values, and for up to 9 hours after administration, compared with baseline values. Tramadol at doses of 15 and 30 mg/kg significantly increased thermal thresholds at 0.5 hours after administration, compared with control treatment values, and up to 3 hours after administration, compared with baseline values. No significant differences in agitation-sedation scores were detected between tramadol and control treatments. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated oral administration of 5 mg of tramadol/kg significantly increased thermal nociception thresholds for kestrels for 1.5 hours, compared with a control treatment, and 9 hours, compared with baseline values; higher doses resulted in less pronounced antinociceptive effects. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times would be needed to fully evaluate the analgesic and adverse effects of tramadol in kestrels and other avian species.
Collapse
|
20
|
Guzman DSM, Drazenovich TL, KuKanich B, Olsen GH, Willits NH, Paul-Murphy JR. Evaluation of thermal antinociceptive effects and pharmacokinetics after intramuscular administration of butorphanol tartrate to American kestrels (Falco sparverius). Am J Vet Res 2014; 75:11-8. [PMID: 24370240 DOI: 10.2460/ajvr.75.1.11] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate antinociceptive effects and pharmacokinetics of butorphanol tartrate after IM administration to American kestrels (Falco sparverius). ANIMALS Fifteen 2- to 3-year-old American kestrels (6 males and 9 females). PROCEDURES Butorphanol (1, 3, and 6 mg/kg) and saline (0.9% NaCl) solution were administered IM to birds in a crossover experimental design. Agitation-sedation scores and foot withdrawal response to a thermal stimulus were determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment. For the pharmacokinetic analysis, butorphanol (6 mg/kg, IM) was administered in the pectoral muscles of each of 12 birds. RESULTS In male kestrels, butorphanol did not significantly increase thermal thresholds for foot withdrawal, compared with results for saline solution administration. However, at 1.5 hours after administration of 6 mg of butorphanol/kg, the thermal threshold was significantly decreased, compared with the baseline value. Foot withdrawal threshold for female kestrels after butorphanol administration did not differ significantly from that after saline solution administration. However, compared with the baseline value, withdrawal threshold was significantly increased for 1 mg/kg at 0.5 and 6 hours, 3 mg/kg at 6 hours, and 6 mg/kg at 3 hours. There were no significant differences in mean sedation-agitation scores, except for males at 1.5 hours after administration of 6 mg/kg. CONCLUSION AND CLINICAL RELEVANCE Butorphanol did not cause thermal antinociception suggestive of analgesia in American kestrels. Sex-dependent responses were identified. Further studies are needed to evaluate the analgesic effects of butorphanol in raptors.
Collapse
Affiliation(s)
- David Sanchez-Migallon Guzman
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616
| | | | | | | | | | | |
Collapse
|
21
|
Mitzelfelt JD, Carter CS, Morgan D. Thermal sensitivity across ages and during chronic fentanyl administration in rats. Psychopharmacology (Berl) 2014; 231:75-84. [PMID: 23900640 PMCID: PMC3858394 DOI: 10.1007/s00213-013-3208-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/04/2013] [Indexed: 01/18/2023]
Abstract
RATIONALE Chronic pain is becoming a more common medical diagnosis and is especially prevalent in older individuals. As such, prescribed use of opioids is on the rise, even though the efficacy for pain management in older individuals is unclear. OBJECTIVES Thus, the present preclinical study assessed the effectiveness of chronic fentanyl administration to produce antinociception in aging rats (16, 20, and 24 months). METHODS Animals were tested in a thermal sensitivity procedure known to involve neural circuits implicated in chronic pain in humans. Sensitivity to heat and cold thermal stimulation was assessed during 28 days of fentanyl administration (1.0 mg/kg/day), and 28 days of withdrawal. RESULTS Fentanyl resulted in decreased thermal sensitivity to heat but not cold stimulation indicated by more time spent in the hot compartment relative to time spent in the cold or neutral compartments. Unlike previous findings using a hot-water tail withdrawal procedure, tolerance did not develop to the antinociceptive effects of fentanyl over a 28-day period of drug administration. The oldest animals were least sensitive, and the youngest animals most sensitive to the locomotor-stimulating effects of fentanyl. The effect on the antinociceptive response to fentanyl in the oldest group of rats was difficult to interpret due to profound changes in the behavior of saline-treated animals. CONCLUSIONS Overall, aging modifies the behavioral effects of opioids, a finding that may inform future studies for devising appropriate treatment strategies.
Collapse
Affiliation(s)
- Jeremiah D. Mitzelfelt
- Department of Psychiatry, University of Florida College of Medicine Gainesville, FL 32610
| | - Christy S. Carter
- Department of Aging and Geriatric Research, University of Florida College of Medicine Gainesville, FL 32610
- Institute on Aging, University of Florida College of Medicine Gainesville, FL 32610
| | - Drake Morgan
- Department of Psychiatry, University of Florida College of Medicine Gainesville, FL 32610
- Institute on Aging, University of Florida College of Medicine Gainesville, FL 32610
| |
Collapse
|