1
|
Liu J, Tan X, Li L, Cao L, Zhou Y, Li H, Peng T. Protein expression of nucleolar protein 12 in the retina and its implication in protection of retina from UV irradiation damage. Cell Death Discov 2024; 10:130. [PMID: 38467618 PMCID: PMC10928217 DOI: 10.1038/s41420-024-01902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/28/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Nucleolar protein 12 (NOL12), one of the nucleolar proteins which are primarily expressed in the nucleolus and play key roles in RNA metabolism, cell proliferation, cell cycle, and cell survival, is widely expressed in various species and multiple organs. Although it has been reported that the mRNA of Drosophila NOL12 homolog viriato is expressed in the eyes of Drosophila, the protein expression of NOL12 in mammalian eyes remains to be elucidated. In this study, we showed through immunohistochemistry that NOL12 was present in the rat retina, with predominant distribution in the cytoplasm of the retinal neuronal cells. In the human retinoblastoma cell line WERI-Rb1, we found that altering NOL12 expression led to a change in WERI-Rb1 cell viability. Knocking down NOL12 expression decreased cell viability. In contrast, overexpressing NOL12 increased cell viability. Furthermore, increasing NOL12 expression inhibited ultraviolet (UV)-induced apoptosis. These findings demonstrated that NOL12 may play an important protective role in retinal cells. In the WERI-Rb1 cells exposed to UV irradiation, we detected that NOL12 was degraded, but this degradation could be attenuated by a pan-Caspase inhibitor. Notably, the inhibitory effect of NOL12 against UV-induced apoptosis could be restrained by increasing the expression of ATR serine/threonine kinase (ATR), a kinase that, when activated by severe DNA damage, can result in apoptosis. We also found that upregulating NOL12 inhibited the activation of ATR caused by UV irradiation. Additionally, inhibiting ATR activity reduced apoptosis resulting from both silencing NOL12 expression and UV exposure. Thus, NOL12 may protect against UV irradiation-induced retinal damage by inhibiting ATR activity.
Collapse
Affiliation(s)
- Jingtao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Histology and Embryology, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xiaomei Tan
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Li Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Liying Cao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - He Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Department of Histology and Embryology, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Department of Histology and Embryology, School of Medicine, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Ting Peng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Janelle V, Neault M, Lebel MÈ, De Sousa DM, Boulet S, Durrieu L, Carli C, Muzac C, Lemieux S, Labrecque N, Melichar HJ, Mallette FA, Delisle JS. p16 INK4a Regulates Cellular Senescence in PD-1-Expressing Human T Cells. Front Immunol 2021; 12:698565. [PMID: 34434190 PMCID: PMC8381277 DOI: 10.3389/fimmu.2021.698565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
T-cell dysfunction arising upon repeated antigen exposure prevents effective immunity and immunotherapy. Using various clinically and physiologically relevant systems, we show that a prominent feature of PD-1-expressing exhausted T cells is the development of cellular senescence features both in vivo and ex vivo. This is associated with p16INK4a expression and an impaired cell cycle G1 to S-phase transition in repeatedly stimulated T cells. We show that these T cells accumulate DNA damage and activate the p38MAPK signaling pathway, which preferentially leads to p16INK4a upregulation. However, in highly dysfunctional T cells, p38MAPK inhibition does not restore functionality despite attenuating senescence features. In contrast, p16INK4a targeting can improve T-cell functionality in exhausted CAR T cells. Collectively, this work provides insights into the development of T-cell dysfunction and identifies T-cell senescence as a potential target in immunotherapy.
Collapse
Affiliation(s)
- Valérie Janelle
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Mathieu Neault
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Marie-Ève Lebel
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Dave Maurice De Sousa
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Salix Boulet
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Ludovic Durrieu
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Cédric Carli
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Chloé Muzac
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Labrecque
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Heather J Melichar
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Frédérick A Mallette
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Sébastien Delisle
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Hematology-Oncology, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| |
Collapse
|
3
|
Crochemore C, Fernández-Molina C, Montagne B, Salles A, Ricchetti M. CSB promoter downregulation via histone H3 hypoacetylation is an early determinant of replicative senescence. Nat Commun 2019; 10:5576. [PMID: 31811121 PMCID: PMC6898346 DOI: 10.1038/s41467-019-13314-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023] Open
Abstract
Cellular senescence has causative links with ageing and age-related diseases, however, it remains unclear if progeroid factors cause senescence in normal cells. Here, we show that depletion of CSB, a protein mutated in progeroid Cockayne syndrome (CS), is the earliest known trigger of p21-dependent replicative senescence. CSB depletion promotes overexpression of the HTRA3 protease resulting in mitochondrial impairments, which are causally linked to CS pathological phenotypes. The CSB promoter is downregulated by histone H3 hypoacetylation during DNA damage-response. Mechanistically, CSB binds to the p21 promoter thereby downregulating its transcription and blocking replicative senescence in a p53-independent manner. This activity of CSB is independent of its role in the repair of UV-induced DNA damage. HTRA3 accumulation and senescence are partially rescued upon reduction of oxidative/nitrosative stress. These findings establish a CSB/p21 axis that acts as a barrier to replicative senescence, and link a progeroid factor with the process of regular ageing in human. Senescence of metabolically active cells is a process linked to ageing. Here the authors reveal that CSB is required to block replicative senescence, and epigenetic control of CSB downregulation triggers proliferative arrest in a p21-dependent manner.
Collapse
Affiliation(s)
- Clément Crochemore
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France.,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France
| | - Cristina Fernández-Molina
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France.,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, Paris, France
| | - Benjamin Montagne
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France.,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France
| | - Audrey Salles
- Institut Pasteur, UTechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France. .,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France.
| |
Collapse
|
4
|
Yanai H, Fraifeld VE. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res Rev 2018; 41:18-33. [PMID: 29106993 DOI: 10.1016/j.arr.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022]
Abstract
Since Hayflick's discovery of cellular senescence (CS), a great volume of knowledge in the field has been accumulated and intensively discussed. Here, we attempted to organize the evidence "for" and "against" the hypothesized causal role of CS in aging. For that purpose, we utilized robust Koch-like logical criteria, based on the assumption that some quantitative relationships between the accumulation of senescent cells and aging rate should exist. If so, it could be expected that (i) the "CS load" would be greater in the premature aging phenotype and lesser in longevity phenotype; (ii) CS would promote age-related diseases, and (iii) the interventions that modulate the levels of senescent cells should also modulate health/lifespan. The analysis shows that CS can be considered a causal factor of aging and an important player in various age-related diseases, though its contribution may greatly vary across species. While the relative impact of senescent cells to aging could overall be rather limited and their elimination is hardly expected to be the "fountain of youth", the potential benefits of the senolytic strategy seems a promising option in combating age-related diseases and extending healthspan.
Collapse
|
5
|
Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 2017; 9:719-35. [PMID: 27482812 PMCID: PMC4958309 DOI: 10.1242/dmm.024711] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid) syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations. Summary: This Review defines the molecular and cellular hallmarks of progeroid syndromes according to the main cellular and animal models, and discusses the therapeutic strategies developed to date.
Collapse
Affiliation(s)
- Dido Carrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Clara Soria-Valles
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| |
Collapse
|
6
|
Platas J, Guillén MI, Pérez Del Caz MD, Gomar F, Castejón MA, Mirabet V, Alcaraz MJ. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging (Albany NY) 2017; 8:1703-17. [PMID: 27490266 PMCID: PMC5032691 DOI: 10.18632/aging.101007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/31/2016] [Indexed: 12/11/2022]
Abstract
Aging and exposure to stress would determine the chondrocyte phenotype in osteoarthritis (OA). In particular, chronic inflammation may contribute to stress-induced senescence of chondrocytes and cartilage degeneration during OA progression. Recent studies have shown that adipose-derived mesenchymal stem cells exert paracrine effects protecting against degenerative changes in chondrocytes. We have investigated whether the conditioned medium (CM) from adipose-derived mesenchymal stem cells may regulate senescence features induced by inflammatory stress in OA chondrocytes. Our results indicate that CM down-regulated senescence markers induced by interleukin-1β including senescence-associated β-galactosidase activity, accumulation of γH2AX foci and morphological changes with enhanced formation of actin stress fibers. Treatment of chondrocytes with CM also decreased the production of oxidative stress, the activation of mitogen-activated protein kinases, and the expression of caveolin-1 and p21. The effects of CM were related to the reduction in p53 acetylation which would be dependent on the enhancement of Sirtuin 1 expression. Therefore, CM may exert protective effects in degenerative joint conditions by countering the premature senescence of OA chondrocytes induced by inflammatory stress.
Collapse
Affiliation(s)
- Julia Platas
- Department of Pharmacology and IDM, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Maria Isabel Guillén
- Department of Pharmacology and IDM, University of Valencia, Burjasot, 46100 Valencia, Spain.,Department of Pharmacy, Cardenal Herrera-CEU University, Moncada, 46113 Valencia, Spain
| | | | - Francisco Gomar
- Department of Surgery, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Miguel Angel Castejón
- Department of Orthopaedic Surgery and Traumatology, De la Ribera University Hospital, Alzira, 46600 Valencia, Spain
| | - Vicente Mirabet
- Valencia Transfusion Center, Generalitat Valenciana, 46014 Valencia, Spain
| | - Maria José Alcaraz
- Department of Pharmacology and IDM, University of Valencia, Burjasot, 46100 Valencia, Spain
| |
Collapse
|
7
|
Abstract
To generate new hypotheses, sometimes a "systems" approach is needed. In this review, I focus on the mitogen-activated kinase p38 because it has been recently shown to play an important role in the developmental programing and senescence of normal and stressed reproductive tissues. What follows is an overview of (i) pathways of p38 activation and their involvement in basic biological processes, (ii) evidence that p38 is involved in the homeostasis of reproductive tissues, (iii) how focus on p38 can be incorporated into investigation of normal and stressed pregnancies. Existence of excellent reviews will be mentioned as well as relevant animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
8
|
Abstract
ATR (Ataxia Telangiectasia and Rad3-related) is a member of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family, amongst six other vertebrate proteins known so far. ATR is indispensable for cell survival and its essential role is in sensing DNA damage and initiating appropriate repair responses. In this review we highlight emerging and recent observations connecting ATR to alternative roles in controlling the nuclear envelope, nucleolus, centrosome and other organelles in response to both internal and external stress conditions. We propose that ATR functions control cell plasticity by sensing structural deformations of different cellular components, including DNA and initiating appropriate repair responses, most of which are yet to be understood completely.
Collapse
Affiliation(s)
- Gururaj Rao Kidiyoor
- Istituto FIRC di Oncologia Molecolare, Milan, Italy; University of Milan, Milan, Italy
| | - Amit Kumar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Marco Foiani
- Istituto FIRC di Oncologia Molecolare, Milan, Italy; University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Primordial dwarfism: overview of clinical and genetic aspects. Mol Genet Genomics 2015; 291:1-15. [PMID: 26323792 DOI: 10.1007/s00438-015-1110-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/21/2015] [Indexed: 01/16/2023]
Abstract
Primordial dwarfism is a group of genetic disorders which include Seckel Syndrome, Silver-Russell Syndrome, Microcephalic Osteodysplastic Primordial Dwarfism types I/III, II and Meier-Gorlin Syndrome. This genetic disorder group is characterized by intra-uterine growth retardation and post-natal growth abnormalities which occur as a result of disorganized molecular and genomic changes in embryonic stage and, thus, it represents a unique area to study growth and developmental abnormalities. Lot of research has been carried out on different aspects; however, a consolidated review that discusses an overall spectrum of this disorder is not accessible. Recent research in this area points toward important molecular and cellular mechanisms in human body that regulate the complexity of growth process. Studies have emerged that have clearly associated with a number of abnormal chromosomal, genetic and epigenetic alterations that can predispose an embryo to develop PD-associated developmental defects. Finding and associating such fundamental changes to its subtypes will help in re-examination of alleged functions at both cellular and developmental levels and thus reveal the intrinsic mechanism that leads to a balanced growth. Although such findings have unraveled a subtle understanding of growth process, we further require active research in terms of identification of reliable biomarkers for different subtypes as an immediate requirement for clinical utilization. It is hoped that further study will advance the understanding of basic mechanisms regulating growth relevant to human health. Therefore, this review has been written with an aim to present an overview of chromosomal, molecular and epigenetic modifications reported to be associated with different subtypes of this heterogenous disorder. Further, latest findings with respect to clinical and molecular genetics research have been summarized to aid the medical fraternity in their clinical utility, for diagnosing disorders where there are overlapping physical attributes and simultaneously inform about the latest developments in PD biology.
Collapse
|
10
|
Werner E, Wang H, Doetsch PW. Opposite roles for p38MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability. PLoS One 2014; 9:e108234. [PMID: 25271419 PMCID: PMC4182705 DOI: 10.1371/journal.pone.0108234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/27/2014] [Indexed: 01/26/2023] Open
Abstract
We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization.
Collapse
Affiliation(s)
- Erica Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (PWD); (EW)
| | - Huichen Wang
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul W. Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Hematology and Medical Oncology Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (PWD); (EW)
| |
Collapse
|
11
|
Nijmegen breakage syndrome fibroblasts expressing the C-terminal truncated NBN(p70) protein undergo p38/MK2-dependent premature senescence. Biogerontology 2014; 16:43-51. [PMID: 25214013 PMCID: PMC4305097 DOI: 10.1007/s10522-014-9530-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023]
Abstract
Fibroblasts from the progeroid Nijmegen breakage syndrome that express a truncated version of the nibrin protein (NBNp70) undergo premature senescence and have an enlarged morphology with high levels of senescence-associated β-galactosidase, although they do not have F-actin stress fibres. Growth of these fibroblasts in the continuous presence of p38 inhibitors resulted in a large increase in replicative capacity and changed the cellular morphology so that the cells resembled young normal fibroblasts. A similar effect was seen using an inhibitor of the p38 downstream effector kinase MK2. These data suggest that NBNp70 expressing cells undergo a degree of stress-induced replicative senescence via p38/MK2 activation, potentially due to increased telomere dysfunction, that may play a role in the progeroid features seen in this syndrome.
Collapse
|
12
|
Chung KW, Choi YJ, Park MH, Jang EJ, Kim DH, Park BH, Yu BP, Chung HY. Molecular Insights into SIRT1 Protection Against UVB-Induced Skin Fibroblast Senescence by Suppression of Oxidative Stress and p53 Acetylation. J Gerontol A Biol Sci Med Sci 2014; 70:959-68. [DOI: 10.1093/gerona/glu137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/10/2014] [Indexed: 12/20/2022] Open
|
13
|
Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 2014; 20:255-64. [PMID: 24531378 PMCID: PMC3949152 DOI: 10.1038/nm.3464] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 01/11/2014] [Indexed: 02/08/2023]
Abstract
The elderly often suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging owing in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of MuSCs from aged mice are intrinsically defective relative to MuSCs from young mice, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation. This deficiency is correlated with a higher incidence of cells that express senescence markers and is due to elevated activity of the p38α and p38β mitogen-activated kinase pathway. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the MuSC population from aged mice to transient inhibition of p38α and p38β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional MuSC population from aged mice, rejuvenating its potential for regeneration and serial transplantation as well as strengthening of damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy for the elderly.
Collapse
Affiliation(s)
- Benjamin D. Cosgrove
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Penney M. Gilbert
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Biomaterials and Biomedical Engineering and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Foteini Mourkioti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven P. Lee
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, CA, USA
| | - Stephane Y. Corbel
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Scott L. Delp
- Department of Bioengineering, Stanford University School of Medicine, CA, USA
- Department of Mechanical Engineering, Stanford University School of Medicine, CA, USA
| | - Helen M. Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Bagley MC, Baashen M, Paddock VL, Kipling D, Davis T. Regiocontrolled synthesis of 3- and 5-aminopyrazoles, pyrazolo[3,4-d]pyrimidines, pyrazolo[3,4-b]pyridines and pyrazolo[3,4-b]quinolinones as MAPK inhibitors. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|