1
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
2
|
Wali JA, Ni D, Facey HJW, Dodgson T, Pulpitel TJ, Senior AM, Raubenheimer D, Macia L, Simpson SJ. Determining the metabolic effects of dietary fat, sugars and fat-sugar interaction using nutritional geometry in a dietary challenge study with male mice. Nat Commun 2023; 14:4409. [PMID: 37479702 PMCID: PMC10362033 DOI: 10.1038/s41467-023-40039-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
The metabolic effects of sugars and fat lie at the heart of the "carbohydrate vs fat" debate on the global obesity epidemic. Here, we use nutritional geometry to systematically investigate the interaction between dietary fat and the major monosaccharides, fructose and glucose, and their impact on body composition and metabolic health. Male mice (n = 245) are maintained on one of 18 isocaloric diets for 18-19 weeks and their metabolic status is assessed through in vivo procedures and by in vitro assays involving harvested tissue samples. We find that in the setting of low and medium dietary fat content, a 50:50 mixture of fructose and glucose (similar to high-fructose corn syrup) is more obesogenic and metabolically adverse than when either monosaccharide is consumed alone. With increasing dietary fat content, the effects of dietary sugar composition on metabolic status become less pronounced. Moreover, higher fat intake is more harmful for glucose tolerance and insulin sensitivity irrespective of the sugar mix consumed. The type of fat consumed (soy oil vs lard) does not modify these outcomes. Our work shows that both dietary fat and sugars can lead to adverse metabolic outcomes, depending on the dietary context. This study shows how the principles of the two seemingly conflicting models of obesity (the "energy balance model" and the "carbohydrate insulin model") can be valid, and it will help in progressing towards a unified model of obesity. The main limitations of this study include the use of male mice of a single strain, and not testing the metabolic effects of fructose intake via sugary drinks, which are strongly linked to human obesity.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Harrison J W Facey
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tim Dodgson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Tamara J Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Lee J, Purello C, Booth SL, Bennett B, Wiley CD, Korstanje R. Chow diet in mouse aging studies: nothing regular about it. GeroScience 2023:10.1007/s11357-023-00775-9. [PMID: 37079216 PMCID: PMC10400503 DOI: 10.1007/s11357-023-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023] Open
Abstract
Chow diet is used in the majority of rodent studies and, although assumed to be standardized for dietary source and nutritional contents, it varies widely across commercial formulations. Similarly, current approaches to study aging in rodents involve a single-diet formulation across the lifespan and overlook age-specific nutritional requirements, which may have long-term effects on aging processes. Together, these nutrition-based disparities represent major gaps in geroscience research, affecting the interpretation and reproducibility of the studies. This perspective aims to raise awareness on the importance of rodent diet formulation and proposes that geroscientists include detailed descriptions of all experimental diets and feeding protocols. Detailed reporting of diets will enhance rigor and reproducibility of aging rodent studies and lead to more translational outcomes in geroscience research.
Collapse
Affiliation(s)
- Jennifer Lee
- Jean Mayer USDA Human Nutrition Research Center On Aging at Tufts University, 711 Washington St, Boston, MA, USA.
| | - Chloe Purello
- Jean Mayer USDA Human Nutrition Research Center On Aging at Tufts University, 711 Washington St, Boston, MA, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center On Aging at Tufts University, 711 Washington St, Boston, MA, USA
| | - Brian Bennett
- Agricultural Research Service, US Department of Agriculture, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center On Aging at Tufts University, 711 Washington St, Boston, MA, USA
| | | |
Collapse
|
4
|
Anti-Parkinson Effects of Holothuria leucospilota-Derived Palmitic Acid in Caenorhabditis elegans Model of Parkinson’s Disease. Mar Drugs 2023; 21:md21030141. [PMID: 36976190 PMCID: PMC10051922 DOI: 10.3390/md21030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease which is still incurable. Sea cucumber-derived compounds have been reported to be promising candidate drugs for treating age-related neurological disorders. The present study evaluated the beneficial effects of the Holothuria leucospilota (H. leucospilota)-derived compound 3 isolated from ethyl acetate fraction (HLEA-P3) using Caenorhabditis elegans PD models. HLEA-P3 (1 to 50 µg/mL) restored the viability of dopaminergic neurons. Surprisingly, 5 and 25 µg/mL HLEA-P3 improved dopamine-dependent behaviors, reduced oxidative stress and prolonged lifespan of PD worms induced by neurotoxin 6-hydroxydopamine (6-OHDA). Additionally, HLEA-P3 (5 to 50 µg/mL) decreased α-synuclein aggregation. Particularly, 5 and 25 µg/mL HLEA-P3 improved locomotion, reduced lipid accumulation and extended lifespan of transgenic C. elegans strain NL5901. Gene expression analysis revealed that treatment with 5 and 25 µg/mL HLEA-P3 could upregulate the genes encoding antioxidant enzymes (gst-4, gst-10 and gcs-1) and autophagic mediators (bec-1 and atg-7) and downregulate the fatty acid desaturase gene (fat-5). These findings explained the molecular mechanism of HLEA-P3-mediated protection against PD-like pathologies. The chemical characterization elucidated that HLEA-P3 is palmitic acid. Taken together, these findings revealed the anti-Parkinson effects of H. leucospilota-derived palmitic acid in 6-OHDA induced- and α-synuclein-based models of PD which might be useful in nutritional therapy for treating PD.
Collapse
|
5
|
Liu X, Jin Z, Summers S, Derous D, Li M, Li B, Li L, Speakman JR. Calorie restriction and calorie dilution have different impacts on body fat, metabolism, behavior, and hypothalamic gene expression. Cell Rep 2022; 39:110835. [PMID: 35584669 DOI: 10.1016/j.celrep.2022.110835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Caloric restriction is a robust intervention to increase lifespan. Giving less food (calorie restriction [CR]) or allowing free access to a diluted diet with indigestible components (calorie dilution [CD]) are two methods to impose restriction. CD does not generate the same lifespan effect as CR. We compare responses of C57BL/6 mice with equivalent levels of CR and CD. The two groups have different responses in fat loss, circulating hormones, and metabolic rate. CR mice are hungrier, as assessed by behavioral assays. Although gene expression of Npy, Agrp, and Pomc do not differ between CR and CD groups, CR mice had a distinctive hypothalamic gene-expression profile with many genes related to starvation upregulated relative to CD. While both result in lower calorie intake, CR and CD are not equivalent procedures. Increased hunger under CR supports the hypothesis that hunger signaling is a key process mediating the benefits of CR.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Zengguang Jin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Stephanie Summers
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Davina Derous
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Min Li
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC; CAS Center of Excellence in Animal Evolution and Genetics, Kunming, PRC.
| |
Collapse
|
6
|
Kalafut KC, Mitchell SJ, MacArthur MR, Mitchell JR. Short-Term Ketogenic Diet Induces a Molecular Response That Is Distinct From Dietary Protein Restriction. Front Nutr 2022; 9:839341. [PMID: 35433789 PMCID: PMC9005751 DOI: 10.3389/fnut.2022.839341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
There is increasing interest in utilizing short-term dietary interventions in the contexts of cancer, surgical stress and metabolic disease. These short-term diets may be more feasible than extended interventions and may be designed to complement existing therapies. In particular, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used to treat epilepsy, has gained popularity as a potential strategy for weight loss and improved metabolic health. In mice, long-term KD improves insulin sensitivity and may extend lifespan and healthspan. Dietary protein restriction (PR) causes increased energy expenditure, weight loss and improved glucose homeostasis. Since KD is inherently a low-protein diet (10% of calories from protein vs. >18% in control diet), here we evaluated the potential for mechanistic overlap between PR and KD via activation of a PR response. Mice were fed control, protein-free (PF), or one of four ketogenic diets with varying protein content for 8 days. PF and KD both decreased body weight, fat mass, and liver weights, and reduced fasting glucose and insulin levels, compared to mice fed the control diet. However, PF-fed animals had significantly improved insulin tolerance compared to KD. Furthermore, contrary to the PF-fed mice, mice fed ketogenic diets containing more than 5% of energy from protein did not increase hepatic Fgf21 or brown adipose Ucp1 expression. Interestingly, mice fed KD lacking protein demonstrated greater elevations in hepatic Fgf21 than mice fed a low-fat PF diet. To further elucidate potential mechanistic differences between PF and KD and the interplay between dietary protein and carbohydrate restriction, we conducted RNA-seq analysis on livers from mice fed each of the six diets and identified distinct gene sets which respond to dietary protein content, dietary fat content, and ketogenesis. We conclude that KD with 10% of energy from protein does not induce a protein restriction response, and that the overlapping metabolic benefits of KD and PF diets may occur via distinct underlying mechanisms.
Collapse
Affiliation(s)
- Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - James R. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
7
|
Ilyas Z, Perna S, A. Alalwan T, Zahid MN, Spadaccini D, Gasparri C, Peroni G, Faragli A, Alogna A, La Porta E, Ali Redha A, Negro M, Cerullo G, D’Antona G, Rondanelli M. The Ketogenic Diet: Is It an Answer for Sarcopenic Obesity? Nutrients 2022; 14:620. [PMID: 35276979 PMCID: PMC8838342 DOI: 10.3390/nu14030620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
This review aims to define the effectiveness of the ketogenic diet (KD) for the management of sarcopenic obesity. As the combination of sarcopenia and obesity appears to have multiple negative metabolic effects, this narrative review discusses the effects of the ketogenic diet as a possible synergic intervention to decrease visceral adipose tissue (VAT) and fatty infiltration of the liver as well as modulate and improve the gut microbiota, inflammation and body composition. The results of this review support the evidence that the KD improves metabolic health and expands adipose tissue γδ T cells that are important for glycaemia control during obesity. The KD is also a therapeutic option for individuals with sarcopenic obesity due to its positive effect on VAT, adipose tissue, cytokines such as blood biochemistry, gut microbiota, and body composition. However, the long-term effect of a KD on these outcomes requires further investigations before general recommendations can be made.
Collapse
Affiliation(s)
- Zahra Ilyas
- Department of Laboratory, Bahrain Specialist Hospital, Juffair P.O. Box 10588, Bahrain
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Simone Perna
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Tariq A. Alalwan
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Muhammad Nauman Zahid
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (S.P.); (T.A.A.); (M.N.Z.)
| | - Daniele Spadaccini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (D.S.); (C.G.); (G.P.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (D.S.); (C.G.); (G.P.)
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (D.S.); (C.G.); (G.P.)
| | - Alessandro Faragli
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, 13353 Berlin, Germany;
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Alessio Alogna
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Edoardo La Porta
- Department of Cardionephrology, Istituto Clinico Ligure Di Alta Specialità (ICLAS), GVM Care and Research, 16035 Rapallo, Italy;
- Department of Internal Medicine (DiMi), University of Genova, 16121 Genova, Italy
| | - Ali Ali Redha
- Department of Chemistry, College of Science, Sakhir Campus, University of Bahrain, Zallaq P.O. Box 32038, Bahrain;
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, UK
| | - Massimo Negro
- CRIAMS-Sport Medicine Centre, 27058 Voghera, Italy; (M.N.); (G.D.)
| | - Giuseppe Cerullo
- Department of Movement and Wellbeing Sciences, University of Naples “Parthenope”, 80133 Napoli, Italy;
| | - Giuseppe D’Antona
- CRIAMS-Sport Medicine Centre, 27058 Voghera, Italy; (M.N.); (G.D.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
8
|
Kwon YJ, Lee S, Lee HS, Lee JW. Differing Nutrient Intake and Dietary Patterns According to the Presence of Hyper-Low-Density Lipoprotein Cholesterolemia or Hypertriglyceridemia. Nutrients 2021; 13:3008. [PMID: 34578886 PMCID: PMC8469560 DOI: 10.3390/nu13093008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Dietary choices may have differing effects on low-density lipoprotein cholesterol or triglyceride levels. The aim of this study was to investigate daily nutrient intake and dietary patterns of individuals with hyper-low-density lipoprotein cholesterolemia (hLDL) and hypertriglyceridemia (hTG) in a large Korean population-based study using propensity score (PS) matching. This study used data from the Korea National Health and Nutrition Examination Survey. Propensity score values for the predicted probability of patients with hLDL or hTG were estimated using logistic regression analysis, with age, sex, body mass index, alcohol consumption, smoking status, physical activity status, hypertension, and diabetes. After PS matching, intake of carbohydrates (%) was significantly lower (p = 0.021), and intake of fats (%) and saturated fatty acids (%) was significantly higher in the hLDL group than in the non-hLDL group (p = 0.025 and p = 0.013, respectively). The percentage of individuals with a high score for the Korean Healthy Eating Index (KHEI) "whole grains" or "saturated fatty acids" components was higher in the non-hLDL group than in the hLDL group (p < 0.05 for both). Dietary sodium/potassium ratio was significantly higher in the hTG than in the non-hTG (p = 0.049). Our results suggest that individualized dietary information and counseling require consideration of a person's specific lipid levels.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea;
| | - Sujee Lee
- Department of Research Affairs, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Hye Sun Lee
- Department of Research Affairs, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| |
Collapse
|
9
|
Yoon DS, Lee Y, Park JC, Lee MC, Lee JS. Alleviation of tributyltin-induced toxicity by diet and microplastics in the marine rotifer Brachionus koreanus. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123739. [PMID: 33254767 DOI: 10.1016/j.jhazmat.2020.123739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
To determine the effects of tributyltin (TBT) upon multiple exposures of diet and microplastic in rotifer, in vivo life parameters were measured. In 10 μg/L TBT-exposed rotifer, the 1 and 0.5 x diet groups resulted in reproduction reduction. However, 10 x diet treatment showed no significant changes in the total fecundity, despite a decrease in daily reproduction. Besides, differences in the lifespan were observed in response to different diet regimens. TBT and/or MP-exposed parental rotifer (F0) showed a significant delay in the pre-reproductive day under 0.5 x diet regimen. In all dietary regimens, exposure to TBT and MP induced an increase in reactive oxygen species, but antioxidant activities were perturbed. To further verify the carryover effect of TBT toxicity, progeny rotifer (F1) obtained from 24 h TBT and/or MP-exposed F0 was used. Interestingly, the faster hatching rate was observed only in F1 obtained from 1 x diet regimen-exposed F0. However, in the 0.5 x diet, the total fecundity was reduced and the pattern of the daily reproduction was collapsed. Thus, the toxicity of TBT can be alleviated by MP and nutrition status, but TBT-induced toxicity and its carryover effect are inevitable.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
Correa CR, Schena C, Lopes SC, Prediger RD, Silva EL, Venske DKR, Ribeiro LC, Moreira JD. Combined effects of caloric restriction and fish oil attenuated anti-depressant and anxiolytic-like effects of fish oil: association with hippocampal BDNF concentrations. Behav Brain Res 2020; 393:112770. [PMID: 32561388 DOI: 10.1016/j.bbr.2020.112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Omega-3-enriched fish oil (FO) and caloric restriction (CR) are nutritional therapeutic approaches that exert an important impact on brain function, behavior, memory, and neuroprotection. Here, we investigate the synergic effects of both therapeutic approaches combined (CR + FO) on behavior (memory, anxiety-like behavior, antidepressant-like behavior), as well as its association with hippocampal brain-derived neurotrophic factor (BDNF) concentrations. Adult male Wistar rats were divided into four dietary groups: Control group (C) - chow ad libitum; CR group - 30 % CR, considering C group food intake; FO group - FO-enriched chow ad libitum; and CR + FO group - FO-enriched 30 % CR chow. After 12 weeks of dietary treatment, behavioural analysis set was conducted, and hippocampal BDNF concentrations were measured. FO group presented anxiolytic-like and antidepressant-like behaviors as well as improved memory in the Morris' water maze. These effects were attenuated by the combined CR + FO treatment. FO group also presented higher BDNF concentrations. There was a positive association between the number of entries in the platform quadrant in the MWM and hippocampal BDNF concentrations (β = 0.39; R² = 0.15; p = 0.042) and an inverse association between forced swim immobility time and BDNF concentrations (β = -0.39; R² = 0.15; p = 0.041). Taken together, our data showed that the 12-week FO dietary treatment promoted anxiolytic-like and antidepressant-like behaviors as well as memory improvement, and these effects were associated with BDNF concentrations. Synergic effects of interventions attenuated FO-related behavioral responses and BDNF concentrations and probably reduced hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Cinthia R Correa
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Claudia Schena
- Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Samantha C Lopes
- Post Graduate Program in Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Brazil; Medical Science Research Group - Biomedical and Clinical Investigation, Medicine Graduation Course, Centro Universitário para o Desenvolvimento do Alto Vale do Itajaí. Brazil
| | - Rui D Prediger
- Post Graduate Program in Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - E L Silva
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Débora K R Venske
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - L C Ribeiro
- Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - J D Moreira
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil.
| |
Collapse
|
11
|
Jimenez AG, Winward JD, Walsh KE, Champagne AM. Effects of membrane fatty acid composition on cellular metabolism and oxidative stress in dermal fibroblasts from small and large breed dogs. J Exp Biol 2020; 223:jeb221804. [PMID: 32457060 DOI: 10.1242/jeb.221804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
There is ample evidence that cell membrane architecture contributes to metabolism and aging in animals; however, the aspects of this architecture that determine the rate of metabolism and longevity are still being debated. The 'membrane pacemaker' hypothesis of metabolism and of aging, respectively, suggest that increased lipid unsaturation and large amounts of polyunsaturated fatty acids (PUFAs) in cell membranes increase the cellular metabolic rate as well as the vulnerability of the cell to oxidative damage, thus increasing organismal metabolic rate and decreasing longevity. Here, we tested these hypotheses by experimentally altering the membrane fatty acid composition of fibroblast cells derived from small and large breed dogs by incubating them in a medium enriched in the monounsaturated fatty acid (MUFA) oleic acid (OA, 18:1) to decrease the total saturation. We then measured cellular metabolic parameters and correlated these parameters with membrane fatty acid composition and oxidative stress. We found that cells from small dogs and OA-incubated cells had lower maximal oxygen consumption and basal oxygen consumption rates, respectively, which are traits associated with longer lifespans. Furthermore, although we did not find differences in oxidative stress, cells from small dogs and OA-treated cells exhibited reduced ATP coupling efficiency, suggesting that these cells are less prone to producing reactive oxygen species. Membrane fatty acid composition did not differ between cells from large and small dogs, but cells incubated with OA had more monounsaturated fatty acids and a higher number of double bonds overall despite a decrease in PUFAs. Our results suggest that increasing the monounsaturation of dog cell membranes may alter some metabolic parameters linked to increases in longevity.
Collapse
Affiliation(s)
| | - Joshua D Winward
- Colgate University, Biology Department, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kenneth E Walsh
- University of Southern Indiana, Chemistry Department, 8600 University Blvd, Evansville, IN 47712, USA
| | - Alex M Champagne
- University of Southern Indiana, Biology Department, 8600 University Blvd, Evansville, IN 47712, USA
| |
Collapse
|
12
|
Rodríguez-López S, López-Bellón S, González-Reyes JA, Burón MI, de Cabo R, Villalba JM. Mitochondrial adaptations in liver and skeletal muscle to pro-longevity nutritional and genetic interventions: the crosstalk between calorie restriction and CYB5R3 overexpression in transgenic mice. GeroScience 2020; 42:977-994. [PMID: 32323139 DOI: 10.1007/s11357-020-00187-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022] Open
Abstract
Calorie restriction without malnutrition (CR) is considered as the most effective nongenetic nor pharmacological intervention that promotes healthy aging phenotypes and can extend lifespan in most model organisms. Lifelong CR leads to an increase of cytochrome b5 reductase-3 (CYB5R3) expression and activity. Overexpression of CYB5R3 confers some of the salutary effects of CR, although the mechanisms involved might be independent because key aspects of energy metabolism and lipid profiles of tissues go in opposite ways. It is thus important to study if some of the metabolic adaptations induced by CR are affected by CYB5R3 overexpression. CYB5R3 overexpression greatly preserved body and liver weight in mice under CR conditions. In liver, CR did not modify mitochondrial abundance, but lead to increased expression of mitofusin Mfn2 and TFAM, a transcription factor involved in mitochondrial biogenesis. These changes were prevented by CYB5R3 overexpression but resulted in a decreased expression of a different mitochondrial biogenesis-related transcription factor, Nrf1. In skeletal muscle, CR strongly increased mitochondrial mass, mitofusin Mfn1, and Nrf1. However, CYB5R3 mice on CR did not show increase in muscle mitochondrial mass, regardless of a clear increase in expression of TFAM and mitochondrial complexes in this tissue. Our results support that CYB5R3 overexpression significantly modifies the metabolic adaptations of mice to CR.
Collapse
Affiliation(s)
- Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Sara López-Bellón
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - M Isabel Burón
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain.
| |
Collapse
|
13
|
Gutiérrez-Casado E, Khraiwesh H, López-Domínguez JA, Montero-Guisado J, López-Lluch G, Navas P, de Cabo R, Ramsey JJ, González-Reyes JA, Villalba JM. The Impact of Aging, Calorie Restriction and Dietary Fat on Autophagy Markers and Mitochondrial Ultrastructure and Dynamics in Mouse Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2020; 74:760-769. [PMID: 30010806 DOI: 10.1093/gerona/gly161] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 02/02/2023] Open
Abstract
Loss of skeletal muscle mass and function is a hallmark of aging. This phenomenon has been related to a dysregulation of mitochondrial function and proteostasis. Calorie restriction (CR) has been demonstrated to delay aging and preserve function until late in life, particularly in muscle. Recently, we reported the type of dietary fat plays an important role in determining life span extension with 40% CR in male mice. In these conditions, lard fed mice showed an increased longevity compared to mice fed soybean or fish oils. In this article, we analyze the effect of 40% CR on muscle mitochondrial mass, autophagy, and mitochondrial dynamics markers in mice fed these diets. In CR fed animals, lard preserved muscle fibers structure, mitochondrial ultrastructure, and fission/fusion dynamics and autophagy, not only compared to control animals, but also compared with CR mice fed soybean and fish oils as dietary fat. We focus our discussion on dietary fatty acid saturation degree as an essential predictor of life span extension in CR mice.
Collapse
Affiliation(s)
- Elena Gutiérrez-Casado
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Husam Khraiwesh
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - José A López-Domínguez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Jesús Montero-Guisado
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute of Aging, National Institutes on Health, Baltimore, Maryland
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
14
|
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019; 18:e13048. [PMID: 31560163 PMCID: PMC6826135 DOI: 10.1111/acel.13048] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.
Collapse
|
15
|
Wang SY, Cai GY, Chen XM. Energy restriction in renal protection. Br J Nutr 2018; 120:1149-1158. [PMID: 30401006 PMCID: PMC6316363 DOI: 10.1017/s0007114518002684] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/22/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Energy restriction (ER) has been widely studied as a novel intervention, and its ability to prolong life has been fully demonstrated. For example, ER can significantly extend the lifespans of model flies, worms, rodents and other mammals. The role of ER in renal protection has also been elucidated. In preclinical studies, adjusting total energy intake or consumption of specific nutrients has prophylactic or therapeutic effects on ageing-related kidney disease and acute and chronic kidney injury. Amino acid restriction has gradually attracted attention. ER mimetics have also been studied in depth. The protective mechanisms of ER and ER mimetics for renal injury include increasing AMP-activated protein kinase and sirtuin type 1 (Sirt1) levels and autophagy and reducing mammalian target of rapamycin, inflammation and oxidative stress. However, the renal protective effect of ER has mostly been investigated in rodent models, and the role of ER in patients cannot be determined due to the lack of large randomised controlled trials. To protect the kidney, the mechanism of ER must be thoroughly researched, and more accurate diet or drug interventions need to be identified.
Collapse
Affiliation(s)
| | - Guang-Yan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | | |
Collapse
|
16
|
Lee MC, Park JC, Lee JS. Effects of environmental stressors on lipid metabolism in aquatic invertebrates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:83-92. [PMID: 29727774 DOI: 10.1016/j.aquatox.2018.04.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Lipid metabolism is crucial for the survival and propagation of the species, since lipids are an essential cellular component across animal taxa for maintaining homeostasis in the presence of environmental stressors. This review aims to summarize information on the lipid metabolism under environmental stressors in aquatic invertebrates. Fatty acid synthesis from glucose via de novo lipogenesis (DNL) pathway is mostly well-conserved across animal taxa. The structure of free fatty acid (FFA) from both dietary and DNL pathway could be transformed by elongase and desaturase. In addition, FFA can be stored in lipid droplet as triacylglycerol, upon attachment to glycerol. However, due to the limited information on both gene and lipid composition, in-depth studies on the structural modification of FFA and their storage conformation are required. Despite previously validated evidences on the disturbance of the normal life cycle and lipid homeostasis by the environmental stressors (e.g., obesogens, salinity, temperature, pCO2, and nutrients) in the aquatic invertebrates, the mechanism behind these effects are still poorly understood. To overcome this limitation, omics approaches such as transcriptomic and proteomic analyses have been used, but there are still gaps in our knowledge on aquatic invertebrates as well as the lipidome. This paper provides a deeper understanding of lipid metabolism in aquatic invertebrates.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
17
|
Lee MC, Park JC, Yoon DS, Han J, Kang S, Kamizono S, Om AS, Shin KH, Hagiwara A, Lee JS. Aging extension and modifications of lipid metabolism in the monogonont rotifer Brachionus koreanus under chronic caloric restriction. Sci Rep 2018; 8:1741. [PMID: 29379054 PMCID: PMC5789037 DOI: 10.1038/s41598-018-20108-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
To examine the interrelationship of aging extension and modification of lipid metabolism under chronic caloric restriction (CCR; reduced concentration of the green algae Tetraselmis suecica) in the monogonont rotifer Brachionus koreanus, we assessed life cycle parameters, fatty acid composition, and expression of sirtuin and genes related to lipid metabolism. B. koreanus in the 5% T. suecica group showed an increased life span but decreased reproduction. Based on this finding, we chose 5% T. suecica for further experiments and compared the data with those for 100% T. suecica. Upregulation of sirtuin gene expression was observed under CCR. In addition, despite the reduction in the amount of total fatty acid (FA) and the area of triacylglycerol, increases in the ratios of saturated fatty acid and monounsaturated fatty acid (MUFA) to total FA in 5%-exposed B. koreanus were observed. Furthermore, mRNA expression analysis confirmed that CCR promoted the synthesis of MUFA through Δ9 desaturase. Moreover, expression of the docosahexaenoic acid (DHA) synthesizing gene Δ4 desaturase was also upregulated, together with DHA content. These data suggest that CCR modified protein acetylation and lipid metabolism, leading to a decrease in reproduction and consequently resulting in life span extension.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sujin Kang
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, South Korea
| | - Shohei Kamizono
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Ae-Son Om
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul, 04763, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
18
|
Vaughan KL, Kaiser T, Peaden R, Anson RM, de Cabo R, Mattison JA. Caloric Restriction Study Design Limitations in Rodent and Nonhuman Primate Studies. J Gerontol A Biol Sci Med Sci 2017; 73:48-53. [PMID: 28977341 DOI: 10.1093/gerona/glx088] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/05/2017] [Indexed: 11/14/2022] Open
Abstract
For a century, we have known that caloric restriction influences aging in many species. However, only recently it was firmly established that the effect is not entirely dependent on the calories provided. Instead, rodent and nonhuman primate models have shown that the rate of aging depends on other variables, including the macronutrient composition of the diet, the amount of time spent in the restricted state, age of onset, the gender and genetic background, and the particular feeding protocol for the control group. The field is further complicated when attempts are made to compare studies across different laboratories, which seemingly contradict each other. Here, we argue that some of the contradictory findings are most likely due to methodological differences. This review focuses on the four methodological differences identified in a recent comparative report from the National Institute on Aging and University of Wisconsin nonhuman primate studies, namely feeding regimen, diet composition, age of onset, and genetics. These factors, that may be influencing the effects of a calorie restriction intervention, are highlighted in the rodent model to draw parallels and elucidate findings reported in a higher species, nonhuman primates.
Collapse
Affiliation(s)
- Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, Dickerson, Maryland.,SoBran BioSciences, SoBran Inc., Burtonsville, Maryland
| | - Tamzin Kaiser
- Translational Gerontology Branch, National Institute on Aging, Dickerson, Maryland.,Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Robert Peaden
- Translational Gerontology Branch, National Institute on Aging, Dickerson, Maryland.,Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - R Michael Anson
- Translational Gerontology Branch, National Institute on Aging, Dickerson, Maryland.,Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Dickerson, Maryland.,Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Dickerson, Maryland
| |
Collapse
|
19
|
Picca A, Pesce V, Lezza AMS. Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 2017; 12:1887-1902. [PMID: 29184395 PMCID: PMC5685139 DOI: 10.2147/cia.s126458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complexity of aging is hard to be captured. However, apart from its tissue-specific features, a structural and functional progressive decline of the whole organism that leads to death, often preceded by a phase of chronic morbidity, characterizes the common process of aging. Therefore, the research goal of scientists in the field moved from the search for strategies able to extend longevity to those ensuring healthy aging associated with a longer lifespan referred to as “healthspan”. The aging process is plastic and can be tuned by multiple mechanisms including dietary and genetic interventions. To date, the most robust approach, efficient in warding off the cellular markers of aging, is calorie restriction (CR). Here, after a preliminary presentation of the major debate originated by CR, we concisely overviewed the recent results of CR treatment on humans. We also provided an update on the molecular mechanisms involved by CR and the effects on some of the age-associated cellular markers. We finally reviewed a number of tested CR mimetics and concluded with an evaluation of future applications of such dietary approach.
Collapse
Affiliation(s)
- Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | |
Collapse
|
20
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
21
|
Scialò F, Sriram A, Naudí A, Ayala V, Jové M, Pamplona R, Sanz A. Target of rapamycin activation predicts lifespan in fruit flies. Cell Cycle 2016; 14:2949-58. [PMID: 26259964 PMCID: PMC4630862 DOI: 10.1080/15384101.2015.1071745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory.
Collapse
Affiliation(s)
- Filippo Scialò
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| | - Ashwin Sriram
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| | - Alba Naudí
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Victoria Ayala
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Mariona Jové
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Reinald Pamplona
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Alberto Sanz
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| |
Collapse
|
22
|
Heden TD, Neufer PD, Funai K. Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria. Trends Endocrinol Metab 2016; 27:553-562. [PMID: 27370525 PMCID: PMC4958499 DOI: 10.1016/j.tem.2016.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Skeletal muscle mitochondria are highly dynamic and are capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism.
Collapse
Affiliation(s)
- Timothy D Heden
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Katsuhiko Funai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
23
|
Calvo‐Rubio M, Burón MI, López‐Lluch G, Navas P, de Cabo R, Ramsey JJ, Villalba JM, González‐Reyes JA. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. Aging Cell 2016; 15:477-87. [PMID: 26853994 PMCID: PMC4854917 DOI: 10.1111/acel.12451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 01/09/2023] Open
Abstract
Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents.
Collapse
Affiliation(s)
- Miguel Calvo‐Rubio
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| | - Mª Isabel Burón
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| | - Guillermo López‐Lluch
- Centro Andaluz de Biología del DesarrolloCIBERERInstituto de Salud Carlos IIIUniversidad Pablo de Olavide‐CSICSevillaSpain
| | - Plácido Navas
- Centro Andaluz de Biología del DesarrolloCIBERERInstituto de Salud Carlos IIIUniversidad Pablo de Olavide‐CSICSevillaSpain
| | - Rafael de Cabo
- Translational Gerontology BranchNational Institute of AgingNational Institutes of HealthBaltimoreMDUSA
| | - Jon J. Ramsey
- VM Molecular BiosciencesUniversity of CaliforniaDavisCAUSA
| | - José M. Villalba
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| | - José A. González‐Reyes
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| |
Collapse
|
24
|
López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol 2016; 594:2043-60. [PMID: 26607973 PMCID: PMC4834802 DOI: 10.1113/jp270543] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022] Open
Abstract
Ageing causes loss of function in tissues and organs, is accompanied by a chronic inflammatory process and affects life- and healthspan. Calorie restriction (CR) is a non-genetic intervention that prevents age-associated diseases and extends longevity in most of the animal models studied so far. CR produces a pleiotropic effect and improves multiple metabolic pathways, generating benefits to the whole organism. Among the effects of CR, modulation of mitochondrial activity and a decrease in oxidative damage are two of the hallmarks. Oxidative damage is reduced by the induction of endogenous antioxidant systems and modulation of the peroxidability index in cell membranes. Mitochondrial activity changes are regulated by inhibition of IGF-1 and Target of Rapamycin (TOR)-dependent activities and activation of AMP-dependent kinase (AMPK) and the sirtuin family of proteins. The activity of PGC-1α and FoxO is regulated by these systems and is involved in mitochondria biogenesis, oxidative metabolism activity and mitochondrial turnover. The use of mimetics and the regulation of common factors have demonstrated that these molecular pathways are essential to explain the effect of CR in the organism. Finally, the anti-inflammatory effect of CR is an interesting emerging factor to be taken into consideration. In the present revision we focus on the general effect of CR and other mimetics in longevity, focusing especially on the cardiovascular system and skeletal muscle.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| | - Plácido Navas
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| |
Collapse
|
25
|
Jové M, Naudí A, Gambini J, Borras C, Cabré R, Portero-Otín M, Viña J, Pamplona R. A Stress-Resistant Lipidomic Signature Confers Extreme Longevity to Humans. J Gerontol A Biol Sci Med Sci 2016; 72:30-37. [DOI: 10.1093/gerona/glw048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/25/2016] [Indexed: 12/31/2022] Open
|
26
|
Speakman JR, Mitchell SE, Mazidi M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol 2016; 86:28-38. [PMID: 27006163 DOI: 10.1016/j.exger.2016.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/29/2023]
Abstract
Almost exactly 100years ago Osborne and colleagues demonstrated that restricting the food intake of a small number of female rats extended their lifespan. In the 1930s experiments on the impact of diet on lifespan were extended by Slonaker, and subsequently McCay. Slonaker concluded that there was a strong impact of protein intake on lifespan, while McCay concluded that calories are the main factor causing differences in lifespan when animals are restricted (Calorie restriction or CR). Hence from the very beginning the question of whether food restriction acts on lifespan via reduced calorie intake or reduced protein intake was disputed. Subsequent work supported the idea that calories were the dominant factor. More recently, however, this role has again been questioned, particularly in studies of insects. Here we review the data regarding previous studies of protein and calorie restriction in rodents. We show that increasing CR (with simultaneous protein restriction: PR) increases lifespan, and that CR with no PR generates an identical effect. None of the residual variation in the impact of CR (with PR) on lifespan could be traced to variation in macronutrient content of the diet. Other studies show that low protein content in the diet does increase median lifespan, but the effect is smaller than the CR effect. We conclude that CR is a valid phenomenon in rodents that cannot be explained by changes in protein intake, but that there is a separate phenomenon linking protein intake to lifespan, which acts over a different range of protein intakes than is typical in CR studies. This suggests there may be a fundamental difference in the responses of insects and rodents to CR. This may be traced to differences in the physiology of these groups, or reflect a major methodological difference between 'restriction' studies performed on rodents and insects. We suggest that studies where the diet is supplied ad libitum, but diluted with inert components, should perhaps be called dietary or caloric dilution, rather than dietary or caloric restriction, to distinguish these potentially important methodological differences.
Collapse
Affiliation(s)
- J R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - S E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - M Mazidi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
López-Domínguez JA, Cánovas Á, Medrano JF, Islas-Trejo A, Kim K, Taylor SL, Villalba JM, López-Lluch G, Navas P, Ramsey JJ. Omega-3 fatty acids partially revert the metabolic gene expression profile induced by long-term calorie restriction. Exp Gerontol 2016; 77:29-37. [PMID: 26875793 DOI: 10.1016/j.exger.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 11/18/2022]
Abstract
Calorie restriction (CR) consistently extends longevity and delays age-related diseases across several animal models. We have previously shown that different dietary fat sources can modulate life span and mitochondrial ultrastructure, function and membrane fatty acid composition in mice maintained on a 40% CR. In particular, animals consuming lard as the main fat source (CR-Lard) lived longer than CR mice consuming diets with soybean oil (CR-Soy) or fish oil (CR-Fish) as the predominant lipid source. In the present work, a transcriptomic analysis in the liver and skeletal muscle was performed in order to elucidate possible mechanisms underlying the changes in energy metabolism and longevity induced by dietary fat in CR mice. After 8 months of CR, transcription downstream of several mediators of inflammation was inhibited in liver. In contrast, proinflammatory signaling was increased in the CR-Fish versus other CR groups. Dietary fish oil induced a gene expression pattern consistent with increased transcriptional regulation by several cytokines (TNF, GM-CSF, TGF-β) and sex hormones when compared to the other CR groups. The CR-Fish also had lower expression of genes involved in fatty acid biosynthesis and increased expression of mitochondrial and peroxisomal fatty acid β-oxidation genes than the other CR diet groups. Our data suggest that a diet high in n-3 PUFA, partially reverts CR-related changes in gene expression of key processes, such as inflammation and steroid hormone signaling, and this may mitigate life span extension with CR in mice consuming diets high in fish oil.
Collapse
Affiliation(s)
| | - Ángela Cánovas
- Department of Animal Science, University of California, Davis, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, USA
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, USA
| | - Kyoungmi Kim
- Department of Public Health, School of Medicine, University of California, Davis, USA
| | - Sandra L Taylor
- Department of Public Health, School of Medicine, University of California, Davis, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
28
|
Schloesser A, Campbell G, Glüer CC, Rimbach G, Huebbe P. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity. Rejuvenation Res 2016; 18:30-9. [PMID: 25405871 DOI: 10.1089/rej.2014.1630] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.
Collapse
Affiliation(s)
- Anke Schloesser
- 1 Institute of Human Nutrition and Food Science, University of Kiel , Kiel, Germany
| | | | | | | | | |
Collapse
|
29
|
Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L. Reconsidering the Role of Mitochondria in Aging. J Gerontol A Biol Sci Med Sci 2015; 70:1334-42. [PMID: 25995290 DOI: 10.1093/gerona/glv070] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction has long been considered a major contributor to aging and age-related diseases. Harman's Mitochondrial Free Radical Theory of Aging postulated that somatic mitochondrial DNA mutations that accumulate over the life span cause excessive production of reactive oxygen species that damage macromolecules and impair cell and tissue function. Indeed, studies have shown that maximal oxidative capacity declines with age while reactive oxygen species production increases. Harman's hypothesis has been seriously challenged by recent studies showing that reactive oxygen species evoke metabolic health and longevity, perhaps through hormetic mechanisms that include autophagy. The purpose of this review is to scan the ever-growing literature on mitochondria from the perspective of aging research and try to identify priority questions that should be addressed in future research. METHODS A systematic search of peer-reviewed studies was performed using PubMed. Search terms included (i) mitochondria or mitochondrial; (ii) aging, ageing, older adults or elderly; and (iii) reactive oxygen species, mitochondria dynamics, mitochondrial proteostasis, cytosol, mitochondrial-associated membranes, redox homeostasis, electron transport chain, electron transport chain efficiency, epigenetic regulation, DNA heteroplasmy. RESULTS The importance of mitochondrial biology as a trait d'union between the basic biology of aging and the pathogenesis of age-related diseases is stronger than ever, although the emphasis has moved from reactive oxygen species production to other aspects of mitochondrial physiology, including mitochondrial biogenesis and turnover, energy sensing, apoptosis, senescence, and calcium dynamics. CONCLUSIONS Mitochondria could play a key role in the pathophysiology of aging or in the earlier stages of some events that lead to the aging phenotype. Therefore, mitochondria will increasingly be targeted to prevent and treat chronic diseases and to promote healthy aging.
Collapse
Affiliation(s)
| | | | | | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Elisa Fabbri
- Translational Gerontology Branch, and Department of Medical and Surgical Sciences, University of Bologna, Italy 40126
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain 41013
| | | |
Collapse
|
30
|
Villalba JM, López-Domínguez JA, Chen Y, Khraiwesh H, González-Reyes JA, Del Río LF, Gutiérrez-Casado E, Del Río M, Calvo-Rubio M, Ariza J, de Cabo R, López-Lluch G, Navas P, Hagopian K, Burón MI, Ramsey JJ. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice. Biogerontology 2015; 16:655-70. [PMID: 25860863 DOI: 10.1007/s10522-015-9572-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/03/2015] [Indexed: 12/26/2022]
Abstract
The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|