1
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
2
|
Mathé J, Brochu S, Adam D, Brochiero E, Perreault C. Sex and disease regulate major histocompatibility complex class I expression in human lung epithelial cells. Physiol Rep 2024; 12:e70025. [PMID: 39223101 PMCID: PMC11368564 DOI: 10.14814/phy2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present peptides to CD8+ T-cells for immunosurveillance of infection and cancer. Recent studies indicate lineage-specific heterogeneity in MHC I expression. While respiratory diseases rank among the leading causes of mortality, studies in mice have shown that lung epithelial cells (LECs) express the lowest levels of MHC I in the lung. This study aims to answer three questions: (i) Do human LECs express low levels of MHC I? (ii) Is LEC MHC I expression modulated in chronic respiratory diseases? (iii) Which factors regulate MHC I levels in human LECs? We analyzed human LECs from parenchymal explants using single-cell RNA sequencing and immunostaining. We confirmed low constitutive MHC I expression in human LECs, with significant upregulation in chronic respiratory diseases. We observed a sexual dimorphism, with males having higher MHC I levels under steady-state conditions, likely due to differential redox balance. Our study unveils the complex interplay between MHC I expression, sex, and respiratory disease. Since MHC I upregulation contributes to the development of immunopathologies in other models, we propose that it may have a similar impact on chronic lung disease.
Collapse
Affiliation(s)
- Justine Mathé
- Institute for Research in Immunology and Cancer
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Damien Adam
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébecCanada
| | - Emmanuelle Brochiero
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébecCanada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
3
|
Staels W, Berthault C, Bourgeois S, Laville V, Lourenço C, De Leu N, Scharfmann R. Comprehensive alpha, beta, and delta cell transcriptomics reveal an association of cellular aging with MHC class I upregulation. Mol Metab 2024; 87:101990. [PMID: 39009220 PMCID: PMC11327396 DOI: 10.1016/j.molmet.2024.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of a purification method developed for isolating alpha, beta, and delta cells from pancreatic islets of adult mice, extending its application to islets from newborn and aged mice. Furthermore, it sought to examine transcriptome dynamics in mouse pancreatic endocrine islet cells throughout postnatal development and to validate age-related alterations within these cell populations. METHODS We leveraged the high surface expression of CD71 on beta cells and CD24 on delta cells to FACS-purify alpha, beta, and delta cells from newborn (1-week-old), adult (12-week-old), and old (18-month-old) mice. Bulk RNA sequencing was conducted on these purified cell populations, and subsequent bioinformatic analyses included differential gene expression, overrepresentation, and intersection analysis. RESULTS Alpha, beta, and delta cells from newborn and aged mice were successfully FACS-purified using the same method employed for adult mice. Our analysis of the age-related transcriptional changes in alpha, beta, and delta cell populations revealed a decrease in cell cycling and an increase in neuron-like features processes during the transition from newborn to adult mice. Progressing from adult to old mice, we identified an inflammatory gene signature related to aging (inflammaging) encompassing an increase in β-2 microglobulin and major histocompatibility complex (MHC) Class I expression. CONCLUSIONS Our study demonstrates the effectiveness of our cell sorting technique in purifying endocrine subsets from mouse islets at different ages. We provide a valuable resource for better understanding endocrine pancreas aging and identified an inflammaging gene signature with increased β-2 microglobulin and MHC Class I expression as a common hallmark of old alpha, beta, and delta cells, with potential implications for immune response regulation and age-related diabetes.
Collapse
Affiliation(s)
- W Staels
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France; Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - C Berthault
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - S Bourgeois
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - V Laville
- Stem Cells and Development Unit, Institut Pasteur, Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France; Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - C Lourenço
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - N De Leu
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - R Scharfmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
4
|
Gottipati MK, D'Amato AR, Saksena J, Popovich PG, Wang Y, Gilbert RJ. Delayed administration of interleukin-4 coacervate alleviates the neurotoxic phenotype of astrocytes and promotes functional recovery after a contusion spinal cord injury. J Neural Eng 2024; 21:046052. [PMID: 39029499 DOI: 10.1088/1741-2552/ad6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. Macrophages and astrocytes play a crucial role in the aftermath of a traumatic spinal cord injury (SCI). Infiltrating macrophages adopt a pro-inflammatory phenotype while resident astrocytes adopt a neurotoxic phenotype at the injury site, both of which contribute to neuronal death and inhibit axonal regeneration. The cytokine interleukin-4 (IL-4) has shown significant promise in preclinical models of SCI by alleviating the macrophage-mediated inflammation and promoting functional recovery. However, its effect on neurotoxic reactive astrocytes remains to be elucidated, which we explored in this study. We also studied the beneficial effects of a sustained release of IL-4 from an injectable biomaterial compared to bolus administration of IL-4.Approach. We fabricated a heparin-based coacervate capable of anchoring and releasing bioactive IL-4 and tested its efficacyin vitroandin vivo. Main results. We show that IL-4 coacervate is biocompatible and drives a robust anti-inflammatory macrophage phenotype in culture. We also show that IL-4 and IL-4 coacervate can alleviate the reactive neurotoxic phenotype of astrocytes in culture. Finally, using a murine model of contusion SCI, we show that IL-4 and IL-4 coacervate, injected intraspinally 2 d post-injury, can reduce macrophage-mediated inflammation, and alleviate neurotoxic astrocyte phenotype, acutely and chronically, while also promoting neuroprotection with significant improvements in hindlimb locomotor recovery. We observed that IL-4 coacervate can promote a more robust regenerative macrophage phenotypein vitro, as well as match its efficacyin vivo,compared to bolus IL-4.Significance. Our work shows the promise of coacervate as a great choice for local and prolonged delivery of cytokines like IL-4. We support this by showing that the coacervate can release bioactive IL-4, which acts on macrophages and astrocytes to promote a pro-regenerative environment following a SCI leading to robust neuroprotective and functional outcomes.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Anthony R D'Amato
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Jayant Saksena
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| |
Collapse
|
5
|
Seasons GM, Pellow C, Kuipers HF, Pike GB. Ultrasound and neuroinflammation: immune modulation via the heat shock response. Theranostics 2024; 14:3150-3177. [PMID: 38855178 PMCID: PMC11155413 DOI: 10.7150/thno.96270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Current pharmacological therapeutic approaches targeting chronic inflammation exhibit transient efficacy, often with adverse effects, limiting their widespread use - especially in the context of neuroinflammation. Effective interventions require the consideration of homeostatic function, pathway dysregulation, and pleiotropic effects when evaluating therapeutic targets. Signalling molecules have multiple functions dependent on the immune context, and this complexity results in therapeutics targeting a single signalling molecule often failing in clinical translation. Additionally, the administration of non-physiologic levels of neurotrophic or anti-inflammatory factors can alter endogenous signalling, resulting in unanticipated effects. Exacerbating these challenges, the central nervous system (CNS) is isolated by the blood brain barrier (BBB), restricting the infiltration of many pharmaceutical compounds into the brain tissue. Consequently, there has been marked interest in therapeutic techniques capable of modulating the immune response in a pleiotropic manner; ultrasound remains on this frontier. While ultrasound has been used therapeutically in peripheral tissues - accelerating healing in wounds, bone fractures, and reducing inflammation - it is only recently that it has been applied to the CNS. The transcranial application of low intensity pulsed ultrasound (LIPUS) has successfully mitigated neuroinflammation in vivo, in models of neurodegenerative disease across a broad spectrum of ultrasound parameters. To date, the underlying biological effects and signalling pathways modulated by ultrasound are poorly understood, with a diverse array of reported molecules implicated. The distributed nature of the beneficial response to LIPUS implies the involvement of an, as yet, undetermined upstream signalling pathway, homologous to the protective effect of febrile range hyperthermia in chronic inflammation. As such, we review the heat shock response (HSR), a protective signalling pathway activated by thermal and mechanical stress, as the possible upstream regulator of the anti-inflammatory effects of ultrasound.
Collapse
Affiliation(s)
- Graham M. Seasons
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Carly Pellow
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Hedwich F. Kuipers
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Alberta, T2N 1N4, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
6
|
Qiu O, Zhao J, Shi Z, Li H, Wang S, Liao K, Tang M, Xie J, Huang X, Zhang W, Zhou L, Yang X, Zhou Z, Xu L, Huang R, Miao Y, Qiu Y, Lin Y. Asparagine endopeptidase deficiency mitigates radiation-induced brain injury by suppressing microglia-mediated neuronal senescence. iScience 2024; 27:109698. [PMID: 38655198 PMCID: PMC11035374 DOI: 10.1016/j.isci.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Mounting evidence supports the role of neuroinflammation in radiation-induced brain injury (RIBI), a chronic disease characterized by delayed and progressive neurological impairment. Asparagine endopeptidase (AEP), also known as legumain (LGMN), participates in multiple malignancies and neurodegenerative diseases and may potentially be involved in RIBI. Here, we found AEP expression was substantially elevated in the cortex and hippocampus of wild-type (Lgmn+/+) mice following whole-brain irradiation. Lgmn knockout (Lgmn-/-) alleviated neurological impairment caused by whole-brain irradiation by suppressing neuronal senescence. Bulk RNA and metabolomic sequencing revealed AEP's involvement in the antigen processing and presentation pathway and neuroinflammation. This was further confirmed by co-culturing Lgmn+/+ primary neurons with the conditioned media derived from irradiated Lgmn+/+ or Lgmn-/- primary microglia. Furthermore, esomeprazole inhibited the enzymatic activity of AEP and RIBI. These findings identified AEP as a critical factor of neuroinflammation in RIBI, highlighting the prospect of targeting AEP as a therapeutic approach.
Collapse
Affiliation(s)
- Ouwen Qiu
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jianyi Zhao
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Zhonggang Shi
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Huan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Siyuan Wang
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Keman Liao
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Minchao Tang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi 530021, P.R. China
| | - Jieqiong Xie
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi 530007, P.R. China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Guangxi 530021, P.R. China
| | - Wenrui Zhang
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Li Zhou
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xi Yang
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Zhiyi Zhou
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Lei Xu
- Department of Radiation, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Renhua Huang
- Department of Radiation, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yifeng Miao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yongming Qiu
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yingying Lin
- Brain Injury Center, Shanghai Institute of Head Trauma, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
7
|
Liu G, Ma N, Cheng K, Feng Q, Ma X, Yue Y, Li Y, Zhang T, Gao X, Liang J, Zhang L, Wang X, Ren Z, Fu YX, Zhao X, Nie G. Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity. NATURE NANOTECHNOLOGY 2024; 19:387-398. [PMID: 38052943 DOI: 10.1038/s41565-023-01553-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
Trained immunity enhances the responsiveness of immune cells to subsequent infections or vaccinations. Here we demonstrate that pre-vaccination with bacteria-derived outer-membrane vesicles, which contain large amounts of pathogen-associated molecular patterns, can be used to potentiate, and enhance, tumour vaccination by trained immunity. Intraperitoneal administration of these outer-membrane vesicles to mice activates inflammasome signalling pathways and induces interleukin-1β secretion. The elevated interleukin-1β increases the generation of antigen-presenting cell progenitors. This results in increased immune response when tumour antigens are delivered, and increases tumour-antigen-specific T-cell activation. This trained immunity increased protection from tumour challenge in two distinct cancer models.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Lizhuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | | | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Djurišić M. Immune receptors and aging brain. Biosci Rep 2024; 44:BSR20222267. [PMID: 38299364 PMCID: PMC10866841 DOI: 10.1042/bsr20222267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.
Collapse
Affiliation(s)
- Maja Djurišić
- Departments of Biology, Neurobiology, and Bio-X, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
9
|
Shi YH, Li JQ, Min-Xu, Wang YY, Wang TH, Zuo ZF, Liu XZ. Bioinformatics-based Study on the Effects of Umbilical Cord Mesenchymal Stem Cells on the Aging Retina. Curr Stem Cell Res Ther 2024; 19:1497-1513. [PMID: 38204243 DOI: 10.2174/011574888x277276231215110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved. METHODS A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using β- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference. RESULTS β-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1β (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement. CONCLUSION This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.
Collapse
Affiliation(s)
- Ya-Hui Shi
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jun-Qi Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Min-Xu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yu-Ying Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ting-Hua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Zhong-Fu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Xue-Zheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, 121000, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
10
|
Reid MM, Kautzmann MAI, Andrew G, Obenaus A, Mukherjee PK, Khoutorova L, Ji JX, Roque CR, Oria RB, Habeb BF, Belayev L, Bazan NG. NPD1 Plus RvD1 Mediated Ischemic Stroke Penumbra Protection Increases Expression of Pro-homeostatic Microglial and Astrocyte Genes. Cell Mol Neurobiol 2023; 43:3555-3573. [PMID: 37270727 PMCID: PMC10477115 DOI: 10.1007/s10571-023-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.
Collapse
Affiliation(s)
- Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Gethein Andrew
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92618, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Cassia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Reinaldo B Oria
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Bola F Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St, Suite 9B16, Room 935A, New Orleans, LA, 70112, USA.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, Neuroscience Center of Excellence, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Kellogg CM, Pham K, Machalinski AH, Porter HL, Blankenship HE, Tooley KB, Stout MB, Rice HC, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Microglial MHC-I induction with aging and Alzheimer's is conserved in mouse models and humans. GeroScience 2023; 45:3019-3043. [PMID: 37393197 PMCID: PMC10643718 DOI: 10.1007/s11357-023-00859-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Major histocompatibility complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses, but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here, we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating ribosome affinity purification-qPCR analysis of 3-6- and 18-22-month-old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I-binding leukocyte immunoglobulin-like (Lilrs) and paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell -autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A, suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.
Collapse
Affiliation(s)
- Collyn M Kellogg
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Adeline H Machalinski
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Hunter L Porter
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Harris E Blankenship
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J Beckstead
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Sarah R Ocañas
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
段 婷, 初 金, 胡 斐. [Identification of Peripheral Blood GZMK + CD8 + T Cells As Biomarkers of Alzheimer's Disease Based on Single-Cell Transcriptome]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:863-873. [PMID: 37866940 PMCID: PMC10579064 DOI: 10.12182/20230960107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 10/24/2023]
Abstract
Objective Based on single-cell RNA sequencing (scRNA-seq) to explore immune characteristics in the peripheral blood of patients with Alzheimer's disease (AD) as biomarkers. Methods GSE168522, the scRNA-seq dataset of AD peripheral blood immune cells, was downloaded from the Gene Expression Omnibus (GEO) database and was analyzed in the RAD-Blood web server (http://www.bioinform.cn/RAD-Blood/). The changes in blood cell composition in AD patients were analyzed. The abnormal communications between different types of cells in AD patients were investigated by the CellChat R package. Results There were two kinds of CD8 + T cells in the blood of AD patients and healthy individuals, one of which highly expressed granzyme K ( GZMK) (false discovery rate [FDR]<0.05), and the other highly expressed GZMA, GZMB, and GZMH (FDR<0.05). In the blood of AD patients, the content of GZMK + CD8 + T cells was increased by 32.9% ( P=5.15E-21), their interactions with other cell types were increased, and they might be associated with AD through the abnormal signal transduction of major histocompatibility complex class Ⅰ (MHC-Ⅰ). Erythrocyte provided the main ligands, that are, human leukocyte antigen (HLA) class Ⅰ molecules, including HLA- A, HLA- B, HLA- C, and HLA- E, for the abnormal MHC-Ⅰ signaling pathway of GZMK + CD8 + T cells. The RESISTIN signaling pathway was specifically enriched in the blood of AD patients. Conclusion The increased content of peripheral blood GZMK + CD8 + T cells, the increased interaction between GZMK + CD8 + T cells and erythrocytes, and the enhanced RESISTIN pathway are potential blood biomarkers of AD.
Collapse
Affiliation(s)
- 婷婷 段
- 武汉科技大学医学院 脑科学先进技术研究院 (武汉 430081)Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - 金语 初
- 武汉科技大学医学院 脑科学先进技术研究院 (武汉 430081)Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - 斐斐 胡
- 武汉科技大学医学院 脑科学先进技术研究院 (武汉 430081)Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
- 武汉科技大学附属亚洲心脏病医院 (武汉 430022)Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
13
|
Ocañas SR, Pham KD, Cox JEJ, Keck AW, Ko S, Ampadu FA, Porter HL, Ansere VA, Kulpa A, Kellogg CM, Machalinski AH, Thomas MA, Wright Z, Chucair-Elliott AJ, Freeman WM. Microglial senescence contributes to female-biased neuroinflammation in the aging mouse hippocampus: implications for Alzheimer's disease. J Neuroinflammation 2023; 20:188. [PMID: 37587511 PMCID: PMC10433617 DOI: 10.1186/s12974-023-02870-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Microglia, the brain's principal immune cells, have been implicated in the pathogenesis of Alzheimer's disease (AD), a condition shown to affect more females than males. Although sex differences in microglial function and transcriptomic programming have been described across development and in disease models of AD, no studies have comprehensively identified the sex divergences that emerge in the aging mouse hippocampus. Further, existing models of AD generally develop pathology (amyloid plaques and tau tangles) early in life and fail to recapitulate the aged brain environment associated with late-onset AD. Here, we examined and compared transcriptomic and translatomic sex effects in young and old murine hippocampal microglia. METHODS Hippocampal tissue from C57BL6/N and microglial NuTRAP mice of both sexes were collected at young (5-6 month-old [mo]) and old (22-25 mo) ages. Cell sorting and affinity purification techniques were used to isolate the microglial transcriptome and translatome for RNA-sequencing and differential expression analyses. Flow cytometry, qPCR, and imaging approaches were used to confirm the transcriptomic and translatomic findings. RESULTS There were marginal sex differences identified in the young hippocampal microglia, with most differentially expressed genes (DEGs) restricted to the sex chromosomes. Both sex chromosomally and autosomally encoded sex differences emerged with aging. These sex DEGs identified at old age were primarily female-biased and enriched in senescent and disease-associated microglial signatures. Normalized gene expression values can be accessed through a searchable web interface ( https://neuroepigenomics.omrf.org/ ). Pathway analyses identified upstream regulators induced to a greater extent in females than in males, including inflammatory mediators IFNG, TNF, and IL1B, as well as AD-risk genes TREM2 and APP. CONCLUSIONS These data suggest that female microglia adopt disease-associated and senescent phenotypes in the aging mouse hippocampus, even in the absence of disease pathology, to a greater extent than males. This sexually divergent microglial phenotype may explain the difference in susceptibility and disease progression in the case of AD pathology. Future studies will need to explore sex differences in microglial heterogeneity in response to AD pathology and determine how sex-specific regulators (i.e., sex chromosomal or hormonal) elicit these sex effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Jillian E J Cox
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alex W Keck
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Sunghwan Ko
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Felix A Ampadu
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter L Porter
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Victor A Ansere
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam Kulpa
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Collyn M Kellogg
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adeline H Machalinski
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Manu A Thomas
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Zsabre Wright
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ana J Chucair-Elliott
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Willard M Freeman
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Polcz VE, Barrios EL, Chapin B, Price C, Nagpal R, Chakrabarty P, Casadesus G, Foster T, Moldawer L, Efron PA. Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clin Sci (Lond) 2023; 137:963-978. [PMID: 37337946 PMCID: PMC10285043 DOI: 10.1042/cs20220555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.
Collapse
Affiliation(s)
- Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Benjamin Chapin
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- Florida State University College of Health and Human Sciences, Tallahassee, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Thomas Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
15
|
Mechin V, Pageat P, Boutry M, Teruel E, Portalier C, Asproni P. Does the Environmental Air Impact the Condition of the Vomeronasal Organ? A Mouse Model for Intensive Farming. Animals (Basel) 2023; 13:1902. [PMID: 37370413 DOI: 10.3390/ani13121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Chemical communication in mammals is ensured by exchanging chemical signals through the vomeronasal organ (VNO) and its ability to detect pheromones. The alteration of this organ has been proven to impact animal life, participating in the onset of aggressive behaviors in social groups. To date, few studies have highlighted the possible causes leading to these alterations, and the farming environment has not been investigated, even though irritant substances such as ammonia are known to induce serious damage in the respiratory tract. The goal of this study was to investigate the environmental impact on the VNO structure. Thirty mice were split into three groups, one housed in normal laboratory conditions and the other two in confined environments, with or without the release of litter ammonia. VNOs were analyzed using histology and immunohistochemistry to evaluate the effect of different environments on their condition. Both restricted conditions induced VNO alterations (p = 0.0311), soft-tissue alteration (p = 0.0480), and nonsensory epithelium inflammation (p = 0.0024). There was glycogen accumulation (p < 0.0001), the olfactory marker protein was underexpressed (p < 0.0001), and Gαi2 positivity remained unchanged while Gαo expression was upregulated in confined conditions. VNO conditions seemed to worsen with ammonia, even if not always significantly. These murine model results suggest that the housing environment can strongly impact VNO conditions, providing novel insights for improving indoor farming systems.
Collapse
Affiliation(s)
- Violaine Mechin
- Tissular Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France
| | - Patrick Pageat
- Research and Education Board, IRSEA, Institute of Research in Semiochemisrty and Applied Ethology, 84400 Apt, France
| | - Marion Boutry
- Tissular Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France
| | - Eva Teruel
- Statistics and Data Management Service, IRSEA, Institute of Research in Semiochemisrty and Applied Ethology, 84400 Apt, France
| | - Céline Portalier
- Animal Experimentation Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France
| | - Pietro Asproni
- Tissular Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France
| |
Collapse
|
16
|
Kellogg CM, Pham K, Machalinski AH, Porter HL, Blankenship HE, Tooley K, Stout MB, Rice HC, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Microglial MHC-I induction with aging and Alzheimer's is conserved in mouse models and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531435. [PMID: 36945372 PMCID: PMC10028873 DOI: 10.1101/2023.03.07.531435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Major Histocompatibility Complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating Ribosome Affinity Purification-qPCR analysis of 3-6 and 18-22 month old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m , H2-D1 , H2-K1 , H2-M3 , H2-Q6 , and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I binding Leukocyte Immunoglobulin-like (Lilrs) and Paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell-autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A , suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.
Collapse
Affiliation(s)
- Collyn M. Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Kevin Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Hunter L. Porter
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Harris E. Blankenship
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Heather C. Rice
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J. Beckstead
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Sarah R. Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Willard M. Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| |
Collapse
|
17
|
Ocañas SR, Pham KD, Cox JEJ, Keck AW, Ko S, Ampadu FA, Porter HL, Ansere VA, Kulpa A, Kellogg CM, Machalinski AH, Chucair-Elliott AJ, Freeman WM. Microglial senescence contributes to female-biased neuroinflammation in the aging mouse hippocampus: implications for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531562. [PMID: 36945656 PMCID: PMC10028852 DOI: 10.1101/2023.03.07.531562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Background Microglia, the brain's principal immune cells, have been implicated in the pathogenesis of Alzheimer's disease (AD), a condition shown to affect more females than males. Although sex differences in microglial function and transcriptomic programming have been described across development and in disease models of AD, no studies have comprehensively identified the sex divergences that emerge in the aging mouse hippocampus. Further, existing models of AD generally develop pathology (amyloid plaques and tau tangles) early in life and fail to recapitulate the aged brain environment associated with late-onset AD. Here, we examined and compared transcriptomic and translatomic sex effects in young and old murine hippocampal microglia. Methods Hippocampal tissue from C57BL6/N and microglial NuTRAP mice of both sexes were collected at young (5-6 month-old [mo]) and old (22-25 mo) ages. Cell sorting and affinity purification techniques were used to isolate the microglial transcriptome and translatome for RNA-sequencing and differential expression analyses. Flow cytometry, qPCR, and imaging approaches were used to confirm the transcriptomic and translatomic findings. Results There were marginal sex differences identified in the young hippocampal microglia, with most differentially expressed genes (DEGs) restricted to the sex chromosomes. Both sex chromosomally-and autosomally-encoded sex differences emerged with aging. These sex DEGs identified at old age were primarily female-biased and enriched in senescent and disease-associated microglial signatures. Normalized gene expression values can be accessed through a searchable web interface ( https://neuroepigenomics.omrf.org/ ). Pathway analyses identified upstream regulators induced to a greater extent in females than in males, including inflammatory mediators IFNG, TNF, and IL1B, as well as AD-risk genes TREM2 and APP. Conclusions These data suggest that female microglia adopt disease-associated and senescent phenotypes in the aging mouse hippocampus, even in the absence of disease pathology, to a greater extent than males. This sexually divergent microglial phenotype may explain the difference in susceptibility and disease progression in the case of AD pathology. Future studies will need to explore sex differences in microglial heterogeneity in response to AD pathology and determine how sex-specific regulators (i.e., sex chromosomal or hormonal) elicit these sex effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Jillian E J Cox
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Alex W Keck
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Sunghwan Ko
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Felix A Ampadu
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Hunter L Porter
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Adam Kulpa
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| |
Collapse
|
18
|
Barmpagiannos K, Theotokis P, Petratos S, Pagnin M, Einstein O, Kesidou E, Boziki M, Artemiadis A, Bakirtzis C, Grigoriadis N. The Diversity of Astrocyte Activation during Multiple Sclerosis: Potential Cellular Targets for Novel Disease Modifying Therapeutics. Healthcare (Basel) 2023; 11:healthcare11111585. [PMID: 37297725 DOI: 10.3390/healthcare11111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Neuroglial cells, and especially astrocytes, constitute the most varied group of central nervous system (CNS) cells, displaying substantial diversity and plasticity during development and in disease states. The morphological changes exhibited by astrocytes during the acute and chronic stages following CNS injury can be characterized more precisely as a dynamic continuum of astrocytic reactivity. Different subpopulations of reactive astrocytes may be ascribed to stages of degenerative progression through their direct pathogenic influence upon neurons, neuroglia, the blood-brain barrier, and infiltrating immune cells. Multiple sclerosis (MS) constitutes an autoimmune demyelinating disease of the CNS. Despite the previously held notion that reactive astrocytes purely form the structured glial scar in MS plaques, their continued multifaceted participation in neuroinflammatory outcomes and oligodendrocyte and neuronal function during chronicity, suggest that they may be an integral cell type that can govern the pathophysiology of MS. From a therapeutic-oriented perspective, astrocytes could serve as key players to limit MS progression, once the integral astrocyte-MS relationship is accurately identified. This review aims toward delineating the current knowledge, which is mainly focused on immunomodulatory therapies of the relapsing-remitting form, while shedding light on uncharted approaches of astrocyte-specific therapies that could constitute novel, innovative applications once the role of specific subgroups in disease pathogenesis is clarified.
Collapse
Affiliation(s)
- Konstantinos Barmpagiannos
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| |
Collapse
|
19
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
20
|
Huang YM, Ma YH, Gao PY, Wang ZB, Huang LY, Hou JH, Tan L, Yu JT. Plasma β 2-microglobulin and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: the CABLE study. Alzheimers Res Ther 2023; 15:69. [PMID: 37005674 PMCID: PMC10067214 DOI: 10.1186/s13195-023-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Previous studies have suggested a correlation between elevated levels of β2-microglobulin (B2M) and cognitive impairment. However, the existing evidence is insufficient to establish a conclusive relationship. This study aims to analyze the link of plasma B2M to cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers and cognition. METHODS To track the dynamics of plasma B2M in preclinical AD, 846 cognitively healthy individuals in the Chinese Alzheimer's Biomarker and LifestylE (CABLE) cohort were divided into four groups (suspected non-AD pathology [SNAP], 2, 1, 0) according to the NIA-AA criteria. Multiple linear regression models were employed to examine the plasma B2M's relationship with cognitive and CSF AD biomarkers. Causal mediation analysis was conducted through 10,000 bootstrapped iterations to explore the mediating effect of AD pathology on cognition. RESULTS We found that the levels of plasma B2M were increased in stages 1 (P = 0.0007) and 2 (P < 0.0001), in contrast to stage 0. In total participants, higher levels of B2M were associated with worse cognitive performance (P = 0.006 for MMSE; P = 0.012 for MoCA). Moreover, a higher level of B2M was associated with decreases in Aβ1-42 (P < 0.001) and Aβ1-42/Aβ1-40 (P = 0.015) as well as increases in T-tau/Aβ1-42 (P < 0.001) and P-tau/Aβ1-42 (P < 0.001). The subgroup analysis found B2M correlated with Aβ1-42 in non-APOE ε4 individuals (P < 0.001) but not in APOE ε4 carriers. Additionally, the link between B2M and cognition was partially mediated by Aβ pathology (percentage: 8.6 to 19.3%), whereas tau pathology did not mediate this effect. CONCLUSIONS This study demonstrated the association of plasma B2M with CSF AD biomarkers as well as a possible important role of Aβ pathology in the association between B2M and cognitive impairment, particularly in cognitively normal individuals. The results indicated that B2M could be a potential biomarker for preclinical AD and might have varied functions throughout various stages of preclinical AD progression.
Collapse
Affiliation(s)
- Yi-Ming Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jia-Hui Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- National Center for Neurological Diseases in China, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
21
|
Chucair-Elliott AJ, Ocañas SR, Pham K, Van Der Veldt M, Cheyney A, Stanford D, Gurley J, Elliott MH, Freeman WM. Translatomic response of retinal Müller glia to acute and chronic stress. Neurobiol Dis 2022; 175:105931. [PMID: 36423879 PMCID: PMC9875566 DOI: 10.1016/j.nbd.2022.105931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Analysis of retina cell type-specific epigenetic and transcriptomic signatures is crucial to understanding the pathophysiology of retinal degenerations such as age-related macular degeneration (AMD) and delineating cell autonomous and cell-non-autonomous mechanisms. We have discovered that Aldh1l1 is specifically expressed in the major macroglia of the retina, Müller glia, and, unlike the brain, is not expressed in retinal astrocytes. This allows use of Aldh1l1 cre drivers and Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) constructs for temporally controlled labeling and paired analysis of Müller glia epigenomes and translatomes. As validated through a variety of approaches, the Aldh1l1cre/ERT2-NuTRAP model provides Müller glia specific translatomic and epigenomic profiles without the need to isolate whole cells. Application of this approach to models of acute injury (optic nerve crush) and chronic stress (aging) uncovered few common Müller glia-specific transcriptome changes in inflammatory pathways, and mostly differential signatures for each stimulus. The expression of members of the IL-6 and integrin-linked kinase signaling pathways was enhanced in Müller glia in response to optic nerve crush but not aging. Unique changes in neuroinflammation and fibrosis signaling pathways were observed in response to aging but not with optic nerve crush. The Aldh1l1cre/ERT2-NuTRAP model allows focused molecular analyses of a single, minority cell type within the retina, providing more substantial effect sizes than whole tissue analyses. The NuTRAP model, nucleic acid isolation, and validation approaches presented here can be applied to any retina cell type for which a cell type-specific cre is available.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Van Der Veldt
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ashley Cheyney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Stanford
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jami Gurley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
22
|
Chitu V, Gökhan Ş, Stanley ER. Modeling CSF-1 receptor deficiency diseases - how close are we? FEBS J 2022; 289:5049-5073. [PMID: 34145972 PMCID: PMC8684558 DOI: 10.1111/febs.16085] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The role of colony-stimulating factor-1 receptor (CSF-1R) in macrophage and organismal development has been extensively studied in mouse. Within the last decade, mutations in the CSF1R have been shown to cause rare diseases of both pediatric (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis, OMIM #618476) and adult (CSF1R-related leukoencephalopathy, OMIM #221820) onset. Here we review the genetics, penetrance, and histopathological features of these diseases and discuss to what extent the animal models of Csf1r deficiency currently available provide systems in which to study the underlying mechanisms involved.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| |
Collapse
|
23
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
24
|
Kiss T, Nyúl-Tóth Á, DelFavero J, Balasubramanian P, Tarantini S, Faakye J, Gulej R, Ahire C, Ungvari A, Yabluchanskiy A, Wiley G, Garman L, Ungvari Z, Csiszar A. Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience 2022; 44:661-681. [PMID: 35098444 PMCID: PMC9135953 DOI: 10.1007/s11357-022-00521-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
There is strong evidence that aging is associated with an increased presence of senescent cells in the brain. The finding that treatment with senolytic drugs improves cognitive performance of aged laboratory mice suggests that increased cellular senescence is causally linked to age-related cognitive decline. The relationship between senescent cells and their relative locations within the brain is critical to understanding the pathology of age-related cognitive decline and dementia. To assess spatial distribution of cellular senescence in the aged mouse brain, spatially resolved whole transcriptome mRNA expression was analyzed in sections of brains derived from young (3 months old) and aged (28 months old) C57BL/6 mice while capturing histological information in the same tissue section. Using this spatial transcriptomics (ST)-based method, microdomains containing senescent cells were identified on the basis of their senescence-related gene expression profiles (i.e., expression of the senescence marker cyclin-dependent kinase inhibitor p16INK4A encoded by the Cdkn2a gene) and were mapped to different anatomical brain regions. We confirmed that brain aging is associated with increased cellular senescence in the white matter, the hippocampi and the cortical grey matter. Transcriptional analysis of the senescent cell-containing ST spots shows that presence of senescent cells is associated with a gene expression signature suggestive of neuroinflammation. GO enrichment analysis of differentially expressed genes in the outer region of senescent cell-containing ST spots ("neighboring ST spots") also identified functions related to microglia activation and neuroinflammation. In conclusion, senescent cells accumulate with age in the white matter, the hippocampi and cortical grey matter and likely contribute to the genesis of inflammatory foci in a paracrine manner.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- First Department of Pediatrics, Semmelweis University, HU, 1083, Budapest, Hungary.
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Janet Faakye
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Graham Wiley
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Theoretical Medicine Doctoral School, International Training Program in Geroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, Liu H, Guo W, Feng D, Qu Y. The Specific Role of Reactive Astrocytes in Stroke. Front Cell Neurosci 2022; 16:850866. [PMID: 35321205 PMCID: PMC8934938 DOI: 10.3389/fncel.2022.850866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are essential in maintaining normal brain functions such as blood brain barrier (BBB) homeostasis and synapse formation as the most abundant cell type in the central nervous system (CNS). After the stroke, astrocytes are known as reactive astrocytes (RAs) because they are stimulated by various damage-associated molecular patterns (DAMPs) and cytokines, resulting in significant changes in their reactivity, gene expression, and functional characteristics. RAs perform multiple functions after stroke. The inflammatory response of RAs may aggravate neuro-inflammation and release toxic factors to exert neurological damage. However, RAs also reduce excitotoxicity and release neurotrophies to promote neuroprotection. Furthermore, RAs contribute to angiogenesis and axonal remodeling to promote neurological recovery. Therefore, RAs' biphasic roles and mechanisms make them an effective target for functional recovery after the stroke. In this review, we summarized the dynamic functional changes and internal molecular mechanisms of RAs, as well as their therapeutic potential and strategies, in order to comprehensively understand the role of RAs in the outcome of stroke disease and provide a new direction for the clinical treatment of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
26
|
|
27
|
Rani A, Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Moldawer LL, Efron PA, Foster TC. Influence of age and sex on microRNA response and recovery in the hippocampus following sepsis. Aging (Albany NY) 2022; 14:728-746. [PMID: 35094981 PMCID: PMC8833110 DOI: 10.18632/aging.203868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar manner across age or sex and these few miR were generally associated with neuroprotection against inflammation. Similar to previous work examining transcription, young females exhibited a better recovery of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4 were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or resilience to cognitive impairment due to sepsis.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Stortz
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - McKenzie Hollen
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Dina Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.,Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
28
|
Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol 2021; 80:634-648. [PMID: 34363661 DOI: 10.1093/jnen/nlab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microglial activation during critical phases of brain development can result in short- and long-term consequences for neurological and psychiatric health. Several studies in humans and rodents have shown that microglial activation, leading to a transition from the homeostatic state toward a proinflammatory phenotype, has adverse effects on the developing brain and neurodevelopmental disorders. Targeting proinflammatory microglia may be an effective strategy for protecting the brain and attenuating neurodevelopmental disorders induced by inflammation. In this review we focus on the role of inflammation and the activation of immature microglia (pre-microglia) soon after birth in prematurity-associated neurodevelopmental disorders, and the specific features of pre-microglia during development. We also highlight the relevance of immunomodulatory strategies for regulating activated microglia in a rodent model of perinatal brain injury. An original neuroprotective approach involving a nanoparticle-based therapy and targeting microglia, with the aim of improving myelination and protecting the developing brain, is also addressed.
Collapse
Affiliation(s)
- Andrée Delahaye-Duriez
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Histologie-Embryologie-Cytogénétique, Bondy, France
| | - Adrien Dufour
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Cindy Bokobza
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Pierre Gressens
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | | |
Collapse
|
29
|
Zalocusky KA, Najm R, Taubes AL, Hao Y, Yoon SY, Koutsodendris N, Nelson MR, Rao A, Bennett DA, Bant J, Amornkul DEJ, Xu Q, An A, Cisne-Thomson O, Huang Y. Neuronal ApoE upregulates MHC-I expression to drive selective neurodegeneration in Alzheimer's disease. Nat Neurosci 2021; 24:786-798. [PMID: 33958804 PMCID: PMC9145692 DOI: 10.1038/s41593-021-00851-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Selective neurodegeneration is a critical causal factor in Alzheimer's disease (AD); however, the mechanisms that lead some neurons to perish, whereas others remain resilient, are unknown. We sought potential drivers of this selective vulnerability using single-nucleus RNA sequencing and discovered that ApoE expression level is a substantial driver of neuronal variability. Strikingly, neuronal expression of ApoE-which has a robust genetic linkage to AD-correlated strongly, on a cell-by-cell basis, with immune response pathways in neurons in the brains of wild-type mice, human ApoE knock-in mice and humans with or without AD. Elimination or over-expression of neuronal ApoE revealed a causal relationship among ApoE expression, neuronal MHC-I expression, tau pathology and neurodegeneration. Functional reduction of MHC-I ameliorated tau pathology in ApoE4-expressing primary neurons and in mouse hippocampi expressing pathological tau. These findings suggest a mechanism linking neuronal ApoE expression to MHC-I expression and, subsequently, to tau pathology and selective neurodegeneration.
Collapse
Affiliation(s)
- Kelly A Zalocusky
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ramsey Najm
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Alice L Taubes
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jason Bant
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Dah-Eun J Amornkul
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, San Francisco, CA, USA
| | - Qin Xu
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, San Francisco, CA, USA
| | - Alice An
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Olga Cisne-Thomson
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Histological and Immunohistochemical Characterization of Vomeronasal Organ Aging in Mice. Animals (Basel) 2021; 11:ani11051211. [PMID: 33922332 PMCID: PMC8146790 DOI: 10.3390/ani11051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Chemical communication has been intensely studied and the importance of its role in animal life has been ascertained. Located in the nasal cavity, the vomeronasal organ is one of the main actors in charge of chemical reception. Alterations of this organ have proven to modify behavioral responses to semiochemical expositions. For all the other organs, a well-known origin of alteration is aging. The objective of this study was to analyze this effect on the vomeronasal organ condition and to determine the nature of these potential changes. This study demonstrates that this organ is significantly impacted by aging. In particular, old mice present strong signs of neuronal degeneration compared to adults. Abstract The vomeronasal organ (VNO) plays a crucial role in animal behavior since it is responsible for semiochemical detection and, thus, for intra- and interspecific chemical communication, through the vomeronasal sensory epithelium (VNSE), composed of bipolar sensory neurons. This study aimed to explore a well-recognized cause of neuronal degeneration, only rarely explored in this organ: aging. Murine VNOs were evaluated according to 3 age groups (3, 10, and 24 months) by histology to assess VNSE changes such as cellular degeneration or glycogen accumulation and by immunohistochemistry to explore nervous configuration, proliferation capability, and apoptosis with the expression of olfactory marker protein (OMP), Gαi2, Gαo, Ki-67, and cleaved caspase-3 proteins. These markers were quantified as percentages of positive signal in the VNSE and statistical analyses were performed. Cellular degeneration increased with age (p < 0.0001) as well as glycogen accumulation (p < 0.0001), Gαo expression (p < 0.0001), and the number of cleaved-caspase3 positive cells (p = 0.0425), while OMP and Gαi2 expressions decreased with age (p = 0.0436 and p < 0.0001, respectively). Ki67-positive cells were reduced, even if this difference was not statistically significant (p = 0.9105). Due to the crucial role of VNO in animal life, this study opens the door to interesting perspectives about chemical communication efficiency in aging animals.
Collapse
|
31
|
Wang W, Li W, Jiang W, Lin H, Wu Y, Wen Y, Xu C, Tian X, Li S, Tan Q, Zhang D. Genome-wide DNA methylation analysis of cognitive function in middle and old-aged Chinese monozygotic twins. J Psychiatr Res 2021; 136:571-580. [PMID: 33131831 DOI: 10.1016/j.jpsychires.2020.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/13/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Cognitive ability plays an important role in mental and physical well-beings in the increasingly ageing populations. Here, based on a sample of 30 cognitive function-discordant monozygotic twin pairs, we aimed to detect specific epigenetic variants potentially related to cognitive function by conducting an epigenome-wide association study (EWAS). Association between methylation level of single CpG site with cognitive function score was tested by linear mixed effect model. Functions of cis-regulatory regions and ontology enrichments were predicted by Genomic Regions Enrichment of Annotations Tool (GREAT). Differentially methylated regions (DMRs) were detected by comb-p python library. A list of 28 CpG sites were identified to reach the level of P < 1 × 10-4, and the strongest association (cor = 0.138, P = 2.549 × 10-6) was detected for DNA CpG site (Chr17: 40,700,490 bp) located at HSD17B1P1. The identified 14,065 genomic CpG sites (P < 0.05) were mapped to 2646 genes, especially HSD17B1P1, CUL4A, INTS8, GFI1B, ZNF467, CDH15, and PSMA1. GREAT ontology enrichments mainly highlighted nicotine pharmacodynamics pathway, GABA-B receptor II/nicotinic acetylcholine receptor/hedgehog/endothelin/Wnt signaling pathways, Parkinson disease, Huntington disease, glycolysis, neuronal system, and toll-like receptor binding. We detected 15 DMRs located at/near 16 genes, especially LINC01551, LINC02282, and FAM32A. And 32 cognitive function-associated differentially methylated genes could be replicated, such as SHANK2, ABCA2, PRDM16, NCOR2, and INPP5A. Our EWAS in monozygotic twins identify specific epigenetic variations which are significantly involved in functional genes, biological function and pathways that mediate cognitive function. The findings provide clues to further identify new diagnostic biomarkers and therapeutic targets for cognitive dysfunction.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| | - Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, DK-5000, Odense C, Denmark.
| | - Wenjie Jiang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| | - Haijun Lin
- Biomarker Technologies orporation, Beijing, 100000, China.
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| | - Yanhua Wen
- Biomarker Technologies orporation, Beijing, 100000, China.
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, Shandong Province, China; Qingdao Institute of Preventive Medicine, Qingdao, 266033, Shandong Province, China.
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, Shandong Province, China; Qingdao Institute of Preventive Medicine, Qingdao, 266033, Shandong Province, China.
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark.
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, DK-5000, Odense C, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, 266021, Shandong Province, China.
| |
Collapse
|
32
|
Doust YV, King AE, Ziebell JM. Implications for microglial sex differences in tau-related neurodegenerative diseases. Neurobiol Aging 2021; 105:340-348. [PMID: 34174592 DOI: 10.1016/j.neurobiolaging.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
Tauopathies are a group of neurodegenerative diseases that involve pathological changes to the tau protein. Neuroinflammation is a commonly reported feature of tauopathies that has been demonstrated to exacerbate tau pathology and, hence, neurodegeneration. Microglia can mediate the inflammatory response in order to maintain brain homeostasis. In the aged brain, microglia are reported to undergo morphological and functional changes, adopting a pro-inflammatory profile and loss of homeostatic functions. Dystrophic and dysfunctional microglia are associated with tau pathology in the healthy and diseased brain which is proposed to contribute to disease development and progression. Microglia have also been recently demonstrated to possess sexually dimorphic roles in the developing, adult and aged brain. The sex differences in microglial functionality suggest that microglia may contribute to tauopathies which may differ between sexes. This review highlights the detrimental loop between age-related microglial changes and tau pathology with implications for microglial sexual dichotomy.
Collapse
Affiliation(s)
- Yasmine V Doust
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
33
|
Stein D, Mizrahi A, Golova A, Saretzky A, Venzor AG, Slobodnik Z, Kaluski S, Einav M, Khrameeva E, Toiber D. Aging and pathological aging signatures of the brain: through the focusing lens of SIRT6. Aging (Albany NY) 2021; 13:6420-6441. [PMID: 33690173 PMCID: PMC7993737 DOI: 10.18632/aging.202755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Brain-specific SIRT6-KO mice present increased DNA damage, learning impairments, and neurodegenerative phenotypes, placing SIRT6 as a key protein in preventing neurodegeneration. In the aging brain, SIRT6 levels/activity decline, which is accentuated in Alzheimer's patients. To understand SIRT6 roles in transcript pattern changes, we analyzed transcriptomes of young WT, old WT and young SIRT6-KO mice brains, and found changes in gene expression related to healthy and pathological aging. In addition, we traced these differences in human and mouse samples of Alzheimer's and Parkinson's diseases, healthy aging and calorie restriction (CR). Our results define four gene expression categories that change with age in a pathological or non-pathological manner, which are either reversed or not by CR. We found that each of these gene expression categories is associated with specific transcription factors, thus serving as potential candidates for their category-specific regulation. One of these candidates is YY1, which we found to act together with SIRT6 regulating specific processes. We thus argue that SIRT6 has a pivotal role in preventing age-related transcriptional changes in brains. Therefore, reduced SIRT6 activity may drive pathological age-related gene expression signatures in the brain.
Collapse
Affiliation(s)
- Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Amir Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anastasia Golova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Adam Saretzky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alfredo Garcia Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zeev Slobodnik
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shai Kaluski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Monica Einav
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
34
|
Triviño JJ, von Bernhardi R. The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem Int 2021; 144:104982. [PMID: 33556444 DOI: 10.1016/j.neuint.2021.104982] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Microglia serve key functions in the central nervous system (CNS), participating in the establishment and regulation of synapses and the neuronal network, and regulating activity-dependent plastic changes. As the neuroimmune system, they respond to endogenous and exogenous signals to protect the CNS. In aging, one of the main changes is the establishment of inflamm-aging, a mild chronic inflammation that reduces microglial response to stressors. Neuroinflammation depends mainly on the increased activation of microglia. Microglia over-activation may result in a reduced capacity for performing normal functions related to migration, clearance, and the adoption of an anti-inflammatory state, contributing to an increased susceptibility for neurodegeneration. Oxidative stress contributes both to aging and to the progression of neurodegenerative diseases. Increased production of reactive oxygen species (ROS) and neuroinflammation associated with age- and disease-dependent mechanisms affect synaptic activity and neurotransmission, leading to cognitive dysfunction. Astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by transforming growth factor β1 (TGFβ1). However, TGFβ1-Smad3 pathway is impaired in aging, and the age-related impairment of TGFβ signaling can reduce protective activation while facilitating cytotoxic activation of microglia. A critical analysis on the effect of aging microglia on neuronal function is relevant for the understanding of age-related changes on neuronal function. Here, we present evidence in the context of the "microglial dysregulation hypothesis", which leads to the reduction of the protective functions and increased cytotoxicity of microglia, to discuss the mechanisms involved in neurodegenerative changes and Alzheimer's disease.
Collapse
Affiliation(s)
- Juan José Triviño
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile
| | - Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile; Faculty of Health Sciences, Universidad San Sebastián, Lota 2465, Santiago, Chile.
| |
Collapse
|
35
|
Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, Gyengesi E. Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Front Cell Neurosci 2020; 14:577912. [PMID: 33192323 PMCID: PMC7594524 DOI: 10.3389/fncel.2020.577912] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer’s disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-β phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ingrid Wagnon
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ilaria Rossetti
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ryan Childs
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
36
|
Acosta-Martínez M. Shaping Microglial Phenotypes Through Estrogen Receptors: Relevance to Sex-Specific Neuroinflammatory Responses to Brain Injury and Disease. J Pharmacol Exp Ther 2020; 375:223-236. [DOI: 10.1124/jpet.119.264598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
|
37
|
Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease-A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses 2019; 11:v11100966. [PMID: 31635156 PMCID: PMC6833100 DOI: 10.3390/v11100966] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
Collapse
|
38
|
Chucair-Elliott AJ, Ocanas SR, Stanford DR, Hadad N, Wronowski B, Otalora L, Stout MB, Freeman WM. Tamoxifen induction of Cre recombinase does not cause long-lasting or sexually divergent responses in the CNS epigenome or transcriptome: implications for the design of aging studies. GeroScience 2019; 41:691-708. [PMID: 31493147 PMCID: PMC6885072 DOI: 10.1007/s11357-019-00090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
The systemic delivery of tamoxifen (Tam) to activate inducible CreERT2-loxP transgenic mouse systems is now widely used in neuroscience studies. This critical technological advancement allows temporal control of DNA-cre recombination, avoidance of embryonically lethal phenotypes, and minimization of residual cell labeling encountered in constitutively active drivers. Despite its advantages, the use of Tam has the potential to cause long-lasting, uncharacterized side effects on the transcriptome and epigenome in the CNS, given its mixed estrogen receptor (ER) agonist/antagonist actions. With the welcome focus on including both sexes in biomedical studies and efforts to understand sex differences, Tam administration could also cause sexually divergent responses that would confound studies. To examine these issues, epigenetic and transcriptomic profiles were compared in C57BL/6 J female and male hippocampus, cortex, and retina 1 month after a 5-day Tam treatment typical for cre induction, or vehicle control (sunflower seed oil). Cytosine methylation and hydroxymethylation levels, in both CG and non-CG contexts, were unchanged as determined by oxidative bisulfite sequencing. Long-lasting Tam transcriptomic effects were also not evident/minimal. Furthermore, there is no evidence of sexually divergent responses with Tam administration and Tam did not alter sex differences evident in controls. Combined with recently reported data that Tam alone does not cause long-lasting changes in behavior and neurogenesis, our findings provide confidence that Tam can be used as a cre-recombinase inducer without introducing significant confounds in transcriptomic and epigenomic neuroscience studies, particularly those focused on genomic and transcriptomic aspects of the aging brain.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocanas
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin Wronowski
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Michael B Stout
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
39
|
Li Y, Xie L, Huang T, Zhang Y, Zhou J, Qi B, Wang X, Chen Z, Li P. Aging Neurovascular Unit and Potential Role of DNA Damage and Repair in Combating Vascular and Neurodegenerative Disorders. Front Neurosci 2019; 13:778. [PMID: 31440124 PMCID: PMC6694749 DOI: 10.3389/fnins.2019.00778] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/11/2019] [Indexed: 02/01/2023] Open
Abstract
Progressive neurological deterioration poses enormous burden on the aging population with ischemic stroke and neurodegenerative disease patients, such as Alzheimers’ disease and Parkinson’s disease. The past two decades have witnessed remarkable advances in the research of neurovascular unit dysfunction, which is emerging as an important pathological feature that underlies these neurological disorders. Dysfunction of the unit allows penetration of blood-derived toxic proteins or leukocytes into the brain and contributes to white matter injury, disturbed neurovascular coupling and neuroinflammation, which all eventually lead to cognitive dysfunction. Recent evidences suggest that aging-related oxidative stress, accumulated DNA damage and impaired DNA repair capacities compromises the genome integrity not only in neurons, but also in other cell types of the neurovascular unit, such as endothelial cells, astrocytes and pericytes. Combating DNA damage or enhancing DNA repair capacities in the neurovascular unit represents a promising therapeutic strategy for vascular and neurodegenerative disorders. In this review, we focus on aging related mechanisms that underlie DNA damage and repair in the neurovascular unit and introduce several novel strategies that target the genome integrity in the neurovascular unit to combat the vascular and neurodegenerative disorders in the aging brain.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Qi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zengai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Ryan L, Hay M, Huentelman MJ, Duarte A, Rundek T, Levin B, Soldan A, Pettigrew C, Mehl MR, Barnes CA. Precision Aging: Applying Precision Medicine to the Field of Cognitive Aging. Front Aging Neurosci 2019; 11:128. [PMID: 31231204 PMCID: PMC6568195 DOI: 10.3389/fnagi.2019.00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
The current "one size fits all" approach to our cognitive aging population is not adequate to close the gap between cognitive health span and lifespan. In this review article, we present a novel model for understanding, preventing, and treating age-related cognitive impairment (ARCI) based on concepts borrowed from precision medicine. We will discuss how multiple risk factors can be classified into risk categories because of their interrelatedness in real life, the genetic variants that increase sensitivity to, or ameliorate, risk for ARCI, and the brain drivers or common mechanisms mediating brain aging. Rather than providing a definitive model of risk for ARCI and cognitive decline, the Precision Aging model is meant as a starting point to guide future research. To that end, after briefly discussing key risk categories, genetic risks, and brain drivers, we conclude with a discussion of steps that must be taken to move the field forward.
Collapse
Affiliation(s)
- Lee Ryan
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, United States
| | - Meredith Hay
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Matt J. Huentelman
- Neurobehavioral Research Unit, Division of Neurological Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Audrey Duarte
- Center for Advanced Brain Imaging, School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tatjana Rundek
- Clinical and Translational Research Division, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Bonnie Levin
- Neuropsychology Division, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anja Soldan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Matthias R. Mehl
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, United States
| | - Carol A. Barnes
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
41
|
Dietary Restriction and Neuroinflammation: A Potential Mechanistic Link. Int J Mol Sci 2019; 20:ijms20030464. [PMID: 30678217 PMCID: PMC6386998 DOI: 10.3390/ijms20030464] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic neuroinflammation is a common feature of the aged brain, and its association with the major neurodegenerative changes involved in cognitive impairment and motor dysfunction is well established. One of the most potent antiaging interventions tested so far is dietary restriction (DR), which extends the lifespan in various organisms. Microglia and astrocytes are two major types of glial cells involved in the regulation of neuroinflammation. Accumulating evidence suggests that the age-related proinflammatory activation of astrocytes and microglia is attenuated under DR. However, the molecular mechanisms underlying DR-mediated regulation of neuroinflammation are not well understood. Here, we review the current understanding of the effects of DR on neuroinflammation and suggest an underlying mechanistic link between DR and neuroinflammation that may provide novel insights into the role of DR in aging and age-associated brain disorders.
Collapse
|
42
|
Abstract
By 2050, the aging population is predicted to expand by over 100%. Considering this rapid growth, and the additional strain it will place on healthcare resources because of age-related impairments, it is vital that researchers gain a deeper understanding of the cellular interactions that occur with normal aging. A variety of mammalian cell types have been shown to become compromised with age, each with a unique potential to contribute to disease formation in the aging body. Astrocytes represent the largest group of glial cells and are responsible for a variety of essential functions in the healthy central nervous system (CNS). Like other cell types, aging can cause a loss of normal function in astrocytes which reduces their ability to properly maintain a healthy CNS environment, negatively alters their interactions with neighboring cells, and contribute to the heightened inflammatory state characteristic of aging. The goal of this review article is to consolidate the knowledge and research to date regarding the role of astrocytes in aging. In specific, this review article will focus on the morphology and molecular profile of aged astrocytes, the consequence of astrocyte dysfunction on homeostatic functions during aging, and the role of astrocytes in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandra L Palmer
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Shalina S Ousman
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
43
|
Imperio CG, McFalls AJ, Hadad N, Blanco-Berdugo L, Masser DR, Colechio EM, Coffey AA, Bixler GV, Stanford DR, Vrana KE, Grigson PS, Freeman WM. Exposure to environmental enrichment attenuates addiction-like behavior and alters molecular effects of heroin self-administration in rats. Neuropharmacology 2018; 139:26-40. [PMID: 29964093 PMCID: PMC6067959 DOI: 10.1016/j.neuropharm.2018.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023]
Abstract
Environmental factors profoundly affect the addictive potential of drugs of abuse and may also modulate the neuro-anatomical/neuro-chemical impacts of uncontrolled drug use and relapse propensity. This study examined the impact of environmental enrichment on heroin self-administration, addiction-related behaviors, and molecular processes proposed to underlie these behaviors. Male Sprague-Dawley rats in standard and enriched housing conditions intravenously self-administered similar amounts of heroin over 14 days. However, environmental enrichment attenuated progressive ratio, extinction, and reinstatement session responding after 14 days of enforced abstinence. Molecular mechanisms, namely DNA methylation and gene expression, are proposed to underlie abstinence-persistent behaviors. A global reduction in methylation is reported to coincide with addiction, but no differences in total genomic methylation or repeat element methylation were observed in CpG or non-CpG (CH) contexts across the mesolimbic circuitry as assessed by multiple methods including whole genome bisulfite sequencing. Immediate early gene expression associated with drug seeking, taking, and abstinence also were examined. EGR1 and EGR2 were suppressed in mesolimbic regions with heroin-taking and environmental enrichment. Site-specific methylation analysis of EGR1 and EGR2 promoter regions using bisulfite amplicon sequencing (BSAS) revealed hypo-methylation in the EGR2 promoter region and EGR1 intragenic CpG sites with heroin-taking and environmental enrichment that was associated with decreased mRNA expression. Taken together, these findings illuminate the impact of drug taking and environment on the epigenome in a locus and gene-specific manner and highlight the need for positive, alternative rewards in the treatment and prevention of drug addiction.
Collapse
Affiliation(s)
- Caesar G. Imperio
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Ashley J. McFalls
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Niran Hadad
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Dustin R. Masser
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Elizabeth M. Colechio
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Alissa A. Coffey
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Georgina V. Bixler
- Genome Sciences Facility, Penn State College of Medicine, Hershey, Pennsylvania
| | - David R. Stanford
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kent. E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Patricia S. Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Willard M. Freeman
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
44
|
Mo MS, Li GH, Sun CC, Huang SX, Wei L, Zhang LM, Zhou MM, Wu ZH, Guo WY, Yang XL, Chen CJ, Qu SG, He JX, Xu PY. Dopaminergic neurons show increased low-molecular-mass protein 7 activity induced by 6-hydroxydopamine in vitro and in vivo. Transl Neurodegener 2018; 7:19. [PMID: 30128145 PMCID: PMC6097308 DOI: 10.1186/s40035-018-0125-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
Background Abnormal expression of major histocompatibility complex class I (MHC-I) is increased in dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson’s disease (PD). Low-molecular-mass protein 7 (β5i) is a proteolytic subunit of the immunoproteasome that regulates protein degradation and the MHC pathway in immune cells. Methods In this study, we investigated the role of β5i in DA neurons using a 6-hydroxydopamine (6-OHDA) model in vitro and vivo. Results We showed that 6-OHDA upregulated β5i expression in DA neurons in a concentration- and time-dependent manner. Inhibition and downregulation of β5i induced the expression of glucose-regulated protein (Bip) and exacerbated 6-OHDA neurotoxicity in DA neurons. The inhibition of β5i further promoted the activation of Caspase 3-related pathways induced by 6-OHDA. β5i also activated transporter associated with antigen processing 1 (TAP1) and promoted MHC-I expression on DA neurons. Conclusion Taken together, our data suggest that β5i is activated in DA neurons under 6-OHDA treatment and may play a neuroprotective role in PD. Electronic supplementary material The online version of this article (10.1186/s40035-018-0125-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Shu Mo
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Gui-Hua Li
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Cong-Cong Sun
- 2Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong China
| | - Shu-Xuan Huang
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Lei Wei
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Li-Min Zhang
- 3Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Miao-Miao Zhou
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Zhuo-Hua Wu
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Wen-Yuan Guo
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Xin-Ling Yang
- 4Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011 Xinjiang China
| | - Chao-Jun Chen
- Clinic Brain Center, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800 Guangdong China
| | - Shao-Gang Qu
- 6Department of Blood Transfusion, Fifth Affiliated Hospital Southern Medical University, Guangzhou, 510900 Guangdong China
| | - Jian-Xing He
- 7Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Ping-Yi Xu
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China.,4Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011 Xinjiang China
| |
Collapse
|
45
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Abstract
Gene expression in the aging brain depends on transcription signals generated by senescent physiology, interacting with genetic and epigenetic programs. In turn, environmental factors influence epigenetic mechanisms, such that an epigenetic-environmental link may contribute to the accumulation of cellular damage, susceptibility or resilience to stressors, and variability in the trajectory of age-related cognitive decline. Epigenetic mechanisms, DNA methylation and histone modifications, alter chromatin structure and the accessibility of DNA. Furthermore, small non-coding RNA, termed microRNA (miRNA) bind to messenger RNA (mRNA) to regulate translation. In this review, we examine key questions concerning epigenetic mechanisms in regulating the expression of genes associated with brain aging and age-related cognitive decline. In addition, we highlight the interaction of epigenetics with senescent physiology and environmental factors in regulating transcription.
Collapse
Affiliation(s)
- Jolie D Barter
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,2 Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Mangold CA, Yao PJ, Du M, Freeman WM, Benkovic SJ, Szpara ML. Expression of the purine biosynthetic enzyme phosphoribosyl formylglycinamidine synthase in neurons. J Neurochem 2018; 144:723-735. [PMID: 29337348 DOI: 10.1111/jnc.14304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Abstract
Purines are metabolic building blocks essential for all living organisms on earth. De novo purine biosynthesis occurs in the brain and appears to play important roles in neural development. Phosphoribosyl formylglycinamidine synthase (FGAMS, also known as PFAS or FGARAT), a core enzyme involved in the de novo synthesis of purines, may play alternative roles in viral pathogenesis. To date, no thorough investigation of the endogenous expression and localization of de novo purine biosynthetic enzymes has been conducted in human neurons or in virally infected cells. In this study, we characterized expression of FGAMS using multiple neuronal models. In differentiated human SH-SY5Y neuroblastoma cells, primary rat hippocampal neurons, and in whole-mouse brain sections, FGAMS immunoreactivity was distributed within the neuronal cytoplasm. FGAMS immunolabeling in vitro demonstrated extensive distribution throughout neuronal processes. To investigate potential changes in FGAMS expression and localization following viral infection, we infected cells with the human pathogen herpes simplex virus 1. In infected fibroblasts, FGAMS immunolabeling shifted from a diffuse cytoplasmic location to a mainly perinuclear localization by 12 h post-infection. In contrast, in infected neurons, FGAMS localization showed no discernable changes in the localization of FGAMS immunoreactivity. There were no changes in total FGAMS protein levels in either cell type. Together, these data provide insight into potential purine biosynthetic mechanisms utilized within neurons during homeostasis as well as viral infection. Cover Image for this Issue: doi: 10.1111/jnc.14169.
Collapse
Affiliation(s)
- Colleen A Mangold
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute of Aging/National Institute of Health, Baltimore, Maryland, USA
| | - Mei Du
- Department of Physiology, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Stephen J Benkovic
- Department of Chemistry, and the Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
48
|
Hadad N, Unnikrishnan A, Jackson JA, Masser DR, Otalora L, Stanford DR, Richardson A, Freeman WM. Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. Neurobiol Aging 2018; 67:53-66. [PMID: 29631215 DOI: 10.1016/j.neurobiolaging.2018.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Brain aging is marked by cognitive decline and susceptibility to neurodegeneration. Calorie restriction (CR) increases neurogenesis, improves memory function, and protects from age-associated neurological disorders. Epigenetic mechanisms, including DNA methylation, are vital to normal central nervous system cellular and memory functions and are dysregulated with aging. The beneficial effects of CR have been proposed to work through epigenetic processes, but this is largely unexplored. We therefore tested whether life long CR prevents age-related hippocampal DNA methylation changes. Hippocampal DNA from young (3 months) and old (24 months) male mice fed ad libitum and 24-month-old mice fed a 40% calorie-restricted diet from 3 months of age were examined by genome-wide bisulfite sequencing to measure methylation with base specificity. Over 27 million CG and CH (non-CG) sites were examined. Of the ∼40,000 differentially methylated CG and ∼80,000 CH sites with aging, >1/3 were prevented by CR and were found across genomic regulatory regions and gene pathways. CR also caused alterations to CG and CH methylation at sites not differentially methylated with aging, and these CR-specific changes demonstrated a different pattern of regulatory element and gene pathway enrichment than those affected by aging. CR-specific DNA methyltransferase 1 and Tet methylcytosine dioxygenase 3 promoter hypermethylation corresponded to reduced gene expression. These findings demonstrate that CR attenuates age-related CG and CH hippocampal methylation changes, in combination with CR-specific methylation that may also contribute to the neuroprotective effects of CR. The prevention of age-related methylation alterations is also consistent with the prolongevity effects of CR working through an epigenetic mechanism.
Collapse
Affiliation(s)
- Niran Hadad
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan A Jackson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dustin R Masser
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
49
|
Masser DR, Hadad N, Porter H, Stout MB, Unnikrishnan A, Stanford DR, Freeman WM. Analysis of DNA modifications in aging research. GeroScience 2018; 40:11-29. [PMID: 29327208 PMCID: PMC5832665 DOI: 10.1007/s11357-018-0005-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
As geroscience research extends into the role of epigenetics in aging and age-related disease, researchers are being confronted with unfamiliar molecular techniques and data analysis methods that can be difficult to integrate into their work. In this review, we focus on the analysis of DNA modifications, namely cytosine methylation and hydroxymethylation, through next-generation sequencing methods. While older techniques for modification analysis performed relative quantitation across regions of the genome or examined average genome levels, these analyses lack the desired specificity, rigor, and genomic coverage to firmly establish the nature of genomic methylation patterns and their response to aging. With recent methodological advances, such as whole genome bisulfite sequencing (WGBS), bisulfite oligonucleotide capture sequencing (BOCS), and bisulfite amplicon sequencing (BSAS), cytosine modifications can now be readily analyzed with base-specific, absolute quantitation at both cytosine-guanine dinucleotide (CG) and non-CG sites throughout the genome or within specific regions of interest by next-generation sequencing. Additional advances, such as oxidative bisulfite conversion to differentiate methylation from hydroxymethylation and analysis of limited input/single-cells, have great promise for continuing to expand epigenomic capabilities. This review provides a background on DNA modifications, the current state-of-the-art for sequencing methods, bioinformatics tools for converting these large data sets into biological insights, and perspectives on future directions for the field.
Collapse
Affiliation(s)
- Dustin R Masser
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter Porter
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
50
|
Taipa R, Sousa AL, Melo Pires M, Sousa N. Does the Interplay Between Aging and Neuroinflammation Modulate Alzheimer's Disease Clinical Phenotypes? A Clinico-Pathological Perspective. J Alzheimers Dis 2018; 53:403-17. [PMID: 27176075 DOI: 10.3233/jad-160121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and is the most common cause of dementia worldwide. Cumulative data suggests that neuroinflammation plays a prominent and early role in AD, and there is compelling data from different research groups of age-associated dysregulation of the neuroimmune system. From the clinical point of view, despite clinical resemblance and neuropathological findings, there are important differences between the group of patients with sporadic early-onset (<65 years old) and late-onset AD (>65 years old). Thus, it seems important to understand the age-dependent relationship between neuroinflammation and the underlying biology of AD in order to identify potential explanations for clinical heterogeneity, interpret biomarkers, and promote the best treatment to different clinical AD phenotypes. The study of the delicate balance between pro-inflammatory or anti-inflammatory sides of immune players in the different ages of onset of AD would be important to understand treatment efficacy in clinical trials and eventually, not only direct treatment to early disease stages, but also the possibility of establishing different treatment approaches depending on the age of the patient. In this review, we would like to summarize what is currently known about the interplay between "normal" age associated inflammatory changes and AD pathological mechanisms, and also the potential differences between early-onset and late-onset AD taking into account the age-related neuroimmune background at disease onset.
Collapse
Affiliation(s)
- Ricardo Taipa
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Ana Luísa Sousa
- Department of Neurology, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Manuel Melo Pires
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|