1
|
Gavrilova NS, Gavrilov LA. Compensation effect of mortality is a challenge to substantial lifespan extension of humans. Biogerontology 2024; 25:851-857. [PMID: 38811415 DOI: 10.1007/s10522-024-10111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Despite frequent claims regarding radical extensions of human lifespan in the near future, many pragmatic scientists caution against excessive and baseless optimism on this front. In this study, we examine the compensation effect of mortality (CEM) as a potential challenge to substantial lifespan extension. The CEM is an empirical mortality regularity, often depicted as relative mortality convergence at advanced ages. Analysis of mortality data from 44 human populations, available in the Human Mortality Database, demonstrated that CEM can be represented as a continuous decline in relative mortality variation (assessed through the coefficient of variation and the standard deviation of the logarithm of mortality) with age, reaching a minimum corresponding to the species-specific lifespan. Through this method, the species-specific lifespan is determined to be 96-97 years, closely aligning with estimates derived from correlations between Gompertz parameters (95-98 years). Importantly, this representation of CEM can be achieved non-parametrically, eliminating the need for estimating Gompertz parameters. CEM is a challenge to lifespan extension, because it suggests that the true aging rate in humans (based on loss of vital elements, e.g., functional cells) remains stable at approximately 1% per year in the majority of human populations and is not affected by environmental or familial longevity factors. Given this rate of functional cell loss, one might anticipate that the total pool of functional cells could be entirely depleted by the age of 115-120 years creating physiological limit to human lifespan. Mortality pattern of supercentenarians (110 + years) aligns with this prediction.
Collapse
Affiliation(s)
- Natalia S Gavrilova
- NORC at the University of Chicago, 1155 East 60th Street, Chicago, IL, 60637, USA.
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, Russia.
| | - Leonid A Gavrilov
- NORC at the University of Chicago, 1155 East 60th Street, Chicago, IL, 60637, USA
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Tang H, Li X, Liu X, Xu Y, Shen J. Rutin intake mitigates the injury of blue light irradiation by altering aging rates of mortality in Drosophila model. Photochem Photobiol 2024; 100:524-529. [PMID: 37665025 DOI: 10.1111/php.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Blue light is known as one of the harmful light pollution that has complex effects on organisms. The massive use of LED lights in cities has greatly increased the frequency of human exposure to blue light, and therefore the hazards of blue light are receiving widespread attention. In our study, Drosophila was used as the model organism to explore the ability of the flavonoid rutin to resist blue light damage under the intensity of 3000 Lux. Siler model analysis was performed. Our results showed sex-specific pattern of rutin as an effective antioxidant. Rutin could help female flies to reduce the initial adult mortality and male flies to slow the increase of adult mortality under blue light irradiation, thus prolonging their average lifespan. Furthermore, after the intake of rutin, the locomotor activity of Drosophila under blue light irradiation was significantly increased, and the total sleep time was significantly decreased. In summary, our results provide preliminary support for exploring the mechanism of rutin against blue light damage.
Collapse
Affiliation(s)
- Hao Tang
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xiangyu Li
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xingyou Liu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Yifan Xu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
3
|
Gavrilov LA, Gavrilova NS. Exploring Patterns of Human Mortality and Aging: A Reliability Theory Viewpoint. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:341-355. [PMID: 38622100 PMCID: PMC11090256 DOI: 10.1134/s0006297924020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 04/17/2024]
Abstract
The most important manifestation of aging is an increased risk of death with advancing age, a mortality pattern characterized by empirical regularities known as mortality laws. We highlight three significant ones: the Gompertz law, compensation effect of mortality (CEM), and late-life mortality deceleration and describe new developments in this area. It is predicted that CEM should result in declining relative variability of mortality at older ages. The quiescent phase hypothesis of negligible actuarial aging at younger adult ages is tested and refuted by analyzing mortality of the most recent birth cohorts. To comprehend the aging mechanisms, it is crucial to explain the observed empirical mortality patterns. As an illustrative example of data-directed modeling and the insights it provides, we briefly describe two different reliability models applied to human mortality patterns. The explanation of aging using a reliability theory approach aligns with evolutionary theories of aging, including idea of chronic phenoptosis. This alignment stems from their focus on elucidating the process of organismal deterioration itself, rather than addressing the reasons why organisms are not designed for perpetual existence. This article is a part of a special issue of the journal that commemorates the legacy of the eminent Russian scientist Vladimir Petrovich Skulachev (1935-2023) and his bold ideas about evolution of biological aging and phenoptosis.
Collapse
Affiliation(s)
- Leonid A Gavrilov
- NORC at the University of Chicago, Chicago, IL 60637, USA.
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, 109028, Russia
| | - Natalia S Gavrilova
- NORC at the University of Chicago, Chicago, IL 60637, USA
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, 109028, Russia
| |
Collapse
|
4
|
Landis GN, Doherty DV, Yen CA, Wang L, Fan Y, Wang I, Vroegop J, Wang T, Wu J, Patel P, Lee S, Abdelmesieh M, Shen J, Promislow DEL, Curran SP, Tower J. Metabolic Signatures of Life Span Regulated by Mating, Sex Peptide, and Mifepristone/RU486 in Female Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2021; 76:195-204. [PMID: 32648907 DOI: 10.1093/gerona/glaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Mating and transfer of male sex peptide (SP), or transgenic expression of SP, causes inflammation and decreased life span in female Drosophila. Mifepristone rescues these effects, yielding dramatic increases in life span. Here targeted metabolomics data were integrated with further analysis of extant transcriptomic data. Each of 7 genes positively correlated with life span were expressed in the brain or eye and involved regulation of gene expression and signaling. Genes negatively correlated with life span were preferentially expressed in midgut and involved protein degradation, amino acid metabolism, and immune response. Across all conditions, life span was positively correlated with muscle breakdown product 1/3-methylhistidine and purine breakdown product urate, and negatively correlated with tryptophan breakdown product kynurenic acid, suggesting a SP-induced shift from somatic maintenance/turnover pathways to the costly production of energy and lipids from dietary amino acids. Some limited overlap was observed between genes regulated by mifepristone and genes known to be regulated by ecdysone; however, mifepristone was unable to compete with ecdysone for activation of an ecdysone-responsive transgenic reporter. In contrast, genes regulated by mifepristone were highly enriched for genes regulated by juvenile hormone (JH), and mifepristone rescued the negative effect of JH analog methoprene on life span in adult virgin females. The data indicate that mifepristone increases life span and decreases inflammation in mated females by antagonizing JH signaling downstream of male SP. Finally, mifepristone increased life span of mated, but not unmated, Caenorhabditis elegans, in 2 of 3 trials, suggesting possible evolutionary conservation of mifepristone mechanisms.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Devon V Doherty
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Chia-An Yen
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
| | - Yang Fan
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Ina Wang
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Jonah Vroegop
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Tianyi Wang
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Jimmy Wu
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Palak Patel
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Shinwoo Lee
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Mina Abdelmesieh
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Jie Shen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, China
| | - Daniel E L Promislow
- Department of Biology, University of Washington, Seattle.,Department of Pathology, University of Washington School of Medicine, Seattle
| | - Sean P Curran
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| |
Collapse
|
5
|
Etuh MA, Ohemu LT, Pam DD. Lantana camara ethanolic leaves extracts exhibit anti-aging properties in Drosophila melanogaster: survival-rate and life span studies. Toxicol Res (Camb) 2021; 10:79-83. [PMID: 33613975 PMCID: PMC7885186 DOI: 10.1093/toxres/tfaa098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 11/12/2022] Open
Abstract
In this article, we aimed to investigate the anti-aging activity of Lantana camara ethanolic leaves-extract in Drosophila melanogaster: survival and longevity (life span). L. camara leaves were collected and washed thoroughly of sand particles, air-dried, ground, and extracted by the maceration method using ethanol as a solvent. Phytochemical screening was carried out. 168-hour LC50 was determined by exposing fruit flies to concentrations ranging from 5 to 5000 mg/10 g diet for 7-days. Twenty-eight-day survival and longevity studies were carried out by administering L. camara ethanolic leaves extract at 5, 10, and 20 mg/10 g diet to 1-3 days old fruit flies. Each concentration was replicated four times with 50 fruit flies each. The emergence rate of young fruit flies from eggs laid by fruit flies administered L. camara leaves-extracts were also carried out. The total yield of the extraction was determined to be 18%. Phytochemical analysis revealed the presence of alkaloids, Flavonoids, Phenol, steroids, cardiac glycosides, and carbohydrates. 168-hour LC50 of L. camara was also determined to be 1135 mg/10 g diet. L. camara significantly prolonged (P < 0.05) survival rate and extended (P < 0.05) D. melanogaster life span compared with control. L. camara significantly increased (P < 0.05) emergence rate of young fruit flies from eggs laid by fruit flies administered L. camara ethanolic leaves extracts. From the experimental results, it can be concluded that the ethanol extract of L. camara leaves extended the life span of D. melanogaster at these concentrations. Due to similarities of conserved genes between humans and fruit flies, the use of L. camara ethanolic leaves extract at these concentrations is safe and may be recommended as herbal medicine in humans.
Collapse
Affiliation(s)
- M A Etuh
- Applied Entomology and Parasitology Unit, Department of Zoology. Faculty of Natural Sciences, University of Jos, Bauchi Ring Road, Jos North, Postcode-930003, Plateau State, Nigeria
| | - L T Ohemu
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Bauchi Ring Road, Jos North, Postcode-930003, Plateau State, Nigeria, Nigeria
| | - D D Pam
- Applied Entomology and Parasitology Unit, Department of Zoology. Faculty of Natural Sciences, University of Jos, Bauchi Ring Road, Jos North, Postcode-930003, Plateau State, Nigeria
| |
Collapse
|
6
|
Tower J, Pomatto LCD, Davies KJA. Sex differences in the response to oxidative and proteolytic stress. Redox Biol 2020; 31:101488. [PMID: 32201219 PMCID: PMC7212483 DOI: 10.1016/j.redox.2020.101488] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Sex differences in diseases involving oxidative and proteolytic stress are common, including greater ischemic heart disease, Parkinson disease and stroke in men, and greater Alzheimer disease in women. Sex differences are also observed in stress response of cells and tissues, where female cells are generally more resistant to heat and oxidative stress-induced cell death. Studies implicate beneficial effects of estrogen, as well as cell-autonomous effects including superior mitochondrial function and increased expression of stress response genes in female cells relative to male cells. The p53 and forkhead box (FOX)-family genes, heat shock proteins (HSPs), and the apoptosis and autophagy pathways appear particularly important in mediating sex differences in stress response.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA.
| | - Laura C D Pomatto
- National Institute on General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin J A Davies
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, USA
| |
Collapse
|
7
|
Abstract
The laboratory fruit fly Drosophila melanogaster is one of the leading models for the study of aging. Whereas several behavioral and physiological biomarkers of aging have been identified for Drosophila, lifespan remains the most robust measure of aging rate. Aging and lifespan can be modulated by genetic alterations, as well as by drugs and dietary components, to reveal basic and conserved mechanisms of aging. Here methods are presented for Drosophila lifespan assay, including media preparation, supplementation of media with various drugs, culturing of the flies, passaging flies and recording deaths, and the analysis of lifespan data.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devon Doherty
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
A 2D analysis of correlations between the parameters of the Gompertz-Makeham model (or law?) of relationships between aging, mortality, and longevity. Biogerontology 2019; 20:799-821. [PMID: 31392450 DOI: 10.1007/s10522-019-09828-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
When mortality (μ), aging rate (γ) and age (t) are treated according to the Gompertz model μ(t) = μ0eγt (GM), any mean age corresponds to a manifold of paired reciprocally changing μ0 and γ. Therefore, any noisiness of data used to derive GM parameters makes them negatively correlated. Besides this artifactual factor of the Strehler-Mildvan correlation (SMC), other factors emerge when the age-independent mortality C modifies survival according to the Gompertz-Makeham model μ(t) = C+μ0eγt (GMM), or body resources are partitioned between survival and protection from aging [the compensation effect of mortality (CEM)]. Theoretical curves in (γ, logμ0) coordinates show how μ0 decreases when γ increases upon a constant mean age. Within a species-specific range of γ, such "isoage" curves look as nearly parallel straight lines. The slopes of lines constructed by applying GM to survival curves modeled according to GMM upon changes in C are greater than the isoage slopes. When CEM is modeled, the slopes are still greater. Based on these observations, CEM is shown to contribute to SMC associated with sex differences in lifespan, with the effects of several life-extending drugs, and with recent trends in survival/mortality patterns in high-life-expectancy countries; whereas changes in C underlie differences between even high-life-expectancy countries, not only between high- and low-life-expectancy countries. Such interpretations make sense only if GM is not merely a statistical model, but rather reflects biological realities. Therefore, GM is discussed as derivable by applying certain constraints to a natural law termed the generalized Gompertz-Makeham law.
Collapse
|
9
|
Cheng CJ, Nelson JF. Physiological basis for sex-specific differences in longevity. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Golubev A, Hanson AD, Gladyshev VN. A Tale of Two Concepts: Harmonizing the Free Radical and Antagonistic Pleiotropy Theories of Aging. Antioxid Redox Signal 2018; 29:1003-1017. [PMID: 28874059 PMCID: PMC6104246 DOI: 10.1089/ars.2017.7105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The two foremost concepts of aging are the mechanistic free radical theory (FRT) of how we age and the evolutionary antagonistic pleiotropy theory (APT) of why we age. Both date from the late 1950s. The FRT holds that reactive oxygen species (ROS) are the principal contributors to the lifelong cumulative damage suffered by cells, whereas the APT is generally understood as positing that genes that are good for young organisms can take over a population even if they are bad for the old organisms. Recent Advances: Here, we provide a common ground for the two theories by showing how aging can result from the inherent chemical reactivity of many biomolecules, not just ROS, which imposes a fundamental constraint on biological evolution. Chemically reactive metabolites spontaneously modify slowly renewable macromolecules in a continuous way over time; the resulting buildup of damage wrought by the genes coding for enzymes that generate such small molecules eventually masquerades as late-acting pleiotropic effects. In aerobic organisms, ROS are major agents of this damage but they are far from alone. CRITICAL ISSUES Being related to two sides of the same phenomenon, these theories should be compatible. However, the interface between them is obscured by the FRT mistaking a subset of damaging processes for the whole, and the APT mistaking a cumulative quantitative process for a qualitative switch. FUTURE DIRECTIONS The manifestations of ROS-mediated cumulative chemical damage at the population level may include the often-observed negative correlation between fitness and the rate of its decline with increasing age, further linking FRT and APT. Antioxid. Redox Signal. 29, 1003-1017.
Collapse
Affiliation(s)
- Alexey Golubev
- Department of Carcinogenesis and Oncogerontology, Petrov Research Institute of Oncology, Saint Petersburg, Russia
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow Russia
| |
Collapse
|
11
|
Shen J. Illustration of sexual differentiation to undergraduates with a conditional gene expression system. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:523-526. [PMID: 30221447 DOI: 10.1002/bmb.21160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/22/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
This work describes the development and evaluation of a two-session laboratory class based on Tet-on technology and sex determination in the fruit fly Drosophila melanogaster. The Tet-on system allows conditional control of gene expression, when doxycycline is applied. A laboratory exercise has been developed to illustrate how the Tet-on technology conditionally over-expresses the key sex determining gene transformer (tra) during development and how to inhibit sex differentiation in males, results in a lack of external genitalia and sex comb size reduction. The laboratory practice is inexpensive and straightforward, while allowing students to understand well how molecular biology technology can change biological processes, including development. © 2018 by International Union of Biochemistry and Molecular Biology, 46(5):523-526, 2018.
Collapse
Affiliation(s)
- Jie Shen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
12
|
Golubev A, Panchenko A, Anisimov V. Applying parametric models to survival data: tradeoffs between statistical significance, biological plausibility, and common sense. Biogerontology 2018; 19:341-365. [PMID: 29869230 DOI: 10.1007/s10522-018-9759-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
Parametric models for survival data help to differentiate aging from other lifespan determinants. However, such inferences suffer from small sizes of experimental animal samples and variable animals handling by different labs. We analyzed control data from a single laboratory where interventions in murine lifespan were studied over decades. The minimal Gompertz model (GM) was found to perform best with most murine strains. However, when several control datasets related to a particular strain are fitted to GM, strikingly rigid interdependencies between GM parameters emerge, consistent with the Strehler-Mildvan correlation (SMC). SMC emerges even when survival patterns do not conform to GM, as with cancer-prone HER2/neu mice, which die at a log-normally distributed age. Numerical experiments show that SMC includes an artifact whose magnitude depends on dataset deviation from conformance to GM irrespectively of the noisiness of small datasets, another contributor to SMC. Still another contributor to SMC is the compensation effect of mortality (CEM): a real tradeoff between the physiological factors responsible for initial vitality and the rate of its decline. To avoid misinterpretations, we advise checking experimental results against a SMC based on historical controls or on subgroups obtained by randomization of control animals. An apparent acceleration of aging associated with a decrease in the initial mortality is invalid if it is not greater than SMC suggests. This approach applied to published data suggests that the effects of calorie restriction and of drugs believed to mimic it are different. SMC and CEM relevance to human survival patterns is discussed.
Collapse
Affiliation(s)
- Alexey Golubev
- N.N. Petrov Research Institute of Oncology, Pesochny-2, Saint-Petersburg, 197758, Russia.
| | - Andrei Panchenko
- N.N. Petrov Research Institute of Oncology, Pesochny-2, Saint-Petersburg, 197758, Russia
| | - Vladimir Anisimov
- N.N. Petrov Research Institute of Oncology, Pesochny-2, Saint-Petersburg, 197758, Russia
| |
Collapse
|
13
|
Pomatto LCD, Wong S, Tower J, Davies KJA. Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains. Arch Biochem Biophys 2017; 636:57-70. [PMID: 29100984 DOI: 10.1016/j.abb.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 11/24/2022]
Abstract
Sexual dimorphism includes the physical and reproductive differences between the sexes, including differences that are conserved across species, ranging from the common fruit fly, Drosophila melanogaster, to humans. Sex-dependent variations in adaptive homeostasis, and adaptive stress responses may offer insight into the underlying mechanisms for male and female survival differences and into differences in chronic disease incidence and severity in humans. Earlier work showed sex-specific differences in adaptive responses to oxidative stressors in hybrid laboratory strains of D. melanogaster. The present study explored whether this phenomenon is also observed in wild-type D. melanogaster strains Oregon-R (Or-R) and Canton-S (Ca-S), as well as the common mutant reference strain w[1118], in order to better understand whether such findings are descriptive of D. melanogaster in general. Flies of each strain were pretreated with non-damaging, adaptive concentrations of hydrogen peroxide (H2O2) or of different redox cycling agents (paraquat, DMNQ, or menadione). Adaptive homeostasis, and changes in the expression of the Proteasome and overall cellular proteasomal proteolytic capacity were assessed. Redox cycling agents exhibited a male-specific adaptive response, whereas H2O2 exposure provoked female-specific adaptation. These findings demonstrate that different oxidants can elicit sexually dimorphic adaptive homeostatic responses in multiple fly strains. These results (and those contained in a parallel study [1]) highlight the need to address sex as a biological variable in fundamental science, clinical research, and toxicology.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - John Tower
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
14
|
Tower J. Sex-Specific Gene Expression and Life Span Regulation. Trends Endocrinol Metab 2017; 28:735-747. [PMID: 28780002 PMCID: PMC5667568 DOI: 10.1016/j.tem.2017.07.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022]
Abstract
Aging-related diseases show a marked sex bias. For example, women live longer than men yet have more Alzheimer's disease and osteoporosis, whereas men have more cancer and Parkinson's disease. Understanding the role of sex will be important in designing interventions and in understanding basic aging mechanisms. Aging also shows sex differences in model organisms. Dietary restriction (DR), reduced insulin/IGF1-like signaling (IIS), and reduced TOR signaling each increase life span preferentially in females in both flies and mice. Maternal transmission of mitochondria to offspring may lead to greater control over mitochondrial functions in females, including greater life span and a larger response to diet. Consistent with this idea, males show greater loss of mitochondrial gene expression with age.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Mifepristone/RU486 acts in Drosophila melanogaster females to counteract the life span-shortening and pro-inflammatory effects of male Sex Peptide. Biogerontology 2017; 18:413-427. [PMID: 28451923 DOI: 10.1007/s10522-017-9703-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Males with null mutation of Sex Peptide (SP) gene were compared to wild-type males for the ability to cause physiological changes in females that could be reversed by mifepristone. Males from wild-type strains decreased median female life span by average -51%. Feeding mifepristone increased life span of these females by average +106%. In contrast, SP-null males did not decrease female life span, and mifepristone increased median life span of these females by average +14%, which was equivalent to the effect of mifepristone in virgin females (average +16%). Expression of innate immune response transgenic reporter (Drosocin-GFP) was increased in females mated to wild-type males, and this expression was reduced by mifepristone. In contrast, SP-null males did not increase Drosocin-GFP reporter expression in the female. Similarly, mating increased endogenous microbial load, and this effect was reduced or absent in females fed mifepristone and in females mated to SP-null males; no loss of intestinal barrier integrity was detected using dye-leakage assay. Reduction of microbial load by treating adult flies with doxycycline reduced the effects of both mating and mifepristone on life span. Finally, mifepristone blocked the negative effect on life span caused by transgenic expression of SP in virgin females. The data support the conclusion that the majority of the life span-shortening, immune-suppressive and pro-inflammatory effects of mating are due to male SP, and demonstrate that mifepristone acts in females to counteract these effects of male SP.
Collapse
|
16
|
Pomatto LC, Wong S, Carney C, Shen B, Tower J, Davies KJA. The age- and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster. Aging (Albany NY) 2017; 9:1153-1185. [PMID: 28373600 PMCID: PMC5425120 DOI: 10.18632/aging.101218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/09/2017] [Indexed: 11/25/2022]
Abstract
Hallmarks of aging include loss of protein homeostasis and dysregulation of stress-adaptive pathways. Loss of adaptive homeostasis, increases accumulation of DNA, protein, and lipid damage. During acute stress, the Cnc-C (Drosophila Nrf2 orthologue) transcriptionally-regulated 20S proteasome degrades damaged proteins in an ATP-independent manner. Exposure to very low, non-toxic, signaling concentrations of the redox-signaling agent hydrogen peroxide (H2O2) cause adaptive increases in the de novo expression and proteolytic activity/capacity of the 20S proteasome in female D. melanogaster (fruit-flies). Female 20S proteasome induction was accompanied by increased tolerance to a subsequent normally toxic but sub-lethal amount of H2O2, and blocking adaptive increases in proteasome expression also prevented full adaptation. We find, however, that this adaptive response is both sex- and age-dependent. Both increased proteasome expression and activity, and increased oxidative-stress resistance, in female flies, were lost with age. In contrast, male flies exhibited no H2O2 adaptation, irrespective of age. Furthermore, aging caused a generalized increase in basal 20S proteasome expression, but proteolytic activity and adaptation were both compromised. Finally, continual knockdown of Keep1 (the cytosolic inhibitor of Cnc-C) in adults resulted in older flies with greater stress resistance than their age-matched controls, but who still exhibited an age-associated loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C.D. Pomatto
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Wong
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Caroline Carney
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brenda Shen
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - John Tower
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J. A. Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
17
|
The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress. Curr Biol 2016; 27:1-15. [PMID: 27916526 DOI: 10.1016/j.cub.2016.10.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 12/14/2022]
Abstract
Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease.
Collapse
|