1
|
Axelrod CL, Hari A, Dantas WS, Kashyap SR, Schauer PR, Kirwan JP. Metabolomic Fingerprints of Medical Therapy Versus Bariatric Surgery in Patients With Obesity and Type 2 Diabetes: The STAMPEDE Trial. Diabetes Care 2024; 47:2024-2032. [PMID: 39311919 PMCID: PMC11502526 DOI: 10.2337/dc24-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are effective procedures to treat and manage type 2 diabetes (T2D). However, the underlying metabolic adaptations that mediate improvements in glucose homeostasis remain largely elusive. The purpose of this study was to identify metabolic signatures associated with biochemical resolution of T2D after medical therapy (MT) or bariatric surgery. RESEARCH DESIGN AND METHODS Plasma samples from 90 patients (age 49.9 ± 7.6 years; 57.7% female) randomly assigned to MT (n = 30), RYGB (n = 30), or SG (n = 30) were retrospectively subjected to untargeted metabolomic analysis using ultra performance liquid chromatography with tandem mass spectrometry at baseline and 24 months of treatment. Phenotypic importance was determined by supervised machine learning. Associations between change in glucose homeostasis and circulating metabolites were assessed using a linear mixed effects model. RESULTS The circulating metabolome was dramatically remodeled after SG and RYGB, with largely overlapping signatures after MT. Compared with MT, SG and RYGB profoundly enhanced the concentration of metabolites associated with lipid and amino acid signaling, while limiting xenobiotic metabolites, a function of decreased medication use. Random forest analysis revealed 2-hydroxydecanoate as having selective importance to RYGB and as the most distinguishing feature between MT, SG, and RYGB. To this end, change in 2-hydroxydecanoate correlated with reductions in fasting glucose after RYGB but not SG or MT. CONCLUSIONS We identified a novel metabolomic fingerprint characterizing the longer-term adaptations to MT, RYGB, and SG. Notably, the metabolomic profiles of RYGB and SG procedures were distinct, indicating equivalent weight loss may be achieved by divergent effects on metabolism.
Collapse
Affiliation(s)
- Christopher L. Axelrod
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Adithya Hari
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Wagner S. Dantas
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | | | - Philip R. Schauer
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH
- Clinical Metabolic Surgery Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
2
|
Kouzu H, Yano T, Katano S, Kawaharata W, Ogura K, Numazawa R, Nagaoka R, Ohori K, Nishikawa R, Ohwada W, Fujito T, Nagano N, Furuhashi M. Adverse plasma branched-chain amino acid profile mirrors fatty muscle degeneration in diabetic heart failure patients. ESC Heart Fail 2024; 11:2941-2953. [PMID: 38812081 PMCID: PMC11424297 DOI: 10.1002/ehf2.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
AIMS Elevated plasma branched-chain amino acids (BCAAs) are tightly linked to incident diabetes and its complications, while lower BCAAs are associated with adverse outcomes in the elderly and heart failure (HF) patients. The interplay between body compositions and plasma BCAAs, especially under the influence of co-morbid diabetes in HF patients, is not well understood. Here, we examined the impact of diabetes on the prognostic value of plasma BCAA and its association with body compositions in HF patients. METHODS AND RESULTS We retrospectively examined 301 HF patients (70 ± 15 years old; 59% male), among which 36% had diabetes. Blood samples for plasma BCAA measurements were collected in a fasting state after stabilization of HF and analysed using ultraperformance liquid chromatography. A dual-energy X-ray absorptiometry scan assessed regional body compositions, and muscle wasting was defined as appendicular skeletal muscle mass index (ASMI) < 7.00 and <5.40 kg/m2 for males and females, respectively, according to the criteria of the Asian Working Group for Sarcopenia. Although analyses of covariance revealed that plasma BCAAs were significantly higher in diabetic patients, low valine (<222.1 nmol/mL) similarly predicted adverse events defined by HF hospitalization, lethal arrhythmia, or all-cause death in both diabetic and non-diabetic patients independently of age, sex, and NT-proBNP (adjusted hazard ratio [HR] 3.1, 95% confidence interval [CI] of 1.1-8.6 and adjusted HR 2.67, 95% CI 1.1-6.5, respectively; P for interaction 0.88). In multivariate linear regression analyses comprising age, sex, and regional body compositions as explanatory variables, plasma BCAAs were positively correlated with visceral adipose tissue area in non-diabetic patients (standardized β coefficients [β] = 0.44, P < 0.001). In contrast, in diabetic patients, plasma BCAAs were correlated positively with ASMI (β = 0.49, P = 0.001) and negatively with appendicular fat mass index (AFMI; β = -0.42, P = 0.004). Co-morbid diabetes was independently associated with muscle wasting (adjusted odds ratio 2.1, 95% CI 1.1-4.0) and significantly higher plasma 3-methylhistidine level, a marker of myofibrillar degradation. In diabetic patients, ASMI uniquely showed a J-shaped relationship with AFMI, and in a subgroup of HF patients with muscle wasting, diabetic patients showed 12% higher AFMI than non-diabetic patients despite comparable ASMI reductions. CONCLUSIONS Despite higher plasma BCAA levels in HF patients with diabetes, the prognostic value of low valine remained consistent regardless of diabetes status. However, low BCAAs were distinctly associated with fatty muscle degeneration in the extremities in diabetic patients, suggesting the importance of targeted interventions to prevent such tissue remodelling in this population.
Collapse
Affiliation(s)
- Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Katano
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Wataru Kawaharata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keishi Ogura
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Ryo Numazawa
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Ryohei Nagaoka
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takefumi Fujito
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Zhang Y, Rao S, Zhang X, Peng Z, Song W, Xie S, Cao H, Zhang Z, Yang W. Dietary and circulating branched chain amino acids are unfavorably associated with body fat measures among Chinese adults. Nutr Res 2024; 128:94-104. [PMID: 39096661 DOI: 10.1016/j.nutres.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/05/2024]
Abstract
Animal studies showed a detrimental effect of dietary branched chain amino acids (BCAAs) on metabolic health, while epidemiological evidence on dietary BCAAs and obesity is limited and inconclusive. We hypothesized that high dietary and circulating BCAAs are unfavorably associated with obesity in community-dwelling adults. We evaluated the 1-year longitudinal associations of dietary BCAA intake and circulating BCAAs with body fat measures. Body weight, height, and circumferences of the waist (WC) and hip (HC) were measured at baseline and again after 1-year. Body composition and liver fat [indicated by controlled attenuation parameter (CAP)] were also assessed after 1-year. Serum BCAA concentrations at baseline were quantified by liquid chromatography mass spectrometry. Diet was collected using 4 quarterly 3-day recalls during the 1-year. The correlation coefficients between dietary and serum BCAAs were 0.12 (P = .035) for total dietary BCAAs, and ranged from -0.02 (soy foods, P = .749) to 0.18 (poultry, P = .001). Total dietary BCAA intake was associated with increase in body weight (β = 0.044, P = .022) and body mass index (BMI, β = 0.047, P = .043). BCAAs from animal foods were associated with increase in HC, while BCAAs from soy foods were associated with weight gain and higher CAP (all P < .05). Serum BCAAs were associated with higher WC, HC, BMI, body fat mass, visceral fat level, and CAP (all P < .05). These results support that dietary and circulating BCAAs are positively associated with the risk of obesity. More cohort studies with validated dietary assessment tools and long-term follow-up among diverse populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Yaozong Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Songxian Rao
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyu Zhang
- Department of Physical Examination Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhaohong Peng
- Department of Interventional Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Song
- Department of Interventional Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaoyu Xie
- Department of Chronic Non-communicable Diseases Prevention and Control, Lu'an Municipal Center for Disease Control and Prevention, Lu'an, Anhui, China
| | - Hongjuan Cao
- Department of Chronic Non-communicable Diseases Prevention and Control, Lu'an Municipal Center for Disease Control and Prevention, Lu'an, Anhui, China
| | - Zhuang Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Lares-Villaseñor E, Guevara-Cruz M, Salazar-García S, Granados-Portillo O, Vega-Cárdenas M, Martinez-Leija ME, Medina-Vera I, González-Salazar LE, Arteaga-Sanchez L, Guízar-Heredia R, Hernández-Gómez KG, Serralde-Zúñiga AE, Pichardo-Ontiveros E, López-Barradas AM, Guevara-Pedraza L, Ordaz-Nava G, Avila-Nava A, Tovar AR, Cossío-Torres PE, de la Cruz-Mosso U, Aradillas-García C, Portales-Pérez DP, Noriega LG, Vargas-Morales JM. Genetic risk score for insulin resistance based on gene variants associated to amino acid metabolism in young adults. PLoS One 2024; 19:e0299543. [PMID: 38422035 PMCID: PMC10903913 DOI: 10.1371/journal.pone.0299543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Circulating concentration of arginine, alanine, aspartate, isoleucine, leucine, phenylalanine, proline, tyrosine, taurine and valine are increased in subjects with insulin resistance, which could in part be attributed to the presence of single nucleotide polymorphisms (SNPs) within genes associated with amino acid metabolism. Thus, the aim of this work was to develop a Genetic Risk Score (GRS) for insulin resistance in young adults based on SNPs present in genes related to amino acid metabolism. We performed a cross-sectional study that included 452 subjects over 18 years of age. Anthropometric, clinical, and biochemical parameters were assessed including measurement of serum amino acids by high performance liquid chromatography. Eighteen SNPs were genotyped by allelic discrimination. Of these, ten were found to be in Hardy-Weinberg equilibrium, and only four were used to construct the GRS through multiple linear regression modeling. The GRS was calculated using the number of risk alleles of the SNPs in HGD, PRODH, DLD and SLC7A9 genes. Subjects with high GRS (≥ 0.836) had higher levels of glucose, insulin, homeostatic model assessment- insulin resistance (HOMA-IR), total cholesterol and triglycerides, and lower levels of arginine than subjects with low GRS (p < 0.05). The application of a GRS based on variants within genes associated to amino acid metabolism may be useful for the early identification of subjects at increased risk of insulin resistance.
Collapse
Affiliation(s)
- Eunice Lares-Villaseñor
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Martha Guevara-Cruz
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Samuel Salazar-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Omar Granados-Portillo
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Mariela Vega-Cárdenas
- Laboratorio de Nutrición, Departamento de Ciencias en Investigación Aplicadas en Ambiente y Salud, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Liliana Arteaga-Sanchez
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Rocío Guízar-Heredia
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Karla G. Hernández-Gómez
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Edgar Pichardo-Ontiveros
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Adriana M. López-Barradas
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | - Guillermo Ordaz-Nava
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, IMSS-Bienestar, Mérida, Yucatán, Mexico
| | - Armando R. Tovar
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Patricia E. Cossío-Torres
- Departamento de Salud Pública y Ciencias Médicas, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ulises de la Cruz-Mosso
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Celia Aradillas-García
- Facultad de Medicina, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Diana P. Portales-Pérez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Lilia G. Noriega
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Juan M. Vargas-Morales
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
5
|
Ratautė K, Ratautas D. A Review from a Clinical Perspective: Recent Advances in Biosensors for the Detection of L-Amino Acids. BIOSENSORS 2023; 14:5. [PMID: 38248382 PMCID: PMC10813600 DOI: 10.3390/bios14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The field of biosensors is filled with reports and designs of various sensors, with the vast majority focusing on glucose sensing. However, in addition to glucose, there are many other important analytes that are worth investigating as well. In particular, L-amino acids appear as important diagnostic markers for a number of conditions. However, the progress in L-amino acid detection and the development of biosensors for L-amino acids are still somewhat insufficient. In recent years, the need to determine L-amino acids from clinical samples has risen. More clinical data appear to demonstrate that abnormal concentrations of L-amino acids are related to various clinical conditions such as inherited metabolic disorders, dyslipidemia, type 2 diabetes, muscle damage, etc. However, to this day, the diagnostic potential of L-amino acids is not yet fully established. Most likely, this is because of the difficulties in measuring L-amino acids, especially in human blood. In this review article, we extensively investigate the 'overlooked' L-amino acids. We review typical levels of amino acids present in human blood and broadly survey the importance of L-amino acids in most common conditions which can be monitored or diagnosed from changes in L-amino acids present in human blood. We also provide an overview of recent biosensors for L-amino acid monitoring and their advantages and disadvantages, with some other alternative methods for L-amino acid quantification, and finally we outline future perspectives related to the development of biosensing devices for L-amino acid monitoring.
Collapse
Affiliation(s)
- Kristina Ratautė
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania
| | - Dalius Ratautas
- Life Science Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Gueugneau M, Capel F, Monfoulet LE, Polakof S. Metabolomics signatures of plant protein intake: effects of amino acids and compounds associated with plant protein on cardiometabolic health. Curr Opin Clin Nutr Metab Care 2023; 26:189-194. [PMID: 36892966 DOI: 10.1097/mco.0000000000000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
PURPOSE OF REVIEW An increase in the plant-based characteristics of the diet is now recommended for human and planetary health. There is growing evidence that plant protein (PP) intake has beneficial effects on cardiometabolic risk. However, proteins are not consumed isolated and the protein package (lipid species, fiber, vitamins, phytochemicals, etc) may contribute, besides the protein effects per se, to explain the beneficial effects associated with PP-rich diets. RECENT FINDINGS Recent studies have shown the potential of nutrimetabolomics to apprehend the complexity of both the human metabolism and the dietary habits, by providing signatures associated to the consumption of PP-rich diets. Those signatures comprised an important proportion of metabolites that were representative of the protein package, including specific amino acids (branched-chain amino acids and their derivates, glycine, lysine), but also lipid species (lysophosphatidylcholine, phosphatidylcholine, plasmalogens) and polyphenol metabolites (catechin sulfate, conjugated valerolactones and phenolic acids). SUMMARY Further studies are needed to go deeper in the identification of all metabolites making part of the specific metabolomic signatures, associated to the large range of protein package constituents and their effects on the endogenous metabolism, rather than to the protein fraction itself. The objective is to determine the bioactive metabolites, as well as the modulated metabolic pathways and the mechanisms responsible for the observed effects on cardiometabolic health.
Collapse
Affiliation(s)
- Marine Gueugneau
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
7
|
Role of Fat-Free Mass Index on Amino Acid Loss during CRRT in Critically Ill Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020389. [PMID: 36837590 PMCID: PMC9966592 DOI: 10.3390/medicina59020389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Background and objectives: Amino acid (AA) loss is a prevalent unwanted effect of continuous renal replacement therapy (CRRT) in critical care patients, determined both by the machine set-up and individual characteristics. The aim of this study was to evaluate the bioelectrical impedance analysis-derived fat-free mass index (FFMI) effect on amino acid loss. Materials and methods: This was a prospective, observational, single sample study of critical care patients upon initiation of CRRT. AA loss during a 24 h period was estimated. Conventional determinants of AA loss (type and dose of CRRT, concentration of AA) and FFMI were entered into the multivariate regression analysis to determine the individual predictive value. Results: Fifty-two patients were included in the study. The average age was 66.06 ± 13.60 years; most patients had a high mortality risk with APAHCE II values of 22.92 ± 8.15 and SOFA values of 12.11 ± 3.60. Mean AA loss in 24 h was 14.73 ± 9.83 g. There was a significant correlation between the lost AA and FFMI (R = 0.445, B = 0.445 CI95%: 0.541-1.793 p = 0.02). Multivariate regression analysis revealed the independent predictors of lost AA to be the systemic concentration of AA (B = 6.99 95% CI:4.96-9.04 p = 0.001), dose of CRRT (B = 0.48 95% CI:0.27-0.70 p < 0.001) and FFMI (B = 0.91 95% CI:0.42-1.41 p < 0.001). The type of CRRT was eliminated in the final model due to co-linearity with the dose of CRRT. Conclusions: A substantial amount of AA is lost during CRRT. The amount lost is increased by the conventional factors as well as by higher FFMI. Insights from our study highlight the FFMI as a novel research object during CRRT, both when prescribing the dosage and evaluating the nutritional support needed.
Collapse
|
8
|
Higueras C, Escudero R, Rebolé A, García-Sancho M, Rodríguez-Franco F, Sainz Á, Rey AI. Changes in Faecal and Plasma Amino Acid Profile in Dogs with Food-Responsive Enteropathy as Indicators of Gut Homeostasis Disruption: A Pilot Study. Vet Sci 2023; 10:vetsci10020112. [PMID: 36851416 PMCID: PMC9966949 DOI: 10.3390/vetsci10020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Dogs suffering from food-responsive enteropathy (FRE) respond to an elimination diet based on hydrolysed protein or novel protein; however, studies regarding the amino acid profile in FRE dogs are lacking. The aim of this pilot study was to evaluate whether the plasma and faecal amino acid profiles differed between control and FRE dogs and whether these could serve as indicators of severity of illness. Blood, faecal samples, body condition score, and severity of clinical signs based on the canine inflammatory bowel disease activity index were collected before starting the elimination diet. FRE dogs had lower proportions of plasma Asparagine, Histidine, Glycine, Cystine, Leucine, and branched-chain/aromatic amino acids; however, Phenylalanine increased. In faecal samples, Cystine was greater whereas Phenylalanine was lesser in sick dogs compared to control. Leucine correlated negatively with faecal humidity (r = -0.66), and Leucine and Phenylalanine with faecal fat (r = -0.57 and r = -0.62, respectively). Faecal Phenylalanine (r = 0.80), Isoleucine (r = 0.75), and Leucine (r = 0.92) also correlated positively with total short-chain fatty acids, whereas a negative correlation was found with Glycine (r = -0.85) and Cystine (r = -0.61). This study demonstrates the importance of Leucine and Phenylalanine amino acids as indicators of the disease severity in FRE dogs.
Collapse
Affiliation(s)
- Cristina Higueras
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Rosa Escudero
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Almudena Rebolé
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Mercedes García-Sancho
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Fernando Rodríguez-Franco
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ángel Sainz
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ana I. Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-943-889
| |
Collapse
|
9
|
Khanna D, Khanna S, Khanna P, Kahar P, Patel BM. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022; 14:e22711. [PMID: 35386146 PMCID: PMC8967417 DOI: 10.7759/cureus.22711] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
As the prevalence of obesity continues to rise, the world is facing a major public health concern. Obesity is a complex disease associated with an increase in several inflammatory markers, leading to chronic low-grade inflammation. Of multifactorial etiology, it is often used as a measurement of morbidity and mortality. There remains much unknown regarding the association between obesity and inflammation. This review seeks to compile scientific literature on obesity and its associated inflammatory markers in chronic disease and further discusses the role of adipose tissue, macrophages, B-cells, T-cells, fatty acids, amino acids, adipokines, and hormones in obesity. Data were obtained using PubMed and Google Scholar. Obesity, inflammation, immune cells, hormones, fatty acids, and others were search words used to acquire relevant articles. Studies suggest brown adipose tissue is negatively associated with body mass index (BMI) and body fat percentage. Researchers also found the adipose tissue of lean individuals predominantly secretes anti-inflammatory markers, while in obese individuals more pro-inflammatory markers are secreted. Many studies found that adipose tissue in obese individuals showed a shift in immune cells from anti-inflammatory M2 macrophages to pro-inflammatory M1 macrophages, which was also correlated with insulin resistance. Obese individuals generally present with higher levels of hormones such as leptin, visfatin, and resistin. With obesity on the rise globally, it is predicted that severe obesity will become most common amongst low-income adults, black individuals, and women by 2030, making the need for intervention urgent. Further investigation into the association between obesity and inflammation is required to understand the mechanism behind this disease.
Collapse
Affiliation(s)
- Deepesh Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Siya Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Pragya Khanna
- Pediatrics, Gujarat Medical Education and Research Society (GMERS) Medical College, Vadnagar, IND
| | - Payal Kahar
- Department of Health Sciences, Florida Gulf Coast University, Fort Myers, USA
| | - Bhavesh M Patel
- Pediatrics, Gujarat Medical Education and Research Society (GMERS) Medical College, Vadnagar, IND
| |
Collapse
|
10
|
A high lean body mass is not protecting from type 2 diabetes in the presence of a high body fat mass. DIABETES & METABOLISM 2021; 47:101219. [PMID: 33418084 DOI: 10.1016/j.diabet.2020.101219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023]
Abstract
AIM Most studies examining the associations between body composition and type 2 diabetes have been cross-sectional with prevalent diabetes diagnosis or they have analyzed only fat or lean body mass. Hence, the combined effect of fat and lean body mass on the risk of developing type 2 diabetes remains unclear. We investigated whether baseline lean and fat body mass taken simultaneously into account are associated with incidence of type 2 diabetes over a 15-year follow-up in older adults. METHODS We studied 704 men (n = 297) and women (n = 407) from the Helsinki Birth Cohort Study (mean age 61 years at baseline) without diabetes at baseline. Bioelectrical impedance analysis was used to derive baseline fat mass index (FMI, fat mass/height2) and lean mass index (LMI, lean mass/height2), dichotomized at sex-specific medians. Incident diabetes was defined as the composite of fasting plasma glucose (FPG) ≥ 7.0 mmol/l, haemoglobin A1c (HbA1C) ≥ 6.5% (48 mmol/mol) or physician-based diagnosis. RESULTS After a median 14.8 (range 12.5-16.8) years of follow-up, 110 incident diabetes cases occurred (15.6%). Participants with high FMI and LMI at baseline had higher composite incidence of type 2 diabetes (P < 0.001), and significantly increased risk of type 2 diabetes after adjustment for potential confounding factors (sex, physical activity, education and body mass index) compared to the other participants. CONCLUSION Contrary to a general belief greater muscle mass is not protective against type 2 diabetes. High LMI accompanied with high FMI seem to predict subsequent development of type 2 diabetes.
Collapse
|
11
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
12
|
Abstract
Dietary proteins have been used for years to treat obesity. Body weight loss is beneficial when it concerns fat mass, but loss of fat free mass - especially muscle might be detrimental. This occurs because protein breakdown predominates over synthesis, thus administering anabolic dietary compounds like proteins might counter fat free mass loss while allowing for fat mass loss.Indeed, varying the quantity of proteins will decrease muscle anabolic response and increase hyperphagia in rodents fed a low protein diet; but it will favor lean mass maintenance and promote satiety, in certain age groups of humans fed a high protein diet. Beyond protein quantity, protein source is an important metabolic regulator: whey protein and plant based diets exercize favorable effects on the risk of developing obesity, body composition, metabolic parameters or fat free mass preservation of obese patients. Specific amino-acids like branched chain amino acids (BCAA), methionine, tryptophan and its metabolites, and glutamate can also positively influence parameters and complications of obesity especially in rodent models, with less studies translating this in humans.Tuning the quality and quantity of proteins or even specific amino-acids can thus be seen as a potential therapeutic intervention on the body composition, metabolic syndrome parameters and appetite regulation of obese patients. Since these effects vary across age groups and much of the data comes from murine models, long-term prospective studies modulating proteins and amino acids in the human diet are needed.
Collapse
Affiliation(s)
- Mathilde Simonson
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Yves Boirie
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| | - Christelle Guillet
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|