1
|
Zhou L, Sun X, Iqbal A, Yarra R, Wu Q, Li J, Lv X, Ye J, Yang Y. Revealing the aromatic sonata through terpenoid profiling and gene expression analysis of aromatic and non-aromatic coconut varieties. Int J Biol Macromol 2024; 280:135699. [PMID: 39288860 DOI: 10.1016/j.ijbiomac.2024.135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Rajesh Yarra
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiang Lv
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jianqiu Ye
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| |
Collapse
|
2
|
Low ETL, Chan KL, Zaki NM, Taranenko E, Ordway JM, Wischmeyer C, Buntjer J, Halim MAA, Sanusi NSNM, Nagappan J, Rosli R, Bondar E, Amiruddin N, Sarpan N, Ting NC, Chan PL, Ong-Abdullah M, Marjuni M, Mustaffa S, Abdullah N, Azizi N, Bacher B, Lakey N, Tatarinova TV, Manaf MAA, Sambanthamurti R, Singh R. Chromosome-scale Elaeis guineensis and E. oleifera assemblies: comparative genomics of oil palm and other Arecaceae. G3 (BETHESDA, MD.) 2024; 14:jkae135. [PMID: 38918881 PMCID: PMC11373658 DOI: 10.1093/g3journal/jkae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Elaeis guineensis and E. oleifera are the two species of oil palm. E. guineensis is the most widely cultivated commercial species, and introgression of desirable traits from E. oleifera is ongoing. We report an improved E. guineensis genome assembly with substantially increased continuity and completeness, as well as the first chromosome-scale E. oleifera genome assembly. Each assembly was obtained by integration of long-read sequencing, proximity ligation sequencing, optical mapping, and genetic mapping. High interspecific genome conservation is observed between the two species. The study provides the most extensive gene annotation to date, including 46,697 E. guineensis and 38,658 E. oleifera gene predictions. Analyses of repetitive element families further resolve the DNA repeat architecture of both genomes. Comparative genomic analyses identified experimentally validated small structural variants between the oil palm species and resolved the mechanism of chromosomal fusions responsible for the evolutionary descending dysploidy from 18 to 16 chromosomes.
Collapse
Affiliation(s)
- Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Noorhariza Mohd Zaki
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Jared M Ordway
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | | | - Jaap Buntjer
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | - Mohd Amin Ab Halim
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nik Shazana Nik Mohd Sanusi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jayanthi Nagappan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rozana Rosli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Eugeniya Bondar
- Biology Department, University of La Verne, La Verne, CA 91750, USA
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norashikin Sarpan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Ngoot-Chin Ting
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Marhalil Marjuni
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Suzana Mustaffa
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norziha Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norazah Azizi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Blaire Bacher
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | - Nathan Lakey
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | | | - Mohamad Arif Abd Manaf
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurti
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Zhou L, Sun X, Yarra R, Iqbal A, Wu Q, Li J, Yang Y. Combined transcriptome and metabolome analysis of sugar and fatty acid of aromatic coconut and non-aromatic coconut in China. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100190. [PMID: 38259870 PMCID: PMC10801327 DOI: 10.1016/j.fochms.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Sugar and fatty acid content are among the important factors that contribute to the intensity of flavor in aromatic coconut. Gaining a comprehensive understanding of the sugar and fatty acid metabolites in the flesh of aromatic coconuts, along with identifying the key synthetic genes, is of significant importance for improving the development of desirable character traits in these coconuts. However, the related conjoint analysis of metabolic targets and molecular synthesis mechanisms has not been carried out in aromatic coconut until now. UPLC-MS/MS combined with RNA-Seq were performed in aromatic coconut (AC) and non-aromatic coconut (NAC) meat at 7, 9 and 11 months. The results showed that D-fructose in AC coconut meat was 3.48, 2.56 and 3.45 fold higher than that in NAC coconut meat. Similarly, D-glucose in AC coconut meat was 2.48, 2.25 and 3.91 fold higher than that in NAC coconut meat. The NAC coconut meat showed a 1.22-fold rise in the content of lauric acid compared to the AC coconut meat when it reached 11 months of age. Myristic acid content in NAC coconut meat was 1.47, 1.44 and 1.13 fold higher than that in AC coconut meat. The palmitic acid content in NAC coconut meat was 1.62 and 1.34 fold higher than that in AC coconut meat. The genes SPS, GAE, GALE, GLCAK, UGE, UGDH, FBP, GMLS, PFK, GPI, RHM, ACC, FabF, FatA, FabG, and FabI exhibited a negative correlation with D-fructose (r = -0.81) and D-glucose (r = -0.99) contents, while showing a positive correlation (r = 0.85-0.96) with lauric acid and myristic acid. Furthermore, GALE, GLCAK, FBP, GMLS, and ACC displayed a positive correlation (r = 0.83-0.94) with palmitic acid content. The sugar/organic acid ratio exhibited a positive correlation with SPS, GAE, UGE, FabF, FabZ and FabI.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Rajesh Yarra
- Department of Plant and Agroecosytem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
4
|
Li J, Wang F, Sayed MA, Shen X, Zhou L, Liu X, Sun X, Chen S, Wu Y, Lu L, Gong S, Iqbal A, Yang Y. Integrated transcriptomic and metabolomic data reveal the cold stress responses molecular mechanisms of two coconut varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1353352. [PMID: 38689842 PMCID: PMC11058665 DOI: 10.3389/fpls.2024.1353352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Among tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions.
Collapse
Affiliation(s)
- Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Fangyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Md. Abu Sayed
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - XiaoJun Shen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiaomei Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shuangyan Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- School of Tropical Crops, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yi Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lilan Lu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shufang Gong
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
5
|
Shen X, Xiong F, Niu X, Gong S, Sun X, Xiao Y, Yang Y, Chen F. Molecular mechanism of quality changes in solid endosperm of tender coconut during room temperature storage based on transcriptome and metabolome. Food Chem 2024; 436:137615. [PMID: 37837686 DOI: 10.1016/j.foodchem.2023.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
Tender coconut (TC) is popular around the world. Postharvest storage of TC leads to a decline in its appearance quality and flavor in both liquid endosperm (LE) and solid endosperm (SE). While LE is the most consumed part and remains in a liquid state, SE is the only cellular tissue directly connected to LE and may be the main contributor to flavor deterioration during storage. This study focused on investigating SE changes during TC storage at 25 °C using computed tomographic technology, transcriptome and metabolome analyses. The results showed increased thickness and density, elevated protein and fat contents, and decreased reducing and soluble sugars in SE of TC during storage. Integrated transcriptome and metabolome analysis revealed that these changes were mainly associated with the gene transcription levels involved in amino acid, carbohydrate and lipid metabolisms, along with specific metabolites. These findings offer valuable insights for controlling TC quality during storage.
Collapse
Affiliation(s)
- Xiaojun Shen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqing Niu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Shufang Gong
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Li J, Guo S, Min Htwe Y, Sun X, Zhou L, Wang F, Zeng C, Chen S, Iqbal A, Yang Y. Genome-wide identification, classification and expression analysis of MYB gene family in coconut ( Cocos nucifera L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1263595. [PMID: 38288415 PMCID: PMC10822967 DOI: 10.3389/fpls.2023.1263595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
MYB transcription factors regulate the growth, development, and secondary metabolism of plant species. To investigate the origin of color variations in coconut pericarp, we identified and analyzed the MYB gene family present in coconut. According to the sequence of MYB genes in Arabidopsis thaliana, homologous MYB gene sequences were found in the whole genome database of coconut, the conserved sequence motifs within MYB proteins were analyzed by Motif Elicitation (MEME) tool, and the sequences without conservative structure were eliminated. Additionally, we employed RNA-seq technology to generate gene expression signatures of the R2R3-MYB genes across distinctive coconut parts exhibiting diverse colors. To validate these profiles, we conducted quantitative PCR (qPCR). Through comprehensive genome-wide screening, we successfully identified a collection of 179 MYB genes in coconut. Subsequent phylogenetic analysis categorized these 179 coconut MYB genes into 4-subfamilies: 124 R2R3-MYB, 4 3R-MYB types, 4 4R-MYB type, and 47 unknown types. Furthermore, these genes were further divided into 34 subgroups, with 28 of these subgroups successfully classified into known subfamilies found in Arabidopsis thaliana. By mapping the CnMYB genes onto the 16 chromosomes of the coconut genome, we unveiled a collinearity association between them. Moreover, a preservation of gene structure and motif distribution was observed across the CnMYB genes. Our research encompassed a thorough investigation of the R2R3-MYB genes present in the coconut genome, including the chromosomal localization, gene assembly, conserved regions, phylogenetic associations, and promoter cis-acting elements of the studied genes. Our findings revealed a collection of 12 R2R3-MYB candidate genes, namely CnMYB8, CnMYB15, CnMYB27, CnMYB28, CnMYB61, CnMYB63, CnMYB68, CnMYB94, CnMYB101, CnMYB150, CnMYB153, and CnMYB164. These genes showed differential expressions in diverse tissues and developmental stages of four coconut species, such as CnMYB68, CnMYB101, and CnMYB28 exhibited high expression in majority of tissues and coconut species, while CnMYB94 and CnMYB164 showed lower expression. These findings shed light on the crucial functional divergence of CnMYB genes across various coconut tissues, suggesting these genes as promising candidate genes for facilitating color development in this important crop.
Collapse
Affiliation(s)
- Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shukuan Guo
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Yin Min Htwe
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Fangyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Chunru Zeng
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shuangyan Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- School of Tropical Crops, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
7
|
Sun X, Kaleri GA, Mu Z, Feng Y, Yang Z, Zhong Y, Dou Y, Xu H, Zhou J, Luo J, Xiao Y. Comparative Transcriptome Analysis Provides Insights into the Effect of Epicuticular Wax Accumulation on Salt Stress in Coconuts. PLANTS (BASEL, SWITZERLAND) 2024; 13:141. [PMID: 38202449 PMCID: PMC10780918 DOI: 10.3390/plants13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The coconut is an important tropical economical crop and exhibits high tolerance to various types of salinity stress. However, little is known about the molecular mechanism underlying its salt tolerance. In this study, RNA-Seq was applied to examine the different genes expressed in four coconut varieties when exposed to a salt environment, resulting in the generation of data for 48 transcriptomes. Comparative transcriptome analysis showed that some genes involved in cutin and wax biosynthesis were significantly upregulated in salt treatment compared to the control, including CYP86A4, HTH, CER1, CER2, CER3, DCR, GPAT4, LTP3, LTP4, and LTP5. In particular, the expression of CER2 was induced more than sixfold, with an RPKM value of up to 205 ten days after salt treatment in Hainan Tall coconut, demonstrating superior capacity in salt tolerance compared to dwarf coconut varieties. However, for yellow dwarf and red dwarf coconut varieties, the expression level of the CER2 gene was low at four different time points after exposure to salt treatment, suggesting that this gene may contribute to the divergence in salt tolerance between tall and dwarf coconut varieties. Cytological evidence showed a higher abundance of cuticle accumulation in tall coconut and severe damage to cuticular wax in dwarf coconut.
Collapse
Affiliation(s)
- Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Ghulam Abid Kaleri
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Zhihua Mu
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Yalan Feng
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Zhuang Yang
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Yazhu Zhong
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Yajing Dou
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Hang Xu
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Junjie Zhou
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Jie Luo
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Yong Xiao
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| |
Collapse
|
8
|
Lu L, Yang W, Dong Z, Tang L, Liu Y, Xie S, Yang Y. Integrated Transcriptomic and Metabolomics Analyses Reveal Molecular Responses to Cold Stress in Coconut ( Cocos nucifera L.) Seedlings. Int J Mol Sci 2023; 24:14563. [PMID: 37834015 PMCID: PMC10572742 DOI: 10.3390/ijms241914563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Coconut is an important tropical and subtropical fruit and oil crop severely affected by cold temperature, limiting its distribution and application. Thus, studying its low-temperature reaction mechanism is required to expand its cultivation range. We used growth morphology and physiological analyses to characterize the response of coconuts to 10, 20, and 30 d of low temperatures, combined with transcriptome and metabolome analysis. Low-temperature treatment significantly reduced the plant height and dry weight of coconut seedlings. The contents of soil and plant analyzer development (SPAD), soluble sugar (SS), soluble protein (SP), proline (Pro), and malondialdehyde (MDA) in leaves were significantly increased, along with the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the endogenous hormones abscisic acid (ABA), auxin (IAA), zeatin (ZR), and gibberellin (GA) contents. A large number of differentially expressed genes (DEGs) (9968) were detected under low-temperature conditions. Most DEGs were involved in mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, plant-pathogen interaction, biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism, carbon metabolism, starch and sucrose metabolism, purine metabolism, and phenylpropanoid biosynthesis pathways. Transcription factors (TFs), including WRKY, AP2/ERF, HSF, bZIP, MYB, and bHLH families, were induced to significantly differentially express under cold stress. In addition, most genes associated with major cold-tolerance pathways, such as the ICE-CBF-COR, MAPK signaling, and endogenous hormones and their signaling pathways, were significantly up-regulated. Under low temperatures, a total of 205 differentially accumulated metabolites (DAMs) were enriched; 206 DAMs were in positive-ion mode and 97 in negative-ion mode, mainly including phenylpropanoids and polyketides, lipids and lipid-like molecules, benzenoids, organoheterocyclic compounds, organic oxygen compounds, organic acids and derivatives, nucleosides, nucleotides, and analogues. Comprehensive metabolome and transcriptome analysis revealed that the related genes and metabolites were mainly enriched in amino acid, flavonoid, carbohydrate, lipid, and nucleotide metabolism pathways under cold stress. Together, the results of this study provide important insights into the response of coconuts to cold stress, which will reveal the underlying molecular mechanisms and help in coconut screening and breeding.
Collapse
Affiliation(s)
- Lilan Lu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Weibo Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Zhiguo Dong
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Longxiang Tang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Yingying Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China;
| | - Shuyun Xie
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China;
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| |
Collapse
|
9
|
Chu M, Qin Y, Lin X, Ma L, Deng D, Lv D, Fu P, Lin H. A Preliminary Survey of Transfer RNA Modifications and Modifying Enzymes of the Tropical Plant Cocos nucifera L. Genes (Basel) 2023; 14:1287. [PMID: 37372467 PMCID: PMC10298058 DOI: 10.3390/genes14061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The coconut (Cocos nucifera L.) is a commercial crop widely distributed among coastal tropical regions. It provides millions of farmers with food, fuel, cosmetics, folk medicine, and building materials. Among these, oil and palm sugar are representative extracts. However, this unique living species of Cocos has only been preliminarily studied at molecular levels. Benefiting from the genomic sequence data published in 2017 and 2021, we investigated the transfer RNA (tRNA) modifications and modifying enzymes of the coconut in this survey. An extraction method for the tRNA pool from coconut flesh was built. In total, 33 species of modified nucleosides and 66 homologous genes of modifying enzymes were confirmed using a nucleoside analysis using high-performance liquid chromatography combined with high-resolution mass spectrometry (HPLC-HRMS) and homologous protein sequence alignment. The positions of tRNA modifications, including pseudouridines, were preliminarily mapped using a oligonucleotide analysis, and the features of their modifying enzymes were summarized. Interestingly, we found that the gene encoding the modifying enzyme of 2'-O-ribosyladenosine at the 64th position of tRNA (Ar(p)64) was uniquely overexpressed under high-salinity stress. In contrast, most other tRNA-modifying enzymes were downregulated with mining transcriptomic sequencing data. According to previous physiological studies of Ar(p)64, the coconut appears to enhance the quality control of the translation process when subjected to high-salinity stress. We hope this survey can help advance research on tRNA modification and scientific studies of the coconut, as well as thinking of the safety and nutritional value of naturally modified nucleosides.
Collapse
Affiliation(s)
- Meng Chu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yichao Qin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiuying Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Li Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Dehai Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Daizhu Lv
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Huan Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Wang L, Lee M, Yi Wan Z, Bai B, Ye B, Alfiko Y, Rahmadsyah R, Purwantomo S, Song Z, Suwanto A, Hua Yue G. A Chromosome-level Reference Genome of African Oil Palm Provides Insights into Its Divergence and Stress Adaptation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:440-454. [PMID: 36435453 PMCID: PMC10787024 DOI: 10.1016/j.gpb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
The palm family (Arecaceae), consisting of ∼ 2600 species, is the third most economically important family of plants. The African oil palm (Elaeis guineensis) is one of the most important palms. However, the genome sequences of palms that are currently available are still limited and fragmented. Here, we report a high-quality chromosome-level reference genome of an oil palm, Dura, assembled by integrating long reads with ∼ 150× genome coverage. The assembled genome was 1.7 Gb in size, covering 94.5% of the estimated genome, of which 91.6% was assigned into 16 pseudochromosomes and 73.7% was repetitive sequences. Relying on the conserved synteny with oil palm, the existing draft genome sequences of both date palm and coconut were further assembled into chromosomal level. Transposon burst, particularly long terminal repeat retrotransposons, following the last whole-genome duplication, likely explains the genome size variation across palms. Sequence analysis of the VIRESCENS gene in palms suggests that DNA variations in this gene are related to fruit colors. Recent duplications of highly tandemly repeated pathogenesis-related proteins from the same tandem arrays play an important role in defense responses to Ganoderma. Whole-genome resequencing of both ancestral African and introduced oil palms in Southeast Asia reveals that genes under putative selection are notably associated with stress responses, suggesting adaptation to stresses in the new habitat. The genomic resources and insights gained in this study could be exploited for accelerating genetic improvement and understanding the evolution of palms.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zi Yi Wan
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Bin Bai
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Baoqing Ye
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Yuzer Alfiko
- Biotech Lab, Wilmar International, Bekasi 17530, Indonesia
| | | | | | - Zhuojun Song
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Gen Hua Yue
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
11
|
Wang H, Chen L, Wu S, Jin W, Shen W, Hu Z, Huang W, Liu G. Improve stability and application of rice oil bodies via surface modification with ferulic acid, (-)-epicatechin, and phytic acid. Food Chem 2023; 409:135274. [PMID: 36586252 DOI: 10.1016/j.foodchem.2022.135274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Rice bran oil bodies (RBOBs) are one of the most exploited functional components from rice bran by-products and are predominantly based on oleosin stabilization. In this study, we explored the effects of different concentrations of added (-)-epicatechin, ferulic acid, and phytic acid on the RBOBs stability. The results revealed that the incorporation of all three natural phytoconstituents could reduce the RBOBs particle size and increase emulsifying properties, demonstrating increasing surface hydrophobicity (p < 0.05), and a good antioxidant effect, which was especially obvious with (-)-epicatechin incorporation. Fourier transform infrared (FT-IR) spectroscopy data demonstrated that these three small molecule substance classes can modify with oleosin on RBOBs surface by covalent and noncovalent effects. Raman spectroscopic analysis illustrated that the vibrational modes of disulphide bonds in oleosin were modified by these three plant natural ingredients. The interactions between the three phytoconstituents and the model protein were investigated by molecular docking experiments.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 30023, Hubei, PR China
| | - Lu Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 30023, Hubei, PR China
| | - Shuang Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 30023, Hubei, PR China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 30023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 30023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China
| | - Zhongze Hu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 30023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China
| | - Wenjing Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 30023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China.
| | - Gang Liu
- Pharmacy Department, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
12
|
Guo H, Li C, Lai J, Tong H, Cao Z, Wang C, Zhao W, He L, Wang S, Yang J, Long T. Comprehensive Analysis of Metabolome and Transcriptome Reveals the Regulatory Network of Coconut Nutrients. Metabolites 2023; 13:683. [PMID: 37367842 DOI: 10.3390/metabo13060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Coconut flesh is widely consumed in the market for its good flavor. However, a comprehensive and dynamic assessment of the nutrients in coconut flesh and their molecular regulatory mechanisms is lacking. In this study, the metabolite accumulation and gene expression of three representative coconut cultivars belonging to two subspecies were investigated using ultra performance liquid chromatography/tandem mass spectrometry. A total of 6101 features were detected, of which 52, 8, and 158 were identified as amino acids and derivatives, polyamines, and lipids, respectively. The analysis of the metabolite pathway showed that glutathione and α-linolenate were the main differential metabolites. Transcriptome data revealed significant differences in the expression of five glutathione structural genes and thirteen polyamine-regulated genes, consistent with trends in metabolite accumulation. Weighted correlation network and co-expression analyses showed that a novel gene WRKY28 was implicated in the regulation of lipid synthesis. These results broaden our understanding of coconut nutrition metabolism and provide new insights into the molecular basis of coconut nutrition metabolism.
Collapse
Affiliation(s)
- Hao Guo
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chun Li
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Lai
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Haiyang Tong
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhenfeng Cao
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chao Wang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wenyu Zhao
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liqiang He
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Yousefi K, Abdullah SNA, Hatta MAM, Ling KL. Genomics and Transcriptomics Reveal Genetic Contribution to Population Diversity and Specific Traits in Coconut. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091913. [PMID: 37176970 PMCID: PMC10181077 DOI: 10.3390/plants12091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Coconut is an economically important palm species with a long history of human use. It has applications in various food, nutraceuticals, and cosmetic products, and there has been renewed interest in coconut in recent years due to its unique nutritional and medicinal properties. Unfortunately, the sustainable growth of the coconut industry has been hampered due to a shortage of good quality seedlings. Genetic improvement through the traditional breeding approach faced considerable obstacles due to its perennial nature, protracted juvenile period, and high heterozygosity. Molecular biotechnological tools, including molecular markers and next-generation sequencing (NGS), could expedite genetic improvement efforts in coconut. Researchers have employed various molecular markers to reveal genetic diversity among coconut populations and for the construction of a genetic map for exploitation in coconut breeding programs worldwide. Whole genome sequencing and transcriptomics on the different varieties have generated a massive amount of publicly accessible sequence data, substantially improving the ability to analyze and understand molecular mechanisms affecting crop performance. The production of high-yielding and disease-resilient coconuts and the deciphering of the complex coconut genome's structure can profit tremendously from these technologies. This paper aims to provide a comprehensive review of the progress of coconut research, using genomics, transcriptomics, and molecular markers initiatives.
Collapse
Affiliation(s)
- Kobra Yousefi
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kong Lih Ling
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
14
|
Lu L, Chen S, Yang W, Wu Y, Liu Y, Yin X, Yang Y, Yang Y. Integrated transcriptomic and metabolomic analyses reveal key metabolic pathways in response to potassium deficiency in coconut ( Cocos nucifera L.) seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1112264. [PMID: 36860901 PMCID: PMC9968814 DOI: 10.3389/fpls.2023.1112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potassium ions (K+) are important for plant growth and crop yield. However, the effects of K+ deficiency on the biomass of coconut seedlings and the mechanism by which K+ deficiency regulates plant growth remain largely unknown. Therefore, in this study, we compared the physiological, transcriptome, and metabolite profiles of coconut seedling leaves under K+-deficient and K+-sufficient conditions using pot hydroponic experiments, RNA-sequencing, and metabolomics technologies. K+ deficiency stress significantly reduced the plant height, biomass, and soil and plant analyzer development value, as well as K content, soluble protein, crude fat, and soluble sugar contents of coconut seedlings. Under K+ deficiency, the leaf malondialdehyde content of coconut seedlings were significantly increased, whereas the proline (Pro) content was significantly reduced. Superoxide dismutase, peroxidase, and catalase activities were significantly reduced. The contents of endogenous hormones such as auxin, gibberellin, and zeatin were significantly decreased, whereas abscisic acid content was significantly increased. RNA-sequencing revealed that compared to the control, there were 1003 differentially expressed genes (DEGs) in the leaves of coconut seedlings under K+ deficiency. Gene Ontology analysis revealed that these DEGs were mainly related to "integral component of membrane," "plasma membrane," "nucleus", "transcription factor activity," "sequence-specific DNA binding," and "protein kinase activity." Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the DEGs were mainly involved in "MAPK signaling pathway-plant," "plant hormone signal transduction," "starch and sucrose metabolism," "plant-pathogen interaction," "ABC transporters," and "glycerophospholipid metabolism." Metabolomic analysis showed that metabolites related to fatty acids, lipidol, amines, organic acids, amino acids, and flavonoids were generally down-regulated in coconut seedlings under K+ deficiency, whereas metabolites related to phenolic acids, nucleic acids, sugars, and alkaloids were mostly up-regulated. Therefore, coconut seedlings respond to K+ deficiency stress by regulating signal transduction pathways, primary and secondary metabolism, and plant-pathogen interaction. These results confirm the importance of K+ for coconut production, and provide a more in-depth understanding of the response of coconut seedlings to K+ deficiency and a basis for improving K+ utilization efficiency in coconut trees.
Collapse
Affiliation(s)
- Lilan Lu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Siting Chen
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Weibo Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yingying Liu
- School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xinxing Yin
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yanfang Yang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
15
|
Khan FS, Goher F, Zhang D, Shi P, Li Z, Htwe YM, Wang Y. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. FRONTIERS IN PLANT SCIENCE 2022; 13:1042828. [PMID: 36578341 PMCID: PMC9791139 DOI: 10.3389/fpls.2022.1042828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Commercially important palms (oil palm, coconut, and date palm) are widely grown perennial trees with tremendous commercial significance due to food, edible oil, and industrial applications. The mounting pressure on the human population further reinforces palms' importance, as they are essential crops to meet vegetable oil needs around the globe. Various conventional breeding methods are used for the genetic improvement of palms. However, adopting new technologies is crucial to accelerate breeding and satisfy the expanding population's demands. CRISPR/Cas9 is an efficient genome editing tool that can incorporate desired traits into the existing DNA of the plant without losing common traits. Recent progress in genome editing in oil palm, coconut and date palm are preliminarily introduced to potential readers. Furthermore, detailed information on available CRISPR-based genome editing and genetic transformation methods are summarized for researchers. We shed light on the possibilities of genome editing in palm crops, especially on the modification of fatty acid biosynthesis in oil palm. Moreover, the limitations in genome editing, including inadequate target gene screening due to genome complexities and low efficiency of genetic transformation, are also highlighted. The prospects of CRISPR/Cas9-based gene editing in commercial palms to improve sustainable production are also addressed in this review paper.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dapeng Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Peng Shi
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Zhiying Li
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yin Min Htwe
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yong Wang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| |
Collapse
|
16
|
Arumugam T, Hatta MAM. Improving Coconut Using Modern Breeding Technologies: Challenges and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3414. [PMID: 36559524 PMCID: PMC9784122 DOI: 10.3390/plants11243414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Coconut (Cocos nucifera L.) is a perennial palm with a wide range of distribution across tropical islands and coastlines. Multitude use of coconut by nature is important in the socio-economic fabric framework among rural smallholders in producing countries. It is a major source of income for 30 million farmers, while 60 million households rely on the coconut industry directly as farm workers and indirectly through the distribution, marketing, and processing of coconut and coconut-based products. Stagnant production, inadequate planting materials, the effects of climate change, as well as pests and diseases are among the key issues that need to be urgently addressed in the global coconut industry. Biotechnology has revolutionized conventional breeding approaches in creating genetic variation for trait improvement in a shorter period of time. In this review, we highlighted the challenges of current breeding strategies and the potential of biotechnological approaches, such as genomic-assisted breeding, next-generation sequencing (NGS)-based genotyping and genome editing tools in improving the coconut. Also, combining these technologies with high-throughput phenotyping approaches and speed breeding could speed up the rate of genetic gain in coconut breeding to solve problems that have been plaguing the industry for decades.
Collapse
Affiliation(s)
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
17
|
Yu L, Liu L, Yang W, Wu D, Wang J, He Q, Chen Z, Liu Q. A non-destructive coconut fruit and seed traits extraction method based on Micro-CT and deeplabV3+ model. FRONTIERS IN PLANT SCIENCE 2022; 13:1069849. [PMID: 36561444 PMCID: PMC9763456 DOI: 10.3389/fpls.2022.1069849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
With the completion of the coconut gene map and the gradual improvement of related molecular biology tools, molecular marker-assisted breeding of coconut has become the next focus of coconut breeding, and accurate coconut phenotypic traits measurement will provide technical support for screening and identifying the correspondence between genotype and phenotype. A Micro-CT system was developed to measure coconut fruits and seeds automatically and nondestructively to acquire the 3D model and phenotyping traits. A deeplabv3+ model with an Xception backbone was used to segment the sectional image of coconut fruits and seeds automatically. Compared with the structural-light system measurement, the mean absolute percentage error of the fruit volume and surface area measurements by the Micro-CT system was 1.87% and 2.24%, respectively, and the squares of the correlation coefficients were 0.977 and 0.964, respectively. In addition, compared with the manual measurements, the mean absolute percentage error of the automatic copra weight and total biomass measurements was 8.85% and 25.19%, respectively, and the adjusted squares of the correlation coefficients were 0.922 and 0.721, respectively. The Micro-CT system can nondestructively obtain up to 21 agronomic traits and 57 digital traits precisely.
Collapse
Affiliation(s)
- Lejun Yu
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Lingbo Liu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Key Laboratory of Ministry of Education for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Dan Wu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Key Laboratory of Ministry of Education for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhu Wang
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Qiang He
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - ZhouShuai Chen
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, China
| |
Collapse
|
18
|
Zhou G, Yin H, Chen F, Wang Y, Gao Q, Yang F, He C, Zhang L, Wan Y. The genome of Areca catechu provides insights into sex determination of monoecious plants. THE NEW PHYTOLOGIST 2022; 236:2327-2343. [PMID: 36089819 DOI: 10.1111/nph.18471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The areca palm (Areca catechu) has a monoecious spadix, with male flowers on the apical side and females on the basal side. Here, we applied multiomics analysis to investigate sex determination and floral organ development in areca palms. We generated a chromosome-level reference genome of A. catechu with 16 pseudochromosomes, composed of 2.73 Gb and encoding 31 406 genes. Data from RNA-seq and ATAC-seq (assay for transposase accessible chromatin sequencing) suggested that jasmonic acid (JA) synthesis and signal transduction-related genes were differentially expressed between female and male flowers via epigenetic modifications. JA concentration in female flowers was c. 10 times than that in males on the same inflorescence, while JA concentration in hermaphroditic flowers of abnormal inflorescences was about twice that in male flowers of normal inflorescences. JA promotes the development of female flower organs by decreasing the expression of B-function genes, including AGL16, AP3, PIb and PIc. There is also a region on pseudochromosome 15 harboring sex-related genes, including CYP703, LOG, GPAT, AMS and BiP. Among them, CYP703, AMS and BiP were specifically expressed in male flowers.
Collapse
Affiliation(s)
- Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hongyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Hainan Yazhou Bay Seed Laboratory, College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Yicheng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fusun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chaozhu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
19
|
Sabana AA, Antony G, Rajesh MK, Gangaraj KP, Niral V, Sudha R, Jerard BA. Development and characterization of non-coding RNA-derived simple sequence repeat markers in coconut (Cocos nucifera L.). Funct Integr Genomics 2022; 22:1243-1251. [DOI: 10.1007/s10142-022-00911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
|
20
|
Mannu J, Latha AM, Rajagopal S, Lalitha HDA, Muthurajan R, Loganathan A, Subbarayalu M, Ramasamy G, Jegadeesan R. Whole genome sequencing of ASD 16 and ADT 43 to identify predominant grain size and starch associated alleles in rice. Mol Biol Rep 2022; 49:11743-11754. [PMID: 36201102 DOI: 10.1007/s11033-022-07935-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/07/2022] [Indexed: 10/10/2022]
Abstract
BACKGROUND The rice cultivars ASD 16 and ADT 43 are the most popular high-yielding Indica rice cultivars in southern India. Despite their popularity very little is known about their genetic basis due to lack of studies on the complete genome. In the current study, efforts were made to identify alleles and SNP markers that differentiate the two contrasting rice genotypes, ASD 16 and ADT 43 for grain shape and starch content. METHODS AND RESULTS The complete genome of bold grain ASD 16 and slender grain ADT 43 were sequenced via Illumina's paired-end sequencing and the reads obtained were mapped to the Oryza sativa Indica Group cultivar 93-11 reference genome. The grain size of rice is controlled by Quantitative Trait Loci (QTL) that has a robust effect on grain yield and quality. To gain insight into genes that controlling grain size and starch content, an in-silico analysis was performed by taking into account of 72 grain elongation and starch biosynthesis genes. The identified alleles were further validated in the whole genome sequencing data of 32 bold grain and 25 slender grain varieties that were retrieved from the 3 K rice genome project. CONCLUSION An "A to G" polymorphism leading to SER 74 PRO was identified at the CDS position 220 of the An-1 gene, encoding bHLH domain-containing protein that regulates awn formation and increase in grain length. The non-synonymous substitutions such as A545C variant leading PHE 182 CYS in ADP Glucose Pyrophosphorylase large subunit IV (AGPL4) and C3094G variant leading to VAL 1032 LEU in Starch synthase IIIb (OsSSIIIb) were also identified in the starch biosynthesis genes. These identified allelic variants may contribute to the crop improvement programs in rice.
Collapse
Affiliation(s)
- Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Abillasha Mohan Latha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Shalini Rajagopal
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Hari Dharani A Lalitha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Arul Loganathan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Mohankumar Subbarayalu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Gnanam Ramasamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Ramalingam Jegadeesan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| |
Collapse
|
21
|
Wang S, Xiao Y, Zhou ZW, Wang X, Chen LL, Luo J. Cocos nucifera (coconut). Trends Genet 2022; 38:1096-1097. [DOI: 10.1016/j.tig.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
|
22
|
John Martin JJ, Yarra R, Wei L, Cao H. Oil Palm Breeding in the Modern Era: Challenges and Opportunities. PLANTS 2022; 11:plants11111395. [PMID: 35684168 PMCID: PMC9183044 DOI: 10.3390/plants11111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Oil palm, a cross-pollinated crop with long generation time, poses a lot of challenges in achieving sustainable oil palm with high yield and quality. The African oil palm (Elaeis guineensis Jacq.) is the most productive and versatile oil-yielding crop in the world, producing more than any other oil-yielding crop. Despite recent challenges, such as stress tolerance, superior oil quality, disease tolerance, and the need for new market niches, there is a growing need to explore and develop new varieties with high yield potential and the genetic diversity required to maintain oil palm yield stability. Breeding is an indispensable part of producing high-quality planting materials to increase oil palm yield. Biotechnological technologies have transformed conventional plant breeding approaches by introducing novel genotypes for breeding. Innovative pre-breeding and breeding approaches, such as identifying candidate genes in wild or land races using genomics tools, can pave the way for genetic improvement in oil palm. In this review, we highlighted the modern breeding tools, including genomics, marker-assisted breeding, genetic engineering, and genome editing techniques in oil palm crops, and we explored certain concerns connected to the techniques and their applications in practical breeding.
Collapse
Affiliation(s)
- Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Lu Wei
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| |
Collapse
|
23
|
Gao R, Lou Q, Hao L, Qi G, Tian Y, Pu X, He C, Wang Y, Xu W, Xu Z, Song J. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1305-1318. [PMID: 34907610 DOI: 10.1111/tpj.15634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Distant species producing the same secondary metabolites is an interesting and common phenomenon in nature. A classic example of this is scutellarein whose derivatives have been used clinically for more than 30 years. Scutellarein occurs in significant amounts in species of two different orders, Scutellaria baicalensis and Erigeron breviscapus, which diverged more than 100 million years ago. Here, according to the genome-wide selection and functional identification of 39 CYP450 genes from various angiosperms, we confirmed that only seven Scutellaria-specific CYP82D genes and one Erigeron CYP706X gene could perform the catalytic activity of flavone 6-hydroxylase (F6H), suggesting that the convergent evolution of scutellarein production in these two distant species was caused by two independently evolved CYP450 families. We also identified seven Scutellaria-specific CYP82D genes encoding flavone 8-hydroxylase (F8H). The evolutionary patterns of CYP82 and CYP706 families via kingdom-wide comparative genomics highlighted the evolutionary diversity of CYP82D and the specificity of CYP706X in angiosperms. Multi-collinearity and phylogenetic analysis of CYP82D in Scutellaria confirmed that the function of F6H evolved from F8H. Furthermore, the SbaiCYP82D1A319D , EbreCYP706XR130A , EbreCYP706XF312D and EbreCYP706XA318D mutants can significantly decrease the catalytic activity of F6H, revealing the contribution of crucial F6H amino acids to the scutellarein biosynthesis of distant species. This study provides important insights into the multi-origin evolution of the same secondary metabolite biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Guihong Qi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ya Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Wenjie Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China
| |
Collapse
|
24
|
Genome-wide diversity analysis to infer population structure and linkage disequilibrium among Colombian coconut germplasm. Sci Rep 2022; 12:2958. [PMID: 35194112 PMCID: PMC8863804 DOI: 10.1038/s41598-022-07013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic diversity and relatedness of accessions for coconut growing in Colombia was unknown until this study. Here we develop single nucleotide polymorphisms (SNPs) along the coconut genome based on Genotyping by Sequencing (GBS) with the goal of analyze the genetic diversity, population structure, and linkage disequilibrium (LD) of a diverse coconut panel consisting of 112 coconut accessions from the Atlantic and Pacific coasts of Colombia. A comprehensive catalog of approximately 40,000 SNPs with a minor allele frequency (MAF) of > 0.05 is presented. A total of 40,614 SNPs were found but only 19,414 anchored to chromosomes. Of these, 10,338 and 4606 were exclusive to the Atlantic and Pacific gene pools, respectively, and 3432 SNPs could differentiate both gene pools. A filtered subset of unlinked and anchored SNPs (1271) showed a population structure at K = 4, separating accessions from the Pacific and Atlantic coasts that can also be distinguished by palm height, as found in previous studies. The Pacific groups had a slow LD decay, low Fixation Index (Fst) and low nucleotide diversity (π), while the Atlantic group had slightly higher genetic diversity and faster LD decay. Genome-wide diversity analyses are of importance to promote germplasm conservation and breeding programs aimed at developing new cultivars better adapted to the region.
Collapse
|
25
|
Joo KA, Muszynski MG, Kantar MB, Wang ML, He X, Del Valle Echevarria AR. Utilizing CRISPR-Cas in Tropical Crop Improvement: A Decision Process for Fitting Genome Engineering to Your Species. Front Genet 2021; 12:786140. [PMID: 34868276 PMCID: PMC8633396 DOI: 10.3389/fgene.2021.786140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Adopting modern gene-editing technologies for trait improvement in agriculture requires important workflow developments, yet these developments are not often discussed. Using tropical crop systems as a case study, we describe a workflow broken down into discrete processes with specific steps and decision points that allow for the practical application of the CRISPR-Cas gene editing platform in a crop of interest. While we present the steps of developing genome-edited plants as sequential, in practice parts can be done in parallel, which are discussed in this perspective. The main processes include 1) understanding the genetic basis of the trait along with having the crop’s genome sequence, 2) testing and optimization of the editing reagents, development of efficient 3) tissue culture and 4) transformation methods, and 5) screening methods to identify edited events with commercial potential. Our goal in this perspective is to help any lab that wishes to implement this powerful, easy-to-use tool in their pipeline, thus aiming to democratize the technology.
Collapse
Affiliation(s)
- Kathleen A Joo
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael G Muszynski
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Waipahu, HI, United States
| | - Xiaoling He
- Hawaii Agriculture Research Center, Waipahu, HI, United States
| | - Angel R Del Valle Echevarria
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.,Hawaii Agriculture Research Center, Waipahu, HI, United States
| |
Collapse
|
26
|
Rajesh MK, Gangurde SS, Pandey MK, Niral V, Sudha R, Jerard BA, Kadke GN, Sabana AA, Muralikrishna KS, Samsudeen K, Karun A, Prasad TSK. Insights on Genetic Diversity, Population Structure, and Linkage Disequilibrium in Globally Diverse Coconut Accessions Using Genotyping-by-Sequencing. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:796-809. [PMID: 34757849 DOI: 10.1089/omi.2021.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genotyping-by-sequencing (GBS) has emerged as a cost-effective approach for genome-wide discovery of single-nucleotide polymorphism (SNP) markers and high-throughput genotyping. In this study, 96 coconut palms, representing 16 accessions from globally diverse origins, were genotyped using the GBS strategy. A total of 10,835 high-quality SNPs, which were identified after stringent filtering, were utilized to assess genetic diversity, population structure, and linkage disequilibrium (LD) analyses. The polymorphism information content (PIC) values of SNPs ranged from 0.1 to 0.4, with a large proportion of SNPs (8633 nos.; 79.7%) having a higher PIC in the range of 0.3-0.4. The genetic diversity analysis revealed the existence of a high level of variation in coconut accessions, with an average expected heterozygosity (He) value of 0.43. Unweighted neighbor-joining phylogenetic tree and Bayesian-based model population structure grouped coconut genotypes into four main clusters. The accessions are generally clustered based on their height (tall or dwarf), with a few accession clusterings based on geographical origins. Investigation of LD pattern in coconut indicated a relatively rapid LD decay with a short range (9 kb). The results obtained in this study will contribute to enhancing the capacity of coconut researchers to utilize genetic diversity for further genetic improvement. In addition, it would open up possibilities for performing genomic studies such as genome-wide association studies and genomic selection to accelerate the efficiency and speed of coconut genetic improvement.
Collapse
Affiliation(s)
- Muliyar Krishna Rajesh
- Division of Crop Improvement, ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, India
| | - Sunil Shivaji Gangurde
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish Kumar Pandey
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Vittal Niral
- Division of Crop Improvement, ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, India
| | - Raju Sudha
- Division of Crop Improvement, ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, India
| | - Bosco Augustine Jerard
- ICAR-Central Island Agricultural Research Institute (ICAR-CIARI), Port Blair, Andaman and Nicobar Islands, India
| | | | - Abdulla Abdulla Sabana
- Division of Crop Improvement, ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, India
| | | | - Kukkamgai Samsudeen
- Division of Crop Improvement, ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, India
| | - Anitha Karun
- Division of Crop Improvement, ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, India
| | | |
Collapse
|
27
|
Wang S, Xiao Y, Zhou ZW, Yuan J, Guo H, Yang Z, Yang J, Sun P, Sun L, Deng Y, Xie WZ, Song JM, Qamar MTU, Xia W, Liu R, Gong S, Wang Y, Wang F, Liu X, Fernie AR, Wang X, Fan H, Chen LL, Luo J. High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biol 2021; 22:304. [PMID: 34736486 PMCID: PMC8567702 DOI: 10.1186/s13059-021-02522-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coconut is an important tropical oil and fruit crop whose evolutionary position renders it a fantastic species for the investigation of the evolution of monocot chromosomes and the subsequent differentiation of ancient plants. RESULTS Here, we report the assembly and annotation of reference-grade genomes of Cn. tall and Cn. dwarf, whose genome sizes are 2.40 Gb and 2.39 Gb, respectively. The comparative analysis reveals that the two coconut subspecies diverge about 2-8 Mya while the conserved Arecaceae-specific whole-genome duplication (ω WGD) occurs approximately 47-53 Mya. It additionally allows us to reconstruct the ancestral karyotypes of the ten ancient monocot chromosomes and the evolutionary trajectories of the 16 modern coconut chromosomes. Fiber synthesis genes in Cn. tall, related to lignin and cellulose synthesis, are found at a higher copy number and expression level than dwarf coconuts. Integrated multi-omics analysis reveals that the difference in coconut plant height is the result of altered gibberellin metabolism, with both the GA20ox copy number and a single-nucleotide change in the promoter together leading to the difference in plant height between Cn. tall and Cn. dwarf. CONCLUSION We provide high-quality coconut genomes and reveal the genetic basis of trait differences between two coconuts through multi-omics analysis. We also reveal that the selection of plant height has been targeted for the same gene for millions of years, not only in natural selection of ancient plant as illustrated in coconut, but also for artificial selection in cultivated crops such as rice and maize.
Collapse
Affiliation(s)
- Shouchuang Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Zhi-Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zhuang Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Pengchuan Sun
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Lisong Sun
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yuan Deng
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Wen-Zhao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wei Xia
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Rui Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Shufang Gong
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Yong Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Fuyou Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Xiyin Wang
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.
| | - Haikuo Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China.
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
28
|
Zaki NM, Schwarzacher T, Singh R, Madon M, Wischmeyer C, Hanim Mohd Nor N, Zulkifli MA, Heslop-Harrison JSP. Chromosome identification in oil palm (Elaeis guineensis) using in situ hybridization with massive pools of single copy oligonucleotides and transferability across Arecaceae species. Chromosome Res 2021; 29:373-390. [PMID: 34657216 DOI: 10.1007/s10577-021-09675-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Chromosome identification is essential for linking sequence and chromosomal maps, verifying sequence assemblies, showing structural variations and tracking inheritance or recombination of chromosomes and chromosomal segments during evolution and breeding programs. Unfortunately, identification of individual chromosomes and chromosome arms has been a major challenge for some economically important crop species with a near-continuous chromosome size range and similar morphology. Here, we developed oligonucleotide-based chromosome-specific probes that enabled us to establish a reference chromosome identification system for oil palm (Elaeis guineensis Jacq., 2n = 32). Massive oligonucleotide sequence pools were anchored to individual chromosome arms using dual and triple fluorescent in situ hybridization (EgOligoFISH). Three fluorescently tagged probe libraries were developed to contain, in total 52,506 gene-rich single-copy 47-mer oligonucleotides spanning each 0.2-0.5 Mb across strategically placed chromosome regions. They generated 19 distinct FISH signals and together with rDNA probes enabled identification of all 32 E. guineensis chromosome arms. The probes were able to identify individual homoeologous chromosome regions in the related Arecaceae palm species: American oil palm (Elaeis oleifera), date palm (Phoenix dactylifera) and coconut (Cocos nucifera) showing the comparative organization and concerted evolution of genomes in the Arecaceae. The oligonucleotide probes developed here provide a valuable approach to chromosome arm identification and allow tracking chromosome transfer in hybridization and breeding programs in oil palm, as well as comparative studies within Arecaceae.
Collapse
Affiliation(s)
- Noorhariza Mohd Zaki
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | | | - Rajinder Singh
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | | | - Nordiana Hanim Mohd Nor
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Muhammad Azwan Zulkifli
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | |
Collapse
|
29
|
Kalaipandian S, Mu Z, Kong EYY, Biddle J, Cave R, Bazrafshan A, Wijayabandara K, Beveridge FC, Nguyen Q, Adkins SW. Cloning Coconut via Somatic Embryogenesis: A Review of the Current Status and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:2050. [PMID: 34685859 PMCID: PMC8538321 DOI: 10.3390/plants10102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Coconut [Cocos nucifera L.] is often called "the tree of life" because of its many uses in the food, beverage, medicinal, and cosmetic industries. Currently, more than 50% of the palms grown throughout the world are senile and need to be replanted immediately to ensure production levels meet the present and increasing demand for coconut products. Mass replanting will not be possible using traditional propagation methods from seed. Recent studies have indicated that in vitro cloning via somatic embryogenesis is the most promising alternative for the large-scale production of new coconut palms. This paper provides a review on the status and prospects for the application of somatic embryogenesis to mass clonal propagation of coconut.
Collapse
Affiliation(s)
- Sundaravelpandian Kalaipandian
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| | - Zhihua Mu
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| | - Eveline Yee Yan Kong
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| | - Julianne Biddle
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
- Australian Centre for International Agricultural Research, Canberra, ACT 2617, Australia
| | - Robyn Cave
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| | - Amirhossein Bazrafshan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| | - Kusinara Wijayabandara
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| | - Fernanda Caro Beveridge
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| | - Quang Nguyen
- Applied Biotechnology for Crop Development Research Unit, The International University, Ho Chi Minh City 700000, Vietnam;
| | - Steve W. Adkins
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (Z.M.); (E.Y.Y.K.); (J.B.); (R.C.); (A.B.); (K.W.); (F.C.B.); (S.W.A.)
| |
Collapse
|
30
|
Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021; 113:3718-3734. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Fruit tree crops are an essential part of the food production systems and are key to achieve food and nutrition security. Genetic improvement of fruit trees by conventional breeding has been slow due to the long juvenile phase. Advancements in genomics and molecular biology have paved the way for devising novel genetic improvement tools like genome editing, which can accelerate the breeding of these perennial crops to a great extent. In this article, advancements in genomics of fruit trees covering genome sequencing, transcriptome sequencing, genome editing technologies (GET), CRISPR-Cas system based genome editing, potential applications of CRISPR-Cas9 in fruit tree crops improvement, the factors influencing the CRISPR-Cas editing efficiency and the challenges for CRISPR-Cas9 applications in fruit tree crops improvement are reviewed. Besides, base editing, a recently emerging more precise editing system, and the future perspectives of genome editing in the improvement of fruit and nut crops are covered.
Collapse
Affiliation(s)
- Siddanna Savadi
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India.
| | | | - M S Sandesh
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India
| |
Collapse
|
31
|
Yang Y, Huang L, Xu C, Qi L, Wu Z, Li J, Chen H, Wu Y, Fu T, Zhu H, Saand MA, Li J, Liu L, Fan H, Zhou H, Qin W. Chromosome-scale genome assembly of areca palm (Areca catechu). Mol Ecol Resour 2021; 21:2504-2519. [PMID: 34133844 DOI: 10.1111/1755-0998.13446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Areca palm (Areca catechu L.; family Arecaceae) is an important tropical medicinal crop and is also used for masticatory and religious purposes in Asia. Improvements to areca properties made by traditional breeding tools have been very slow, and further advances in its cultivation and practical use require genomic information, which is still unavailable. Here, we present a chromosome-scale reference genome assembly for areca by combining Illumina and PacBio data with Hi-C mapping technologies, covering the predicted A. catechu genome length (2.59 Gb, variety "Reyan#1") to an estimated 240× read depth. The assembly was 2.51 Gb in length with a scaffold N50 of 1.7Mb. The scaffolds were then further assembled into 16 pseudochromosomes, with an N50 of 172 Mb. Transposable elements comprised 80.37% of the areca genome, and 68.68% of them were long-terminal repeat retrotransposon elements. The areca palm genome was predicted to harbour 31,571 protein-coding genes and overall, 92.92% of genes were functionally annotated, including enriched and expanded families of genes responsible for biosynthesis of flavonoid, anthocyanin, monoterpenoid and their derivatives. Comparative analyses indicated that A. catechu probably diverged from its close relatives Elaeis guineensis and Cocos nucifera approximately 50.3 million years ago (Ma). Two whole genome duplication events in areca palm were found to be shared by palms and monocots, respectively. This genome assembly and associated resources represents an important addition to the palm genomics community and will be a valuable resource that will facilitate areca palm breeding and improve our understanding of areca palm biology and evolution.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Liyun Huang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lan Qi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Jia Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Tao Fu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hui Zhu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Mumtaz Ali Saand
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Liyun Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Haikou Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Huanqi Zhou
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Weiquan Qin
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
32
|
Sadogh A, Gorji N, Moeini R. Herbal foodstuffs in Avicenna's recommended diet to improve sperm quality and increase male fertility; an evidence-based approach. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:47-70. [PMID: 33544522 DOI: 10.1515/jcim-2020-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
Attention to diet was considered important issues in improvement of men infertility in Persian Medicine (PM). The purpose of this study was to extract herbal foodstuffs introduced by Avicenna, one of the greatest PM physicians to improve the semen production and to provide evidence of their impact on the basis of current studies."Canon of Medicine", the most important Avecinna's book, was searched with keywords equivalent to semen, fertility and infertility, main herbal foodstuffs were extracted and was searched with keywords sperm, semen, infertility, and fertility in Google scholar, PubMed and Scopus databases. Manuscripts from 1950 up to December 2019 were selected and reviewed. Almond, Onion, Chickpea, Garlic, Coconut, Palm date, Sesame, Fenugreek, Carrot, Fig, Grapes, Pistachio, Hazelnut and Walnut are among main foodstuffs which recommended by Avicenna and there is also evidence that they have positive effects on testosterone production and improvement of various sperm parameters, including count, motility and morphology. Containing large amount of different macro and micronutrients such as vitamins including vit B, C, A and E, minerals such as Mg, Se, Zn, Cu and Fe, important unsaturated fatty acids such as linoleic and oleic acids, amino acids such as lysine and arginine and phytochemicals such as polyphenols, flavonoids, triterpenes and steroids can be considered as a main factor in the effectiveness of these foodstuffs. Designing a diet based on the fruits, vegetables, nuts and seeds that Avicenna has recommended, may be effective in treating male infertility but further studies are needed to clarify this issue. Research on the effectiveness of his other recommended foodsuffs may also offer new treatments and supplements for this purpose.
Collapse
Affiliation(s)
- Azita Sadogh
- Student Reseaerch Committee, Babol University of Medical Sciences, Babol, Iran
| | - Narjes Gorji
- Department of History of Medical Science, School of Persian medicine, Babol University of Medical Sciences, Tehran, Iran
| | - Reihaneh Moeini
- Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
33
|
Yang Y, Bocs S, Fan H, Armero A, Baudouin L, Xu P, Xu J, This D, Hamelin C, Iqbal A, Qadri R, Zhou L, Li J, Wu Y, Ma Z, Issali AE, Rivallan R, Liu N, Xia W, Peng M, Xiao Y. Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance. Commun Biol 2021; 4:105. [PMID: 33483627 PMCID: PMC7822834 DOI: 10.1038/s42003-020-01593-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released. Here, we present a dense linkage map (8402 SNPs) aiming to assemble the large genome of coconut (2.42 Gbp, 2n = 32) into 16 pseudomolecules. As a result, 47% of the sequences (representing 77% of the genes) were assigned to 16 linkage groups and ordered. We observed segregation distortion in chromosome Cn15, which is a signature of strong selection among pollen grains, favouring the maternal allele. Comparing our results with the genome of the oil palm Elaeis guineensis allowed us to identify major events in the evolutionary history of palms. We find that coconut underwent a massive transposable element invasion in the last million years, which could be related to the fluctuations of sea level during the glaciations at Pleistocene that would have triggered a population bottleneck. Finally, to better understand the facultative halophyte trait of coconut, we conducted an RNA-seq experiment on leaves to identify key players of signaling pathways involved in salt stress response. Altogether, our findings represent a valuable resource for the coconut breeding community.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398, Montpellier, France
| | - Haikuo Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Alix Armero
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Luc Baudouin
- CIRAD, UMR AGAP, F-34398, Montpellier, France.
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France.
| | - Pengwei Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Junyang Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Dominique This
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Chantal Hamelin
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398, Montpellier, France
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Rashad Qadri
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Lixia Zhou
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China
| | - Zilong Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China
| | - Auguste Emmanuel Issali
- Station Cocotier Marc Delorme, Centre National De Recherche Agronomique (CNRA)07 B.P. 13, Port Bouet, Côte d'Ivoire
| | - Ronan Rivallan
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Na Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Wei Xia
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China.
| | - Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
| |
Collapse
|
34
|
Quiñones-Bolaños E, Gómez-Oviedo M, Mouthon-Bello J, Sierra-Vitola L, Berardi U, Bustillo-Lecompte C. Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111503. [PMID: 33091786 DOI: 10.1016/j.jenvman.2020.111503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
Enhancing the thermal comfort of low-income housing in developing countries located in tropical areas is one of the main challenges for engineers and architects worldwide. The coconut mesocarp fibre (coir) has shown enormous potential for improving some properties of modified concretes or mortars, such as low-weight and high-acoustic isolation. In this study, the potential use of modified mortars by coconut fibres as a facade coating layer to enhance thermal comfort in low-income housing structures was evaluated for the city of Cartagena de Indias, Colombia. An actual typical low-income house of 42 m2 was monitored. Temperature and humidity variations were monitored for 39 days, thermal characteristics of coir-modified mortars were also investigated using differential scanning calorimetry (DSC) and an adaptation of the standard test method of the guarded-hot-cartridge apparatus. The EnergyPlus™ software was used to simulate indoor temperature variations in the studied house. Results show that during the period of 4 h of maximum sunlight radiation with outdoor temperatures in the range of 29-34 °C, coating the cement-sand hollow block structure with a layer of coir-modified mortar could reduce indoor room temperatures by 0.5-1.5 °C, approximately. Thus, there is a potential to enhance the thermal comfort in low-income housing structures with coconut fibre modified mortars while reducing annual energy costs of cooling by 16%, making it affordable for low-income families in the Caribbean region of Colombia.
Collapse
Affiliation(s)
- Edgar Quiñones-Bolaños
- Environmental Modeling Research Group, Faculty of Engineering, University of Cartagena, Calle 30 # 48 -152, Cartagena, Colombia
| | - Marisol Gómez-Oviedo
- Environmental Modeling Research Group, Faculty of Engineering, University of Cartagena, Calle 30 # 48 -152, Cartagena, Colombia
| | - Javier Mouthon-Bello
- Environmental Modeling Research Group, Faculty of Engineering, University of Cartagena, Calle 30 # 48 -152, Cartagena, Colombia
| | - Liseth Sierra-Vitola
- Faculty of Economics, University of Cartagena, Calle 30 # 48 -152, Cartagena, Colombia
| | - Umberto Berardi
- Faculty of Engineering and Architectural Science, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ciro Bustillo-Lecompte
- School of Occupational and Public Health, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
35
|
de Medeiros BAS, Farrell BD. Evaluating insect-host interactions as a driver of species divergence in palm flower weevils. Commun Biol 2020; 3:749. [PMID: 33299067 PMCID: PMC7726107 DOI: 10.1038/s42003-020-01482-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
Plants and their specialized flower visitors provide valuable insights into the evolutionary consequences of species interactions. In particular, antagonistic interactions between insects and plants have often been invoked as a major driver of diversification. Here we use a tropical community of palms and their specialized insect flower visitors to test whether antagonisms lead to higher population divergence. Interactions between palms and the insects visiting their flowers range from brood pollination to florivory and commensalism, with the latter being species that feed on decaying-and presumably undefended-plant tissues. We test the role of insect-host interactions in the early stages of diversification of nine species of beetles sharing host plants and geographical ranges by first delimiting cryptic species and then using models of genetic isolation by environment. The degree to which insect populations are structured by the genetic divergence of plant populations varies. A hierarchical model reveals that this variation is largely uncorrelated with the kind of interaction, showing that antagonistic interactions are not associated with higher genetic differentiation. Other aspects of host use that affect plant-associated insects regardless of the outcomes of their interactions, such as sensory biases, are likely more general drivers of insect population divergence.
Collapse
Affiliation(s)
- Bruno A S de Medeiros
- Smithsonian Tropical Research Institute, Panama City, Panama.
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Brian D Farrell
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
36
|
Kpatènon MJ, Salako KV, Santoni S, Zekraoui L, Latreille M, Tollon-Cordet C, Mariac C, Jaligot E, Beulé T, Adéoti K. Transferability, development of simple sequence repeat (SSR) markers and application to the analysis of genetic diversity and population structure of the African fan palm (Borassus aethiopum Mart.) in Benin. BMC Genet 2020; 21:145. [PMID: 33272218 PMCID: PMC7713368 DOI: 10.1186/s12863-020-00955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background In Sub-Saharan Africa, Borassus aethiopum Mart. (African fan palm) is an important non-timber forest product-providing palm that faces multiple anthropogenic threats to its genetic diversity. However, this species is so far under-studied, which prevents its sustainable development as a resource. The present work is a first attempt at characterizing the genetic diversity and population structure of B. aethiopum across nine collection sites spanning the three climatic regions of Benin, West Africa, through the use of microsatellite markers. Results During a first phase we relied on the reported transferability of primers developed in other palm species. We find that, in disagreement with previously published results, only 22.5% of the markers tested enable amplification of B. aethiopum DNA and polymorphism detection is very low. In a second phase, we generated a B. aethiopum-specific genomic dataset through high-throughput sequencing and used it for the de novo detection of microsatellite loci. Among the primer pairs targeting these, 11 detected polymorphisms and were further used for analyzing genetic diversity. Across the nine sites, expected heterozygosity (He) ranges from 0.263 to 0.451 with an overall average of 0.354, showing a low genetic diversity. Analysis of molecular variance (AMOVA) shows that within-site variation accounts for 53% of the genetic variation. Accordingly, the low number of migrants and positive values of the fixation index (F) in sites from both the Central (Sudano-Guinean) and the Southern (Guinean) climatic regions suggest limited gene flow between sites. The global correlation between genetic and geographic distances is weak; however, our clustering analyses indicate that B. aethiopum palms from Savè (Center) are genetically more similar to those from the North than to samples from other Central sites. Conclusions In the light of our results, we discuss the use of inter-species transfer vs. de novo development of microsatellite markers in genetic diversity analyses targeting under-studied species, and suggest future applications for our molecular resources. We propose that, while prominent short-range pollen and seed dispersal in Benin explain most of our results, gene flux between the Central and Northern regions, as a result of animal and/or human migrations, might underlie the Savè discrepancy. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00955-y.
Collapse
Affiliation(s)
- Mariano Joly Kpatènon
- Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,Biodiversité et Ecologie des Plantes (BDEP), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,DIADE, Univ Montpellier, IRD, Montpellier, France
| | - Kolawolé Valère Salako
- Biodiversité et Ecologie des Plantes (BDEP), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,Laboratoire de Biomathématiques et d'Estimations Forestières (LABEF), Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Muriel Latreille
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | | | | | - Estelle Jaligot
- DIADE, Univ Montpellier, IRD, Montpellier, France.,CIRAD, UMR DIADE, Montpellier, France
| | - Thierry Beulé
- DIADE, Univ Montpellier, IRD, Montpellier, France.,CIRAD, UMR DIADE, Montpellier, France
| | - Kifouli Adéoti
- Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin. .,Biodiversité et Ecologie des Plantes (BDEP), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.
| |
Collapse
|
37
|
Muliyar RK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, Kotimoole CN, Nekrakalaya B, Mohanty V, Sampgod RB, Banerjee G, Das AJ, Niral V, Karun A, Mahato AK, Gaikwad K, Singh NK, Prasad TSK. Assembly and Annotation of the Nuclear and Organellar Genomes of a Dwarf Coconut (Chowghat Green Dwarf) Possessing Enhanced Disease Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:726-742. [PMID: 33170083 DOI: 10.1089/omi.2020.0147] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Coconut (Cocos nucifera L.), an important source of vegetable oil, nutraceuticals, functional foods, and housing materials, provides raw materials for a repertoire of industries engaged in the manufacture of cosmetics, soaps, detergents, paints, varnishes, and emulsifiers, among other products. The palm plays a vital role in maintaining and promoting the sustainability of farming systems of the fragile ecosystems of islands and coastal regions of the tropics. In this study, we present the genome of a dwarf coconut variety "Chowghat Green Dwarf" (CGD) from India, possessing enhanced resistance to root (wilt) disease. Utilizing short reads from the Illumina HiSeq 4000 platform and long reads from the Pacific Biosciences RSII platform, we have assembled the draft genome assembly of 1.93 Gb. The genome is distributed over 26,855 scaffolds, with ∼81.56% of the assembled genome present in scaffolds of lengths longer than 50 kb. About 77.29% of the genome was composed of transposable elements and repeats. Gene prediction yielded 51,953 genes, which upon stringent filtering, based on Annotation Edit Distance, resulted in 13,707 genes, which coded for 11,181 proteins. Among these, we gathered transcript level evidence for a total of 6828 predicted genes based on the RNA-Seq data from different coconut tissues, since they presented assembled transcripts within the genome annotation coordinates. A total of 112 nucleotide-binding and leucine-rich repeat loci, belonging to six classes, were detected. We have also undertaken the assembly and annotation of the CGD chloroplast and mitochondrial genomes. The availability of the dwarf coconut genome shall prove invaluable for deducing the origin of dwarf coconut cultivars, dissection of genes controlling plant habit and fruit color, and accelerated breeding for improved agronomic traits.
Collapse
Affiliation(s)
| | - Pallem Chowdappa
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sandeep Kasaragod
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Bhagya Nekrakalaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | | | - Vittal Niral
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Anitha Karun
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Ajay Kumar Mahato
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | |
Collapse
|
38
|
An Improved Oil Palm Genome Assembly as a Valuable Resource for Crop Improvement and Comparative Genomics in the Arecoideae Subfamily. PLANTS 2020; 9:plants9111476. [PMID: 33152992 PMCID: PMC7692215 DOI: 10.3390/plants9111476] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022]
Abstract
Oil palm (Elaeis guineensis Jacq.) is the most traded crop among the economically important palm species. Here, we report an extended version genome of E. guineensis that is 1.2 Gb in length, an improvement of the physical genome coverage to 79% from the previous 43%. The improvement was made by assigning an additional 1968 originally unplaced scaffolds that were available publicly into the physical genome. By integrating three ultra-dense linkage maps and using them to place genomic scaffolds, the 16 pseudomolecules were extended. As we show, the improved genome has enhanced the mapping resolution for genome-wide association studies (GWAS) and permitted further identification of candidate genes/protein-coding regions (CDSs) and any non-coding RNA that may be associated with them for further studies. We then employed the new physical map in a comparative genomics study against two other agriculturally and economically important palm species—date palm (Phoenix dactylifera L.) and coconut palm (Cocos nucifera L.)—confirming the high level of conserved synteny among these palm species. We also used the improved oil palm genome assembly version as a palm genome reference to extend the date palm physical map. The improved genome of oil palm will enable molecular breeding approaches to expedite crop improvement, especially in the largest subfamily of Arecoideae, which consists of 107 species belonging to Arecaceae.
Collapse
|
39
|
Zhang H, Mitchell-Olds T, Mujacic I, Song BH. De novo Genome Assembly, Annotation, and SNP Identification of an Endangered Rockcress, Boechera fecunda. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.550936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Riangwong K, Wanchana S, Aesomnuk W, Saensuk C, Nubankoh P, Ruanjaichon V, Kraithong T, Toojinda T, Vanavichit A, Arikit S. Mining and validation of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for the estimation of the genetic diversity and population structure of coconuts ( Cocos nucifera L.) in Thailand. HORTICULTURE RESEARCH 2020; 7:156. [PMID: 33082963 PMCID: PMC7527488 DOI: 10.1038/s41438-020-00374-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 05/02/2023]
Abstract
Coconut (Cocos nucifera L.) is an important economic crop in tropical countries. However, the lack of a complete reference genome and the limitations of usable DNA markers hinder genomic studies and the molecular breeding of coconut. Here, we present the results of simple sequence repeat (SSR) mining from a high-throughput genotyping-by-sequencing (GBS) study of a collection of 38 coconut accessions. A total of 22,748 SSRs with di-, tri-, tetra-, penta- and hexanucleotide repeats of five or more were identified, 2451 of which were defined as polymorphic loci based on locus clustering in 38 coconut accessions, and 315 loci were suitable for the development of SSR markers. One hundred loci were selected, and primer pairs for each SSR locus were designed and validated in 40 coconut accessions. The analysis of 74 polymorphic markers identified between 2 and 9 alleles per locus, with an average of 3.01 alleles. The assessment of the genetic diversity and genetic relationships among the 40 coconut varieties based on the analysis of population structure, principal coordinate analysis (PCoA), and phylogenetic tree analysis using the 74 polymorphic SSR markers revealed three main groups of coconuts in Thailand. The identified SSR loci and SSR markers developed in this study will be useful for the study of coconut diversity and molecular breeding. The SSR mining approach used in this study could be applied to other plant species with a complex genome regardless of the availability of reference genome.
Collapse
Affiliation(s)
- Kanamon Riangwong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000 Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang Pathum Thani, 12120 Thailand
| | - Wanchana Aesomnuk
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Chatree Saensuk
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Phakchana Nubankoh
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang Pathum Thani, 12120 Thailand
| | - Tippaya Kraithong
- Chumphon Horticultural Research Center, Department of Agriculture, Bangkok, 10900 Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang Pathum Thani, 12120 Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| |
Collapse
|
41
|
Alternative splicing of flowering time gene FT is associated with halving of time to flowering in coconut. Sci Rep 2020; 10:11640. [PMID: 32669611 PMCID: PMC7363896 DOI: 10.1038/s41598-020-68431-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Coconut palm has two distinct types-"tall" and "dwarf"-which differ morphologically. Tall coconut varieties need 8-10 years to start flowering, while dwarf coconut varieties only require 3-5 years. We compared seedling and reproductive stage transcriptomes for both coconut types to determine potential molecular mechanisms underlying control of flowering time in coconut. Several key genes in the photoperiod pathway were differentially expressed between seedling and reproductive leaf samples in both tall and dwarf coconut. These genes included suppressor of overexpression of constans (SOC1), flowering locus T (FT), and Apetala 1 (AP1). Alternative splicing analysis of genes in the photoperiod pathway further revealed that the FT gene produces different transcripts in tall compared to dwarf coconut. The shorter alternative splice variant of FT [which included a 6 bp deletion, alternative 3' splicing sites (A3SS)] was found to be exclusively present in dwarf coconut varieties but absent in most tall coconut varieties. Our results provide a valuable information resource as well as suggesting a probable mechanism for differentiation of flowering time onset in coconut, providing a target for future breeding work in accelerating time to flowering in this crop species.
Collapse
|
42
|
Dataset of dual RNA-sequencing of Phytophthora palmivora infecting coconut ( Cocos nucifera L.). Data Brief 2020; 30:105455. [PMID: 32300621 PMCID: PMC7150523 DOI: 10.1016/j.dib.2020.105455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/02/2022] Open
Abstract
Phytophthora spp. is an oomycetes pathogen which causes serious damage to a wide range of crops. Bud rot disease of coconut palm, caused by P. palmivora, causes huge economic losses since it cannot be detected at an early stage. Utilizing dual RNA-sequencing (RNA-seq), we have simultaneously investigated the gene expression patterns in both, the infecting oomycete (P. palmivora) and infected host (coconut leaflets). Samples were collected at three time points viz., 12, 24 and 36 h, from both infected and uninfected (control) tissues and subjected to RNA-seq on an Illumina Hiseq™ 2500 sequencing platform. High quality reads obtained were subjected to mapping with corresponding reference genomes by using the HISAT2/ StringTie package. A total of 81,683 transcripts were generated against the coconut reference genome, while 9340 transcripts were generated against P. palmivora genome. Out of these, a total of 64,639 coconut transcripts and 9168 P. palmivora transcripts could be annotated using BLASTx. Gene ontology (GO) analysis, carried out using Blast2GO, resulted in 212,643 coconut and 30,736 P palmivora transcripts being functionally classified, with a single gene product described by numerous terms under the three classifications. The insights obtained could contribute to an understanding of pathogenesis of P. palmivora and inducible defense response of coconut leaves to P. palmivora.
Collapse
|
43
|
Sabana AA, Rajesh MK, Antony G. Dynamic changes in the expression pattern of miRNAs and associated target genes during coconut somatic embryogenesis. PLANTA 2020; 251:79. [PMID: 32166498 DOI: 10.1007/s00425-020-03368-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Genome-wide analysis of small RNAs identifies somatic embryogenesis- specific miRNAs and their targets and provides novel insights into the mechanisms governing somatic embryogenesis in coconut, a highly in vitro recalcitrant species. Coconut, a major plantation crop of the tropics is recalcitrant to in vitro culture with a very low rate of somatic embryo turnover. Clonal propagation to enhance the production of high yielding, disease-free planting material in coconut has remained a distant reality. To better understand the molecular basis of this recalcitrance and to throw light on the complex regulatory network involved in the transition of coconut somatic cells to embryogenic calli, genome-wide profiling of small RNAs from embryogenic (EC) and non-embryogenic calli (NEC) was undertaken using Illumina Hiseq 2000 platform. We have identified a total of 110 conserved miRNAs (representing 46 known miRNA families) in both types of calli. In addition, 97 novel miRNAs (48 specific to EC, 21 specific to NEC and 28 common to both the libraries) were also identified. Among the conserved miRNAs, 10 were found to be differentially expressed between NEC and EC libraries with a log2 fold change > 2 following RPM-based normalization. miR156f, miR167c, miR169a, miR319a, miR535a, and miR5179 are upregulated and miR160a, miR166a, miR171a, and miR319b are down-regulated in NEC. To confirm the differential expression pattern and their regulatory role in SE, the expression patterns of miRNAs and their putative targets were analyzed using qRT- PCR and most of the analyzed miRNA-target pairs showed inverse correlation during somatic embryogenesis. Selected targets were further validated by RNA ligase mediated rapid amplification of 5' cDNA ends (5'RLM-RACE). Our data suggest that a few conserved miRNAs and species-specific miRNAs act in concert to regulate the process of somatic embryogenesis in coconut. The results of this study provide the first overview into the regulatory landscape of somatic embryogenesis in coconut and possible strategies for fine-tuning or reprogramming to enhance somatic embryo turn over in coconut.
Collapse
Affiliation(s)
- Abdulla Abdulla Sabana
- Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | | | - Ginny Antony
- Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India.
| |
Collapse
|
44
|
Guerin C, Serret J, Montúfar R, Vaissayre V, Bastos-Siqueira A, Durand-Gasselin T, Tregear J, Morcillo F, Dussert S. Palm seed and fruit lipid composition: phylogenetic and ecological perspectives. ANNALS OF BOTANY 2020; 125:157-172. [PMID: 31665224 PMCID: PMC7080222 DOI: 10.1093/aob/mcz175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Palms are vital to worldwide human nutrition, in particular as major sources of vegetable oils. However, our knowledge of seed and fruit lipid diversity in the family Arecaceae is limited. We therefore aimed to explore relationships between seed and fruit lipid content, fatty acid composition in the respective tissues, phylogenetic factors and biogeographical parameters. METHODS Oil content and fatty acid composition were characterized in seeds and fruits of 174 and 144 palm species respectively. Distribution, linear regression and multivariate analyses allowed an evaluation of the chemotaxonomic value of these traits and their potential relationship with ecological factors. KEY RESULTS A considerable intra-family diversity for lipid traits was revealed. Species with the most lipid-rich seeds belonged to the tribe Cocoseae, while species accumulating oil in the mesocarp occurred in all subfamilies and two-thirds of the tribes studied. Seed and fruit lipid contents were not correlated. Fatty acid composition of mesocarp oil was highly variable within tribes. By contrast, within-tribe diversity for seed lipid traits was low, whereas between-tribe variability was high. Consequently, multivariate analyses of seed lipid traits produced groupings of species belonging to the same tribe. Medium-chain fatty acids predominated in seeds of most palm species, but they were also accumulated in the mesocarp in some cases. Seed unsaturated fatty acid content correlated with temperature at the coldest latitude of natural occurrence. CONCLUSION Several previously uncharacterized palms were identified as potential new sources of vegetable oils for comestible or non-food use. Seed lipid traits reflect genetic drift that occurred during the radiation of the family and therefore are highly relevant to palm chemotaxonomy. Our data also suggest that seed unsaturated fatty acids may provide an adaptive advantage in the coldest environments colonized by palms by maintaining storage lipids in liquid form for efficient mobilization during germination.
Collapse
Affiliation(s)
| | | | - Rommel Montúfar
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Chen W, Chen H, Zhong Q, Yun Y, Chen W. Metabolomics Analysis of the Deterioration Mechanism and Storage Time Limit of Tender Coconut Water during Storage. Foods 2020; 9:E46. [PMID: 31947875 PMCID: PMC7022768 DOI: 10.3390/foods9010046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/05/2023] Open
Abstract
Tender coconut water tastes sweet and is enjoyed by consumers, but its commercial development is restricted by an extremely short shelf life, which cannot be explained by existing research. UPLC-MS/MS-based metabolomics methods were used to identify and statistically analyze metabolites in coconut water under refrigerated storage. A multivariate statistical analysis method was used to analyze the UPLC-MS/MS datasets from 35 tender coconut water samples stored for 0-6 weeks. In addition, we identified other differentially expressed metabolites by selecting p-values and fold changes. Hierarchical cluster analysis and association analysis were performed with the differentially expressed metabolites. Metabolic pathways were analyzed using the KEGG database and the MetPA module of MetaboAnalyst. A total of 72 differentially expressed metabolites were identified in all groups. The OPLS-DA score chart showed that all samples were well grouped. Thirty-one metabolic pathways were enriched in the week 0-1 samples. The results showed that after a tender coconut is peeled, the maximum storage time at 4 °C is 1 week. Analysis of metabolic pathways related to coconut water storage using the KEGG and MetPA databases revealed that amino acid metabolism is one of the main causes of coconut water quality deterioration.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijun Chen
- College of Food Science and Engineering, Hainan University, Haikou 57022, China; (Y.Z.); (W.C.); (H.C.); (Q.Z.); (Y.Y.)
| |
Collapse
|
46
|
Genome-wide association mapping of date palm fruit traits. Nat Commun 2019; 10:4680. [PMID: 31615981 PMCID: PMC6794320 DOI: 10.1038/s41467-019-12604-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Date palms (Phoenix dactylifera) are an important fruit crop of arid regions of the Middle East and North Africa. Despite its importance, few genomic resources exist for date palms, hampering evolutionary genomic studies of this perennial species. Here we report an improved long-read genome assembly for P. dactylifera that is 772.3 Mb in length, with contig N50 of 897.2 Kb, and use this to perform genome-wide association studies (GWAS) of the sex determining region and 21 fruit traits. We find a fruit color GWAS at the R2R3-MYB transcription factor VIRESCENS gene and identify functional alleles that include a retrotransposon insertion and start codon mutation. We also find a GWAS peak for sugar composition spanning deletion polymorphisms in multiple linked invertase genes. MYB transcription factors and invertase are implicated in fruit color and sugar composition in other crops, demonstrating the importance of parallel evolution in the evolutionary diversification of domesticated species. Date palm is an important fruit crop in the Middle East and North Africa. Here, the authors report an improved genome assembly of this species and perform GWAS mapping of sex determining region and 21 fruit traits using high density SNP data generated from re-sequencing of the mapping population.
Collapse
|
47
|
Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF. De Novo Genome Sequence Assembly of Dwarf Coconut ( Cocos nucifera L. 'Catigan Green Dwarf') Provides Insights into Genomic Variation Between Coconut Types and Related Palm Species. G3 (BETHESDA, MD.) 2019; 9:2377-2393. [PMID: 31167834 PMCID: PMC6686914 DOI: 10.1534/g3.119.400215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022]
Abstract
We report the first whole genome sequence (WGS) assembly and annotation of a dwarf coconut variety, 'Catigan Green Dwarf' (CATD). The genome sequence was generated using the PacBio SMRT sequencing platform at 15X coverage of the expected genome size of 2.15 Gbp, which was corrected with assembled 50X Illumina paired-end MiSeq reads of the same genome. The draft genome was improved through Chicago sequencing to generate a scaffold assembly that results in a total genome size of 2.1 Gbp consisting of 7,998 scaffolds with N50 of 570,487 bp. The final assembly covers around 97.6% of the estimated genome size of coconut 'CATD' based on homozygous k-mer peak analysis. A total of 34,958 high-confidence gene models were predicted and functionally associated to various economically important traits, such as pest/disease resistance, drought tolerance, coconut oil biosynthesis, and putative transcription factors. The assembled genome was used to infer the evolutionary relationship within the palm family based on genomic variations and synteny of coding gene sequences. Data show that at least three (3) rounds of whole genome duplication occurred and are commonly shared by these members of the Arecaceae family. A total of 7,139 unique SSR markers were designed to be used as a resource in marker-based breeding. In addition, we discovered 58,503 variants in coconut by aligning the Hainan Tall (HAT) WGS reads to the non-repetitive regions of the assembled CATD genome. The gene markers and genome-wide SSR markers established here will facilitate the development of varieties with resilience to climate change, resistance to pests and diseases, and improved oil yield and quality.
Collapse
Affiliation(s)
- Darlon V Lantican
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Philippine Genome Center, University of the Philippines System, Diliman, Quezon City, Philippines
| | | | - Alma O Canama
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | - Roanne R Gardoce
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | | | - Hayde F Galvez
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| |
Collapse
|
48
|
Purwoko D, Cartealy IC, Tajuddin T, Dinarti D, Sudarsono S. SSR identification and marker development for sago palm based on NGS genome data. BREEDING SCIENCE 2019; 69:1-10. [PMID: 31086478 PMCID: PMC6507712 DOI: 10.1270/jsbbs.18061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Sago palm (Metroxylon sagu Rottb.) is one of the most productive carbohydrate-producing crops. Unfortunately, only limited information regarding sago palm genetics is available. This study aimed to develop simple sequence repeat (SSR) markers using sago palm NGS genomic data and use these markers to evaluate the genetic diversity of sago palm from Indonesia. De novo assembly of partial sago palm genomic data and subsequent SSR mining identified 29,953 contigs containing 31,659 perfect SSR loci and 31,578 contigs with 33,576 imperfect SSR loci. The perfect SSR loci density was 132.57/Mb, and AG, AAG and AAAT were the most frequent SSR motifs. Five hundred perfect SSR loci were randomly selected and used for designing SSR primers; 93 SSR primer pairs were identified. After synteny analysis using rice genome sequences, 20 primer pairs were validated using 11 sago palm accessions, and seven primers generated polymorphic alleles. Genetic diversity analysis of 41 sago palm accessions from across Indonesia using polymorphic SSR loci indicated the presence of three clusters. These results demonstrated the success of SSR identification and marker development for sago palm based on NGS genome data, which can be further used for assisting sago palm breeding in the future.
Collapse
Affiliation(s)
- Devit Purwoko
- Laboratory for Biotechnology, Agroindustrial Technology and Biotechnology, Agency for Assessment and Application of Technology,
Build. 630 Puspiptek Area Setu, South Tangerang 15314, Banten,
Indonesia
| | - Imam Civi Cartealy
- Laboratory for Biotechnology, Agroindustrial Technology and Biotechnology, Agency for Assessment and Application of Technology,
Build. 630 Puspiptek Area Setu, South Tangerang 15314, Banten,
Indonesia
| | - Teuku Tajuddin
- Laboratory for Biotechnology, Agroindustrial Technology and Biotechnology, Agency for Assessment and Application of Technology,
Build. 630 Puspiptek Area Setu, South Tangerang 15314, Banten,
Indonesia
| | - Diny Dinarti
- Plant Molecular Biology Laboratory, Department of Agronomy and Horticulture, Bogor Agricultural University,
Darmaga, Bogor 16680, West Java,
Indonesia
| | - Sudarsono Sudarsono
- Plant Molecular Biology Laboratory, Department of Agronomy and Horticulture, Bogor Agricultural University,
Darmaga, Bogor 16680, West Java,
Indonesia
| |
Collapse
|
49
|
Xiao Y, Xia W, Mason AS, Cao Z, Fan H, Zhang B, Zhang J, Ma Z, Peng M, Huang D. Genetic control of fatty acid composition in coconut (Cocos nucifera), African oil palm (Elaeis guineensis), and date palm (Phoenix dactylifera). PLANTA 2019; 249:333-350. [PMID: 30194535 DOI: 10.1007/s00425-018-3003-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 05/26/2023]
Abstract
Predominant gene isoforms and expression bias in lipid metabolism pathways are highly conserved between oil-producing Arecaceae crop species coconut and oil palm, but diverge in non-oil-producing species date palm. Coconut (Cocos nucifera), African oil palm (Elaeis guineensis) and date palm (Phoenix dactylifera) are three major crop species in the Arecaceae family for which genome sequences have recently become available. Coconut and African oil palm both store oil in their endosperms, while date palm fruits contain very little oil. We analyzed fatty acid composition in three coconut tissues (leaf, endosperm and embryo) and in two African oil palm tissues (leaf and mesocarp), and identified 806, 840 and 848 lipid-related genes in 22 lipid metabolism pathways from the coconut, African oil palm and date palm genomes, respectively. The majority of lipid-related genes were highly homologous and retained in homologous segments between the three species. Genes involved in the conversion of pyruvate to fatty acid had a five-to-sixfold higher expression in the coconut endosperm and oil palm mesocarp than in the leaf or embryo tissues based on Fragments Per Kilobase of transcript per Million mapped reads values. A close evolutionary relationship between predominant gene isoforms and high conservation of gene expression bias in the lipid and carbohydrate gene metabolism pathways was observed for the two oil-producing species coconut and oil palm, differing from that of date palm, a non-oil-producing species. Our results elucidate the similarities and differences in lipid metabolism between the three major Arecaceae crop species, providing important information for physiology studies as well as breeding for fatty acid composition and oil content in these crops.
Collapse
Affiliation(s)
- Yong Xiao
- Coconut Research Institute, CATAS, Wenchang, 571339, Hainan, People's Republic of China
| | - Wei Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China.
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Zengying Cao
- MOA Key Laboratory of Tropical Crop Biology and Genetic Resources Utilization, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, 571101, Hainan, People's Republic of China
| | - Haikuo Fan
- Coconut Research Institute, CATAS, Wenchang, 571339, Hainan, People's Republic of China
| | - Bo Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Jinlan Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Zilong Ma
- MOA Key Laboratory of Tropical Crop Biology and Genetic Resources Utilization, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, 571101, Hainan, People's Republic of China
| | - Ming Peng
- MOA Key Laboratory of Tropical Crop Biology and Genetic Resources Utilization, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, 571101, Hainan, People's Republic of China
| | - Dongyi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| |
Collapse
|
50
|
de La Harpe M, Hess J, Loiseau O, Salamin N, Lexer C, Paris M. A dedicated target capture approach reveals variable genetic markers across micro- and macro-evolutionary time scales in palms. Mol Ecol Resour 2019; 19:221-234. [PMID: 30240120 DOI: 10.1111/1755-0998.12945] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Understanding the genetics of biological diversification across micro- and macro-evolutionary time scales is a vibrant field of research for molecular ecologists as rapid advances in sequencing technologies promise to overcome former limitations. In palms, an emblematic, economically and ecologically important plant family with high diversity in the tropics, studies of diversification at the population and species levels are still hampered by a lack of genomic markers suitable for the genotyping of large numbers of recently diverged taxa. To fill this gap, we used a whole genome sequencing approach to develop target sequencing for molecular markers in 4,184 genome regions, including 4,051 genes and 133 non-genic putatively neutral regions. These markers were chosen to cover a wide range of evolutionary rates allowing future studies at the family, genus, species and population levels. Special emphasis was given to the avoidance of copy number variation during marker selection. In addition, a set of 149 well-known sequence regions previously used as phylogenetic markers by the palm biological research community were included in the target regions, to open the possibility to combine and jointly analyse already available data sets with genomic data to be produced with this new toolkit. The bait set was effective for species belonging to all three palm sub-families tested (Arecoideae, Ceroxyloideae and Coryphoideae), with high mapping rates, specificity and efficiency. The number of high-quality single nucleotide polymorphisms (SNPs) detected at both the sub-family and population levels facilitates efficient analyses of genomic diversity across micro- and macro-evolutionary time scales.
Collapse
Affiliation(s)
- Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Oriane Loiseau
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Margot Paris
- Department of Biology, Unit Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|