1
|
Roy S, Curry SD, Bagot CC, Mueller EN, Mansouri AM, Park W, Cha JN, Goodwin AP. Enzyme Prodrug Therapy with Photo-Cross-Linkable Anti-EGFR Affibodies Conjugated to Upconverting Nanoparticles. ACS NANO 2022; 16:15873-15883. [PMID: 36129781 PMCID: PMC10197967 DOI: 10.1021/acsnano.2c02558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, we demonstrate that a photo-cross-linkable conjugate of upconverting nanoparticles and cytosine deaminase can catalyze prodrug conversion specifically at tumor sites in vivo. Non-covalent association of proteins and peptides with cellular surfaces leads to receptor-mediated endocytosis and catabolic degradation. Recently, we showed that covalent attachment of proteins such as affibodies to cell receptors yields extended expression on cell surfaces with preservation of protein function. To adapt this technology for in vivo applications, conjugates were prepared from upconverting nanoparticles and fusion proteins of affibody and cytosine deaminase enzyme (UC-ACD). The affibody allows covalent photo-cross-linking to epidermal growth factor receptors (EGFRs) overexpressed on Caco-2 human colorectal cancer cells under near-infrared (NIR) light. Once bound, the cytosine deaminase portion of the fusion protein converts the prodrug 5-fluorocytosine (5-FC) to the anticancer drug 5-fluorouracil (5-FU). NIR covalent photoconjugation of UC-ACD to Caco-2 cells showed 4-fold higher retention than observed with cells that were not irradiated in vitro. Next, athymic mice expressing Caco-2 tumors showed 5-fold greater UC-ACD accumulation in the tumors than either conjugates without the CD enzyme or UC-ACDs in the absence of NIR excitation. With oral administration of 5-FC prodrug, tumors with photoconjugated UC-ACD yielded 2-fold slower growth than control groups, and median mouse survival increased from 28 days to 35 days. These experiments demonstrate that enzyme-decorated nanoparticles can remain viable after a single covalent photoconjugation in vivo, which can in turn localize prodrug conversion to tumor sites for multiple weeks.
Collapse
Affiliation(s)
- Shambojit Roy
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Shane D. Curry
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Conrad Corbella Bagot
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Evan N. Mueller
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Abdulrahman M. Mansouri
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Wounjhang Park
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Jennifer N. Cha
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Marin BM, Porath KA, Jain S, Kim M, Conage-Pough JE, Oh JH, Miller CL, Talele S, Kitange GJ, Tian S, Burgenske DM, Mladek AC, Gupta SK, Decker PA, McMinn MH, Stopka SA, Regan MS, He L, Carlson BL, Bakken K, Burns TC, Parney IF, Giannini C, Agar NYR, Eckel-Passow JE, Cochran JR, Elmquist WF, Vaubel RA, White FM, Sarkaria JN. Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro Oncol 2021; 23:2042-2053. [PMID: 34050676 PMCID: PMC8643472 DOI: 10.1093/neuonc/noab133] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.
Collapse
Affiliation(s)
- Bianca-Maria Marin
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendra A Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonia Jain
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Minjee Kim
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason E Conage-Pough
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Caitlyn L Miller
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shulan Tian
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Madison H McMinn
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lihong He
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katrina Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Terence C Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology; Mayo Clinic, Rochester, Minnesota, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology; Mayo Clinic, Rochester, Minnesota, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA,Corresponding Author: Jann N. Sarkaria, MD, Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Mayo Clinic, Rochester, MN 55902, USA ()
| |
Collapse
|
3
|
Roy S, Brasino M, Beirne JM, Harguindey A, Chapnick DA, Liu X, Cha JN, Goodwin AP. Enzymes Photo-Cross-Linked to Live Cell Receptors Retain Activity and EGFR Inhibition after Both Internalization and Recycling. Bioconjug Chem 2019; 31:104-112. [PMID: 31840981 DOI: 10.1021/acs.bioconjchem.9b00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this work, we show that a prodrug enzyme covalently photoconjugated to live cell receptors survives endosomal proteolysis and retains its catalytic activity over multiple days. Here, a fusion protein was designed with both an antiepidermal growth factor receptor (EGFR) affibody and the prodrug enzyme cytosine deaminase, which can convert prodrug 5-fluorocytosine to the anticancer drug 5-fluorouracil. A benzophenone group was added at a site-specific mutation within the affibody, and the fusion protein was selectively photoconjugated to EGFR receptors expressed on membranes of MDA-MB-468 breast cancer cells. The fusion protein was next labeled with two dyes for tracking uptake: AlexaFluor 488 and pH-sensitive pHAb. Flow cytometry showed that fusion proteins photo-cross-linked to EGFR first underwent receptor-mediated endocytosis within 12 h, followed by recycling back to the cell membrane within 24 h. These findings were also confirmed by confocal microscopy. The unique cross-linking of the affibody-enzyme fusion proteins was utilized for two anticancer treatments. First, the covalent linking of the protein to the EGFR led to inhibition of ERK signaling over a two-day period, whereas conventional antibody therapy only led to 6 h of inhibition. Second, when the affibody-CodA fusion proteins were photo-cross-linked to EGFR overexpressed on MDA-MB-468 breast cancer cells, prodrug conversion was found even 48 h postincubation without any apparent decrease in cell killing, while without photo-cross-linking no cell killing was observed 8 h postincubation. These studies show that affinity-mediated covalent conjugation of the affibody-enzymes to cell receptors allows for prolonged expression on membranes and retained enzymatic activity without genetic engineering.
Collapse
|
4
|
Zheng C, Terreni M, Sollogoub M, Zhang Y. Ganglioside GM3 and Its Role in Cancer. Curr Med Chem 2019; 26:2933-2947. [PMID: 29376491 DOI: 10.2174/0929867325666180129100619] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
Ganglioside GM3 is strongly related with human tumors, such as lung, brain cancers and melanomas, and more and more evidences have revealed that GM3 possesses powerful effects on cancer development and progression. GM3 is over expressed on several types of cancers, and can be as a tumor-associated carbohydrate antigen, used for immunotherapy of cancers. GM3 can also inhibit tumor cells growth by anti-angiogenesis or motility and so on. Especially, GM3 has effects on the EGFR tyrosine kinase signaling, uPAR-related signaling and glycolipid-enriched microdomains, which are essential for cancer signaling conduction. It is obvious that GM3 will be a promising target for cancer treatment.
Collapse
Affiliation(s)
- Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France.,Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, 430056 Wuhan, China
| |
Collapse
|
5
|
Pasquel-Dávila DS, Yanez-Vaca SA, Espinosa-Hidalgo ND, Cuadros Buenaventura EG. Gangliosides generalities and role in cancer therapies. BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gangliosides are located in the plasma membrane; this confers them the ability to interact with other molecules in order to participate in important cellular processes. Some gangliosides presence or absence in the cell surface is associated with either normal condition or pathologies. Particularly in cancer, gangliosides play a critical role in pathological events like cellular malignancy, tumor formation, and metastasis, defining gangliosides as good candidates to be used as cellular markers. When specific gangliosides are exhibited, immunotherapy could be applied in order to inhibit tumorigenesis or induce an immunogenic response. Novel cancer treatments such as NGcGM3/VSSP vaccines, valproic acid, BMS-345541 inhibitor of GD2 and immunotherapies using 1E10 and 14F7 monoclonal antibodies are described. On this review, there will be studied the gangliosides that allowed developing biological techniques that can give immunogenicity to cancer cells
Collapse
Affiliation(s)
| | - Sabrina A. Yanez-Vaca
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí – Ecuador
| | | | | |
Collapse
|
6
|
Liu J, Zheng M, Qi Y, Wang H, Liu M, Liu Q, Lin B. Lewis(y) antigen-mediated positive feedback loop induces and promotes chemotherapeutic resistance in ovarian cancer. Int J Oncol 2018; 53:1774-1786. [PMID: 30066907 DOI: 10.3892/ijo.2018.4496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/25/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the association between Lewis(y) antigen and chemoresistance in ovarian cancer and to elucidate the underlying molecular mechanisms. Lewis(y) expression in chemoresistant ovarian cancer tissues and cells was detected by immunohistochemistry. α1,2‑fucosyltransferase (FUT1) expression in different ovarian cancer chemotherapy-resistant cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR). Genes differentially expressed in the chemoresistant and sensitive groups were screened using a gene chip followed by validation using RT-qPCR and western blot analysis. We found that Lewis(y) and FUT1 expression in ovarian cancer cells was significantly increased following the induction of drug resistance. The positive expression rate and intensity of Lewis(y) in ovarian cancer chemoresistant tissues were also significantly higher than those in the sensitive group. Compared with the non-resistant cell lines, the differentially expressed genes were mainly enriched in the terms related to the transmembrane receptor protein tyrosine kinase signaling pathway and positive regulation of cell proliferation. Interaction network analysis predicted genes participating in the regulation of apoptotic processes. The highly differential expression of Annexin A4 (ANXA4), BCL2 interacting killer (BIK), transmembrane 4 L six family member 4 (TM4SF4) and pleckstrin homology-like domain family A member 1 (PHLDA1) was validated using RT-qPCR in ovarian cancer cell lines. Finally, ANXA4 expression was increased at both the mRNA and protein level in the drug‑resistant cells, and in addition, ANXA4 contained a Lewis(y) structure. The expression of Bcl-2 and other anti-apoptotic proteins increased with the increase of Lewis(y) expression. After blocking Lewis(y) using an antibody, the expression of the involved signaling pathway and apoptosis-related proteins decreased significantly. These findings provide strong evidence that Lewis(y) is a component of the structure of the ANXA4 membrane protein. Its overexpression can abnormally activate signaling pathways and regulate the expression of a number of factors, forming a positive feedback loop to induce the chemoresistance of ovarian cancer cells, and ultimately promoting the progression of ovarian cancer.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Yue Qi
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Huimin Wang
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Miao Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Qing Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
7
|
Palomo AG, Medinilla AL, Segatori V, Barroso MDC, Blanco R, Gabri MR, Pérez AC, Monzón KL. Synergistic potentiation of the anti-metastatic effect of anti EGFR mAb by its combination with immunotherapies targeting the ganglioside NGcGM3. Oncotarget 2018; 9:24069-24080. [PMID: 29844873 PMCID: PMC5963610 DOI: 10.18632/oncotarget.25290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 03/29/2018] [Indexed: 11/30/2022] Open
Abstract
Several Anti-EGFR mAbs are register for the treatment of human cancer. However, their impact on patients overall survival has been limited by tumor resistance. N-Glycolyl variant of GM3 ganglioside (NGcGM3) is specifically expressed in some human tumors, and it has been associated with a poor prognosis. Several reports have documented that GM3 physically associates to EGFR inhibiting its ligand depend phosphorylation, but it also facilitates an alternative/compensatory signaling cascade mediated by Uroquinase Plasminogen Activator Receptor (uPAR) and integrin α5β1 interaction. However, the difference between NGc and N-Acetylated (NAc) variants of GM3 regarding such interactions is unknown. We hypothesized that enrichment of NGcGM3 expression in tumors relates to advantages of this ganglioside, on ensuring both EGFR and uPAR pathways optimal function. We explored the impact of combining an anti-EGFR (7A7 mAb) with anti-NGcGM3 therapies: NGcGM3/VSSP vaccine or 14F7 mAb. Both combinations synergistically increase overall survival in two models of lung metastasis: 3LL-D122 and 4T1; but combination with NGcGM3/VSSP vaccine is significantly more effective. In 3LL-D122-metastasis, of mice treated with the best combination, both EGFR and uPAR/α5β1 integrin pathways are turn off (I.e expression of uPAR/α5β1; and phosphorylation of EGFR, Stat3, Src and FAK are reduced); and tumor angiogenesis is decreased. Interestingly, combination treatment increases tumor infiltrating CD4+T, CD8+T and NK+-cells. Furthermore, a positive clinical outcome is reported for a cancer patient treated with an anti-EGFR mAb and anti-NGcGM3 therapy. Overall, our results support the combination of anti EGFR antibodies with therapies targeting NGcGM3 to increase their efficacy in future clinical trials.
Collapse
Affiliation(s)
| | | | - Valeria Segatori
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | | | - Rances Blanco
- Center of Molecular Immunology (CIM), Atabey, Playa, Havana, Cuba
| | - Mariano R Gabri
- Laboratory of Molecular Oncology, Quilmes National University, Buenos Aires, Argentina
| | | | | |
Collapse
|
8
|
Křivohlavá R, Grobárová V, Neuhöferová E, Fišerová A, Benson V. Interaction of colon cancer cells with glycoconjugates triggers complex changes in gene expression, glucose transporters and cell invasion. Mol Med Rep 2018; 17:5508-5517. [PMID: 29393416 DOI: 10.3892/mmr.2018.8490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/15/2017] [Indexed: 11/06/2022] Open
Abstract
Glycan metabolism balance is critical for cell prosperity, and macromolecule glycosylation is essential for cell communication, signaling and survival. Thus, glycotherapy may be a potential cancer treatment. The aim of the present study was to determine whether combined synthetic glycoconjugates (GCs) induce changes in gene expression that alter the survival of colon cancer cells. The current study evaluated the effect of the GCs N‑acetyl‑D‑glucosamine modified polyamidoamine dendrimer and calix[4]arene scaffold on cancer cell proliferation, apoptosis, invasion and sensitivity to immune cell‑mediated killing. Using reverse transcription‑quantitative polymerase chain reaction, the expression of genes involved in the aforementioned processes was measured. It was determined that GCs reduce the expression of the glucosaminyltransferases Mgat3 and Mgat5 responsible for surface glycosylation and employed components of the Wnt signaling pathway Wnt2B and Wnt9B. In addition, the calix[4]arene‑based GC reduced cell colony formation; this was accompanied by the downregulation of the metalloproteinase Mmp3. By contrast, the dendrimer‑based GC affected the expression of the glucose transporter components Sglt1 and Egfr1. Therefore, to the best of our knowledge, the present study is the first to reveal that N‑acetyl‑D‑glucosamine‑dendrimer/calix[4]arene GCs alter mRNA expression in a comprehensive way, resulting in the reduced malignant phenotype of the colon cancer cell line HT‑29.
Collapse
Affiliation(s)
- Romana Křivohlavá
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Valika Grobárová
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Eva Neuhöferová
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Anna Fišerová
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Benson
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| |
Collapse
|
9
|
Li H, Al-Japairai K, Tao Y, Xiang Z. RPN2 promotes colorectal cancer cell proliferation through modulating the glycosylation status of EGFR. Oncotarget 2017; 8:72633-72651. [PMID: 29069815 PMCID: PMC5641158 DOI: 10.18632/oncotarget.20005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Various studies have found that silencing ribophorin II (RPN2) inhibits cell growth in several cancers. However, the underlying mechanism by which RPN2 regulates cancer cell proliferation remains unclear. Herein, we reveal that downregulation of RPN2, which may be a crucial regulator of N-linked glycosylation in cancer cells and drug-resistant cancer cells, promoted the progression of colorectal cancer (CRC) cell cycle and proliferation in vitro and in vivo. We found that RPN2 silencing reduced glycosylation of EGFR, a highly N-link glycosylated cell surface glycoprotein that plays a critical role in majority of human cancers correlating with increased cell growth, proliferation, and differentiation. In addition, RPN2 knockdown decreased EGFR expression and cell surface transport by EGFR deglycosylation. In summary, our findings suggest that RPN2 regulates CRC cell proliferation through mediating the glycosylation of EGFR which affecting the EGFR/ERK signaling pathways. Clinicopathological analysis showed that the overexpression of RPN2 and EGFR was positively correlated with colorectal tumor size. Therefore, RPN2 may be a new therapeutic target and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Haiping Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - K Al-Japairai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Pastor-Cantizano N, García-Murria MJ, Bernat-Silvestre C, Marcote MJ, Mingarro I, Aniento F. N-Linked Glycosylation of the p24 Family Protein p24δ5 Modulates Retrograde Golgi-to-ER Transport of K/HDEL Ligands in Arabidopsis. MOLECULAR PLANT 2017; 10:1095-1106. [PMID: 28735024 DOI: 10.1016/j.molp.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 05/04/2023]
Abstract
The K/HDEL receptor ERD2 mediates the transport of soluble endoplasmic reticulum (ER)-resident proteins containing a C-terminal K/HDEL signal from the Golgi apparatus back to the ER via COPI (COat Protein I)-coated vesicles. Sorting of ERD2 within COPI vesicles is facilitated by p24 proteins. In Arabidopsis, p24δ5 has been shown to interact directly with ERD2 via its luminal GOLD (GOLgi Dynamics) domain and with COPI proteins via its cytoplasmic C-terminal tail at the acidic pH of the Golgi apparatus. Several members of the p24 family in mammals and yeast have been shown to be glycosylated, but whether Arabidopsis p24 proteins are glycosylated and the role of the sugar moiety in p24 function remain unclear. Here, we show that Arabidopsis p24δ5 protein is N-glycosylated in its GOLD domain. Furthermore, we demonstrate that this post-translational modification is important for its coupled transport with p24β2 at the ER-Golgi interface, for its interaction with the K/HDEL receptor ERD2, and for retrograde transport of ERD2 and K/HDEL ligands from the Golgi apparatus back to the ER.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - María Jesús García-Murria
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Ismael Mingarro
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
11
|
Taylor ES, Pol-Fachin L, Lins RD, Lower SK. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding. Proteins 2017; 85:561-570. [PMID: 28019699 PMCID: PMC5835389 DOI: 10.1002/prot.25220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eric S. Taylor
- Department of Geology, Kent State University, North Canton, Ohio 44720
| | - Laercio Pol-Fachin
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco 50740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Pernambuco 50740-560, Brazil
| | - Roberto D. Lins
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco 50740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Pernambuco 50740-560, Brazil
| | - Steven K. Lower
- School of Environment and Natural Resources, Ohio State University, 275 Mendenhall Laboratory, Columbus, Ohio 43210
| |
Collapse
|
12
|
Johannes L, Wunder C, Shafaq-Zadah M. Glycolipids and Lectins in Endocytic Uptake Processes. J Mol Biol 2016; 428:S0022-2836(16)30453-3. [PMID: 27984039 DOI: 10.1016/j.jmb.2016.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
A host of endocytic processes has been described at the plasma membrane of eukaryotic cells. Their categorization has most commonly referenced cytosolic machinery, of which the clathrin coat has occupied a preponderant position. In what concerns intra-membrane constituents, the focus of interest has been on phosphatidylinositol lipids and their capacity to orchestrate endocytic events on the cytosolic leaflet of the membrane. The contribution of extracellular determinants to the construction of endocytic pits has received much less attention, depite the fact that (glyco)sphingolipids are exoplasmic leaflet fabric of membrane domains, termed rafts, whose contributions to predominantly clathrin-independent internalization processes is well recognized. Furthermore, sugar modifications on extracellular domains of proteins, and sugar-binding proteins, termed lectins, have also been linked to the uptake of endocytic cargoes at the plasma membrane. In this review, we first summarize these contributions by extracellular determinants to the endocytic process. We thus propose a molecular hypothesis - termed the GL-Lect hypothesis - on how GlycoLipids and Lectins drive the formation of compositional nanoenvrionments from which the endocytic uptake of glycosylated cargo proteins is operated via clathrin-independent carriers. Finally, we position this hypothesis within the global context of endocytic pathway proposals that have emerged in recent years.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
13
|
Kuo HY, Hsu HT, Chen YC, Chang YW, Liu FT, Wu CW. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology 2015; 26:155-65. [PMID: 26447186 DOI: 10.1093/glycob/cwv088] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
Galectin-3 is a ubiquitous lectin exerting multiple cellular functions such as RNA splicing, protein trafficking and apoptosis. Its expression is positively correlated with the poor prognosis in lung cancer patients. Galectin-3 can promote cancer progression through its effects on cell proliferation, cell survival or cancer metastasis. However, the role of galectin-3 in the regulation of cancer stem-like cells (CSCs) is still unclear. Here, we investigated the hypothesis that galectin-3 might regulate lung CSCs via the EGF receptor (EGFR) signaling pathway. In our study, galectin-3 facilitated EGFR activation and enhanced the sphere formation activity of lung cancer cells. Furthermore, galectin-3 promoted Sox2 expression in an EGFR activation-dependent manner; importantly, forced expression of Sox2 blunted the effect of galectin-3 knockdown on lung cancer sphere formation ability. These results suggest that galectin-3 promotes EGFR activation leading to the upregulation of Sox2 expression and lung CSCs properties. Moreover, we showed that the carbohydrate-binding activity of galectin-3 was important for the regulation of EGFR activation, Sox2 expression and sphere formation. We have recently reported that c-Myc is a transcriptional activator of Sox2. We further found that galectin-3 enhanced c-Myc protein stability leading to increased c-Myc binding to the Sox2 gene promoter. We also examined the effect of the stemness factors, Oct4, Nanog and Sox2 on the expression of galectin-3. We found that Oct4 enhanced galectin-3 expression. Our results together suggest that galectin-3 enhances lung cancer stemness through the EGFR/c-Myc/Sox2 axis; Oct4, in turn, promotes galectin-3 expression, forming a positive regulatory loop in lung CSCs.
Collapse
Affiliation(s)
- Hong-Yi Kuo
- Institute of Biochemistry and Molecular Biology
| | | | | | | | - Fu-Tong Liu
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan Department of Dermatology, University of California at Davis, Davis, USA
| | - Cheng-Wen Wu
- Institute of Biochemistry and Molecular Biology Institute of Microbiology and Immunology and Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proc Natl Acad Sci U S A 2015; 112:4334-9. [PMID: 25805821 DOI: 10.1073/pnas.1503262112] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) regulates several critical cellular processes and is an important target for cancer therapy. In lieu of a crystallographic structure of the complete receptor, atomistic molecular dynamics (MD) simulations have recently shown that they can excel in studies of the full-length receptor. Here we present atomistic MD simulations of the monomeric N-glycosylated human EGFR in biomimetic lipid bilayers that are, in parallel, also used for the reconstitution of full-length receptors. This combination enabled us to experimentally validate our simulations, using ligand binding assays and antibodies to monitor the conformational properties of the receptor reconstituted into membranes. We find that N-glycosylation is a critical determinant of EGFR conformation, and specifically the orientation of the EGFR ectodomain relative to the membrane. In the absence of a structure for full-length, posttranslationally modified membrane receptors, our approach offers new means to structurally define and experimentally validate functional properties of cell surface receptors in biomimetic membrane environments.
Collapse
|
15
|
Shen J, Ding Y, Gao C, Rojo E, Jiang L. N-linked glycosylation of AtVSR1 is important for vacuolar protein sorting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:977-92. [PMID: 25293377 DOI: 10.1111/tpj.12696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 05/18/2023]
Abstract
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post-translationally modified by the attachment of N-glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex-type N-glycans, which are located in the N-terminal 'PA domain', the central region and the C-terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N-glycans do not affect the targeting of AtVSR1 to pre-vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N-glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N-glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | |
Collapse
|
16
|
Forbes K, Shah VK, Siddals K, Gibson JM, Aplin JD, Westwood M. Statins inhibit insulin-like growth factor action in first trimester placenta by altering insulin-like growth factor 1 receptor glycosylation. Mol Hum Reprod 2014; 21:105-14. [PMID: 25304981 PMCID: PMC4275043 DOI: 10.1093/molehr/gau093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The rapid rise in obesity, metabolic syndrome and type 2 diabetes is one of the major healthcare problems of the Western world. Affected individuals are often treated with statins (3-hydroxy-3-methylglutaryl co-enzyme A [HMG CoA] reductase inhibitors) to reduce circulating cholesterol levels and the risk of developing cardiovascular disease; given the evolving demographic profile of these conditions, such drugs are increasingly prescribed to women of reproductive age. We have previously shown that exposure of placental tissue to statins inhibits the action of insulin-like growth factors (IGF)-I and -II which are key regulators of trophoblast proliferation and placental development. N-linked glycans in the IGF receptor, IGF1R, influence its presentation at the cell surface. This study aimed to determine whether statins, which are known to affect N-glycosylation, modulate IGF1R function in placenta. Treatment of first trimester villous tissue explants with statins (pravastatin or cerivastatin) or inhibitors of N-glycosylation (tunicamycin, deoxymannojirimycin or castanospermine) altered receptor distribution in trophoblast and attenuated proliferation induced by IGF-I or IGF-II (Ki67; P < 0.05, n = 5). Decreased binding of Phaseolus vulgaris lectin and phytohaemagglutinin to IGF1R immunoprecipitated from treated explants demonstrated reduced levels of complex N-linked glycans. Co-incubation of tissue explants with statins and farnesyl pyrophosphate (which increases the supply of dolichol intermediates), prevented statin-mediated disruption of IGF1R localization and reversed the negative effect on IGF-mediated trophoblast proliferation. These data suggest that statins attenuate IGF actions in the placenta by inhibiting N-linked glycosylation and subsequent expression of mature IGF1R at the placental cell surface.
Collapse
Affiliation(s)
- Karen Forbes
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Vinit K Shah
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Kirk Siddals
- Centre for Imaging Sciences, Institute of Population Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PY, UK
| | - J Martin Gibson
- Centre for Imaging Sciences, Institute of Population Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PY, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
17
|
Bonardi D, Papini N, Pasini M, Dileo L, Orizio F, Monti E, Caimi L, Venerando B, Bresciani R. Sialidase NEU3 dynamically associates to different membrane domains specifically modifying their ganglioside pattern and triggering Akt phosphorylation. PLoS One 2014; 9:e99405. [PMID: 24925219 PMCID: PMC4055604 DOI: 10.1371/journal.pone.0099405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/14/2014] [Indexed: 01/17/2023] Open
Abstract
Lipid rafts are known to regulate several membrane functions such as signaling, trafficking and cellular adhesion. The local enrichment in sphingolipids and cholesterol together with the low protein content allows their separation by density gradient flotation after extraction with non-ionic detergent at low temperature. These structures are also referred to as detergent resistant membranes (DRM). Among sphingolipids, gangliosides play important roles in different biological events, including signal transduction and tumorigenesis. Sialidase NEU3 shows high enzymatic specificity toward gangliosides. Moreover, the enzyme is present both at the cell surface and in endosomal structures and cofractionates with caveolin. Although changes in the expression level of NEU3 have been correlated to different tumors, little is known about the precise distribution of the protein and its ability in modifying the ganglioside composition of DRM and non-DRM, thus regulating intracellular events. By means of inducible expression cell system we found that i) newly synthesized NEU3 is initially associated to non-DRM; ii) at steady state the protein is equally distributed between the two membrane subcompartments, i.e., DRM and non-DRM; iii) NEU3 is degraded via the proteasomal pathway; iv) the enzyme specifically modifies the ganglioside composition of the membrane areas where it resides; and v) NEU3 triggers phosphorylation of Akt, even in absence of exogenously administered EGF. Taken together our data demonstrate that NEU3 regulates the DRM ganglioside content and it can be considered as a modulator of Akt phosphorylation, further supporting the role of this enzyme in cancer and tumorigenesis.
Collapse
Affiliation(s)
- Dario Bonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mario Pasini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Loredana Dileo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Flavia Orizio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
18
|
Hasegawa Y, Takahashi M, Ariki S, Asakawa D, Tajiri M, Wada Y, Yamaguchi Y, Nishitani C, Takamiya R, Saito A, Uehara Y, Hashimoto J, Kurimura Y, Takahashi H, Kuroki Y. Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling. Oncogene 2014; 34:838-45. [DOI: 10.1038/onc.2014.20] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/28/2022]
|
19
|
Suhre MH, Gertz M, Steegborn C, Scheibel T. Structural and functional features of a collagen-binding matrix protein from the mussel byssus. Nat Commun 2014; 5:3392. [DOI: 10.1038/ncomms4392] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/05/2014] [Indexed: 11/09/2022] Open
|
20
|
Hasegawa Y. The Mechanisms of Epidermal Growth Factor Signaling Suppression by Pulmonary Surfactant Protein D. TRENDS GLYCOSCI GLYC 2014. [DOI: 10.4052/tigg.26.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Yan Q, Bach DQ, Gatla N, Sun P, Liu JW, Lu JY, Paller AS, Wang XQ. Deacetylated GM3 promotes uPAR-associated membrane molecular complex to activate p38 MAPK in metastatic melanoma. Mol Cancer Res 2013; 11:665-75. [PMID: 23525268 DOI: 10.1158/1541-7786.mcr-12-0270-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GM3, the simplest ganglioside, regulates cell proliferation, migration, and invasion by influencing cell signaling at the membrane level. Although the classic N-acetylated form of GM3 (NeuAcLacCer) is commonly expressed and has been well studied, deacetylated GM3 (NeuNH2LacCer, d-GM3) has been poorly investigated, despite its presence in metastatic tumors but not in noninvasive melanomas or benign nevi. We have recently found that d-GM3 stimulates cell migration and invasion by activating urokinase plasminogen activator receptor (uPAR) signaling to augment matrix metalloproteinase-2 (MMP-2) function. However, the mechanisms by which d-GM3/uPAR increase MMP-2 expression and activation are not clear. By modifying the expression of d-GM3 genetically and biochemically, we found that decreasing d-GM3 expression inhibits, whereas overexpressing d-GM3 stimulates, p38 mitogen-activated protein kinase (MAPK) activity to influence MMP-2 expression and activation. p38 MAPK (p38) activation requires the formation of a membrane complex that contains uPAR, caveolin-1, and integrin α5β1 in membrane lipid rafts. In addition, knocking down or inhibiting focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), or Src kinase significantly reduces d-GM3-induced p38 phosphorylation and activation. Taken together, these results suggest that d-GM3 enhances the metastatic phenotype by activating p38 signaling through uPAR/integrin signaling with FAK, PI3K, and Src kinase as intermediates. Elucidation of the mechanisms by which d-GM3, a newly discovered, potential biomarker of metastatic melanomas, promotes cell metastasis will help us to understand the function of d-GM3 in metastatic melanomas and may lead to novel GM3-based cancer therapies.
Collapse
Affiliation(s)
- Qiu Yan
- Department of Dermatology and Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The glycome, that is, the glycan components of a biological source, has been widely reported to change with disease states. However, mining the glycome for biomarkers is complicated by glycan structural heterogeneity. Nanoflow LC, or nano-LC, significantly addresses the problem by providing a highly sensitive and quantitative method of separating and profiling glycans. This review summarizes recent advances in analytical technology and methodology that enhance and augment the advantages offered by nano-LC. (e.g., reversed phase, hydrophilic interaction and porous graphitized carbon chromatography, as well as associated derivatization strategies), detectors (e.g., fluorescence and MS), and technology platforms (particularly chip-based nano-LC) are examined in detail, along with their application to biomarker discovery. Particular emphasis is placed on methods and technologies that allow structure-specific glycan profiling.
Collapse
|
23
|
Hua S, An HJ, Ozcan S, Ro GS, Soares S, DeVere-White R, Lebrilla CB. Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 2011; 136:3663-71. [PMID: 21776491 PMCID: PMC3331797 DOI: 10.1039/c1an15093f] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycosylation is highly sensitive to the biochemical environment and has been implicated in many diseases including cancer. Glycan compositional profiling of human serum with mass spectrometry has already identified potential biomarkers for several types of cancer and diseases; however, composition alone does not fully describe glycan stereo- and regioisomeric diversity. The vast structural heterogeneity of glycans presents a formidable analytical challenge. We have developed a method to identify and quantify isomeric native glycans using nanoflow liquid chromatography (nano-LC)/mass spectrometry. A microfluidic chip packed with graphitized carbon was used to chromatographically separate the glycans. To determine the utility of this method for structure-specific biomarker discovery, we analyzed serum samples from two groups of prostate cancer patients with different prognoses. More than 300 N-glycan species (including isomeric structures) were identified, corresponding to over 100 N-glycan compositions. Statistical tests established significant differences in glycan abundances between patient groups. This method provides comprehensive, selective, and quantitative glycan profiling.
Collapse
Affiliation(s)
- Serenus Hua
- Department of Chemistry, University of California, Davis, 95616
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Sureyya Ozcan
- Department of Chemistry, University of California, Davis, 95616
| | - Grace S. Ro
- Department of Chemistry, University of California, Davis, 95616
| | | | | | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, 95616
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 95616
| |
Collapse
|
24
|
Lin L, Yu Q, Yan X, Hang W, Zheng J, Xing J, Huang B. Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer. Analyst 2010; 135:2970-8. [DOI: 10.1039/c0an00265h] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Liu J, Lin B, Hao Y, Qi Y, Zhu L, Li F, Liu D, Cong J, Zhang S, Iwamori M. Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway. J Exp Clin Cancer Res 2009; 28:154. [PMID: 20003467 PMCID: PMC2806302 DOI: 10.1186/1756-9966-28-154] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 12/15/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Lewis y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cell surface. Elevated expression of Lewis y has been found in 75% of ovarian tumor, and the high expression level is correlated to the tumor's pathological staging and prognosis. This study was to investigate the effect and the possible mechanism of Lewis y on the proliferation of human ovarian cancer cells. METHODS We constructed a plasmid encoding alpha1,2-fucosyltransferase (alpha1,2-FT) gene and then transfected it into ovarian carcinoma-derived RMG-I cells with lowest Lewis y antigen expression level. Effect of Lewis y on cell proliferation was assessed after transfection. Changes in cell survival and signal transduction were evaluated after alpha-L-fucosidase, anti-Lewis y antibody and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment. RESULTS Our results showed that the levels of alpha1,2-FT gene and Lewis y increased significantly after transfection. The cell proliferation of ovarian carcinoma-derived RMG-I cells sped up as the Lewis y antigen was increased. Both of alpha-L-fucosidase and anti-Lewis y antibody inhibited the cell proliferation. The phosphorylation level of Akt was apparently elevated in Lewis y-overexpressing cells and the inhibitor of PI3K, LY294002, dramatically inhibited the growth of Lewis y-overexpressing cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different expression of alpha1,2-FT were attenuated significantly by the monoantibody to Lewis y and by the PI3K inhibitor LY294002. CONCLUSIONS Increased expression of Lewis y antigen plays an important role in promoting cell proliferation through activating PI3K/Akt signaling pathway in ovarian carcinoma-derived RMG-I cells. Inhibition of Lewis y expression may provide a new therapeutic approach for Lewis y positive ovarian cancer.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Bei Lin
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Yue Qi
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Feifei Li
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Jianping Cong
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, China Medical University Shengjing, Hospital, 36 Sanhao Street, Heping, Shenyang, 110004, PR China
| | - Masao Iwamori
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| |
Collapse
|
26
|
Abulrob A, Lu Z, Baumann E, Vobornik D, Taylor R, Stanimirovic D, Johnston LJ. Nanoscale imaging of epidermal growth factor receptor clustering: effects of inhibitors. J Biol Chem 2009; 285:3145-56. [PMID: 19959837 DOI: 10.1074/jbc.m109.073338] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The development of some solid tumors is associated with overexpression of the epidermal growth factor receptor (EGFR) and often correlates with poor prognosis. Near field scanning optical microscopy, a technique with subdiffraction-limited optical resolution, was used to examine the influence of two inhibitors (the chimeric 225 antibody and tyrosine phosphorylation inhibitor AG1478) on the nanoscale clustering of EGFR in HeLa cells. The EGFR is organized in small clusters, average diameter of 150 nm, on the plasma membrane for both control and EGF-treated cells. The numbers of receptors in individual clusters vary from as few as one or two proteins to greater than 100. Both inhibitors yield an increased cluster density and an increase in the fraction of clusters with smaller diameters and fewer receptors. Exposure to AG1478 also decreases the fraction of EGFR that colocalizes with both rafts and caveolae. EGF stimulation results in a significant loss of the full-length EGFR from the plasma membrane with the concomitant appearance of low molecular mass proteolytic products. By contrast, AG1478 reduces the level of EGFR degradation. Changes in receptor clustering provide one mechanism for regulating EGFR signaling and are relevant to the design of strategies for therapeutic interventions based on modulating EGFR signaling.
Collapse
Affiliation(s)
- Abedelnasser Abulrob
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R5, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu JW, Sun P, Yan Q, Paller AS, Gerami P, Ho N, Vashi N, Le Poole IC, Wang XQ. De-N-acetyl GM3 promotes melanoma cell migration and invasion through urokinase plasminogen activator receptor signaling-dependent MMP-2 activation. Cancer Res 2009; 69:8662-9. [PMID: 19903858 DOI: 10.1158/0008-5472.can-09-1099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have recently discovered that de-N-acetyl GM3 [NeuNH(2)LacCer, d-GM3], a derivative of ganglioside GM3, is specifically expressed in metastatic tumor cells and that its expression correlates with an enhanced metastatic phenotype. Although the classic N-acetylated form of GM3 (NeuAcLacCer, c-GM3) is found in both normal and tumor cells, metastatic tumor cells (but not other cells) predominantly express d-GM3 (82-95% of total GM3). d-GM3 expression is mainly found in metastatic melanomas, but not in benign nevi or the majority of primary melanomas. Using metastatic (d-GM3-positive) and poorly invasive (d-GM3-negative) human melanoma cell lines, we found that d-GM3 stimulates cell migration and invasion by increasing the expression and activation of urokinase-like plasminogen activator (uPA). Further studies showed that d-GM3 activates matrix metalloproteinase-2 (MMP-2), but not MMP-9, when uPA receptor signaling is activated. These results implicate d-GM3 as a specific marker for metastatic melanoma and a novel therapeutic target for neoplastic diseases.
Collapse
Affiliation(s)
- Ji-Wei Liu
- Department of Oncology, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Apte-Deshpnade A, Mandal G, Soorapaneni S, Prasad B, Kumar J, Padmanabhan S. High-level expression of non-glycosylated and active staphylokinase from Pichia pastoris. Biotechnol Lett 2009; 31:811-7. [PMID: 19214390 DOI: 10.1007/s10529-009-9938-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 11/25/2022]
Abstract
Staphylokinase (SAK) is a promising thrombolytic agent for treating blood-clotting disorders. Recombinant SAK (rSAK) was produced after integration of the gene into Pichia pastoris genome. The recombinant Pichia carrying multiple insertions of the SAK gene yielded high-level (approximately 1 g/l) of extracellular glycosylated rSAK (approximately 18 kDa) with negligible plasminogen activation activity. Addition of tunicamycin during the induction phase resulted in expression of non-glycosylated and highly active rSAK (approximately 15 kDa) from the same clone. Two simple steps of ion-exchange chromatography produced an homogenous rSAK of >95% purity which suitable for future structural and functional studies.
Collapse
Affiliation(s)
- Anjali Apte-Deshpnade
- Biotechnology R & D, Lupin Limited, 46A/47A, Nande Village, Mulshi Taluka, Pune 411042, India
| | | | | | | | | | | |
Collapse
|
29
|
Haga Y, Hakomori SI, Hatanaka K. Quantitative analysis of EGFR affinity to immobilized glycolipids by surface plasmon resonance. Carbohydr Res 2008; 343:3034-8. [DOI: 10.1016/j.carres.2008.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 11/16/2022]
|
30
|
Anastasia L, Papini N, Colazzo F, Palazzolo G, Tringali C, Dileo L, Piccoli M, Conforti E, Sitzia C, Monti E, Sampaolesi M, Tettamanti G, Venerando B. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis. J Biol Chem 2008; 283:36265-71. [PMID: 18945680 DOI: 10.1074/jbc.m805755200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.
Collapse
Affiliation(s)
- Luigi Anastasia
- Department of Medical Chemistry, Biochemistry, and Biotechnology, University of Milan, 20090 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Z, Sun P, Liu J, Fu L, Yan J, Liu Y, Yu L, Wang X, Yan Q. Suppression of FUT1/FUT4 expression by siRNA inhibits tumor growth. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:287-96. [PMID: 18023290 DOI: 10.1016/j.bbamcr.2007.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 12/29/2022]
Abstract
Lewis Y (LeY) antigen is highly expressed in a variety of human carcinomas of epithelial cell origin. Recent studies suggest functional blockade of LeY may provide a novel therapeutic approach for the treatment of cancers. However, suppressing LeY expression by genetic manipulation and its impact on neoplastic cell proliferation has not been investigated. We report here that different fucosyltransferases (FUTs) were expressed with the greatest expression of fucosyltransferase I or IV (FUT1/4), the two key enzymes for the synthesis of LeY in human epidermoid carcinoma A431 cells. Knocking down FUT1/4 expression by short interfering RNA technique dramatically reduced the expression of FUT1/4 and LeY and inhibited cell proliferation through decreasing epidermal growth factor receptor (EGFR) signaling pathway. Treatment of A431 cells that were inoculated into the nude mice with FUT1 siRNA or FUT4 siRNA greatly impeded tumor growth. Suppressing FUT1/4 expression also blocked EGF-induced tyrosine phosphorylation of EGFR and mitogen-activated protein kinases. In conclusion, suppressing the expression of FUT1/4 by RNAi technology reduces the synthesis of LeY and inhibits cancer growth. It may serve as a potential methodology for the treatment of cancers that express LeY glycoconjugates.
Collapse
Affiliation(s)
- Zhenbo Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116027, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Inokuchi JI, Kabayama K. Modulation of Growth Factor Receptors in Membrane Microdomains. TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Wang XQ, Yan Q, Sun P, Liu JW, Go L, McDaniel SM, Paller AS. Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-1, and ganglioside. Cancer Res 2007; 67:9986-95. [PMID: 17942932 DOI: 10.1158/0008-5472.can-07-1300] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of protein kinase C (PKC)-alpha decreases normal and neoplastic cell proliferation by inhibiting epidermal growth factor receptor (EGFR)-related signaling. The molecular interactions upstream to PKC-alpha that influence its suppression of EGFR, however, are poorly understood. We have found that caveolin-1, tetraspanin CD82, and ganglioside GM3 enable the association of EGFR with PKC-alpha, ultimately leading to inhibition of EGFR signaling. GM3- and CD82-induced inhibition of EGFR signaling requires PKC-alpha translocation and serine/threonine phosphorylation, which eventually triggers EGFR Thr654 phosphorylation and receptor internalization. Within this ordered complex of signaling molecules, the ability of CD82 to associate with PKC-alpha requires the presence of caveolin-1, whereas the interaction of caveolin-1 or PKC-alpha with EGFR requires the presence of CD82 and ganglioside GM3. Disruption of the membrane with methyl-beta-cyclodextrin dissociates the EGFR/GM3/caveolin-1/CD82/PKC-alpha complex and prevents the inhibitory effect of PKC-alpha on EGFR phosphorylation, suggesting that caveolin-1, CD82, and ganglioside interact with EGFR and PKC-alpha within intact cholesterol-enriched membrane microdomains. Given the role of these membrane molecules in suppressing EGFR signaling, up-regulation of GM3, caveolin-1, and CD82 function may be an effective adjunctive therapy for treating epithelial cell malignancies.
Collapse
Affiliation(s)
- Xiao-qi Wang
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA, and Department of Biochemistry, The First Affiliated Hospital, Dalian, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
34
|
N-glycan of ErbB family plays a crucial role in dimer formation and tumor promotion. Biochim Biophys Acta Gen Subj 2007; 1780:520-4. [PMID: 18036567 DOI: 10.1016/j.bbagen.2007.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/27/2007] [Accepted: 10/30/2007] [Indexed: 11/22/2022]
Abstract
More and more evidence indicates that N-glycan regulates signal transduction by modulating receptor functions. Previous studies suggested that glycosylation of EGFR is involved in dimerization and endocytosis. We further determined the role of N-glycosylation of ErbB family. A series of human ErbB3 mutants that lack each of the 10 N-glycosylation sites were prepared and transfected to Flp-In-CHO cells for stable expression. A crosslinking study showed that Asn 418 to Gln mutant (N418Q) of ErbB3 underwent autodimerization without its ligand, heregulin, and the heterodimer formation with ErbB2 was also increased. The N418Q mutant of ErbB3 co-expressed with ErbB2 promoted downstream signaling, anchorage-independent cell growth and the tumor growth in athymic mice. These findings suggest that the specific N-glycan in domain III of ErbB family plays an essential role in regulating receptor dimerization and transforming activity. We assume that the N-glycans affect the conformation of ErbB family, which is crucial for their activity. Together with findings from other laboratories, it is suggested that N-glycosylation controls ErbB signaling by various mechanisms.
Collapse
|
35
|
Murozuka Y, Watanabe N, Hatanaka K, Hakomori SI. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj J 2007; 24:551-63. [PMID: 17638075 DOI: 10.1007/s10719-007-9051-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/25/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Glycosphingolipids, particularly gangliosides, are known to modulate growth factor receptor tyrosine kinase. A well-documented example is the inhibitory effect of GM3 on kinase associated with epidermal growth factor receptor (EGFR) in human epidermoid carcinoma A431 cells. Lyso-GM3 was detected as a minor component in A431 cells, and may function as an auxiliary factor in GM3-dependent inhibition of EGFR. We studied the inhibitory effect of chemically synthesized GM3, lyso-GM3, and its derivatives, on EGFR function, based on their interaction in membrane microdomain, with the following major findings: (1) GM3, EGFR, and caveolin coexist, but tetraspanins CD9 and CD82 are essentially absent, within the same low-density membrane fraction, separated by sucrose density gradient ultracentrifugation. (2) Strong interaction between EGFR and GM3 was indicated by increasing binding of EGFR to GM3-coated polystyrene beads, in a GM3 dose-dependent manner. Confocal microscopy results suggested that three components in the microdomain (GM3, EGFR, and caveolin) are closely associated. (3) Lyso-GM3 or lyso-GM3 dimer strongly inhibited EGFR kinase activity, in a dose-dependent manner, while lyso-GM3 trimer and tetramer did not. >50 microM lyso-GM3 was cytolytic, while >50 microM lyso-GM3 dimer was not cytolytic, yet inhibited EGFR kinase strongly. Thus, lyso-GM3 and its dimer exert an auxiliary effect on GM3-induced inhibition of EGFR kinase and cell growth, and lyso-GM3 dimer may be a good candidate for pharmacological inhibitor of epidermal tumor growth.
Collapse
Affiliation(s)
- Yoshimi Murozuka
- Pacific Northwest Research Institute, University of Washington, Seattle, WA 98122, USA
| | | | | | | |
Collapse
|
36
|
Milani S, Sottocornola E, Zava S, Berselli P, Berra B, Colombo I. Ganglioside GM3 is stably associated to tyrosine-phosphorylated ErbB2/EGFR receptor complexes and EGFR monomers, but not to ErbB2. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:873-8. [PMID: 17521961 DOI: 10.1016/j.bbalip.2007.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
Gangliosides are known to modulate the activation of receptor tyrosine-kinases (RTKs). Recently, we demonstrated the functional relationship between ErbB2 and ganglioside GM(3) in HC11 epithelial cell line. In the present study we investigated, in the same cells, the ErbB2 activation state and its tendency to form stable molecular complexes with the epidermal growth factor receptor (EGFR) and with ganglioside GM(3) upon EGF stimulation. Results from co-immunoprecipitation experiments and western blot analyses indicate that tyrosine-phosphorylated ErbB2 and EGFR monomers and stable ErbB2/EGFR high molecular complexes (heterodimers) are formed following EGF stimulation, even if the receptors co-immunoprecipitates also in the absence of the ligand; these data suggest the existence of pre-dimerization inactive receptor clusters on the cell surface. High performance-thin layer chromatography (HP-TLC) and TLC-immunostaining analyses of the ganglioside fractions extracted from the immunoprecipitates demonstrate that GM(3), but not other gangliosides, is tightly associated to the tyrosine-phosphorylated receptors. Furthermore, we show that GM(3) is preferentially and in a SDS-resistant manner associated to the activated ErbB2/EGFR complexes and EGFR monomer, but not to ErbB2. Altogether our data support the hypothesis that the modulating effects produced by GM(3) on ErbB2 activation are mediated by EGFR.
Collapse
Affiliation(s)
- Simona Milani
- Institute of General Physiology and Biological Chemistry, University of Milan, Via Trentacoste 2-20134, Milan, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Iyer AKV, Tran KT, Borysenko CW, Cascio M, Camacho CJ, Blair HC, Bahar I, Wells A. Tenascin cytotactin epidermal growth factor-like repeat binds epidermal growth factor receptor with low affinity. J Cell Physiol 2007; 211:748-58. [PMID: 17311283 DOI: 10.1002/jcp.20986] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Select epidermal growth factor (EGF)-like (EGFL) repeats of human tenascin cytotactin (tenascin C) can stimulate EGF receptor (EGFR) signaling, but activation requires micromolar concentrations of soluble EGFL repeats in contrast to subnanomolar concentrations of classical growth factors such as EGF. Using in silico homology modeling techniques, we generated a structure for one such repeat, the 14th EGFL repeat (Ten14). Ten14 assumes a tight EGF-like fold with truncated loops, consistent with circular dichroism studies. We generated bound structures for Ten14 with EGFR using two different approaches, resulting in two distinctly different conformations. Normal mode analysis of both structures indicated that the binding pocket of EGFR exhibits a significantly higher mobility in Ten14-EGFR complex compared to that of the EGF-EGFR complex; we hypothesized this may be attributed to loss of key high-affinity interactions within the Ten14-EGFR complex. We proved the efficacy of our in silico models by in vitro experiments. Surface plasmon resonance measurements yielded equilibrium constant K(D) of 74 microM for Ten14, approximately three orders of magnitude weaker than that of EGF. In accordance with our predicted bound models, Ten14 in monomeric form does not bind EGFR with sufficient stability so as to induce degradation of receptor, or undergo EGFR-mediated internalization over either the short (20 min) or long (48 h) term. This transient interaction with the receptor on the cell surface is in marked contrast to other EGFR ligands which cause EGFR transit through, and signaling from intracellular locales in addition to cell surface signaling.
Collapse
Affiliation(s)
- Anand Krishnan V Iyer
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yoon SJ, Nakayama KI, Hikita T, Handa K, Hakomori SI. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 2006; 103:18987-91. [PMID: 17142315 PMCID: PMC1748164 DOI: 10.1073/pnas.0609281103] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) at membrane microdomains plays an essential role in the growth control of epidermal cells, including cancer cells derived therefrom. Ligand-dependent activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, but to a much lesser degree by other glycosphingolipids. However, the mechanism of the inhibitory effect of GM3 on EGFR tyrosine kinase has been ambiguous. The mechanism is now defined by binding of N-linked glycan having multiple GlcNAc termini to GM3 through carbohydrate-to-carbohydrate interaction, based on the following data: (i) EGFR (molecular mass, approximately 170 kDa) has N-linked glycan with GlcNAc termini, as probed by mAb (J1) or lectin (GS-II); (ii) GS-II-bound EGFR also bound to anti-EGFR Ab as well as to GM3-coated beads; (iii) GM3 inhibitory effect on EGFR tyrosine kinase was abrogated in vitro by coincubation with glycan having multiple GlcNAc termini and in cell culture in situ incubated with the same glycan; and (iv) cells treated with swainsonine, which increased expression of complex-type and hybrid-type glycans with GlcNAc termini, displayed higher inhibition of EGFR kinase by GM3 than swainsonine-untreated control cells. A similar effect was observed with 1-deoxymannojirimycin, which increased hybrid-type structure in addition to major accumulation of high mannose-type glycan. These findings indicate that N-linked glycan with GlcNAc termini linked to EGFR is the target to interact with GM3, causing inhibition of EGF-induced EGFR tyrosine kinase.
Collapse
Affiliation(s)
- Seon-Joo Yoon
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| | - Ken-ichi Nakayama
- Institute of General Industrial Research, Takamatsu, Kagawa 761-0395, Japan; and
| | - Toshiyuki Hikita
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
- Department of Pediatrics, Teikyo University School of Medicine, Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kazuko Handa
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| | - Sen-itiroh Hakomori
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| |
Collapse
|
39
|
Wang XQ, Sun P, Go L, Koti V, Fliman M, Paller AS. Ganglioside GM3 promotes carcinoma cell proliferation via urokinase plasminogen activator-induced extracellular signal-regulated kinase-independent p70S6 kinase signaling. J Invest Dermatol 2006; 126:2687-96. [PMID: 16826166 DOI: 10.1038/sj.jid.5700469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of NeuAcalpha2-3Galbeta1-4Glcbeta1-Cer (GM3), a major ganglioside of cutaneous tumor cell membranes, inhibits ligand-dependent and ligand-independent activation of the epidermal growth factor (EGF) receptor in normal and neoplastic epithelial cells. This leads to the suppression of Ras/extracellular signal-regulated kinase (ERK) activation and, in the presence of EGF or fibronectin, inhibits cell proliferation. However, some tumor cells show increased levels of GM3, and vaccines that target GM3 can inhibit the growth of neoplastic cells in vivo, especially melanomas. We report that in the presence of urokinase plasminogen activator (uPA), overexpression of GM3 paradoxically increases the proliferation of carcinoma cells by augmenting ERK-independent p70S6 kinase activation. Functional blockade of uPA receptor (uPAR) or inhibition of p70S6 kinase, but not inhibition of Ras/ERK signaling, suppresses this GM3-induced stimulation of cell proliferation. The ERK-independent activation of p70S6 kinase involves phosphorylation at threonine-389, threonine-421/serine-424, and serine-411 sites with intermediate phosphatidylinositol 3 kinase and protein kinase C-zeta activation. These studies implicate gangliosides as enhancers of uPAR-related signaling and suggest that the response to GM3 depends on the local concentration of uPA. Therapeutic modalities that target or supplement gangliosides may require concomitant treatment that suppresses EGFR or uPAR signaling, respectively, to control neoplastic cell proliferation.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Department of Dermatology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
40
|
Choi HJ, Chung TW, Kang SK, Lee YC, Ko JH, Kim JG, Kim CH. Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression--transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology 2006; 16:573-83. [PMID: 16574813 DOI: 10.1093/glycob/cwj105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The simple ganglioside GM3 has been shown to have anti-proliferative effects in several in vitro and in vivo cancer models. Although the exogenous ganglioside GM3 has an inhibitory effect on cancer cell proliferation, the exact mechanism by which it prevents cell proliferation remains unclear. Previous studies showed that MDM2 is an oncoprotein that controls tumorigenesis through both p53-dependent and p53-independent mechanisms, and tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a dual-specificity phosphatase that antagonizes phosphatidylinositol 3-kinase (PI-3K)/AKT signaling, is capable of blocking MDM2 nuclear translocation and destabilizing the MDM2 protein. Results from our current study show that GM3 treatment dramatically increases cyclin-dependent kinase (CDK) inhibitor (CKI) p21(WAF1) expression through the accumulation of p53 protein by the PTEN-mediated inhibition of the PI-3K/AKT/MDM2 survival signaling in HCT116 colon cancer cells. Moreover, the data herein clearly show that ganglioside GM3 induces p53-dependent transcriptional activity of p21(WAF1), as evidenced by the p21(WAF1) promoter-driven luciferase reporter plasmid (full-length p21(WAF1) promoter and a construct lacking the p53-binding sites). Additionally, ganglioside GM3 enhances expression of CKI p27(kip1) through the PTEN-mediated inhibition of the PI-3K/AKT signaling. Furthermore, the down-regulation of the cyclin E and CDK2 was clearly observed in GM3-treated HCT116 cells, but the down-regulation of cyclin D1 and CDK4 was not. On the contrary, suppression of PTEN levels by RNA interference restores the enhanced expression of p53-dependent p21(WAF1) and p53-independent p27(kip1) through inactivating the effect of PTEN on PI-3K/AKT signaling modulated by ganglioside GM3. These results suggest that ganglioside GM3-stimulated PTEN expression modulates cell cycle regulatory proteins, thus inhibiting cell growth. We conclude that ganglioside GM3 represents a modulator of cancer cell proliferation and may have potential for use in colorectal cancer therapy.
Collapse
Affiliation(s)
- Hee-Jung Choi
- Department of Biological Science, Sungkyunkwan University, Suwon City, Kyunggi-Do, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Hashiramoto A, Mizukami H, Yamashita T. Ganglioside GM3 promotes cell migration by regulating MAPK and c-Fos/AP-1. Oncogene 2006; 25:3948-55. [PMID: 16491123 DOI: 10.1038/sj.onc.1209416] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gangliosides have been proposed as modulators of transmembrane signaling. Recently, GM3, a glycosphingolipid containing monosaialic acids, is thought to be one of the key molecules of signal transduction in mammalian cells. In this study, we used mouse embryonic fibroblast cell lines (MEFs) established from sialyltransferase-I knockout mice (GM3 synthase KO mice) to evaluate the regulation of mitogenic signals by gangliosides. Cell proliferation assay revealed a higher growth potential of GM3 KO MEFs. Immunoblots showed upregulation of Ras/Raf/MEK/ERK pathway in GM3 KO MEFs, and these signals resulted in enhanced translocation of ERK into the nuclei. Further, both exogenous and endogenous add-back of GM3 decreased the activities of MAPK in GM3 KO MEFs. In addition, GM3 KO MEFs formed foci in high-density culture condition, and analyses of cell cycle modulators revealed the resistance of GM3 KO MEFs for entering cell cycle arrest. Finally, sustained expressions of c-Fos in GM3 KO MEFs were shown to correlate with DNA-binding activity between c-Fos and AP-1. These results demonstrate that the deletion of sialyltransferase-I changes the character of MEFs to a highly activated state of the MAPK pathway, indicating the critical role of GM3 as a regulator of membrane-transmitted signals.
Collapse
Affiliation(s)
- A Hashiramoto
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
42
|
Wang XQ, Sun P, Paller AS. Gangliosides inhibit urokinase-type plasminogen activator (uPA)-dependent squamous carcinoma cell migration by preventing uPA receptor/alphabeta integrin/epidermal growth factor receptor interactions. J Invest Dermatol 2005; 124:839-48. [PMID: 15816844 DOI: 10.1111/j.0022-202x.2005.23669.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of the urokinase-type plasminogen activator (uPA) receptor (uPAR) with integrins plays a critical role in the regulation of cell adhesion and migration. However, the molecular events underlying the modulation of the interaction of uPAR and integrin are poorly understood. Gangliosides are thought to regulate epithelial cell adhesion and migration by inhibiting alpha(5)beta(1) integrin and epidermal growth factor receptor (EGFR) signaling. We report here that increases in the expression of ganglioside NeuAcalpha2-->3Galbeta1-->3GalNAcbeta1-->4(NeuAcalpha2-->8NeuAcalpha2-->3)Galbeta1-->4Glcbeta1-Cer (GT1b) or NeuAcalpha2-->3Galbeta1-->4Glcbeta1-Cer (GM3) inhibit uPA-dependent cell migration by preventing the association of uPAR with alpha(5)beta(1) integrin or uPAR/alpha(5)beta(1) integrin with the EGFR, respectively. As a result, uPA-dependent focal adhesion kinase (FAK) and integrin-mediated EGFR signaling are suppressed. Both gangliosides inhibit uPAR signaling-stimulated migration; however, GM3 inhibits uPA-induced EGFR phosphorylation by blocking the crosstalk between integrin and EGFR, whereas GT1b suppresses both uPA-induced FAK and EGFR activation by preventing the activation of integrin alpha(5)beta(1).
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Departments of Dermatology and Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
43
|
Garrido G, Sanchez B, Rodriguez HM, Lorenzano P, Alonso D, Fernandez LE. 7A7 MAb: a new tool for the pre-clinical evaluation of EGFR-based therapies. ACTA ACUST UNITED AC 2004; 23:168-75. [PMID: 15312307 DOI: 10.1089/1536859041224280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed in many types of epithelial tumors. EGFR overexpression has been associated with an advanced stage of the disease, with resistance to standard therapies, and, for certain tumors, with poor patient prognosis. As a result, EGFR has been considered a meaningful target in anti-tumor strategies. Active and passive immunotherapies blocking EGFR and its ligands have been explored. But for successful pre-clinical evaluation of these approaches, well-established murine tumor models are not available and highly desirable. We described, for the first time, the generation and characterization of an anti-murine EGFR extracellular domain monoclonal antibody (7A7 MAb) (IgG1). 7A7 was generated by immunization of Balb/c mice with the recombinant extracellular domain of murine EGFR (rECD-mEGFR). 7A7 recognized an epitope present in the amino acidic core of the antigen and is cross-reactive with the human EGFR. Interestingly, this MAb was able to specifically bind EGFR at the cell surface, allowing the assessment of its differential expression in a panel of murine cells. Noteworthy, in a preliminary immunohistochemical study with 7A7 MAb, recognition of Balb/c mice skin sections and EGFR-positive tumors were observed. We concluded that 7A7 MAb is a valuable tool for EGFR-based therapeutic pre-clinical studies.
Collapse
Affiliation(s)
- Greta Garrido
- Vaccines' Department, Center of Molecular Immunology, Havana, Cuba.
| | | | | | | | | | | |
Collapse
|
44
|
Smoleńska-Sym G, Spychalska J, Zdebska E, Woźniak J, Traczyk Z, Pszenna E, Maj S, Danikiewicz W, Bieńkowski T, Kościelak J. Ceramides and glycosphingolipids in maturation process: leukemic cells as an experimental model. Blood Cells Mol Dis 2004; 33:68-76. [PMID: 15223014 DOI: 10.1016/j.bcmd.2004.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Indexed: 11/25/2022]
Abstract
Leukemic cells were used as experimental material to demonstrate changes in the content of GSLs during the development and maturation of neutrophils. The most abundant cellular GSL is LacCer. An elevation in the LacCer level occurs twice during the maturation process: initially, on formation of azurophil granules, and subsequently, (a more significant rise) on formation of specific granules. The formation of the latter is accompanied by an increase in the level of GalGalCer. During the maturation of myeloblasts, there is a simultaneous growth in the content of LacCer and GM3 as well as that of their common precursors, that is, free ceramides. Like other tumor cells, GM3 rich myeloblasts in the peripheral blood from patients with AML are characterized by shedding of gangliosides. The quantitative Cer/GlcCer ratio in these cells seems to be advantageous for the efficacy of chemotherapy in the induction of apoptosis. Myelo- and metamyelocytes achieve the highest level of GSLs. Their entry into the full maturity stage is accompanied by a decrease in the level of GSLs. Patterns of GSLs expression change greatly during development and maturation. However, with respect to the composition and content of GSLs, there are no significant differences between normal and leukemic mature neutrophils. At each stage of the development and maturation of myelogenous leukemic cells, as well as in normal mature neutrophils, there occurs the synthesis of the same molecular species both free ceramides and ceramide portions of LacCer, precursor of more complex GSLs.
Collapse
Affiliation(s)
- Gabriela Smoleńska-Sym
- Department of Biochemistry, Institute of Hematology and Blood Transfusion Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang XQ, Sun P, Paller AS. Ganglioside GM3 Blocks the Activation of Epidermal Growth Factor Receptor Induced by Integrin at Specific Tyrosine Sites. J Biol Chem 2003; 278:48770-8. [PMID: 14512423 DOI: 10.1074/jbc.m308818200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) can be activated by both direct ligand binding and cross-talk with other molecules, such as integrins. This integrin-mediated cross-talk with growth factor receptors participates in regulating cell proliferation, survival, migration, and invasion. Previous studies have shown that ligand-dependent EGFR activation is inhibited by GM3, the predominant ganglioside of epithelial cells, but the effect of GM3 on ligand-independent, integrin-EGFR cross-talk is unknown. Using a squamous carcinoma cell line we show that endogenous accumulation of GM3 disrupts the ligand-independent association of the integrin beta1 subunit with EGFR and results in inhibition of cell proliferation. Consistently, endogenous depletion of GM3 markedly increases the association of EGFR with tyrosine-phosphorylated integrin beta1 and promotes cell proliferation. The ligand-independent stimulation of EGFR does not require focal adhesion kinase phosphorylation or cytoskeletal rearrangement. Stimulation of EGFR and mitogen-activated protein kinase signaling by GM3 depletion involves the phosphorylation of EGFR at tyrosine residues 845, 1068, and 1148 but not 1086 or 1173. The specific blockade of phosphorylation at Tyr-845 with Src family kinase inhibition and at Tyr-1148 with phosphatidylinositol 3-kinase inhibition suggests that GM3 inhibits integrin-induced, ligand-independent EGFR phosphorylation (cross-talk) through suppression of Src family kinase and phosphatidylinositol 3-kinase signaling.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Departments of Pediatrics and Dermatology, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
46
|
Odintsova E, Voortman J, Gilbert E, Berditchevski F. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 2003; 116:4557-66. [PMID: 14576349 DOI: 10.1242/jcs.00793] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that CD82, a transmembrane protein of the tetraspanin superfamily is associated with EGFR and has a negative effect on EGF-induced signalling (Odintsova, E., Sugiura, T. and Berditchevski, F. (2000) Curr. Biol. 10, 1009-1012). Here we demonstrate that CD82 specifically attenuates ligand-induced dimerization of EGFR. The recombinant soluble large extracellular loop of CD82 has no effect on the dimerization thereby suggesting that other parts of the protein are required. Although CD82 is also associated with ErbB2 and ErbB3, ligand-induced assembly of the ErbB2-ErbB3 complexes is not affected in CD82-expressing cells. Furthermore, in contrast to the CD82-EGFR association, CD82-ErbB2 and CD82-ErbB3 complexes are stable in the presence of ErbB3 ligand. The effect of CD82 on the formation of EGFR dimers correlates with changes in compartmentalisation of the ErbB receptors on the plasma membrane. Expression of CD82 causes a significant increase in the amount of EGFR and ErbB2 in the light fractions of the sucrose gradient. This correlates with the increased surface expression of gangliosides GD1a and GM1 and redistribution of GD1a and EGFR on the plasma membrane. Furthermore, in CD82-expressing cells GD1a is co-localised with EGFR and the tetraspanin. Taken together our results offer a molecular mechanism of the attenuating activity of CD82 towards EGFR, whereby GD1a functions as a mediator of CD82-dependent compartmentalisation of the receptor.
Collapse
Affiliation(s)
- Elena Odintsova
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
47
|
Wang XQ, Sun P, Paller AS. Ganglioside GM3 inhibits matrix metalloproteinase-9 activation and disrupts its association with integrin. J Biol Chem 2003; 278:25591-9. [PMID: 12724312 DOI: 10.1074/jbc.m302211200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gangliosides GM3 and GT1b both inhibit epithelial cell adhesion and migration on fibronectin. GT1b binds to integrin alpha5beta1 and blocks the integrin-fibronectin interaction; GM3 does not interact with integrin, and its effect is poorly understood. We evaluated the effects of endogenous modulation of GM3 expression on epithelial cell motility on several matrices and the mechanism of these effects. Endogenous accumulation of GM3 decreased cell migration on fibronectin, types I, IV, and VII collagen matrices; depletion of GM3 dramatically increased cell migration, regardless of matrix. GM3 overexpression and depletion in vitro correlated inversely with the expression and activity of matrix metalloproteinase-9; consistently, the cell migration stimulated by GM3 depletion is reversed by inhibition of matrix metalloproteinase-9 activity. Accumulation and depletion of GM3 in epithelial cells grown on fibronectin also correlated inversely with epidermal growth factor receptor and mitogen activated protein kinase phosphorylation and with Jun expression. Ganglioside depletion facilitated the co-immunoprecipitation of matrix metal-loproteinase-9 and integrin alpha5beta1, while endogenous accumulation of GM3, but not GT1b, blocked the co-immunoprecipitation. These data suggest modulation of epidermal growth factor receptor signaling and dissociation of integrin/matrix metalloproteinase-9 as mechanisms for the GM3-induced effects on matrix metalloproteinase-9 function.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
48
|
Oblinger JL, Boardman CL, Yates AJ, Burry RW. Domain-dependent modulation of PDGFRbeta by ganglioside GM1. J Mol Neurosci 2003; 20:103-14. [PMID: 12794304 DOI: 10.1385/jmn:20:2:103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2002] [Accepted: 12/08/2002] [Indexed: 01/09/2023]
Abstract
The regulation of receptor tyrosine kinases (RTKs) is important in several cellular events, including proliferation, differentiation, and apoptosis. Gangliosides are sialic acid-containing glycosphingolipids that can regulate RTK activity. The addition of ganglioside GM1 to the medium of Swiss 3T3 fibroblasts inhibits both platelet-derived growth factor (PDGF)-mediated tyrosine phosphorylation of PDGF receptor beta (PDGFRbeta) and receptor-mediated endocytosis. However, GM1 did not affect PDGF-mediated receptor phosphorylation, neuritogenesis, or endocytosis in PC12 cells stably transfected with the gene for PDGFRbeta. The ability of GM1 to modulate PDGFRbeta in 3T3 cells but not in transfected PC12 cells indicates a cell context-dependent response. We hypothesized that this inhibition of PDGFRbeta by GM1 must map to one or more domains of the receptor. Thus, a chimeric receptor was created that possessed the extracellular and transmembrane domains of the nerve growth factor (NGF) receptor TrkA and the cytoplasmic domain of PDGFRbeta (TTbeta). In 3T3 cells transfected with the TTbeta construct, GM1 did not inhibit NGF-induced tyrosine phosphorylation of the chimeric receptor or of Erk1/2 in this cell line. GM1 still inhibited PDGF-mediated tyrosine phosphorylation of endogenous PDGFRbeta and of Erk1/2 in Swiss TTbeta cells. Thus, the cytoplasmic domain of PDGFRbeta is not required for GM1-dependent inhibition of PDGFRbeta in 3T3 cells. This suggests that the inhibition of PDGFRbeta by GM1 in Swiss 3T3 fibroblasts maps to either the extracellular and/or transmembrane domain of PDGFRbeta.
Collapse
Affiliation(s)
- Janet L Oblinger
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
A large variety of glycosylation patterns in combination with different ceramide structures in glycosphingolipids provide a basis for cell type-specific glycosphingolipid pattern in membrane, which essentially reflects the composition of glycosphingolipid-enriched microdomains. Functions of glycosphingolipids as antigens, mediators of cell adhesion, and modulators of signal transduction are all based on such organization. Of particular importance is the assembly of glycosphingolipids with signal transducers and other membrane proteins to form a functional unit termed a, through which glycosylation-dependent cell adhesion coupled with signal transduction takes place. The microenvironment formed by interfacing glycosynapses of interacting cells plays a central role in defining phenotypic changes after cell adhesion, as occur in ontogenic development and cancer progression. These basic functional features of glycosphingolipids in membrane can also be considered roles of glycosphingolipids and gangliosides characteristic of neutrophils, myelocytes, and other blood cells. A series of sialyl fucosyl poly-N-acetylgalactosamine gangliosides without the sialyl-Le epitope, collectively termed, have been shown to mediate E-selectin-dependent rolling and tethering under dynamic flow with physiologic shear stress conditions. Functional roles of myeloglycan in neutrophils during inflammatory processes are discussed.
Collapse
Affiliation(s)
- Senitiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, Washington 98122, USA.
| |
Collapse
|
50
|
Watty A, Burden SJ. MuSK glycosylation restrains MuSK activation and acetylcholine receptor clustering. J Biol Chem 2002; 277:50457-62. [PMID: 12399462 DOI: 10.1074/jbc.m208664200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MuSK, a muscle-specific receptor tyrosine kinase that is activated by agrin, has a critical role in neuromuscular synapse formation. In cultured myotubes, agrin stimulates the rapid phosphorylation of MuSK, leading to MuSK activation and tyrosine phosphorylation and clustering of acetylcholine receptors. Agrin, however, fails to stimulate tyrosine phosphorylation of MuSK that is force-expressed in myoblasts and fibroblasts, indicating that myotubes contain an additional activity that is required for agrin to stimulate MuSK. Certain glycosyltransferases are expressed selectively at synaptic sites in skeletal muscle, raising the possibility that carbohydrate modifications of MuSK, catalyzed by glycosyltransferases expressed selectively in myotubes, may be essential for agrin to bind and activate MuSK. We identifed two N-linked glycosylation sites in MuSK, and we expressed MuSK mutants lacking one or both N-linked sites into MuSK mutant myotubes to determine whether N-linked carbohydrate modifications of MuSK have a role in MuSK activation. We found that N-linked glycosylation restrains ligand-independent tyrosine phosphorylation of MuSK and downstream signaling but is not necessary for agrin to stimulate MuSK.
Collapse
Affiliation(s)
- Anke Watty
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016, USA
| | | |
Collapse
|