1
|
Tao M, Yang L, Zhao C, Huang Z, Zhao M, Zhang W, Zhu Y, Mu W. Rational modification of Neisseria meningitidis β1,3-N-acetylglucosaminyltransferase for lacto-N-neotetraose synthesis with reduced long-chain derivatives. Carbohydr Polym 2024; 345:122543. [PMID: 39227090 DOI: 10.1016/j.carbpol.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
Lacto-N-neotetraose (LNnT), as a neutral core structure within human milk oligosaccharides (HMOs), has garnered widespread attention due to its exceptional physiological functions. In the process of LNnT synthesis using cellular factory approaches, substrate promiscuity of glycosyltransferases leads to the production of longer oligosaccharide derivatives. Here, rational modification of β1,3-N-acetylglucosaminyltransferase from Neisseria meningitidis (LgtA) effectively decreased the concentration of long-chain LNnT derivatives. Specifically, the optimal β1,4-galactosyltransferase (β1,4-GalT) was selected from seven known candidates, enabling the efficient synthesis of LNnT in Escherichia coli BL21(DE3). Furthermore, the influence of lactose concentration on the distribution patterns of LNnT and its longer derivatives was investigated. The modification of LgtA was conducted with computational assistance, involving alanine scanning based on molecular docking to identify the substrate binding pocket and implementing large steric hindrance on crucial amino acids to obstruct LNnT entry. The implementation of saturation mutagenesis at positions 223 and 228 of LgtA yielded advantageous mutant variants that did not affect LNnT synthesis while significantly reducing the production of longer oligosaccharide derivatives. The most effective mutant, N223I, reduced the molar ratio of long derivatives by nearly 70 %, showcasing promising prospects for LNnT production with diminished byproducts.
Collapse
Affiliation(s)
- Mengting Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Longhao Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chunhua Zhao
- Bloomature Biotechnology Corporation, Limited, Beijing 102629, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China..
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
2
|
Guang C, Du Z, Meng J, Zhu Y, Zhu Y, Mu W. Recent Progress in Physiological Significance and Biosynthesis of Lacto- N-triose II: Insights into a Crucial Biomolecule. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19539-19548. [PMID: 39188079 DOI: 10.1021/acs.jafc.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Lacto-N-triose II (LNTri II), an important precursor for human milk oligosaccharide (HMOs) synthesis, has garnered significant attention due to its structural features and physiological properties. Composed of galactose (Gal), N-acetylglucosamine (GlcNAc), and glucose (Glc), with the chemical structure GlcNAcβ1,3Galβ1,4Glc, the distinctive structure of LNTri II confers various physiological functions such as promoting the growth of beneficial bacteria, regulating the infant immune system, and preventing certain gastrointestinal diseases. Extensive research efforts have been dedicated to elucidating efficient enzymatic synthesis pathways for LNTri II production, with particular emphasis on the transglycosylation activity of β-N-acetylhexosaminidases and the action of β-1,3-N-acetylglucosaminyltransferases. Additionally, metabolic engineering and cell factory approaches have been explored, harnessing the potential of engineered microbial hosts for the large-scale biosynthesis of LNTri II. This review summarizes the structure, derivatives, physiological effects, and biosynthesis of LNTri II.
Collapse
Affiliation(s)
- Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yunqi Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
3
|
Fontana J, Sparkman-Yager D, Faulkner I, Cardiff R, Kiattisewee C, Walls A, Primo TG, Kinnunen PC, Garcia Martin H, Zalatan JG, Carothers JM. Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling. Nat Commun 2024; 15:6341. [PMID: 39068154 PMCID: PMC11283517 DOI: 10.1038/s41467-024-50528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (rS = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - David Sparkman-Yager
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ian Faulkner
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Aria Walls
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Tommy G Primo
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Patrick C Kinnunen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Hector Garcia Martin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Zhang W, Zhu Y, Wang H, Huang Z, Liu Y, Xu W, Mu W. Highly efficient biosynthesis of 3'-sialyllactose in engineered Escherichia coli. Int J Biol Macromol 2024; 269:132081. [PMID: 38705330 DOI: 10.1016/j.ijbiomac.2024.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
5
|
Cardiff RL, Faulkner I, Beall J, Carothers JM, Zalatan J. CRISPR-Cas tools for simultaneous transcription & translation control in bacteria. Nucleic Acids Res 2024; 52:5406-5419. [PMID: 38613390 PMCID: PMC11109947 DOI: 10.1093/nar/gkae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Robust control over gene translation at arbitrary mRNA targets is an outstanding challenge in microbial synthetic biology. The development of tools that can regulate translation will greatly expand our ability to precisely control genes across the genome. In Escherichia coli, most genes are contained in multi-gene operons, which are subject to polar effects where targeting one gene for repression leads to silencing of other genes in the same operon. These effects pose a challenge for independently regulating individual genes in multi-gene operons. Here, we use CRISPR-dCas13 to address this challenge. We find dCas13-mediated repression exhibits up to 6-fold lower polar effects compared to dCas9. We then show that we can selectively activate single genes in a synthetic multi-gene operon by coupling dCas9 transcriptional activation of an operon with dCas13 translational repression of individual genes within the operon. We also show that dCas13 and dCas9 can be multiplexed for improved biosynthesis of a medically-relevant human milk oligosaccharide. Taken together, our findings suggest that combining transcriptional and translational control can access effects that are difficult to achieve with either mode independently. These combined tools for gene regulation will expand our abilities to precisely engineer bacteria for biotechnology and perform systematic genetic screens.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
| | - Ian D Faulkner
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Juliana G Beall
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| |
Collapse
|
6
|
Liao Y, Lao C, Wu J, Yuan L, Xu Y, Jin W, Sun J, Zhang Q, Chen X, Yao J. High-Yield Synthesis of Lacto- N-Neotetraose from Glycerol and Glucose in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5325-5338. [PMID: 38275134 DOI: 10.1021/acs.jafc.3c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Lacto-N-neotetraose (LNnT) is a neutral human milk oligosaccharide with important biological functions. However, the low LNnT productivity and the incomplete conversion of the intermediate lacto-N-tetraose II (LNT II) currently limited the sustainable biosynthesis of LNnT. First, the LNnT biosynthetic module was integrated in Escherichia coli. Next, the LNnT export system was optimized to alleviate the inhibition of intracellular LNnT synthesis. Furthermore, by utilizing rate-limiting enzyme diagnosis, the expressions of LNnT synthesis pathway genes were finely regulated to further enhance the production yield of LNnT. Subsequently, a strategy of cofermentation using a glucose/glycerol (4:6, g/g) mixed feed was employed to regulate carbon flux distribution. Finally, by overexpressing key transferases, LNnT and LNT II titers reached 112.47 and 7.42 g/L, respectively, in a 5 L fermenter, and 107.4 and 2.08 g/L, respectively, in a 1000 L fermenter. These are the highest reported titers of LNnT to date, indicating its significant potential for industrial production.
Collapse
Affiliation(s)
- Yingxue Liao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| | - Caiwen Lao
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yanyi Xu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| | - Weijian Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| | - Jian Sun
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Qiang Zhang
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Li C, Li M, Hu M, Miao M, Zhang T. Metabolic Engineering of Escherichia coli for High-Titer Biosynthesis of 3'-Sialyllactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5379-5390. [PMID: 38420706 DOI: 10.1021/acs.jafc.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
3'-Sialyllactose (3'-SL) is among the foremost and simplest sialylated breast milk oligosaccharides. In this study, an engineered Escherichia coli for high-titer 3'-SL biosynthesis was developed by introducing a multilevel metabolic engineering strategy, including (1) the introduction of precursor CMP-Neu5Ac synthesis pathway and high-performance α2,3-sialyltransferase (α2,3-SiaT) genes into strain BZ to achieve de novo synthesis of 3'-SL; (2) optimizing the expression of glmS-glmM-glmU involved in the UDP-GlcNAc and CMP-Neu5Ac synthesis pathways, and constructing a glutamine cycle system, balancing the precursor pools; (3) analysis of critical intermediates and inactivation of competitive pathway genes to redirect carbon flux to 3'-SL biosynthesis; and (4) enhanced catalytic performance of rate-limiting enzyme α2,3-SiaT by RBS screening, protein tag cloning. The final strain BZAPKA14 yielded 9.04 g/L 3'-SL in a shake flask. In a 3 L bioreactor, fed-batch fermentation generated 44.2 g/L 3'-SL, with an overall yield and lactose conversion of 0.53 g/(L h) and 0.55 mol 3'-SL/mol, respectively.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miaomiao Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Heo S, Lee G, Na HE, Park JH, Kim T, Oh SE, Jeong DW. Current status of the novel food ingredient safety evaluation system. Food Sci Biotechnol 2024; 33:1-11. [PMID: 38186627 PMCID: PMC10767037 DOI: 10.1007/s10068-023-01396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 01/09/2024] Open
Abstract
Increasing demand for new foods, technological development, and vegan market growth have led to an increase in new food ingredients, so the need for safety assessment of these ingredients is important. Representative safety assessment systems are the Generally Recognized as Safe (GRAS) notification of the Food and Drug Administration in the USA and the novel food system of the European Food Safety Authority in the European Union. GRAS is a notification system for information on food ingredients, food additives and functional foods under the responsibility of the applicant, while the novel food system assesses the safety of food ingredients excluding food additives. In Korea, a safety evaluation system is established for temporary food ingredients, which includes food ingredients without a domestic intake history. However, safety assessment systems for novel foods from other countries and food ingredients produced by the application of new technology need to be improved.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Hong-Eun Na
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Jung-Hyun Park
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Tao Kim
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Seung-Eun Oh
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| |
Collapse
|
9
|
Schelch S, Eibinger M, Zuson J, Kuballa J, Nidetzky B. Modular bioengineering of whole-cell catalysis for sialo-oligosaccharide production: coordinated co-expression of CMP-sialic acid synthetase and sialyltransferase. Microb Cell Fact 2023; 22:241. [PMID: 38012629 PMCID: PMC10683312 DOI: 10.1186/s12934-023-02249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND In whole-cell bio-catalysis, the biosystems engineering paradigm shifts from the global reconfiguration of cellular metabolism as in fermentation to a more focused, and more easily modularized, optimization of comparably short cascade reactions. Human milk oligosaccharides (HMO) constitute an important field for the synthetic application of cascade bio-catalysis in resting or non-living cells. Here, we analyzed the central catalytic module for synthesis of HMO-type sialo-oligosaccharides, comprised of CMP-sialic acid synthetase (CSS) and sialyltransferase (SiaT), with the specific aim of coordinated enzyme co-expression in E. coli for reaction flux optimization in whole cell conversions producing 3'-sialyllactose (3SL). RESULTS Difference in enzyme specific activity (CSS from Neisseria meningitidis: 36 U/mg; α2,3-SiaT from Pasteurella dagmatis: 5.7 U/mg) was compensated by differential protein co-expression from tailored plasmid constructs, giving balance between the individual activities at a high level of both (α2,3-SiaT: 9.4 × 102 U/g cell dry mass; CSS: 3.4 × 102 U/g cell dry mass). Finally, plasmid selection was guided by kinetic modeling of the coupled CSS-SiaT reactions in combination with comprehensive analytical tracking of the multistep conversion (lactose, N-acetyl neuraminic acid (Neu5Ac), cytidine 5'-triphosphate; each up to 100 mM). The half-life of SiaT in permeabilized cells (≤ 4 h) determined the efficiency of 3SL production at 37 °C. Reaction at 25 °C gave 3SL (40 ± 4 g/L) in ∼ 70% yield within 3 h, reaching a cell dry mass-specific productivity of ∼ 3 g/(g h) and avoiding intermediary CMP-Neu5Ac accumulation. CONCLUSIONS Collectively, balanced co-expression of CSS and SiaT yields an efficient (high-flux) sialylation module to support flexible development of E. coli whole-cell catalysts for sialo-oligosaccharide production.
Collapse
Affiliation(s)
- Sabine Schelch
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Jasmin Zuson
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria.
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
10
|
Zhang M, Zhang K, Liu T, Wang L, Wu M, Gao S, Cai B, Zhang F, Su L, Wu J. High-Level Production of Lacto- N-neotetraose in Escherichia coli by Stepwise Optimization of the Biosynthetic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16212-16220. [PMID: 37851455 DOI: 10.1021/acs.jafc.3c04856] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Lacto-N-neotetraose (LNnT), an abundant human milk oligosaccharide (HMO), has been approved as a novel functional additive for infant formulas. Therefore, LNnT biosynthesis has attracted extensive attention. Here, a high LNnT-producing, low lacto-N-triose II (LNT II)-residue Escherichia coli strain was constructed. First, an initial LNnT-producing chassis strain was constructed by blocking lactose, UDP-N-acetylglucosamine, and UDP-galactose competitive consumption pathways and introducing β-1,3-N-acetylglucosaminyltransferase LgtA and β-1,4-galactosyltransferase LgtB. Subsequently, the supply of LNnT precursors was increased by enhancing UDP-N-acetylglucosamine and UDP-galactose synthesis, inactivating LNT II extracellular transporter SetA, and improving UTP synthesis. Then, modular engineering strategy was used to optimize LNnT biosynthetic pathway fluxes. Moreover, pathway fluxes were fine-tuned by modulating translation initiation strength of essential genes lgtB, prs, and lacY. Finally, LNnT production reached 6.70 g/L in a shake flask and 19.40 g/L in a 3 L bioreactor with 0.47 g/(L h) productivity, with 1.79 g/L LNT II residue, highest productivity level, and lowest LNT II residue thus far.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tongle Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mengping Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shengqi Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Bohan Cai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. and Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257335, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
11
|
Zhang L, Lin Q, Zhang J, Shi Y, Pan L, Hou Y, Peng X, Li W, Wang J, Zhou P. Qualitative and Quantitative Changes of Oligosaccharides in Human and Animal Milk over Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15553-15568. [PMID: 37815401 DOI: 10.1021/acs.jafc.3c03181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The aim of this study was to investigate the changes in human and animal milk oligosaccharides over lactation. In total, 89, 97, 115, and 71 oligosaccharides were identified in human, bovine, goat, and camel milk. The number of common oligosaccharides between camel and human milk was the highest (16 and 17 in transitional and mature milk). With respect to the absolute concentration of eight oligosaccharides (2'-FL, 3-FL, α3'-GL, LNT, LNnT, 3'-SL, 6'-SL, and DSL), 2'-FL, 3'-FL, LNT, and LNnT were much higher in human than three animal species. 3'-SL had a similar concentration in bovine colostrum (322.2 μg/mL) and human colostrum (321.0 μg/mL), followed by goat colostrum (105.1 μg/mL); however, it had the highest concentration in camel mature milk (304.5 μg/mL). The ratio of 6'-SL and 3'-SL (1.77) in goat colostrum was similar to that in human colostrum (1.68), followed by bovine colostrum (0.13). In terms of changes of eight oligosaccharides over lactation, they all decreased with the increase of lactation in bovine and goat milk; however, α3'-GL, 2'-FL, and 3-FL increased in camel species, and LNT increased first and then decreased over lactation in human milk. This study provides a better understanding of the variation of milk oligosaccharides related to lactation and species.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qiaran Lin
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jinyue Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yue Shi
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lina Pan
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, People's Republic of China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Company, Limited, Changsha, Hunan 410011, People's Republic of China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Wei Li
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
12
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
13
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
14
|
Rivollier P, Samain E, Armand S, Jeacomine I, Richard E, Fort S. Synthesis of Neuraminidase-Resistant Sialyllactose Mimetics from N-Acyl Mannosamines using Metabolically Engineered Escherichia coli. Chemistry 2023; 29:e202301555. [PMID: 37294058 DOI: 10.1002/chem.202301555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Herein, we describe the efficient gram-scale synthesis of α2,3- and α2,6-sialyllactose oligosaccharides as well as mimetics from N-acyl mannosamines and lactose in metabolically engineered bacterial cells grown at high cell density. We designed new Escherichia coli strains co-expressing sialic acid synthase and N-acylneuraminate cytidylyltransferase from Campylobacter jejuni together with the α2,3-sialyltransferase from Neisseria meningitidis or the α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224. Using their mannose transporter, these new strains actively internalized N-acetylmannosamine (ManNAc) and its N-propanoyl (N-Prop), N-butanoyl (N-But) and N-phenylacetyl (N-PhAc) analogs and converted them into the corresponding sialylated oligosaccharides, with overall yields between 10 % and 39 % (200-700 mg.L-1 of culture). The three α2,6-sialyllactose analogs showed similar binding affinity for Sambucus nigra SNA-I lectin as for the natural oligosaccharide. They also proved to be stable competitive inhibitors of Vibrio cholerae neuraminidase. These N-acyl sialosides therefore hold promise for the development of anti-adhesion therapy against influenza viral infections.
Collapse
Affiliation(s)
- Paul Rivollier
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Eric Samain
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Sylvie Armand
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
15
|
Liao Y, Wu J, Li Z, Wang J, Yuan L, Lao C, Chen X, Yao J. Metabolic Engineering of Escherichia coli for High-Level Production of Lacto- N-neotetraose and Lacto- N-tetraose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37467490 DOI: 10.1021/acs.jafc.3c02997] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Lacto-N-neotetraose (LNnT) and lacto-N-tetraose (LNT) are important oligosaccharides found in breast milk and are commonly used as nutritional supplements in infant formula. We used metabolic engineering techniques to optimize the modified Escherichia coli BL21 star (DE3) strain for efficient synthesis of LNnT and LNT using β-1,4-galactosyltransferase (HpgalT) from Helicobacter pylori and β-1,3-galactosyltransferase (SewbdO) from Salmonella enterica subsp. salamae serovar, respectively. Further, we optimized the expression of three key genes, lgtA, galE, and HpgalT (SewbdO), to synthesize LNnT or LNT and deleted several genes (ugd, ushA, agp, wcaJ, otsA, and wcaC) to block competition in the UDP-galactose synthesis pathway. The optimized strain produced LNnT or LNT with a titer of 22.07 or 48.41 g/L, respectively, in a supplemented batch culture, producing 0.41 or 0.73 g/L/h, respectively. The strategies used in this study contribute to the development of cell factories for high-level LNnT and LNT and their derivatives.
Collapse
Affiliation(s)
- Yingxue Liao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan 232000, China
| | - Zhongkui Li
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jin Wang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Caiwen Lao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan 232000, China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Hu M, Li M, Li C, Luo Y, Zhang T. High-Level Productivity of Lacto- N-neotetraose in Escherichia coli by Systematic Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4051-4058. [PMID: 36815842 DOI: 10.1021/acs.jafc.2c08772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lacto-N-neotetraose (LNnT) is a critical component of human milk oligosaccharides. This study introduces a systems metabolic engineering method to produce LNnT in Escherichia coli. First, 12 target genes contributing to LNnT production were identified using a double-plasmid system. Subsequently, combinatorial optimization of the copy number was performed to tune the target gene expression strength. Next, the CRISPR/Cas9 system was used to block the UDP-Gal and UDP-GlcNAc competitive pathways, and the titer of LNnT reached 1.16 g/L (E27). Moreover, the lactoylglutathione lyase (GloA) was deleted to block the competing metabolite pathway from glycerol to lactate, and the titer of LNnT (1.46 g/L) was 26% higher than that of strain E27. Finally, the LNnT productivity was increased to 0.34 g/L/h in a 3 L bioreactor, which was 36% higher than the recently reported LNnT productivity. This research work opens an innovative framework for the effective production of LNnT.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yejiao Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
17
|
Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol Adv 2023; 63:108081. [PMID: 36529206 DOI: 10.1016/j.biotechadv.2022.108081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.
Collapse
|
18
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
19
|
Yang L, Zhu Y, Zhang W, Mu W. Recent progress in health effects and biosynthesis of lacto- N-tetraose, the most dominant core structure of human milk oligosaccharide. Crit Rev Food Sci Nutr 2023; 64:6802-6811. [PMID: 36744615 DOI: 10.1080/10408398.2023.2175197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human milk oligosaccharides (HMOs), which are a group of complex carbohydrates highly abundant in human milk, have been recognized as critical functional biomolecules for infant health. Lacto-N-tetraose (LNT) is one of the most abundant HMO members and the most dominant core structure of HMO. The promising physiological effects of LNT have been well documented, including prebiotic property, antiadhesive antimicrobial activity, and antiviral effect. Its safety has been evaluated and it has been commercially added to infant formula as a functional ingredient. Because of great commercial importance of LNT, increasing attention has been paid to its highly efficient biological production. In particular, microbial synthesis based on metabolic engineering displays obvious advantages in large-scale production of LNT. This review contains important information about the recent progress in physiological effects, safety evaluation, and biosynthesis of LNT.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Zhu Y, Zhang J, Zhang W, Mu W. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3'-sialyllactose and 6'-sialyllactose. Biotechnol Adv 2023; 62:108058. [PMID: 36372185 DOI: 10.1016/j.biotechadv.2022.108058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs), the third major solid component in breast milk, are recognized as the first prebiotics for health benefits in infants. Sialylated HMOs are an important type of HMOs, accounting for approximately 13% of total HMOs. 3'-Sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) are two simplest sialylated HMOs. Both SLs display promising prebiotic effects, especially in promoting the proliferation of bifidobacteria and shaping the gut microbiota. SLs exhibit several health effects, including antiadhesive antimicrobial ability, antiviral activity, prevention of necrotizing enterocolitis, immunomodulatory activity, regulation of intestinal epithelial cell response, promotion of brain development, and cognition improvement. Both SLs have been approved as "Generally Recognized as Safe" by the American Food and Drug Administration and are commercially added to infant formula. The biosynthesis of SLs using enzymatic or microbial approaches has been widely studied. The enzymatic synthesis of SLs can be realized by two types of enzymes, sialidases with trans-sialidase activity and sialyltransferases. Microbial synthesis can be achieved by the multiple recombinant bacteria in one-pot reaction, which express the enzymes involved in SL synthesis pathways separately or in combination, or by metabolically engineered strains in a fermentation process. In this article, the physiological properties of 3'-SL and 6'-SL are summarized in detail and the biosynthesis of these SLs via enzymatic and microbial synthesis is comprehensively reviewed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiameng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
Efficient Purification of 2′-Fucosyllactose by Membrane Filtration and Activated Carbon Adsorption. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the rapid development of synthetic biology, the production of 2′-fucosyllactose by biological fermentation gradually has the basis for industrialization. However, the lack of efficient downstream technology of biological fermentation, especially purification technology, has become the main factor limiting its commercialization. In this study, based on the general E. coli biosynthesis of 2′-fucosyllactose fermentation broth, most of the impurities were removed and concentrated using membrane filtration technology after simple flocculation. The target 2′-fucosyllactose was eluted in a targeted manner using activated carbon adsorption and ethanol gradient elution technology. The 2′-fucosyllactose product with 90% or even higher purity could be prepared efficiently. This study explored a new direction for the industrial production of 2′-fucosyllactose.
Collapse
|
22
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
23
|
Zhang P, Zhu Y, Li Z, Zhang W, Guang C, Mu W. Designing a Highly Efficient Biosynthetic Route for Lacto- N-Neotetraose Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9961-9968. [PMID: 35938974 DOI: 10.1021/acs.jafc.2c04416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, the biosynthesis of human milk oligosaccharides (HMOs) has been attracting increasing attention. Lacto-N-neotetraose (LNnT) is one of the most important neutral-core HMOs with promising health effects for infants. It has received Generally Recognized as Safe (GRAS) status and is the second HMO commercially added in infant formula after 2'-fucosyllactose. In previous studies, a series of engineered Escherichia coli strains have been constructed and optimized to produce high titers of precursor lacto-N-triose II. On the basis of these strains, LNnT-producing strains were constructed by overexpressing the β1,4-galactosyltransferase-encoding gene from Aggregatibacter actinomycetemcomitans NUM4039 (Aa-β1,4-GalT). Interestingly, an appreciable LNnT titer was obtained by weakening the metabolic flux of the UDP-GlcNAc pathway and simply overexpressing the essential genes lgtA, galE, and Aa-β1,4-GalT in lacZ-, wecB-, and nagB-deleted E. coli. Subsequently, LNnT synthesis was optimized through balancing the expression of these three biosynthetic enzymes. The optimized strain produced LNnT with an extracellular titer of 12.1 g/L in fed-batch cultivation, with the productivity and specific yield of 0.25 g/L·h and 0.27 g/g dry cell weight, respectively.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Hu M, Li M, Miao M, Zhang T. Engineering Escherichia coli for the High-Titer Biosynthesis of Lacto- N-tetraose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8704-8712. [PMID: 35731707 DOI: 10.1021/acs.jafc.2c02423] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lacto-N-tetraose (LNT), a member of the human milk oligosaccharides family, has received widespread attention because of its importance in infant health. We constructed a whole-cell biotransformation method in Escherichia coli BL21(DE3) for high-titer LNT synthesis. The approach was performed by using a systematic design and metabolic engineering based on the metabolic pathway of LNT. The lgtA (encoding β-1,3-N-acetylglucosaminyltransferase) and wbgO (encoding β-1,3-galactosyltransferase) genes were introduced into the engineered E. coli BL21(DE3) to construct an LNT-producing starting strain B1 (0.22 g/L). Then, the genes related to the LNT metabolic pathway were screened in two vectors to evaluate LNT synthesis. The lgtA-wbgO and galE-galT-galK genes were overexpressed through the two-plasmid system in E. coli BL21(DE3). The titer of LNT (3.42 g/L) had a gain of 14.55 times compared with that of B1. Furthermore, the ugd gene, which was associated with the UDP-Gal bypass pathway, was inactivated to further improve LNT production in shake-flask cultivation (4.14 g/L). The final fed-batch cultivation of the engineered strain produced 31.56 g/L of LNT. This study provided a strategy for the effective production of LNT in E. coli.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, China
| |
Collapse
|
25
|
Zhang J, Zhu Y, Zhang W, Mu W. Efficient Production of a Functional Human Milk Oligosaccharide 3'-Sialyllactose in Genetically Engineered Escherichia coli. ACS Synth Biol 2022; 11:2837-2845. [PMID: 35802806 DOI: 10.1021/acssynbio.2c00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
3'-Sialyllactose (3'-SL) is one of the most important and simplest sialylated human milk oligosaccharides. In this study, a plasmid-based pathway optimization along with chromosomal integration strategies was applied for 3'-SL production. Specifically, the precursor CMP-Neu5Ac synthesis pathway genes and α2,3-sialyltransferase-encoding gene were introduced into Escherichia coli BL21(DE3)ΔlacZ to realize 3'-SL synthesis. Genes nanA and nanK involved in Neu5Ac catabolism were further deleted to reduce the metabolic flux of competitive pathway. Several α2,3-sialyltransferases from different species were selected to evaluate the sialylation effect. The precursor pools were balanced and improved by optimizing key enzyme expression involved in the UDP-GlcNAc and CMP-Neu5Ac synthesis pathway. Finally, an additional α2,3-sialyltransferase expression cassette was integrated into chromosome to maximize 3'-SL synthesis, and 4.5 g/L extracellular 3'-SL was produced at a shake-flask level. The extracellular 3'-SL concentration was raised to 23.1 g/L in a 5 L bioreactor fermentation, which represents the highest extracellular value ever reported.
Collapse
Affiliation(s)
- Jiameng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
26
|
Bai Y, Yang X, Yu H, Chen X. Substrate and Process Engineering for Biocatalytic Synthesis and Facile Purification of Human Milk Oligosaccharides. CHEMSUSCHEM 2022; 15:e202102539. [PMID: 35100486 PMCID: PMC9272545 DOI: 10.1002/cssc.202102539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Indexed: 05/08/2023]
Abstract
Innovation in process development is essential for applying biocatalysis in industrial and laboratory production of organic compounds, including beneficial carbohydrates such as human milk oligosaccharides (HMOs). HMOs have attracted increasing attention for their potential application as key ingredients in products that can improve human health. To efficiently access HMOs through biocatalysis, a combined substrate and process engineering strategy is developed, namely multistep one-pot multienzyme (MSOPME) design. The strategy allows access to a pure tagged HMO in a single reactor with a single C18-cartridge purification process, despite the length of the target. Its efficiency is demonstrated in the high-yielding (71-91 %) one-pot synthesis of twenty tagged HMOs (83-155 mg), including long-chain oligosaccharides with or without fucosylation or sialylation up to nonaoses from a lactoside without the isolation of the intermediate oligosaccharides. Gram-scale synthesis of an important HMO derivative - tagged lacto-N-fucopentaose-I (LNFP-I) - proceeds in 84 % yield. Tag removal is carried out in high efficiency (94-97 %) without the need for column purification to produce the desired natural HMOs with a free reducing end. The method can be readily adapted for large-scale synthesis and automation to allow quick access to HMOs, other glycans, and glycoconjugates.
Collapse
Affiliation(s)
- Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| |
Collapse
|
27
|
Sugita T, Koketsu K. Transporter Engineering Enables the Efficient Production of Lacto- N-triose II and Lacto- N-tetraose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5106-5114. [PMID: 35426313 DOI: 10.1021/acs.jafc.2c01369] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lacto-N-triose (LNT II) and lacto-N-tetraose (LNT) are human milk oligosaccharides (HMOs) with various potential functions for infants. HMO production by Escherichia coli fermentation has attracted attention in recent years. However, little is known about the cellular export of HMOs. In this study, we identified four endogenous E. coli transporter genes (setA, setB, ydeA, and mdfA), overexpression of which significantly increased the efficiency of LNT II production. The setA-enhanced strain accumulated 34.2 g/L LNT II in a 3 L bioreactor. In the production of LNT, which uses LNT II as an intermediate, disruption of setA remarkably decreased the LNT II accumulation and enhanced the titer of LNT. Furthermore, by heterologous expression of extracellular β-1,3-N-acetylglucosaminidase from Bifidobacterium bifidum, which degrades LNT II, we eliminated LNT II completely. This study shows that regulation of sugar efflux transporters in E. coli can increase the production of HMOs and decrease the amounts of undesired byproducts.
Collapse
Affiliation(s)
- Tomotoshi Sugita
- Kirin Central Research Institute, Kirin Holdings Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| | - Kento Koketsu
- Kirin Central Research Institute, Kirin Holdings Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| |
Collapse
|
28
|
Zhang P, Zhu Y, Li Z, Zhang W, Mu W. Recent Advances on Lacto- N-neotetraose, a Commercially Added Human Milk Oligosaccharide in Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4534-4547. [PMID: 35385279 DOI: 10.1021/acs.jafc.2c01101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk oligosaccharides (HMOs) act as the important prebiotics and display many unique health effects for infants. Lacto-N-neotetraose (LNnT), an abundant HMO, attracts increasing attention because of its unique beneficial effects to infants and great commercial importance. It occurs in all groups of human milk, but the concentration generally decreases gradually with the lactation period. It has superior prebiotic property for infants, and its other health effects have also been verified, including being immunomodulatory, anti-inflammatory, preventing necrotizing enterocolitis, antiadhesive antimicrobials, antiviral activity, and promoting maturation of intestinal epithelial cells. Safety evaluation and clinical trial studies suggest that LNnT is safe and well-tolerant for infants. It has been commercially added as a functional ingredient in infant formula. LNnT can be synthesized via chemical, enzymatic, or cell factory approachs, among which the metabolic engineering-based cell factory synthesis is considered to be the most practical and effective. In this article, the occurrence and physiological effects of LNnT were reviewed in detail, the safety evaluation and regulation status of LNnT were described, various approaches to LNnT synthesis were comprehensively summarized and compared, and the future perspectives of LNnT-related studies were provided.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Chen G, Wu H, Zhu Y, Wan L, Zhang W, Mu W. Glycosyltransferase from Bacteroides gallinaceum Is a Novel α-1,3-Fucosyltransferase that Can Be Used for 3-Fucosyllactose Production In Vivo by Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1934-1942. [PMID: 34989571 DOI: 10.1021/acs.jafc.1c06719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As one of the attractive fucosylated human milk oligosaccharides, the biological production of 3-fucosyllactose (3-FL) has received great attention, as it exhibits many excellent physiological functions for infants. In this work, a novel 3-FL-producing α-1,3-fucosyltransferase (α1,3-FucT) named FutM2 from Bacteroides gallinaceum was first selected from nine potential candidates in the NCBI database. Then, a highly 3-FL-producing engineered Escherichia coli strain was constructed by modular pathway enhancement including the GDL-l-fucose precursor supply by overexpressing manC, manB, gmd, and wcaG (CBGW), and the 3-FL synthesis pathway by introducing B. gallinaceum FutM2. Finally, a titer of 20.3 g L-1 and productivity of 0.40 g L-1 h-1 of 3-FL were achieved in the 3-L bioreactor by engineered E. coli (ΔlacZΔwcaJ) harboring pCDF-CBGW and pET-futM2. Our study provided a novel α1,3-FucT from B. gallinaceum that could be used for 3-FL production, presenting an efficient microbial cell factory platform to de novo synthesize 3-FL from glycerol.
Collapse
Affiliation(s)
- Geng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
30
|
Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines 2022; 10:biomedicines10020363. [PMID: 35203570 PMCID: PMC8962287 DOI: 10.3390/biomedicines10020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are glycosphingolipids which are particularly abundant in the plasma membrane of mammalian neurons. The knowledge of their presence in the human brain dates back to the end of 19th century, but their structure was determined much later, in the middle of the 1950s. From this time, neurochemical studies suggested that gangliosides, and particularly GM1 ganglioside, display neurotrophic and neuroprotective properties. The involvement of GM1 in modulating neuronal processes has been studied in detail by in vitro experiments, and the results indicated its direct role in modulating the activity of neurotrophin-dependent receptor signaling, the flux of calcium through the plasma membrane, and stabilizing the correct conformation of proteins, such as α-synuclein. Following, in vivo experiments supported the use of ganglioside drugs for the therapy of peripheral neuropathies, obtaining very positive results. However, the clinical use of gangliosides for the treatment of central neurodegeneration has not been followed due to the poor penetrability of these lipids at the central level. This, together with an ambiguous association (later denied) between ganglioside administration and Guillain-Barrè syndrome, led to the suspension of ganglioside drugs. In this critical review, we report on the evolution of research on gangliosides, on the current knowledge on the role played by gangliosides in regulating the biology of neurons, on the past and present use of ganglioside-based drugs used for therapy of peripheral neuropathies or used in human trials for central neurodegenerations, and on the therapeutic potential represented by the oligosaccharide chain of GM1 ganglioside for the treatment of neurodegenerative diseases.
Collapse
|
31
|
Hu D, Wu H, Zhu Y, Zhang W, Mu W. Engineering Escherichia coli for highly efficient production of lacto-N-triose II from N-acetylglucosamine, the monomer of chitin. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:198. [PMID: 34625117 PMCID: PMC8501739 DOI: 10.1186/s13068-021-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lacto-N-triose II (LNT II), an important backbone for the synthesis of different human milk oligosaccharides, such as lacto-N-neotetraose and lacto-N-tetraose, has recently received significant attention. The production of LNT II from renewable carbon sources has attracted worldwide attention from the perspective of sustainable development and green environmental protection. RESULTS In this study, we first constructed an engineered E. coli cell factory for producing LNT II from N-acetylglucosamine (GlcNAc) feedstock, a monomer of chitin, by introducing heterologous β-1,3-acetylglucosaminyltransferase, resulting in a LNT II titer of 0.12 g L-1. Then, lacZ (lactose hydrolysis) and nanE (GlcNAc-6-P epimerization to ManNAc-6-P) were inactivated to further strengthen the synthesis of LNT II, and the titer of LNT II was increased to 0.41 g L-1. To increase the supply of UDP-GlcNAc, a precursor of LNT II, related pathway enzymes including GlcNAc-6-P deacetylase, glucosamine synthase, and UDP-N-acetylglucosamine pyrophosphorylase, were overexpressed in combination, optimized, and modulated. Finally, a maximum titer of 15.8 g L-1 of LNT II was obtained in a 3-L bioreactor with optimal enzyme expression levels and β-lactose and GlcNAc feeding strategy. CONCLUSIONS Metabolic engineering of E. coli is an effective strategy for LNT II production from GlcNAc feedstock. The titer of LNT II could be significantly increased by modulating the gene expression strength and blocking the bypass pathway, providing a new utilization for GlcNAc to produce high value-added products.
Collapse
Affiliation(s)
- Duoduo Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
32
|
Efficient biosynthesis of lacto-N-neotetraose by a novel β-1,4-galactosyltransferase from Aggregatibacter actinomycetemcomitans NUM4039. Enzyme Microb Technol 2021; 153:109912. [PMID: 34670186 DOI: 10.1016/j.enzmictec.2021.109912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Lacto-N-neotetraose (LNnT) is a unique tetrasaccharide naturally occurring in human milk, as an important member of human milk oligosaccharides. Because of promising beneficial effects, it has been commercially added as a functional fortifier in infant formula. β-1,4-Galactosyltransferase (β-1,4-GalT) catalyzes LNnT biosynthesis from uridine 5'-diphospho-galactose (UDP-Gal) to lacto-N-triose II (LNT II). There have been only two LNnT-producing bacterial β-1,4-GalTs, including the ones from Neisseria meningitidis and Histophilus somni. In this study, a novel LNnT-producing β-1,4-GalT was identified from Aggregatibacter actinomycetemcomitans. The enzyme was easily overexpressed in E. coli in soluble form. It displayed much higher transglycosylation versus hydrolysis activity, indicating its great potential in LNnT biosynthesis. The enzyme produced 13 mM LNnT from 20 mM LNT II and 60 mM UDP-Gal, with the yield of 65 % on LNT II and very low level of UDP-Gal hydrolysis. Therefore, it could be considered as a good candidate for the practical LNnT production.
Collapse
|
33
|
Zhu Y, Luo G, Wan L, Meng J, Lee SY, Mu W. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto- N-tetraose, and lacto- N-neotetraose. Crit Rev Biotechnol 2021; 42:578-596. [PMID: 34346270 DOI: 10.1080/07388551.2021.1944973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human milk oligosaccharides (HMOs) have recently attracted ever-increasing interest because of their versatile physiological functions. In HMOs, two tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), constitute the essential components, each accounting 6% (w/w) of total HMOs. Also, they serve as core structures for fucosylation and sialylation, generating functional derivatives and elongation generating longer chains of core structures. LNT, LNnT, and their fucosylated and/or sialylated derivatives account for more than 30% (w/w) of total HMOs. For derivatization, LNT and LNnT can be modified into a series of complex fucosylated and/or sialylated HMOs by transferring fucose residues at α1,2-, α1,3-, and α1,3/4-linkage and/or sialic acid residues at α2,3- and α2,6-linkage. Such structural diversity allows these HMOs to possess great commercial value and an application potential in the food and pharmaceutical industries. In this review, we first elaborate the physiological functions of these tetrasaccharides and derivatives. Next, we extensively review recent developments in the biosynthesis of LNT, LNnT, and their derivatives in vitro and in vivo by employing advanced enzymatic reaction systems and metabolic engineering strategies. Finally, future perspectives in the synthesis of these HMOs using enzymatic and metabolic engineering approaches are presented.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
34
|
Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE. Synthesis of N-Acetyllactosamine and N-Acetyllactosamine-Based Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7501-7525. [PMID: 34152750 DOI: 10.1021/acs.jafc.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetyllactosamine (LacNAc) or more specifically β-d-galactopyranosyl-1,4-N-acetyl-d-glucosamine is a unique acyl-amino sugar and a key structural unit in human milk oligosaccharides, an antigen component of many glycoproteins, and an antiviral active component for the development of effective drugs against viruses. LacNAc is useful itself and as a basic building block for producing various bioactive oligosaccharides, notably because this synthesis may be used to add value to dairy lactose. Despite a significant amount of information in the literature on the benefits, structures, and types of different LacNAc-derived oligosaccharides, knowledge about their effective synthesis for large-scale production is still in its infancy. This work provides a comprehensive analysis of existing production strategies for LacNAc and important LacNAc-based structures, including sialylated LacNAc as well as poly- and oligo-LacNAc. We conclude that direct extraction from milk is too complex, while chemical synthesis is also impractical at an industrial scale. Microbial routes have application when multiple step reactions are needed, but the major route to large-scale biochemical production will likely lie with enzymatic routes, particularly those using β-galactosidases (for LacNAc synthesis), sialidases (for sialylated LacNAc synthesis), and β-N-acetylhexosaminidases (for oligo-LacNAc synthesis). Glycosyltransferases, especially for the biosynthesis of extended complex LacNAc structures, could also play a major role in the future. In these cases, immobilization of the enzyme can increase stability and reduce cost. Processing parameters, such as substrate concentration and purity, acceptor/donor ratio, water activity, and temperature, can affect product selectivity and yield. More work is needed to optimize these reaction parameters and in the development of robust, thermally stable enzymes to facilitate commercial production of these important bioactive substances.
Collapse
Affiliation(s)
- M Karimi Alavijeh
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
| | - S L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Lv X, Wu Y, Gong M, Deng J, Gu Y, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L, Chen J. Synthetic biology for future food: Research progress and future directions. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
36
|
Luo G, Zhu Y, Meng J, Wan L, Zhang W, Mu W. A Novel β-1,4-Galactosyltransferase from Histophilus somni Enables Efficient Biosynthesis of Lacto- N-Neotetraose via Both Enzymatic and Cell Factory Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5683-5690. [PMID: 34000807 DOI: 10.1021/acs.jafc.1c01419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human milk oligosaccharides (HMOs) attract particular attention because of their health benefits for infants. Lacto-N-neotetraose (LNnT) is one of the most abundant neutral core structures of HMOs. Bacterial β-1,4-galactosyltransferase (β-1,4-GalT) displays an irreplaceable role in the practical application of LNnT biosynthesis. In this study, a novel β-1,4-GalT from Histophilus somni was identified to efficiently synthesize LNnT from UDP-Gal and lacto-N-triose II (LNT II). The optimum pH and temperature were determined to be pH 6.0 and 30 °C, respectively. The enzyme showed both transgalactosylation and hydrolysis activity, with a specific activity of 3.7 and 6.6 U/mg, respectively. LNnT was synthesized using H. somni β-1,4-GalT via both enzymatic and cell factory approaches, and both approaches provided an LNnT ratio with the remaining LNT II at approximately 1:2 when reactions attained a balance. These findings indicated that H. somni β-1,4-GalT has a potential in biosynthesis of LNnT and derivatives in future.
Collapse
Affiliation(s)
- Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Lu M, Mosleh I, Abbaspourrad A. Engineered Microbial Routes for Human Milk Oligosaccharides Synthesis. ACS Synth Biol 2021; 10:923-938. [PMID: 33909411 DOI: 10.1021/acssynbio.1c00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human milk oligosaccharides (HMOs) are one of the important ingredients in human milk, which have attracted great interest due to their beneficial effect on the health of newborns. The large-scale production of HMOs has been researched using engineered microbial routes due to the availability, safety, and low cost of host strains. In addition, the development of molecular biology technology and metabolic engineering has promoted the effectiveness of HMOs production. According to current reports, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), and some fucosylated HMOs with complex structures have been produced via the engineered microbial route, with 2'-FL having been produced the most. However, due to the uncertainty of metabolic patterns, the selection of host strains has certain limitations. Aside from that, the expression of appropriate glycosyltransferase in microbes is key to the synthesis of different HMOs. Therefore, finding a safe and efficient glycosyltransferase has to be addressed when using engineered microbial pathways. In this review, the latest research on the production of HMOs using engineered microbial routes is reported. The selection of host strains and adapting different metabolic pathways helped researchers designing engineered microbial routes that are more conducive to HMOs production.
Collapse
Affiliation(s)
- Mengyao Lu
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| | - Imann Mosleh
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| |
Collapse
|
38
|
Zhu Y, Wan L, Meng J, Luo G, Chen G, Wu H, Zhang W, Mu W. Metabolic Engineering of Escherichia coli for Lacto- N-triose II Production with High Productivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3702-3711. [PMID: 33755468 DOI: 10.1021/acs.jafc.1c00246] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lacto-N-triose II (LNT II), a core structural unit of human milk oligosaccharides (HMOs), has attracted substantial attention for its nutraceutical potentials and applications in the production of complex HMOs. In this study, Escherichia coli was metabolically engineered to efficiently produce LNT II using glycerol as a carbon source and lactose as a substrate. The UDP-N-acetylglucosamine (UDP-GlcNAc) biosynthesis pathway was strengthened, and β-1,3-N-acetylglucosaminyltransferase (LgtA) was introduced to construct an LNT II-producing base strain. To increase the titer and yield of LNT II, combinatorial optimization of the copy number and the ribosomal binding site sequence was performed to tune the gene expression strength and translation rates of the pathway enzymes. Next, multipoint mutations were introduced to glucosamine-6-phosphatesynthase (GlmS) to relieve the feedback inhibition. Then, a series of engineered strains were constructed by blocking the futile pathways by the deletion of the relevant genes. Finally, the culture conditions were optimized. LNT II titer was improved step-by-step from 0.53 to 5.52 g/L in shake-flask cultivations. Fed-batch culture of the final engineered strain produced 46.2 g/L of LNT II, with an LNT II productivity and content of 0.77 g/(L·h) and 0.95 g/g dry cell weight, respectively.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Geng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J 2021; 38:101-117. [PMID: 33620588 PMCID: PMC7917043 DOI: 10.1007/s10719-021-09974-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named “OligoGM1”. These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson’s disease.
Collapse
|
40
|
Szigeti M, Meszaros-Matwiejuk A, Molnar-Gabor D, Guttman A. Rapid capillary gel electrophoresis analysis of human milk oligosaccharides for food additive manufacturing in-process control. Anal Bioanal Chem 2021; 413:1595-1603. [PMID: 33558961 PMCID: PMC7921066 DOI: 10.1007/s00216-020-03119-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022]
Abstract
Industrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2′-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2′- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control. ![]()
Collapse
Affiliation(s)
- Marton Szigeti
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary.,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, 8200, Hungary
| | | | | | - Andras Guttman
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary. .,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, 8200, Hungary.
| |
Collapse
|
41
|
Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power-Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2021; 60:2258-2278. [PMID: 33026132 DOI: 10.1002/anie.202004248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Fermentation as a production method for chemicals is especially attractive, as it is based on cheap renewable raw materials and often exhibits advantages in terms of costs and sustainability. The tremendous development of technology in bioscience has resulted in an exponentially increasing knowledge about biological systems and has become the main driver for innovations in the field of metabolic engineering. Progress in recombinant DNA technology, genomics, and computational methods open new, cheaper, and faster ways to metabolically engineer microorganisms. Existing biosynthetic pathways for natural products, such as vitamins, organic acids, amino acids, or secondary metabolites, can be discovered and optimized efficiently, thereby enabling competitive commercial production processes. Novel biosynthetic routes can now be designed by the rearrangement of nature's unlimited number of enzymes and metabolic pathways in microbial strains. This expands the range of chemicals accessible by biotechnology and has yielded the first commercial products, while new fermentation technologies targeting novel active ingredients, commodity chemicals, and CO2 -fixation methods are on the horizon.
Collapse
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jens Plassmeier
- Biomaterials, Conagen, Inc., 15 DeAngelo Drive, 01730, Bedford, MA, USA
| | - Matthew Blankschien
- James R. Randall Research Center, ADM, 1001 North Brush College Road, 62521, Decatur, Il, USA
| | - Anne-Catrin Letzel
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Lauralynn Kourtz
- R&D, Allied Microbiota, 1345 Ave of Americas, 10105, New York, NY, USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Walter Koch
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
42
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
43
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
44
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
45
|
Hoff B, Plassmeier J, Blankschien M, Letzel A, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Jens Plassmeier
- Biomaterials Conagen, Inc. 15 DeAngelo Drive 01730 Bedford, MA USA
| | - Matthew Blankschien
- James R. Randall Research Center ADM 1001 North Brush College Road 62521 Decatur, Il USA
| | - Anne‐Catrin Letzel
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Lauralynn Kourtz
- R&D Allied Microbiota 1345 Ave of Americas 10105 New York, NY USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Walter Koch
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| |
Collapse
|
46
|
Deng J, Lv X, Li J, Du G, Chen J, Liu L. Recent advances and challenges in microbial production of human milk oligosaccharides. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43393-020-00004-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Gajdos L, Forsyth VT, Blakeley MP, Haertlein M, Imberty A, Samain E, Devos JM. Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 2020; 31:151-158. [PMID: 32601663 PMCID: PMC7874385 DOI: 10.1093/glycob/cwaa059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
l-Fucose and l-fucose-containing polysaccharides, glycoproteins or glycolipids play an important role in a variety of biological processes. l-Fucose-containing glycoconjugates have been implicated in many diseases including cancer and rheumatoid arthritis. Interest in fucose and its derivatives is growing in cancer research, glyco-immunology, and the study of host–pathogen interactions. l-Fucose can be extracted from bacterial and algal polysaccharides or produced (bio)synthetically. While deuterated glucose and galactose are available, and are of high interest for metabolic studies and biophysical studies, deuterated fucose is not easily available. Here, we describe the production of perdeuterated l-fucose, using glyco-engineered Escherichia coli in a bioreactor with the use of a deuterium oxide-based growth medium and a deuterated carbon source. The final yield was 0.2 g L−1 of deuterated sugar, which was fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We anticipate that the perdeuterated fucose produced in this way will have numerous applications in structural biology where techniques such as NMR, solution neutron scattering and neutron crystallography are widely used. In the case of neutron macromolecular crystallography, the availability of perdeuterated fucose can be exploited in identifying the details of its interaction with protein receptors and notably the hydrogen bonding network around the carbohydrate binding site.
Collapse
Affiliation(s)
- Lukas Gajdos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Eric Samain
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
48
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
49
|
Dong X, Li N, Liu Z, Lv X, Shen Y, Li J, Du G, Wang M, Liu L. CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto- N-neotetraose Production in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2477-2484. [PMID: 32013418 DOI: 10.1021/acs.jafc.9b07642] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lacto-N-neotetraose (LNnT), one of the oligosaccharides in human milk, has many beneficial effects on infant health. In a recent work, we have constructed a recombinant Bacillus subtilis strain for the production of LNnT. Here, we further improved LNnT production with a xylose-induced clustered regularly interspaced short palindromic repeats interference system. In particular, the expressions of pfkA and pyk genes in the Embden-Meyerhof-Parnas pathway module, zwf gene in the pentose phosphate pathway module, and mnaA gene in the teichoic acid synthesis module were downregulated. The LNnT titer was increased from 1.32 to 1.55 g/L. Furthermore, to improve the conversion efficiency of lacto-N-triose II to LNnT, we knocked out tuaD gene in branch pathway and improved the expression of lgtB gene, resulting in the further increase of LNnT titer to 2.01 g/L. Finally, the addition time and amount of inducer xylose were optimized, and LNnT titer reached 2.30 g/L in shake flask and 5.41 g/L in 3 L bioreactor.
Collapse
Affiliation(s)
- Xiaomin Dong
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute , Bright Dairy & Food Company, Ltd. , Shanghai 200436 , China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute , Bright Dairy & Food Company, Ltd. , Shanghai 200436 , China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Yu Shen
- School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Miao Wang
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
50
|
A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat Commun 2019; 10:5404. [PMID: 31776339 PMCID: PMC6881289 DOI: 10.1038/s41467-019-12024-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022] Open
Abstract
Glycosylation plays important roles in cellular function and endows protein therapeutics with beneficial properties. However, constructing biosynthetic pathways to study and engineer precise glycan structures on proteins remains a bottleneck. Here, we report a modular, versatile cell-free platform for glycosylation pathway assembly by rapid in vitro mixing and expression (GlycoPRIME). In GlycoPRIME, glycosylation pathways are assembled by mixing-and-matching cell-free synthesized glycosyltransferases that can elaborate a glucose primer installed onto protein targets by an N-glycosyltransferase. We demonstrate GlycoPRIME by constructing 37 putative protein glycosylation pathways, creating 23 unique glycan motifs, 18 of which have not yet been synthesized on proteins. We use selected pathways to synthesize a protein vaccine candidate with an α-galactose adjuvant motif in a one-pot cell-free system and human antibody constant regions with minimal sialic acid motifs in glycoengineered Escherichia coli. We anticipate that these methods and pathways will facilitate glycoscience and make possible new glycoengineering applications. Constructing biosynthetic pathways to study and engineer glycoprotein structures is difficult. Here, the authors use GlycoPRIME, a cell-free workflow for mixing-and-matching glycosylation enzymes, to evaluate 37 putative glycosylation pathways and discover routes to 18 new glycoprotein structures
Collapse
|