1
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
2
|
Geh EN, Swertfeger DK, Sexmith H, Heink A, Tarapore P, Melchior JT, Davidson WS, Shah AS. A novel assay to measure low-density lipoproteins binding to proteoglycans. PLoS One 2024; 19:e0291632. [PMID: 38295021 PMCID: PMC10830033 DOI: 10.1371/journal.pone.0291632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/04/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The binding of low-density lipoprotein (LDL) to proteoglycans (PGs) in the extracellular matrix (ECM) of the arterial intima is a key initial step in the development of atherosclerosis. Although many techniques have been developed to assess this binding, most of the methods are labor-intensive and technically challenging to standardize across research laboratories. Thus, sensitive, and reproducible assay to detect LDL binding to PGs is needed to screen clinical populations for atherosclerosis risk. OBJECTIVES The aim of this study was to develop a quantitative, and reproducible assay to evaluate the affinity of LDL towards PGs and to replicate previously published results on LDL-PG binding. METHODS Immunofluorescence microscopy was performed to visualize the binding of LDL to PGs using mouse vascular smooth muscle (MOVAS) cells. An in-cell ELISA (ICE) was also developed and optimized to quantitatively measure LDL-PG binding using fixed MOVAS cells cultured in a 96-well format. RESULTS We used the ICE assay to show that, despite equal APOB concentrations, LDL isolated from adults with cardiovascular disease bound to PG to a greater extent than LDL isolated from adults without cardiovascular disease (p<0.05). CONCLUSION We have developed an LDL-PG binding assay that is capable of detecting differences in PG binding affinities despite equal APOB concentrations. Future work will focus on candidate apolipoproteins that enhance or diminish this interaction.
Collapse
Affiliation(s)
- Esmond N. Geh
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Debi K. Swertfeger
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hannah Sexmith
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anna Heink
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pheruza Tarapore
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John T. Melchior
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
3
|
Noborn F, Nilsson J, Sihlbom C, Nikpour M, Kjellén L, Larson G. Mapping the Human Chondroitin Sulfate Glycoproteome Reveals an Unexpected Correlation Between Glycan Sulfation and Attachment Site Characteristics. Mol Cell Proteomics 2023; 22:100617. [PMID: 37453717 PMCID: PMC10424144 DOI: 10.1016/j.mcpro.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) control key events in human health and disease and are composed of chondroitin sulfate (CS) polysaccharide(s) attached to different core proteins. Detailed information on the biological effects of site-specific CS structures is scarce as the polysaccharides are typically released from their core proteins prior to analysis. Here we present a novel glycoproteomic approach for site-specific sequencing of CS modifications from human urine. Software-assisted and manual analysis revealed that certain core proteins carried CS with abundant sulfate modifications, while others carried CS with lower levels of sulfation. Inspection of the amino acid sequences surrounding the attachment sites indicated that the acidity of the attachment site motifs increased the levels of CS sulfation, and statistical analysis confirmed this relationship. However, not only the acidity but also the sequence and characteristics of specific amino acids in the proximity of the serine glycosylation site correlated with the degree of sulfation. These results demonstrate attachment site-specific characteristics of CS polysaccharides of CSPGs in human urine and indicate that this novel method may assist in elucidating the biosynthesis and functional roles of CSPGs in cellular physiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
4
|
Noborn F, Sterky FH. Role of neurexin heparan sulfate in the molecular assembly of synapses - expanding the neurexin code? FEBS J 2023; 290:252-265. [PMID: 34699130 DOI: 10.1111/febs.16251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Takahashi I. Importance of Heparan Sulfate Proteoglycans in Pancreatic Islets and β-Cells. Int J Mol Sci 2022; 23:12082. [PMID: 36292936 PMCID: PMC9603760 DOI: 10.3390/ijms232012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.
Collapse
Affiliation(s)
- Iwao Takahashi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Morioka 028-3694, Iwate, Japan
| |
Collapse
|
6
|
Ramarajan MG, Saraswat M, Budhraja R, Garapati K, Raymond K, Pandey A. Mass spectrometric analysis of chondroitin sulfate-linked peptides. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:187-203. [PMID: 36213313 PMCID: PMC9526814 DOI: 10.1007/s42485-022-00092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components composed of linear glycosaminoglycan (GAG) side chains attached to a core protein. CSPGs play a vital role in neurodevelopment, signal transduction, cellular proliferation and differentiation and tumor metastasis through interaction with growth factors and signaling proteins. These pleiotropic functions of proteoglycans are regulated spatiotemporally by the GAG chains attached to the core protein. There are over 70 chondroitin sulfate-linked proteoglycans reported in cells, cerebrospinal fluid and urine. A core glycan linker of 3-6 monosaccharides attached to specific serine residues can be extended by 20-200 disaccharide repeating units making intact CSPGs very large and impractical to analyze. The current paradigm of CSPG analysis involves digesting the GAG chains by chondroitinase enzymes and analyzing either the protein part, the disaccharide repeats, or both by mass spectrometry. This method, however, provides no information about the site of attachment or the composition of linker oligosaccharides and the degree of sulfation and/or phosphorylation. Further, the analysis by mass spectrometry and subsequent identification of novel CSPGs is hampered by technical challenges in their isolation, less optimal ionization and data analysis. Unknown identity of the linker oligosaccharide also makes it more difficult to identify the glycan composition using database searching approaches. Following chondroitinase digestion of long GAG chains linked to tryptic peptides, we identified intact GAG-linked peptides in clinically relevant samples including plasma, urine and dermal fibroblasts. These intact glycopeptides including their core linker glycans were identified by mass spectrometry using optimized stepped higher energy collision dissociation and electron-transfer/higher energy collision dissociation combined with hybrid database search/de novo glycan composition search. We identified 25 CSPGs including three novel CSPGs that have not been described earlier. Our findings demonstrate the utility of combining enrichment strategies and optimized high-resolution mass spectrometry analysis including alternative fragmentation methods for the characterization of CSPGs. Supplementary Information The online version contains supplementary material available at 10.1007/s42485-022-00092-3.
Collapse
Affiliation(s)
- Madan Gopal Ramarajan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560 029 India
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560 029 India
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
7
|
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 2022; 111:289-306. [PMID: 35840015 DOI: 10.1016/j.matbio.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Sundsvall County Hospital, Sweden.
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Critcher M, Huang ML. Excavating proteoglycan structure-function relationships: Modern approaches to capture the interactions of ancient biomolecules. Am J Physiol Cell Physiol 2022; 323:C415-C422. [PMID: 35759439 PMCID: PMC9359657 DOI: 10.1152/ajpcell.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans are now well regarded as key facilitators of cell biology. While a majority of their interactions and functions are attributed to the decorating glycosaminoglycan chains, there is a growing appreciation for the roles of the proteoglycan core protein and for considering proteoglycans as replete protein-glycan conjugates. This appreciation, seeded by early work in proteoglycan biology, is now being advanced and exalted by modern approaches in chemical glycobiology. In this review, we discuss up-and-coming methods to unearth the fine-scale architecture of proteoglycans that modulate their functions and interactions. Crucial to these efforts is the production of chemically defined materials, including semi-synthetic proteoglycans and the in situ capture of interacting proteins. Together, the integration of chemical biology approaches promises to expedite the dissection of the structural heterogeneity of proteoglycans and deliver refined insight into their functions.
Collapse
Affiliation(s)
- Meg Critcher
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA.,Department of Chemistry, Scripps Research, La Jolla, CA
| |
Collapse
|
9
|
Noborn F, Nikpour M, Persson A, Nilsson J, Larson G. Expanding the Chondroitin Sulfate Glycoproteome - But How Far? Front Cell Dev Biol 2021; 9:695970. [PMID: 34490248 PMCID: PMC8418075 DOI: 10.3389/fcell.2021.695970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are found at cell surfaces and in connective tissues, where they interact with a multitude of proteins involved in various pathophysiological processes. From a methodological perspective, the identification of CSPGs is challenging, as the identification requires the combined sequencing of specific core proteins, together with the characterization of the CS polysaccharide modification(s). According to the current notion of CSPGs, they are often considered in relation to a functional role in which a given proteoglycan regulates a specific function in cellular physiology. Recent advances in glycoproteomic methods have, however, enabled the identification of numerous novel chondroitin sulfate core proteins, and their glycosaminoglycan attachment sites, in humans and in various animal models. In addition, these methods have revealed unexpected structural complexity even in the linkage regions. These findings indicate that the number and structural complexity of CSPGs are much greater than previously perceived. In light of these findings, the prospect of finding additional CSPGs, using improved methods for structural and functional characterizations, and studying novel sample matrices in humans and in animal models is discussed. Further, as many of the novel CSPGs are found in low abundance and with not yet assigned functions, these findings may challenge the traditional notion of defining proteoglycans. Therefore, the concept of proteoglycans is considered, discussing whether "a proteoglycan" should be defined mainly on the basis of an assigned function or on the structural evidence of its existence.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|