1
|
Tang B, Wang K, Ren Q, Zhou J, Xu Y, Liu L, Yin B, Zhang Y, Huang Q, Lv R, Luo Z, Zhao H, Shen L. GALNT14-mediated O-glycosylation drives lung adenocarcinoma progression by reducing endogenous reactive oxygen species generation. Cell Signal 2024; 124:111477. [PMID: 39426495 DOI: 10.1016/j.cellsig.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Aberrant glycosylation, resulting from dysregulated expression of glycosyltransferases, is a prevalent feature of cancer cells. N-acetylgalactosaminyltransferase-14 (GALNT14) serves as a pivotal enzyme responsible for initiating O-GalNAcylation. It remains unclear whether and how GALNT14 affects lung adenocarcinoma (LUAD). Here, GALNT14 expression in LUAD was analyzed by searching public databases and verified by examining clinical samples. Bioinformatics, LC-MS/MS, RNA-seq, and RIP-seq analyses were used to uncover the mechanism underlying GALNT14. We observed that GALNT14 was frequently overexpressed in LUAD tissues. High GALNT14 expression was positively associated with advanced TNM stage, larger tumor size, and unfavorable prognosis. Functionally, GALNT14 facilitated LUAD cell proliferation, migration, and invasion in vitro and accelerated tumor growth in vivo. Mechanistically, GALNT14 reduced the accumulation of endogenous reactive oxygen species (ROS) to exert its oncogenic function via O-glycosylating hnRNPUL1 to upregulate AKR1C2 expression. Meanwhile, GALNT14 expression was directly modulated by miR-125a.These findings indicated that GALNT14-mediated O-GalNAcylation could drive LUAD progression via eliminating ROS and might be a valuable therapeutic target.
Collapse
Affiliation(s)
- Bingbing Tang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Kelong Wang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China
| | - Qiulei Ren
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Junshuo Zhou
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuewen Xu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Liaoyuan Liu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Bin Yin
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yaling Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Qian Huang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ruiqi Lv
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| | - Hongyan Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| |
Collapse
|
2
|
Izzati FN, Choksi H, Giuliana P, Abd-Rabbo D, Elsaesser H, Blundell A, Affe V, Kannen V, Jame-Chenarboo Z, Schmidt E, Kuypers M, Avila DB, Chiu ESY, Badmaev D, Cui H, Matthews J, Mallevaey T, Macauley MS, Brooks DG, Edgar LJ. A Unified Atlas of T cell Glycophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609521. [PMID: 39229125 PMCID: PMC11370581 DOI: 10.1101/2024.08.24.609521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Glycans are emerging as important regulators of T cell function but remain poorly characterized across the functionally distinct populations that exist in vivo . Here, we couple single-cell analysis technologies with soluble lectins and chemical probes to interrogate glycosylation patterns on major T cell populations across multiple mouse and human tissues. Our analysis focused on terminal glycan epitopes with immunomodulatory functions, including sialoglycan ligands for Siglecs. We demonstrate that glycosylation patterns are diverse across the resting murine T cell repertoire and dynamically remodelled in response to antigen-specific stimulation. Surprisingly, we find that human T cell populations do not share the same glycoprofiles or glycan remodelling dynamics as their murine counterparts. We show that these differences can be explained by divergent regulation of glycan biosynthesis pathways between the species. These results highlight fundamental glycophysiological differences between mouse and human T cells and reveal features that are critical to consider for glycan-targeted therapies.
Collapse
|
3
|
Cappelli E, Ravera S, Bertola N, Grilli F, Squillario M, Regis S, Degan P. Advanced Analysis and Validation of a microRNA Signature for Fanconi Anemia. Genes (Basel) 2024; 15:820. [PMID: 39062599 PMCID: PMC11276059 DOI: 10.3390/genes15070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Some years ago, we reported the generation of a Fanconi anemia (FA) microRNA signature. This study aims to develop an analytical strategy to select a smaller and more reliable set of molecules that could be tested for potential benefits for the FA phenotype, elucidate its biochemical and molecular mechanisms, address experimental activity, and evaluate its possible impact on FA therapy. In silico analyses of the data obtained in the original study were thoroughly processed and anenrichment analysis was employed to identify the classes of genes that are over-represented in the FA-miRNA population under study. Primary bone marrow mononuclear cells (MNCs) from sixFA patients and sixhealthy donors as control samples were employed in the study. RNAs containing the small RNA fractions were reverse-transcribed and real-time PCR was performed in triplicate using the specific primers. Experiments were performed in triplicate.The in-silico analysis reported six miRNAs as likely contributors to the complex pathological spectrum of FA. Among these, three miRNAs were validated by real-time PCR. Primary bone marrow mononuclear cells (MNCs) reported a significant reduction in the expression level of miRNA-1246 and miRNA-206 in the FA samples in comparison to controls.This study highlights several biochemical pathways as culprits in the phenotypic manifestations and the pathophysiological mechanisms acting in FA. A relatively low number of miRNAs appear involved in all these different phenotypes, demonstrating the extreme plasticity of the gene expression modulation. This study further highlights miR-206 as a pivotal player in regulatory functions and signaling in the bone marrow mesenchymal stem cell (BMSC) process in FA. Due to this evidence, the activity of miR-206 in FA deserves specific experimental scrutiny. The results, here presented, might be relevant in the management of FA.
Collapse
Affiliation(s)
- Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy;
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, L. go R. Benzi 10, 16132 Genoa, Italy;
| | - Federica Grilli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy;
| | | | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy;
| | - Paolo Degan
- Mutagenesi e Prevenzione Oncologica Unit—IRCCS Ospedale Policlinico San Martino, L. go R. Benzi 10, 16132 Genoa, Italy;
| |
Collapse
|
4
|
Liu Y, Sun Y, Xiao M, Li S, Shi S. Comprehensive pan-cancer analysis reveals the versatile role of GALNT7 in epigenetic alterations and immune modulation in cancer. Heliyon 2024; 10:e31515. [PMID: 38845941 PMCID: PMC11153094 DOI: 10.1016/j.heliyon.2024.e31515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Cancer is a leading cause of mortality globally, characterized by intricate molecular alterations, including epigenetic changes such as glycosylation. This study presents a comprehensive pan-cancer analysis of Polypeptide N-Acetylgalactosaminyltransferase 7 (GALNT7), an enzyme involved in mucin-type O-linked protein glycosylation. GALNT7 has previously been linked to various cancers, but a unified analysis across cancer types is lacking. Leveraging data from TCGA, GTEx, and other sources, we scrutinized GALNT7's expression, prognostic relevance, links to immune-related genes, immune cell infiltration, and its involvement in tumor genetic heterogeneity across 33 cancer types. GALNT7 exhibited diverse expression patterns across cancer types, showcasing its potential as an oncogenic factor, with its expression levels linked to both positive and negative prognoses, highlighting the context-specific nature of its role in cancer progression. We delved into the intricate interplay between GALNT7 and immune genes, unveiling positive and negative correlations, underscoring complex interactions in the tumor microenvironment. GALNT7 was found to impact immune cell infiltration, which could have implications for treatment strategies. Additionally, GALNT7 displayed associations with genetic tumor aspects, encompassing genomic instability, DNA repair issues, and genetic mutations, hinting at its pivotal role in shaping the genetic landscape of diverse cancers. Enrichment analysis uncovered potential functions of GALNT7 beyond glycosylation, such as its participation in signaling pathways and its association with various diseases, notably cancer. This comprehensive analysis elucidates the multifaceted role of GALNT7 in cancer biology, underlining its potential as a therapeutic target and biomarker across various cancer types. These findings provide valuable insights for future research and the development of personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Yan Liu
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Yue Sun
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Meixia Xiao
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Shuang Li
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Shengming Shi
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| |
Collapse
|
5
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT14 in association with GDF-15 promotes stemness and drug resistance through β-catenin signalling pathway in breast cancer. Mol Biol Rep 2024; 51:691. [PMID: 38796671 DOI: 10.1007/s11033-024-09645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of β-catenin by western blot were determined. RESULTS A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and β-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
6
|
Dong X, Leng Y, Tian T, Hu Q, Chen S, Liu Y, Shen L. GALNT2, an O-glycosylating enzyme, is a critical regulator of radioresistance of non-small cell lung cancer: evidence from an integrated multi-omics analysis. Cell Biol Toxicol 2023; 39:3159-3174. [PMID: 37597090 DOI: 10.1007/s10565-023-09825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Radioresistance is the primary reason for radiotherapy failure in non-small cell lung cancer (NSCLC) patients. Glycosylation-related alterations are critically involved in tumor radioresistance. However, the relationship between glycosylation and NSCLC radioresistance is unclear. Here, we generated radioresistant NSCLC cell models by using fractionated irradiation. The aberrant glycosylation involved in NSCLC-related radioresistance was elucidated by transcriptomic, proteomic, and glycomic analyses. We conducted in vitro and in vivo investigations for determining the biological functions of glycosylation. Additionally, its downstream pathways and upstream regulators were inferred and verified. We demonstrated that mucin-type O-glycosylation and the O-glycosylating enzyme GALNT2 were highly expressed in radioresistant NSCLC cells. GALNT2 was found to be elevated in NSCLC tissues; this elevated level showed a remarkable association with response to radiotherapy treatment as well as overall survival. Functional experiments showed that GALNT2 knockdown improved NSCLC radiosensitivity via inducing apoptosis. By using a lectin pull-down system, we revealed that mucin-type O-glycans on IGF1R were modified by GALNT2 and that IGF1R could affect the expression of apoptosis-related genes. Moreover, GALNT2 knockdown-mediated in vitro radiosensitization was enhanced by IGF1R inhibition. According to a miRNA array analysis and a luciferase reporter assay, miR-30a-5p negatively modulated GALNT2. In summary, our findings established GALNT2 as a key contributor to the radioresistance of NSCLC. Therefore, targeting GALNT2 may be a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yahui Leng
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Tian Tian
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qing Hu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shuang Chen
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yufeng Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
7
|
Yu S, Feng W, Zeng J, Zhou S, Peng Y, Zhang P. GALNT12 promotes fibrosarcoma growth by accelerating YAP1 nuclear localization. Oncol Lett 2023; 26:543. [PMID: 38020290 PMCID: PMC10660188 DOI: 10.3892/ol.2023.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Fibrosarcoma is a highly malignant type of soft tissue sarcoma that currently lacks effective treatment options. Polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) belongs to the uridine diphosphate N-acetylgalactosamine gene family, which is involved in numerous biological processes of diseases, such as tumor progression. Its upregulated expression is closely associated with the development of colorectal cancer. However, research on the role of GALNT12 in fibrosarcoma is currently limited. The present study aimed to assess the expression and biological function of GALNT12 in fibrosarcoma. Patient data and tissue samples were collected and public datasets were obtained from the Gene Expression Omnibus (GSE24369 and GSE21124). Immunofluorescence assays were performed to observe the cellular localization of GALNT12. GALNT12 expression was measured using reverse transcription-quantitative PCR, western blotting and immunohistochemistry. Small interfering RNAs were constructed to knock down GALNT12 expression in HT-1080 cells. Cell Counting Kit-8 and EdU assays were used to assess fibrosarcoma cell proliferation. Wound healing and Transwell assays were used to detect migration. Gene set enrichment analysis was performed to identify key pathways. Paired and unpaired Student's t-test, Fisher's exact test and one-way ANOVA (followed by Tukey's Honest Significant Difference test) were used to analyze the data. It was demonstrated that GALNT12 expression was upregulated in both fibrosarcoma cell lines and tissue samples and predicted poor patient prognosis. In vitro experiments demonstrated that high GALNT12 expression levels significantly increased HT-1080 cell proliferation and migration. Furthermore, it was demonstrated that high GALNT12 expression levels were closely associated with the yes1 associated transcriptional regulator (YAP1) signaling pathway. Knockdown of GALNT12 inhibited YAP1 nuclear translocation, which affected activation of key downstream genes including AMOTL2, BIRC5 and CYR61. Therefore, the present study demonstrated that GALNT12 promoted fibrosarcoma progression. GALNT12 could be a potential biomarker for this disease and may potentially provide new ideas for targeted therapy of fibrosarcoma in the future.
Collapse
Affiliation(s)
- Site Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yinghua Peng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Ballard CJ, Paserba MR, Paul Daniel EJ, Hurtado-Guerrero R, Gerken TA. Polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) isozyme surface charge governs charge substrate preferences to modulate mucin type O-glycosylation. Glycobiology 2023; 33:817-836. [PMID: 37555669 PMCID: PMC10629720 DOI: 10.1093/glycob/cwad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
A large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) initiate mucin type O-glycosylation transferring α-GalNAc from a UDP-GalNAc donor to the hydroxyl groups of Ser and Thr residues of peptides and proteins, thereby defining sites of O-glycosylation. Mutations and differential expression of several GalNAc-Ts are associated with many disease states including cancers. The mechanisms by which these isozymes choose their targets and their roles in disease are not fully understood. We previously showed that the GalNAc-Ts possess common and unique specificities for acceptor type, peptide sequence and prior neighboring, and/or remote substrate GalNAc glycosylation. In the present study, the role of flanking charged residues was investigated using a library of charged peptide substrates containing the central -YAVTPGP- acceptor sequence. Eleven human and one bird GalNAc-T were initially characterized revealing a range of preferences for net positive, net negative, or unique combinations of flanking N- and/or C-terminal charge, correlating to each isozyme's different electrostatic surface potential. It was further found that isoforms with high sequence identity (>70%) within a subfamily can possess vastly different charge specificities. Enzyme kinetics, activities obtained at elevated ionic strength, and molecular dynamics simulations confirm that the GalNAc-Ts differently recognize substrate charge outside the common +/-3 residue binding site. These electrostatic interactions impact how charged peptide substrates bind/orient on the transferase surface, thus modulating their activities. In summary, we show the GalNAc-Ts utilize more extended surfaces than initially thought for binding substrates based on electrostatic, and likely other hydrophobic/hydrophilic interactions, furthering our understanding of how these transferases select their target.
Collapse
Affiliation(s)
- Collin J Ballard
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Miya R Paserba
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Ramón Hurtado-Guerrero
- Department of Biomedical Engineering, The Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza 50018, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- Fundación ARAID, Zaragoza 50018, Spain
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Bu R, Siraj AK, Azam S, Iqbal K, Qadri Z, Al-Rasheed M, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. Whole Exome-Wide Association Identifies Rare Variants in GALNT9 Associated with Middle Eastern Papillary Thyroid Carcinoma Risk. Cancers (Basel) 2023; 15:4235. [PMID: 37686511 PMCID: PMC10486701 DOI: 10.3390/cancers15174235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the commonest thyroid cancer. The majority of inherited causes of PTC remain elusive. However, understanding the genetic underpinnings and origins remains a challenging endeavor. An exome-wide association study was performed to identify rare germline variants in coding regions associated with PTC risk in the Middle Eastern population. By analyzing exome-sequencing data from 249 PTC patients (cases) and 1395 individuals without any known cancer (controls), GALNT9 emerged as being strongly associated with rare inactivating variants (RIVs) (4/249 cases vs. 1/1395 controls, OR = 22.75, p = 5.09 × 10-5). Furthermore, three genes, TRIM40, ARHGAP23, and SOX4, were enriched for rare damaging variants (RDVs) at the exome-wide threshold (p < 2.5 × 10-6). An additional seven genes (VARS1, ZBED9, PRRC2A, VWA7, TRIM31, TRIM40, and COL8A2) were associated with a Middle Eastern PTC risk based on the sequence kernel association test (SKAT). This study underscores the potential of GALNT9 and other implicated genes in PTC predisposition, illuminating the need for large collaborations and innovative approaches to understand the genetic heterogeneity of PTC predisposition.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (R.B.); (A.K.S.); (S.A.); (K.I.); (Z.Q.); (M.A.-R.)
| | - Abdul K. Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (R.B.); (A.K.S.); (S.A.); (K.I.); (Z.Q.); (M.A.-R.)
| | - Saud Azam
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (R.B.); (A.K.S.); (S.A.); (K.I.); (Z.Q.); (M.A.-R.)
| | - Kaleem Iqbal
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (R.B.); (A.K.S.); (S.A.); (K.I.); (Z.Q.); (M.A.-R.)
| | - Zeeshan Qadri
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (R.B.); (A.K.S.); (S.A.); (K.I.); (Z.Q.); (M.A.-R.)
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (R.B.); (A.K.S.); (S.A.); (K.I.); (Z.Q.); (M.A.-R.)
| | - Saif S. Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (R.B.); (A.K.S.); (S.A.); (K.I.); (Z.Q.); (M.A.-R.)
| |
Collapse
|
10
|
Kudelka MR, Gu W, Matsumoto Y, Ju T, Barnes II RH, Kardish RJ, Heimburg-Molinaro J, Lehoux S, Zeng J, Cohen C, Robinson BS, Shah KS, Chaikof EL, Stowell SR, Cummings RD. Targeting altered glycosylation in secreted tumor glycoproteins for broad cancer detection. Glycobiology 2023; 33:567-578. [PMID: 37216646 PMCID: PMC10426321 DOI: 10.1093/glycob/cwad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
There is an urgent need to develop new tumor biomarkers for early cancer detection, but the variability of tumor-derived antigens has been a limitation. Here we demonstrate a novel anti-Tn antibody microarray platform to detect Tn+ glycoproteins, a near universal antigen in carcinoma-derived glycoproteins, for broad detection of cancer. The platform uses a specific recombinant IgG1 to the Tn antigen (CD175) as a capture reagent and a recombinant IgM to the Tn antigen as a detecting reagent. These reagents were validated by immunohistochemistry in recognizing the Tn antigen using hundreds of human tumor specimens. Using this approach, we could detect Tn+ glycoproteins at subnanogram levels using cell lines and culture media, serum, and stool samples from mice engineered to express the Tn antigen in intestinal epithelial cells. The development of a general cancer detection platform using recombinant antibodies for detection of altered tumor glycoproteins expressing a unique antigen could have a significant impact on cancer detection and monitoring.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30033, United States
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Wei Gu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30033, United States
| | - Richard H Barnes II
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Robert J Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Cynthia Cohen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30033, United States
| | - Brian S Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30033, United States
| | - Kinjal S Shah
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30033, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30033, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
11
|
Fonseca LMD, Diniz-Lima I, da Costa Santos MAR, Franklim TN, da Costa KM, Santos ACD, Morrot A, Decote-Ricardo D, Valente RDC, Freire-de-Lima CG, Dos Reis JS, Freire-de-Lima L. Bittersweet Sugars: How Unusual Glycan Structures May Connect Epithelial-to-Mesenchymal Transition and Multidrug Resistance in Cancer. MEDICINES (BASEL, SWITZERLAND) 2023; 10:36. [PMID: 37367731 DOI: 10.3390/medicines10060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells are characterized by metabolic reprogramming, which enables their survival in of-ten inhospitable conditions. A very well-documented example that has gained attraction in re-cent years and is already considered a hallmark of transformed cells is the reprogramming of carbohydrate metabolism. Such a feature, in association with the differential expression of en-zymes involved in the biosynthesis of glycoconjugates, generically known as glycosyltransfer-ases, contributes to the expression of structurally atypical glycans when compared to those ex-pressed in healthy tissues. The latest studies have demonstrated that glycophenotypic alterations are capable of modulating multifactorial events essential for the development and/or progres-sion of the disease. Herein, we will address the importance of glycobiology in modern medi-cine, focusing on the ability of unusual/truncated O-linked glycans to modulate two complex and essential phenomena for cancer progression: the acquisition of the multidrug resistance (MDR) phenotype and the activation of molecular pathways associated with the epithelial-mesenchymal transition (EMT) process, an event deeply linked with cancer metastasis.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Tatiany Nunes Franklim
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ariely Costa Dos Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, Fiocruz, Laboratório de Imunoparasitologia, Rio de Janeiro 21040-360, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Rio de Janeiro 25250-470, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
12
|
Yoshimoto M, Sadamori K, Tokumura K, Tanaka Y, Fukasawa K, Hinoi E. Bioinformatic analysis reveals potential relationship between chondrocyte senescence and protein glycosylation in osteoarthritis pathogenesis. Front Endocrinol (Lausanne) 2023; 14:1153689. [PMID: 37265706 PMCID: PMC10229820 DOI: 10.3389/fendo.2023.1153689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative and progressive joint disease. Cellular senescence is an irreversible cell cycle arrest progressive with age, while protein glycosylation is the most abundant post-translational modification, regulating various cellular and biological pathways. The implication of either chondrocyte senescence or protein glycosylation in the OA pathogenesis has been extensively and individually studied. In this study, we aimed to investigate the possible relationship between chondrocyte senescence and protein glycosylation on the pathogenesis of OA using single-cell RNA sequencing datasets of clinical OA specimens deposited in the Gene Expression Omnibus database with a different cohort. We demonstrated that both cellular senescence signal and protein glycosylation pathways in chondrocytes are validly associated with OA pathogenesis. In addition, the cellular senescence signal is well-connected to the O-linked glycosylation pathway in OA chondrocyte and vice-versa. The expression levels of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family, which is essential for the biosynthesis of O-Glycans at the early stage, are highly upregulated in OA chondrocytes. Moreover, the expression levels of the GALNT family are prominently associated with chondrocyte senescence as well as pathological features of OA. Collectively, these findings uncover a crucial relationship between chondrocyte senescence and O-linked glycosylation on the OA pathophysiology, thereby revealing a potential target for OA.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Koki Sadamori
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Tanaka
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Division of Innovative Modality Development, Gifu University, Gifu, Japan
| |
Collapse
|
13
|
Gonzalez-Rodriguez E, Zol-Hanlon M, Bineva-Todd G, Marchesi A, Skehel M, Mahoney KE, Roustan C, Borg A, Di Vagno L, Kjær S, Wrobel AG, Benton DJ, Nawrath P, Flitsch SL, Joshi D, González-Ramírez A, Wilkinson KA, Wilkinson RJ, Wall EC, Hurtado-Guerrero R, Malaker SA, Schumann B. O-Linked Sialoglycans Modulate the Proteolysis of SARS-CoV-2 Spike and Likely Contribute to the Mutational Trajectory in Variants of Concern. ACS CENTRAL SCIENCE 2023; 9:393-404. [PMID: 36968546 PMCID: PMC10037455 DOI: 10.1021/acscentsci.2c01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 06/18/2023]
Abstract
The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.
Collapse
Affiliation(s)
- Edgar Gonzalez-Rodriguez
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mia Zol-Hanlon
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Signalling
and Structural Biology Lab, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
| | - Andrea Marchesi
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mark Skehel
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Keira E. Mahoney
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Chloë Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Annabel Borg
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Lucia Di Vagno
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Svend Kjær
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Antoni G. Wrobel
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Donald J. Benton
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Philipp Nawrath
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Sabine L. Flitsch
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Dhira Joshi
- Chemical
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | | | - Katalin A. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Robert J. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
- Department
of Infectious Diseases, Imperial College
London, W12 0NN London, United Kingdom
- Institute
of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Emma C. Wall
- The Francis
Crick Institute, NW1 1AT London, United Kingdom
- University
College London Hospitals (UCLH) Biomedical Research Centre, W1T 7DN London, United Kingdom
| | - Ramón Hurtado-Guerrero
- Institute
of Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Fundación
ARAID, 50018 Zaragoza, Spain
| | - Stacy A. Malaker
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Benjamin Schumann
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| |
Collapse
|
14
|
Scott E, Hodgson K, Calle B, Turner H, Cheung K, Bermudez A, Marques FJG, Pye H, Yo EC, Islam K, Oo HZ, McClurg UL, Wilson L, Thomas H, Frame FM, Orozco-Moreno M, Bastian K, Arredondo HM, Roustan C, Gray MA, Kelly L, Tolson A, Mellor E, Hysenaj G, Goode EA, Garnham R, Duxfield A, Heavey S, Stopka-Farooqui U, Haider A, Freeman A, Singh S, Johnston EW, Punwani S, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Bogdan D, Westaby D, Fowler G, Flohr P, Yuan W, Sharp A, de Bono J, Maitland NJ, Wisnovsky S, Bertozzi CR, Heer R, Guerrero RH, Daugaard M, Leivo J, Whitaker H, Pitteri S, Wang N, Elliott DJ, Schumann B, Munkley J. Upregulation of GALNT7 in prostate cancer modifies O-glycosylation and promotes tumour growth. Oncogene 2023; 42:926-937. [PMID: 36725887 PMCID: PMC10020086 DOI: 10.1038/s41388-023-02604-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prostate cancer is the most common cancer in men and it is estimated that over 350,000 men worldwide die of prostate cancer every year. There remains an unmet clinical need to improve how clinically significant prostate cancer is diagnosed and develop new treatments for advanced disease. Aberrant glycosylation is a hallmark of cancer implicated in tumour growth, metastasis, and immune evasion. One of the key drivers of aberrant glycosylation is the dysregulated expression of glycosylation enzymes within the cancer cell. Here, we demonstrate using multiple independent clinical cohorts that the glycosyltransferase enzyme GALNT7 is upregulated in prostate cancer tissue. We show GALNT7 can identify men with prostate cancer, using urine and blood samples, with improved diagnostic accuracy than serum PSA alone. We also show that GALNT7 levels remain high in progression to castrate-resistant disease, and using in vitro and in vivo models, reveal that GALNT7 promotes prostate tumour growth. Mechanistically, GALNT7 can modify O-glycosylation in prostate cancer cells and correlates with cell cycle and immune signalling pathways. Our study provides a new biomarker to aid the diagnosis of clinically significant disease and cements GALNT7-mediated O-glycosylation as an important driver of prostate cancer progression.
Collapse
Affiliation(s)
- Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Beatriz Calle
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
- Department of Chemistry, Imperial College London, W12 0BZ, London, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Kathleen Cheung
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Fernando Jose Garcia Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Edward Christopher Yo
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
| | - Urszula L McClurg
- Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Kayla Bastian
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Hector M Arredondo
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT, London, UK
| | - Melissa Anne Gray
- Sarafan Chem-H and Departemnt of Chemistry, Stanford University, 424 Santa Teresa St, Stanford, CA, 94305, USA
| | - Lois Kelly
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Aaron Tolson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Ellie Mellor
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Urszula Stopka-Farooqui
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Saurabh Singh
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Edward W Johnston
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Shonit Punwani
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John McGrath
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Malcolm Crundwell
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Denisa Bogdan
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Gemma Fowler
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Penny Flohr
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Wei Yuan
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Johann de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Simon Wisnovsky
- University of British Columbia, Faculty of Pharmaceutical Sciences, Vancouver, BC, V6T 1Z3, Canada
| | - Carolyn R Bertozzi
- Howard Hughes Medical Institute, 424 Santa Teresa St, Stanford, CA, 94305, USA
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Ramon Hurtado Guerrero
- University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain; Fundación ARAID, 50018, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Sharon Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Benjamin Schumann
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
- Department of Chemistry, Imperial College London, W12 0BZ, London, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
15
|
Talpan D, Salla S, Meusel L, Walter P, Kuo CC, Franzen J, Fuest M. Cytoprotective Effects of Human Platelet Lysate during the Xeno-Free Culture of Human Donor Corneas. Int J Mol Sci 2023; 24:ijms24032882. [PMID: 36769200 PMCID: PMC9917909 DOI: 10.3390/ijms24032882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS for 3 days (TP1), then evaluated using phase contrast microscopy (endothelial cell density (ECD) and cell morphology). Following an additional 25-day culture period (TP2) in either 2%FBS or 2%HPL, the pairs were again compared using microscopy; then stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). At TP2 the ECD was higher in the 2%HPL group (2179 ± 288 cells/mm2) compared to 2%FBS (2113 ± 331 cells/mm2; p = 0.03), and endothelial cell loss was lower (ECL HPL = -0.7% vs. FBS = -3.8%; p = 0.01). There were no significant differences in cell morphology between TP1 and 2, or between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial cells and 217 genes in stromal cells. It was found that 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2), and the downregulation of pro-inflammatory/apoptotic genes (e.g., CXCL14, SIK1B, PLK5, PPP2R3B, FABP5, MAL, GATA3). 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and producing potentially beneficial alterations in gene expression.
Collapse
Affiliation(s)
- Delia Talpan
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Linus Meusel
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
16
|
Ding M, Liu J, Lv H, Zhu Y, Chen Y, Peng H, Fan S, Chen X. Knocking down GALNT6 promotes pyroptosis of pancreatic ductal adenocarcinoma cells through NF-κB/NLRP3/GSDMD and GSDME signaling pathway. Front Oncol 2023; 13:1097772. [PMID: 36925932 PMCID: PMC10013470 DOI: 10.3389/fonc.2023.1097772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is a highly lethal malignancy with poor prognosis. Polypeptide N-acetylgalactosaminyltransferase-6 (GALNT6) is frequently overexpressed in PDAC. However, the role of GALNT6 in the PDAC remains unclear. Methods The expression of GALNT6 in pancreatic cancer and normal tissues were analyzed by bioinformatic analyses and immunohistochemistry. CCK8 and colony formation were used to detect cell proliferation. Flow cytometry was applied to detect cell cycle.The pyroptosis was detected by scanning electron microscopy. The mRNA expression was detected by qRT-PCR. The protein expression and localization were detected by western blot and immunofluorescence assay. ELISA was used to detect the levels of inflammatory factors. Results The expression of GALNT6 was associated with advanced tumor stage, and had an area under curve (AUC) value of 0.919 in pancreatic cancer based on the cancer genome atlas (TCGA) dataset. Knockdown of GALNT6 inhibited cell proliferation, migration, invasion and cell cycle arrest of PDAC cells. Meanwhile, knockdown of GALNT6 increased the expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18), the release of inflammasome and an increasing of Gasdermin D (GSDMD), N-terminal of GSDMD (GSDMD-N), Gasdermin E (GSDME) and N-terminal of GSDME (GSDME-N) in PDAC cells. GALNT6 suppressed the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and GSDMD by glycosylation of NF-κB and inhibiting the nucleus localization of NF-κB. Additionally, GALNT6 promotes the degradation of GSDME by O-glycosylation. Conclusion We found that GALNT6 is highly expressed in pancreatic cancer and plays a carcinogenic role. The results suggested that GALNT6 regulates the pyroptosis of PDAC cells through NF-κB/NLRP3/GSDMD and GSDME signaling. Our study might provides novel insights into the roles of GALNT6 in PDAC progression.
Collapse
Affiliation(s)
- Mengyang Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Honghui Lv
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanlin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yumiao Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Peng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|