1
|
Mangini L, Lawrence R, Lopez ME, Graham TC, Bauer CR, Nguyen H, Su C, Ramphal J, Crawford BE, Hartl TA. Galactokinase 1 is the source of elevated galactose-1-phosphate and cerebrosides are modestly reduced in a mouse model of classic galactosemia. JIMD Rep 2024; 65:280-294. [PMID: 38974607 PMCID: PMC11224506 DOI: 10.1002/jmd2.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.
Collapse
Affiliation(s)
- Linley Mangini
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Roger Lawrence
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Manuel E. Lopez
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Timothy C. Graham
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Christopher R. Bauer
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Hang Nguyen
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Cheng Su
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - John Ramphal
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Brett E. Crawford
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Tom A. Hartl
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| |
Collapse
|
2
|
Quelhas D, Kingma SD, Jonckheere AI, Smeets-Peels CS, Gomes DC, Duro J, Oliveira A, Matthijs G, Steinbusch LK, Jaeken J, Rivera I, Rubio-Gozalbo E. Natural history of three late-diagnosed classic Galactosemia patients. Mol Genet Metab Rep 2024; 38:101057. [PMID: 38469096 PMCID: PMC10926220 DOI: 10.1016/j.ymgmr.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024] Open
Abstract
The authors report the natural history of three patients with late-diagnosed Classic Galactosemia (CG) (at 16, 19 and 28 years). This was due to a combination of factors: absence of neonatal screening, absence of some typical acute neonatal symptoms, and negative galactosemia screening. This report underlines the value of neonatal screening and the importance of further diagnostic testing in case of late-onset manifestations.
Collapse
Affiliation(s)
- Dulce Quelhas
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Sandra D.K. Kingma
- Mosakids Children's Hospital, Maastricht University Medical Center, Maastricht, the Netherlands
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | - An I. Jonckheere
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | | | - Daniel Costa Gomes
- Centro de Referȇncia de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - José Duro
- Centro de Referȇncia de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Anabela Oliveira
- Centro de Referȇncia de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Gert Matthijs
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Laura K.M. Steinbusch
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jaak Jaeken
- Department of Development and Regeneration, Woman and Child Unit, Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Isabel Rivera
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Estela Rubio-Gozalbo
- Mosakids Children's Hospital, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
3
|
Derks B, Demirbas D, Arantes RR, Banford S, Burlina AB, Cabrera A, Chiesa A, Couce ML, Dionisi-Vici C, Gautschi M, Grünewald S, Morava E, Möslinger D, Scholl-Bürgi S, Skouma A, Stepien KM, Timson DJ, Berry GT, Rubio-Gozalbo ME. Galactose epimerase deficiency: lessons from the GalNet registry. Orphanet J Rare Dis 2022; 17:331. [PMID: 36056436 PMCID: PMC9438182 DOI: 10.1186/s13023-022-02494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Background Galactose epimerase (GALE) deficiency is a rare hereditary disorder of galactose metabolism with only a few cases described in the literature. This study aims to present the data of patients with GALE deficiency from different countries included through the Galactosemia Network to further expand the existing knowledge and review the current diagnostic strategy, treatment and follow-up of this not well characterized entity.
Methods Observational study collecting medical data from December 2014 to April 2022 of 22 not previously reported patients from 14 centers in 9 countries. Patients were classified as generalized or non-generalized based on their genotype, enzyme activities in different tissues and/or clinical picture and professional judgment of the treating physician.
Results In total 6 patients were classified as generalized and 16 as non-generalized. In the generalized group, acute neonatal illness was reported in 3, cognitive and developmental delays were present in 5 and hearing problems were reported in 3. Four generalized patients were homozygous for the genetic variant NM_001008216.2:c.280G > A (p.Val94Met). In the non-generalized group, no clearly related symptoms were found. Ten novel genetic variants were reported in this study population.
Conclusion The phenotypic spectrum of GALE deficiency ranges from asymptomatic to severe. The generalized patients have a phenotype that is in line with the 9 described cases in the literature and prescribing dietary interventions is the cornerstone for treatment. In the non-generalized group, treatment advice is more difficult. To be able to offer proper counseling, in addition to red blood cell enzyme activity, genetic studies, transferrin glycoform analysis and enzymatic measurements in fibroblasts are recommended. Due to lack of facilities, additional enzymatic testing is not common practice in many centers nor a tailored long-term follow-up is performed. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02494-4.
Collapse
Affiliation(s)
- Britt Derks
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6229 HX, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy.,UMD: United for Metabolic Diseases Member, Amsterdam, The Netherlands
| | - Didem Demirbas
- Division of Genetics and Genomics, Harvard Medical School, Boston Children's Hospital, 3 Blackfan Circle, Center for Life Science Building, Suite 14070, Boston, MA, 02115, USA
| | - Rodrigo R Arantes
- Special Service of Medical Genetics, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samantha Banford
- South Eastern Health and Social Care Trust, Downpatrick, BT30 6RL, UK
| | - Alberto B Burlina
- MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy.,Division of Inherited Metabolic Diseases, University Hospital, Via Orus 2/B, 35128, Padua, Italy
| | - Analía Cabrera
- Nutrition Department, Hospital de Niños V.J. Vilela, Sante Fe, Rosario, Argentina
| | - Ana Chiesa
- Department of Endocrinology, Hospital de Niños Ricardo Gutièrrez, Buenos Aires, Argentina
| | - M Luz Couce
- MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy.,Metabolic Unit, IDIS, Department of Neonatology, University Clinical Hospital of Santiago de Compostela. Calle Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Carlo Dionisi-Vici
- MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy.,Division of Metabolism, Bambino Gesu Children's Research Hospital IRCCS, Piazza S Onofrio 4, 00165, Roma, Italy
| | - Matthias Gautschi
- Division of Paediatric Endocrinology and Metabolism, Department of Paediatrics, University Hospital Bern, Inselspital, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Stephanie Grünewald
- Metabolic Medicine Department, NIHR Biomedical Research Center (BRC), Institute for Child Health, Great Ormond Street Hospital, University College London, London, UK
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dorothea Möslinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sabine Scholl-Bürgi
- MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy.,Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anastasia Skouma
- Institute of Child Health, Aghia Sophia Children's Hospital, Thivon & Papadiamantopoulou, 11527, Athens, Greece
| | - Karolina M Stepien
- Adult Inherited Metabolic Disorders Department, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, Greater Manchester, UK
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Gerard T Berry
- Division of Genetics and Genomics, Harvard Medical School, Boston Children's Hospital, 3 Blackfan Circle, Center for Life Science Building, Suite 14070, Boston, MA, 02115, USA
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6229 HX, Maastricht, The Netherlands. .,GROW, Maastricht University, Maastricht, The Netherlands. .,MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy. .,UMD: United for Metabolic Diseases Member, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Fridovich-Keil JL, Berry GT. Pathophysiology of long-term complications in classic galactosemia: What we do and do not know. Mol Genet Metab 2022; 137:33-39. [PMID: 35882174 DOI: 10.1016/j.ymgme.2022.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Despite many decades of research involving both human subjects and model systems, the underlying pathophysiology of long-term complications in classic galactosemia (CG) remains poorly understood. In this review, intended for those already familiar with galactosemia, we focus on the big questions relating to outcomes, mechanism, and markers, drawing on relevant literature where available, attempting to navigate inconsistencies where they appear, and acknowledging gaps in knowledge where they persist.
Collapse
Affiliation(s)
| | - Gerard T Berry
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Brophy ML, Stansfield JC, Ahn Y, Cheng SH, Murphy JE, Bell RD. AAV-mediated expression of galactose-1-phosphate uridyltransferase corrects defects of galactose metabolism in classic galactosemia patient fibroblasts. J Inherit Metab Dis 2022; 45:481-492. [PMID: 34918784 DOI: 10.1002/jimd.12468] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022]
Abstract
Classic galactosemia (CG) is a rare disorder of autosomal recessive inheritance. It is caused predominantly by point mutations as well as deletions in the gene encoding the enzyme galactose-1-phosphate uridyltransferase (GALT). The majority of the more than 350 mutations identified in the GALT gene cause a significant reduction in GALT enzyme activity resulting in the toxic buildup of galactose metabolites that in turn is associated with cellular stress and injury. Consequently, developing a therapeutic strategy that reverses both the oxidative and ER stress in CG cells may be helpful in combating this disease. Recombinant adeno-associated virus (AAV)-mediated gene therapy to restore GALT activity offers the potential to address the unmet medical needs of galactosemia patients. Here, utilizing fibroblasts derived from CG patients we demonstrated that AAV-mediated augmentation of GALT protein and activity resulted in the prevention of ER and oxidative stress. We also demonstrate that these CG patient fibroblasts exhibit reduced CD109 and TGFβRII protein levels and that these effectors of cellular homeostasis could be restored following AAV-mediated expression of GALT. Finally, we show initial in vivo proof-of-concept restoration of galactose metabolism in a GALT knockout mouse model following treatment with AAV-GALT.
Collapse
Affiliation(s)
- Megan L Brophy
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - John C Stansfield
- Early Clinical Development, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Youngwook Ahn
- Target Sciences, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Seng H Cheng
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - John E Murphy
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Robert D Bell
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Jin M, Kim J, Ha J, Kim A, Lee J, Park CS, Kang M, Kim J, Mun C, Kim J, Kim HH. Identification and quantification of sialylated and core-fucosylated N-glycans in human transferrin by UPLC and LC-MS/MS. Anal Biochem 2022; 647:114650. [PMID: 35331694 DOI: 10.1016/j.ab.2022.114650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 11/01/2022]
Abstract
Sialylated and core-fucosylated N-glycans in human transferrin (HTF) are used as glycan biomarkers due to their increased or decreased characteristics in certain diseases. However, their absolute quantities remain unclear. In this study, N-glycans of HTF were identified by UPLC and LC-MS/MS using fluorescence tags [2-aminobenzamide (AB) and procainamide (ProA)] and columns [HILIC and anion exchange chromatography-HILIC (AXH)]. The structures of 14 (including five core-fucosylated) N-glycans in total comprising two non-, six mono-, four di-, and two tri-sialylated N-glycans were identified. The quantities (%) of each N-glycan relative to the total N-glycans (100%) were obtained. HILIC and AXH were better for peak identification and separability except for desialylation, respectively. Specifically, sialylated (in ProA-HILIC and ProA-AXH by UPLC or LC-MS/MS) and core-fucosylated (in AB-HILIC and ProA-AXH by UPLC) N-glycans were efficiently identified. Seven neuraminidase-treated (including three core-fucosylated) N-glycans were efficiently identified in ProA-AXH, even their poor separation. Additionally, ProA-AXH was more efficient for the estimation of the absolute quantities of N-glycans from the results of fluorescence intensity (by UPLC) and relative quantity (by LC-MS/MS). These results first demonstrate that ProA is useful for identifying and quantifying sialylated, core-fucosylated, and neuraminidase-treated desialylated N-glycans in HTF using AXH by UPLC and LC/MS.
Collapse
Affiliation(s)
- Mijung Jin
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jongkwan Ha
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ahyeon Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jaeryong Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Minju Kang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jeongeun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chulmin Mun
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Treacy EP, Vencken S, Bosch AM, Gautschi M, Rubio‐Gozalbo E, Dawson C, Nerney D, Colhoun HO, Shakerdi L, Pastores GM, O'Flaherty R, Saldova R. Abnormal N-glycan fucosylation, galactosylation, and sialylation of IgG in adults with classical galactosemia, influence of dietary galactose intake. JIMD Rep 2021; 61:76-88. [PMID: 34485021 PMCID: PMC8411110 DOI: 10.1002/jmd2.12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Classical galactosemia (CG) (OMIM #230400) is a rare disorder of carbohydrate metabolism, due to deficiency of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological, and female infertility remains poorly understood. OBJECTIVES This study investigated (a) the association between specific IgG N-glycosylation biomarkers (glycan peaks and grouped traits) and CG patients (n = 95) identified from the GalNet Network, using hydrophilic interaction ultraperformance liquid chromatography and (b) a further analysis of a GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) with correlation with glycan features with patient Full Scale Intelligence Quotient (FSIQ), and (c) with galactose intake. RESULTS A very significant decrease in galactosylation and sialylation and an increase in core fucosylation was noted in CG patients vs controls (P < .005). Bisected glycans were decreased in the severe GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) (P < .05). Logistic regression models incorporating IgG glycan traits distinguished CG patients from controls. Incremental dietary galactose intake correlated positively with FSIQ for the p.Gln188Arg homozygous CG cohort (P < .005) for a dietary galactose intake of 500 to 1000 mg/d. Significant improvements in profiles with increased galactose intake were noted for monosialylated, monogalactosylated, and monoantennary glycans. CONCLUSION These results suggest that N-glycosylation abnormalities persist in CG patients on dietary galactose restriction which may be modifiable to a degree by dietary galactose intake.
Collapse
Affiliation(s)
- Eileen P. Treacy
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
- Department of PaediatricsTrinity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | | | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersEmma Children's Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Matthias Gautschi
- Department of Paediatrics and Institute of Clinical ChemistryInselspital, University Hospital BernBernSwitzerland
| | - Estela Rubio‐Gozalbo
- Department of Pediatrics/Laboratory of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Charlotte Dawson
- Department of EndocrinologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Darragh Nerney
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Hugh Owen Colhoun
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
| | - Loai Shakerdi
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Gregory M. Pastores
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- Department of ChemistryMaynooth UniversityKildareIreland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin (UCD)DublinIreland
| |
Collapse
|
8
|
Prevalence of Congenital Disorders of Glycosylation in Childhood Epilepsy and Effects of Anti-Epileptic Drugs on the Transferrin Isoelectric Focusing Test. Genes (Basel) 2021; 12:genes12081227. [PMID: 34440401 PMCID: PMC8391492 DOI: 10.3390/genes12081227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Childhood epilepsy is one of the most common neurological problems. The transferrin isoelectric focusing (TIEF) test is a screening test for congenital disorders of glycosylation (CDG). We identified abnormal TIEF test in children with epilepsy in our epilepsy genetics clinic. To determine if an abnormal TIEF test is associated with anti-epileptic medications or abnormal liver functions, we performed a retrospective cohort study. Methods: This study was performed between January 2012 and March 2020. Electronic patient charts were reviewed. Standard non-parametric statistical tests were applied using R statistical software. Fischer’s exact test was used for comparisons. Results: There were 206 patients. The TIEF test was abnormal in 11% (23 out of 206) of the patients. Nine patients were diagnosed with CDG: PMM2-CDG (n = 5), ALG3-CDG (n = 1), ALG11-CDG (n = 2), SLC35A2-CDG (n = 1). We report 51 different genetic diseases in 84 patients. Two groups, (1) abnormal TIEF test; (2) normal TIEF test, showed statistically significant differences for abnormal liver functions and for valproic acid treatment. Conclusion: The TIEF test guided CDG diagnosis in 2.9% of the patients. Due to the high prevalence of CDG (4.4%) in childhood epilepsy, the TIEF test might be included into the diagnostic investigations to allow earlier and cost-effective diagnosis.
Collapse
|
9
|
Mackinnon S, Krojer T, Foster WR, Diaz-Saez L, Tang M, Huber KVM, von Delft F, Lai K, Brennan PE, Arruda Bezerra G, Yue WW. Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. ACS Chem Biol 2021; 16:586-595. [PMID: 33724769 PMCID: PMC8056384 DOI: 10.1021/acschembio.0c00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Classic galactosemia is caused by loss-of-function mutations in galactose-1-phosphate uridylyltransferase (GALT) that lead to toxic accumulation of its substrate, galactose-1-phosphate. One proposed therapy is to inhibit the biosynthesis of galactose-1-phosphate, catalyzed by galactokinase 1 (GALK1). Existing inhibitors of human GALK1 (hGALK1) are primarily ATP-competitive with limited clinical utility to date. Here, we determined crystal structures of hGALK1 bound with reported ATP-competitive inhibitors of the spiro-benzoxazole series, to reveal their binding mode in the active site. Spurred by the need for additional chemotypes of hGALK1 inhibitors, desirably targeting a nonorthosteric site, we also performed crystallography-based screening by soaking hundreds of hGALK1 crystals, already containing active site ligands, with fragments from a custom library. Two fragments were found to bind close to the ATP binding site, and a further eight were found in a hotspot distal from the active site, highlighting the strength of this method in identifying previously uncharacterized allosteric sites. To generate inhibitors of improved potency and selectivity targeting the newly identified binding hotspot, new compounds were designed by merging overlapping fragments. This yielded two micromolar inhibitors of hGALK1 that were not competitive with respect to either substrate (ATP or galactose) and demonstrated good selectivity over hGALK1 homologues, galactokinase 2 and mevalonate kinase. Our findings are therefore the first to demonstrate inhibition of hGALK1 from an allosteric site, with potential for further development of potent and selective inhibitors to provide novel therapeutics for classic galactosemia.
Collapse
Affiliation(s)
- Sabrina
R. Mackinnon
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Tobias Krojer
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - William R. Foster
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Laura Diaz-Saez
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Manshu Tang
- Department
of Pediatrics, University of Utah, Salt Lake City, Utah 84108-6500, United States
| | - Kilian V. M. Huber
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Frank von Delft
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire, United Kingdom, OX11 0DE
| | - Kent Lai
- Department
of Pediatrics, University of Utah, Salt Lake City, Utah 84108-6500, United States
| | - Paul E. Brennan
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Gustavo Arruda Bezerra
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Wyatt W. Yue
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| |
Collapse
|
10
|
Aberrant sialylation in a patient with a HNF1α variant and liver adenomatosis. iScience 2021; 24:102323. [PMID: 33889819 PMCID: PMC8050382 DOI: 10.1016/j.isci.2021.102323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is a fundamental post-translational modification of proteins that boosts their structural diversity providing subtle and specialized biological properties and functions. All those genetic diseases due to a defective glycan biosynthesis and attachment to the nascent glycoproteins fall within the wide area of congenital disorders of glycosylation (CDG), mostly causing multisystem involvement. In the present paper, we detailed the unique serum N-glycosylation of a CDG-candidate patient with an unexplained neurological phenotype and liver adenomatosis harboring a recurrent pathogenic HNF1α variant. Serum transferrin isoelectric focusing showed a surprising N-glycosylation pattern consisting on hyposialylation, as well as remarkable hypersialylation. Mass spectrometry-based glycomic analyses of individual serum glycoproteins enabled to unveil hypersialylated complex N-glycans comprising up to two sialic acids per antenna. Further advanced MS analysis showed the additional sialic acid is bonded through an α2-6 linkage to the peripheral N-acetylglucosamine residue. Serum N-glycome is altered in a boy with neurological syndrome and HNF1α mutated HCA Glycomics reveals unique hypersialylated N-glycans with two NeuAc per antenna In-depth MS studies show the additional NeuAc is α2-6 linked to an outer arm GlcNAc
Collapse
|
11
|
Kumar SU, Sankar S, Kumar DT, Younes S, Younes N, Siva R, Doss CGP, Zayed H. Molecular dynamics, residue network analysis, and cross-correlation matrix to characterize the deleterious missense mutations in GALE causing galactosemia III. Cell Biochem Biophys 2021; 79:201-219. [PMID: 33555556 DOI: 10.1007/s12013-020-00960-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 01/17/2023]
Abstract
Epimerase-deficiency galactosemia (EDG) is caused by mutations in the UDP-galactose 4'-epimerase enzyme, encoded by gene GALE. Catalyzing the last reaction in the Leloir pathway, UDP-galactose-4-epimerase catalyzes the interconversion of UDP-galactose and UDP-glucose. This study aimed to use in-depth computational strategies to prioritize the pathogenic missense mutations in GALE protein and investigate the systemic behavior, conformational spaces, atomic motions, and cross-correlation matrix of the GALE protein. We searched four databases (dbSNP, ClinVar, UniProt, and HGMD) and major biological literature databases (PubMed, Science Direct, and Google Scholar), for missense mutations that are associated with EDG patients, our search yielded 190 missense mutations. We applied a systematic computational prediction pipeline, including pathogenicity, stability, biochemical, conservational, protein residue contacts, and structural analysis, to predict the pathogenicity of these mutations. We found three mutations (p.K161N, p.R239W, and p.G302D) with a severe phenotype in patients with EDG that correlated with our computational prediction analysis; thus, they were selected for further structural and simulation analyses to compute the flexibility and stability of the mutant GALE proteins. The three mutants were subjected to molecular dynamics simulation (MDS) with native protein for 200 ns using GROMACS. The MDS demonstrated that these mutations affected the beta-sheets and helical region that are responsible for the catalytic activity; subsequently, affects the stability and flexibility of the mutant proteins along with a decrease and more deviations in compactness when compared to that of a native. Also, three mutations created major variations in the combined atomic motions of the catalytic and C-terminal regions. The network analysis of the residues in the native and three mutant protein structures showed disturbed residue contacts occurred owing to the missense mutations. Our findings help to understand the structural behavior of a protein owing to mutation and are intended to serve as a platform for prioritizing mutations, which could be potential targets for drug discovery and development of targeted therapeutics.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Nadin Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - R Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
12
|
Lafhal K, Sabir ES, Cheggour M, Mouad F, Hammoud M, Lalaoui A, Ezoubeiri A, Baki S, Chabaa L, Maoulainine FMR, Rada N, Bouskraoui M, Ait Saab I, Bourrahouat A, Fdil N. Update of a colorimetric method for quantitative determination of galactose in blood samples: A simple and rapid method for the early detection of inherited metabolic diseases. Carbohydr Res 2020; 498:108179. [PMID: 33137585 DOI: 10.1016/j.carres.2020.108179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND A colorimetric microassay for the quantitative determination of galactose in the blood was taken and updated. This method helps in diagnosis and follow-up of several inherited metabolic diseases connected to galactose metabolism deficiency such as galactosemia, glycogenosis, glycosylation, tyrosinemia and citrin deficiency. Galactose assay in the blood presents difficulties due to interference with glucose. In this study, we update a method to get around these difficulties. METHOD This procedure was based on the incubation of whole blood with orcinol in a strongly acidic solution to form a galactose and glucose complexes able to absorb at two different wavelengths. RESULTS The standard curve analysis for the individual solutions of these two sugars showed a wide range of linearity from 0 to 200 mg / l. Under optimal experimental conditions, the stirring time of the orcinol is 3 minutes, the heating time of the reaction is 20 minutes at 56 ° C, and the duration of the incubation in the dark is 40 minutes. The analysis is carried out on fresh blood. The maximum absorbance of galactose and glucose is respectively 569 nm and 421 nm. An adapted diagnosis algorithm was developed based on our results. CONCLUSION this method could help in screening and identifying patients with hypergalactosemia that need further investigations. It could represent a promising method for neonatal screening in countries with limited resources.
Collapse
Affiliation(s)
- Karima Lafhal
- Metabolic Platform, Biochemistry Laboratory, Team for Childhood, Health and Development Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Es-Said Sabir
- Metabolic Platform, Biochemistry Laboratory, Team for Childhood, Health and Development Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Mouna Cheggour
- Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakesh, Morocco
| | - Fatimazahra Mouad
- Pediatric Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - Miloud Hammoud
- Metabolic Platform, Biochemistry Laboratory, Team for Childhood, Health and Development Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Abdessamad Lalaoui
- Pediatric Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - Aicha Ezoubeiri
- Clinical Laboratory, Ibn Tofail Hospital, Mohammed VI Hospital University, Marrakesh, Morocco
| | - Salwa Baki
- Endocrinology Department, Provincial Hospital of Taroudant, Morocco
| | - Laila Chabaa
- Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakesh, Morocco
| | - Fadl Mrabih Rabou Maoulainine
- Neonatal Intensive Care Department, Team for Childhood, Health and Development, Marrakesh Faculty of Medicine, Mohammed VI University Hospital and Research, Cadi Ayad University, Marrakech, Morocco
| | - Noureddine Rada
- Pediatric Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | | | - Imane Ait Saab
- Pediatric Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - Aicha Bourrahouat
- Pediatric Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - Naima Fdil
- Metabolic Platform, Biochemistry Laboratory, Team for Childhood, Health and Development Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco.
| |
Collapse
|
13
|
Magalhães APPSD, Burin MG, Souza CFMD, de Bitencourt FH, Sebastião FM, Silva TO, Vairo FPE, Schwartz IVD. Transferrin isoelectric focusing for the investigation of congenital disorders of glycosylation: analysis of a ten-year experience in a Brazilian center. J Pediatr (Rio J) 2020; 96:710-716. [PMID: 31677975 PMCID: PMC9432258 DOI: 10.1016/j.jped.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To characterize cases of suspected congenital disorders of glycosylation (CDG) investigated in a laboratory in southern Brazil using the transferrin isoelectric focusing TfIEF test from 2008 to 2017. METHOD Observational, cross-sectional, retrospective study. The laboratory records of 1,546 individuals (median age=36 months, 25-75 IQR=10-108; males=810) submitted to the TfIEF test during the period were reviewed. RESULTS Fifty-one individuals (3%) had an altered TfIEF pattern (5±2.8 cases/year; median age=24 months, 25-75 IQR=11-57 months; males=27, 53%). For 14 of them, data on diagnosis conclusion were available (classic galactosemia=4; hereditary fructose intolerance=4; peroxisomal diseases=2; PMM2-CDG=2; MPDU1-CDG=1; SLC35A2-CDG=1).Comparing the cases with the normal and altered TfIEF patterns, there was a higher prevalence of altered cases in the age group from 11 months to 3 years. There was an increase in the likelihood of change in TfIEF, especially in the presence of inverted nipples or liver disease. CONCLUSIONS The data suggest that the investigation of a case with suspected CDG is a complex problem, being aggravated by the existence of other IEMs (inborn errors of metabolism) associated with altered TfIEF pattern and lack of access to confirmatory tests. The presence of inverted nipples and liver disease, especially in individuals aged 11 months to 3 years, should suggest the need for TfIEF investigation.
Collapse
Affiliation(s)
- Ana Paula Pereira Scholz de Magalhães
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós Graduação em Ciências Médicas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Maira Graeff Burin
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | | | | | - Fernanda Medeiros Sebastião
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós Graduação em Ciências Médicas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Thiago Oliveira Silva
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Filippo Pinto E Vairo
- Mayo Clinic, Departament of Clinical Genomics, Rochester, United States; Mayo Clinic, Center for Individualized Medicine, Rochester, United States
| | - Ida Vanessa Doederlein Schwartz
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós Graduação em Ciências Médicas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Transferrin isoelectric focusing for the investigation of congenital disorders of glycosylation: analysis of a ten‐year experience in a Brazilian center. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2020. [DOI: 10.1016/j.jpedp.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
CDG biochemical screening: Where do we stand? Biochim Biophys Acta Gen Subj 2020; 1864:129652. [DOI: 10.1016/j.bbagen.2020.129652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
|
16
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
18
|
Haskovic M, Coelho AI, Bierau J, Vanoevelen JM, Steinbusch LKM, Zimmermann LJI, Villamor‐Martinez E, Berry GT, Rubio‐Gozalbo ME. Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models. J Inherit Metab Dis 2020; 43:392-408. [PMID: 31808946 PMCID: PMC7317974 DOI: 10.1002/jimd.12202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.
Collapse
Affiliation(s)
- Minela Haskovic
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Ana I. Coelho
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Jörgen Bierau
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jo M. Vanoevelen
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Laura K. M. Steinbusch
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Luc J. I. Zimmermann
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Eduardo Villamor‐Martinez
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Gerard T. Berry
- The Manton Center for Orphan Disease Research, Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - M. Estela Rubio‐Gozalbo
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
19
|
Discovery of Novel Inhibitors Targeting Multi-UDP-hexose Pyrophosphorylases as Anticancer Agents. Molecules 2020; 25:molecules25030645. [PMID: 32028604 PMCID: PMC7038226 DOI: 10.3390/molecules25030645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
To minimize treatment toxicities, recent anti-cancer research efforts have switched from broad-based chemotherapy to targeted therapy, and emerging data show that altered cellular metabolism in cancerous cells can be exploited as new venues for targeted intervention. In this study, we focused on, among the altered metabolic processes in cancerous cells, altered glycosylation due to its documented roles in cancer tumorigenesis, metastasis and drug resistance. We hypothesize that the enzymes required for the biosynthesis of UDP-hexoses, glycosyl donors for glycan synthesis, could serve as therapeutic targets for cancers. Through structure-based virtual screening and kinetic assay, we identified a drug-like chemical fragment, GAL-012, that inhibit a small family of UDP-hexose pyrophosphorylases-galactose pyro-phosphorylase (GALT), UDP-glucose pyrophosphorylase (UGP2) and UDP-N-acetylglucosamine pyrophosphorylase (AGX1/UAP1) with an IC50 of 30 µM. The computational docking studies supported the interaction of GAL-012 to the binding sites of GALT at Trp190 and Ser192, UGP2 at Gly116 and Lys127, and AGX1/UAP1 at Asn327 and Lys407, respectively. One of GAL-012 derivatives GAL-012-2 also demonstrated the inhibitory activity against GALT and UGP2. Moreover, we showed that GAL-012 suppressed the growth of PC3 cells in a dose-dependent manner with an EC50 of 75 µM with no effects on normal skin fibroblasts at 200 µM. Western blot analysis revealed reduced expression of pAKT (Ser473), pAKT (Thr308) by 77% and 72%, respectively in the treated cells. siRNA experiments against the respective genes encoding the pyrophosphorylases were also performed and the results further validated the proposed roles in cancer growth inhibition. Finally, synergistic relationships between GAL-012 and tunicamycin, as well as bortezomib (BTZ) in killing cultured cancer cells were observed, respectively. With its unique scaffold and relatively small size, GAL-012 serves as a promising early chemotype for optimization to become a safe, effective, multi-target anti-cancer drug candidate which could be used alone or in combination with known therapeutics.
Collapse
|
20
|
Broussard A, Florwick A, Desbiens C, Nischan N, Robertson C, Guan Z, Kohler JJ, Wells L, Boyce M. Human UDP-galactose 4′-epimerase (GALE) is required for cell-surface glycome structure and function. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49882-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Broussard A, Florwick A, Desbiens C, Nischan N, Robertson C, Guan Z, Kohler JJ, Wells L, Boyce M. Human UDP-galactose 4'-epimerase (GALE) is required for cell-surface glycome structure and function. J Biol Chem 2019; 295:1225-1239. [PMID: 31819007 DOI: 10.1074/jbc.ra119.009271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Glycan biosynthesis relies on nucleotide sugars (NSs), abundant metabolites that serve as monosaccharide donors for glycosyltransferases. In vivo, signal-dependent fluctuations in NS levels are required to maintain normal cell physiology and are dysregulated in disease. However, how mammalian cells regulate NS levels and pathway flux remains largely uncharacterized. To address this knowledge gap, here we examined UDP-galactose 4'-epimerase (GALE), which interconverts two pairs of essential NSs. Using immunoblotting, flow cytometry, and LC-MS-based glycolipid and glycan profiling, we found that CRISPR/Cas9-mediated GALE deletion in human cells triggers major imbalances in NSs and dramatic changes in glycolipids and glycoproteins, including a subset of integrins and the cell-surface death receptor FS-7-associated surface antigen. In particular, we observed substantial decreases in total sialic acid, galactose, and GalNAc levels in glycans. These changes also directly impacted cell signaling, as GALE -/- cells exhibited FS-7-associated surface antigen ligand-induced apoptosis. Our results reveal a role of GALE-mediated NS regulation in death receptor signaling and may have implications for the molecular etiology of illnesses characterized by NS imbalances, including galactosemia and metabolic syndrome.
Collapse
Affiliation(s)
- Alex Broussard
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Alyssa Florwick
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Chelsea Desbiens
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Corrina Robertson
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lance Wells
- Department of Chemistry, University of Georgia, Athens, Georgia 30602.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Michael Boyce
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| |
Collapse
|
22
|
O'Flaherty R, Muniyappa M, Walsh I, Stöckmann H, Hilliard M, Hutson R, Saldova R, Rudd PM. A Robust and Versatile Automated Glycoanalytical Technology for Serum Antibodies and Acute Phase Proteins: Ovarian Cancer Case Study. Mol Cell Proteomics 2019; 18:2191-2206. [PMID: 31471495 PMCID: PMC6823853 DOI: 10.1074/mcp.ra119.001531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Indexed: 11/06/2022] Open
Abstract
The direct association of the genome, transcriptome, metabolome, lipidome and proteome with the serum glycome has revealed systems of interconnected cellular pathways. The exact roles of individual glycoproteomes in the context of disease have yet to be elucidated. In a move toward personalized medicine, it is now becoming critical to understand disease pathogenesis, and the traits, stages, phenotypes and molecular features that accompany it, as the disruption of a whole system. To this end, we have developed an innovative technology on an automated platform, "GlycoSeqCap," which combines N-glycosylation data from six glycoproteins using a single source of human serum. Specifically, we multiplexed and optimized a successive serial capture and glycoanalysis of six purified glycoproteins, immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), transferrin (Trf), haptoglobin (Hpt) and alpha-1-antitrypsin (A1AT), from 50 μl of human serum. We provide the most comprehensive and in-depth glycan analysis of individual glycoproteins in a single source of human serum to date. To demonstrate the technological application in the context of a disease model, we performed a pilot study in an ovarian cancer cohort (n = 34) using discrimination and classification analyses to identify aberrant glycosylation. In our sample cohort, we exhibit improved selectivity and specificity over the currently used biomarker for ovarian cancer, CA125, for early stage ovarian cancer. This technology will establish a new state-of-the-art strategy for the characterization of individual serum glycoproteomes as a diagnostic and monitoring tool which represents a major step toward understanding the changes that take place during disease.
Collapse
Affiliation(s)
- Róisín O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Mohankumar Muniyappa
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Henning Stöckmann
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Mark Hilliard
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Richard Hutson
- Cancer Research UK Clinical Centre at Leeds, St James' University Hospital, Leeds LS9 7TF, UK.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099; UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| |
Collapse
|
23
|
Caslavska J, Schild C, Thormann W. High-resolution capillary zone electrophoresis and mass spectrometry for distinction of undersialylated and hypoglycosylated transferrin glycoforms in body fluids. J Sep Sci 2019; 43:241-257. [PMID: 31605446 DOI: 10.1002/jssc.201900857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
High-resolution capillary zone electrophoresis is used to distinguish transferrin glycoforms present in human serum, cerebrospinal fluid, and serum treated with neuraminidase and N-glycosidase F. The obtained data are compared to mass spectrometry data from the literature. The main focus is on the analysis of the various asialo-transferrin, monosialo-transferrin, and disialo-transferrin molecules found in these samples. The features of capillary zone electrophoresis and mass spectrometry are reviewed and highlighted in the context of the analysis of undersialylated and hypoglycosylated transferrin molecules. High-resolution capillary zone electrophoresis represents an effective tool to assess the diversity of transferrin patterns whereas mass spectrometry is the method of choice to elucidate structural identification about the glycoforms. Hypoglycosylated transferrin glycoforms present in sera of alcohol abusers and normal subjects are structurally identical to those in sera of patients with a congenital disorder of glycosylation type I. Asialo-transferrin, monosialo-transferrin and disialo-transferrin observed in sera of patients with a type II congenital disorder of glycosylation or a hemolytic uremic syndrome, in cerebrospinal fluid and after treatment of serum with neuraminidase are undersialylated transferrin glycoforms with two N-glycans of varying structure. Undersialylated disialo-transferrin is also observed in sera with high levels of trisialo-transferrin.
Collapse
Affiliation(s)
- Jitka Caslavska
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christof Schild
- Institute of Clinical Chemistry, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Balakrishnan B, Siddiqi A, Mella J, Lupo A, Li E, Hollien J, Johnson J, Lai K. Salubrinal enhances eIF2α phosphorylation and improves fertility in a mouse model of Classic Galactosemia. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165516. [PMID: 31362041 DOI: 10.1016/j.bbadis.2019.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Loss of galactose-1 phosphate uridylyltransferase (GALT) activity in humans results in Classic Galactosemia, and the GalT-deficient (GalT-/-) mouse mimics the patient condition. GalT-/- ovaries display elevated endoplasmic reticulum (ER) stress marker, BiP, and downregulated canonical phosphatidylinositol 3-kinase (Pi3k)/protein kinase B (Akt) growth/pro-survival signaling. Numbers of primordial follicles are reduced in the mutants, recapitulating the accelerated ovarian aging seen in human patients. We previously found that oral administration of the compound Salubrinal (an eIF2α phosphatase inhibitor), resulted in reduction of ovarian BiP expression, rescued Pi3k/Akt signaling, and a doubling of primordial follicles in GalT-/- adults. Here, we further characterized galactosemic stress in GalT-/- mice versus wild-type (WT) controls, and examined whether Salubrinal treatment improved broader reproductive parameters. We assessed the expression levels of factors of the unfolded protein response (UPR), and found that BiP, phospho-Perk, and phospho-eIF2α were all elevated in GalT-/- ovaries. However, neither IKK activation (NFκB pathway) nor alternative Xbp1 splicing downstream of ER membrane protein Ire1α activation was induced, suggesting an Xbp1-independent UPR in galactosemic stress. Moreover, Salubrinal treatment significantly increased the number of ovulated eggs in mutant animals after gonadotrophic superovulation. Salubrinal treatment also normalized estrus cycle stage lengths and resulted in significantly larger litter sizes than vehicle-treated mutants. Overall, we show that Salubrinal protects against galactosemia-induced primordial follicle loss in a fashion that includes suppressing the de-phosphorylation of eIF2α, and that intervention in this way significantly improves and extends ovarian function, fertility, and fecundity.
Collapse
Affiliation(s)
- B Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - A Siddiqi
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, United States
| | - J Mella
- School of Biological Sciences, University of Utah College of Science, United States
| | - A Lupo
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - E Li
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - J Hollien
- School of Biological Sciences, University of Utah College of Science, United States
| | - J Johnson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado, United States.
| | - K Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States.
| |
Collapse
|
25
|
Penezić A, Križakova M, Miljuš G, Katrlik J, Nedić O. Diagnostic Potential of Transferrin Glycoforms-A Lectin-Based Protein Microarray Approach. Proteomics Clin Appl 2019; 13:e1800185. [PMID: 31050875 DOI: 10.1002/prca.201800185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Disease or a specific condition may cause alteration of human transferrin (hTf) glycosylation pattern. A specific analytical platform, lectin-based protein microarray, is designed and optimized for the investigation of hTf glycans, attached to the protein core in their native form. EXPERIMENTAL DESIGN hTf molecules isolated from healthy persons of different age, diabetes mellitus type 2 (T2DM) or colorectal carcinoma (CRC) patients are used for method validation. Reliability of the results is ensured by three criteria for the evaluation of hTf-lectin interactions: i) signal-to-noise ratio above 3, ii) signal intensity above 250 arbitrary units, and iii) hTf concentration ensuring high sensitivity of the assay. RESULTS Six lectins, out of fourteen tested, satisfy the criteria. hTf is spotted at concentration of 50 µg mL-L . When physiological samples (isolated hTf) are analyzed, the highest potential to differentiate between population groups expresses Aleuria aurantia (AAL), Triticum vulgaris (WGA) and Phaseolus vulgaris (PHA-E) lectins. The initial amount of hTf which can be analyzed is very low (75 pg). CONCLUSION AND CLINICAL RELEVANCE Results confirm that a very sensitive, high-throughput lectin-based protein microarray platform can be formulated to detect changes in hTf glycan structures which can be considered as biomarkers of ageing or a disease.
Collapse
Affiliation(s)
- Ana Penezić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Martina Križakova
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Jaroslav Katrlik
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| |
Collapse
|
26
|
Abu Bakar N, Voermans NC, Marquardt T, Thiel C, Janssen MCH, Hansikova H, Crushell E, Sykut-Cegielska J, Bowling F, MØrkrid L, Vissing J, Morava E, van Scherpenzeel M, Lefeber DJ. Intact transferrin and total plasma glycoprofiling for diagnosis and therapy monitoring in phosphoglucomutase-I deficiency. Transl Res 2018; 199:62-76. [PMID: 30048639 PMCID: PMC7041963 DOI: 10.1016/j.trsl.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
Abstract
Phosphoglucomutase 1 (PGM1) deficiency results in a mixed phenotype of a Glycogen Storage Disorder and a Congenital Disorder of Glycosylation (CDG). Screening for abnormal glycosylation has identified more than 40 patients, manifesting with a broad clinical and biochemical spectrum which complicates diagnosis. Together with the availability of D-galactose as dietary therapy, there is an urgent need for specific glycomarkers for early diagnosis and treatment monitoring. We performed glycomics profiling by high-resolution QTOF mass spectrometry in a series of 19 PGM1-CDG patients, covering a broad range of biochemical and clinical severity. Bioinformatics and statistical analysis were used to select glycomarkers for diagnostics and define glycan-indexes for treatment monitoring. Using 3 transferrin glycobiomarkers, all PGM1-CDG patients were diagnosed with 100% specificity and sensitivity. Total plasma glycoprofiling showed an increase in high mannose glycans and fucosylation, while global galactosylation and sialylation were severely decreased. For treatment monitoring, we defined 3 glycan-indexes, reflecting normal glycosylation, a lack of complete glycans (LOCGI) and of galactose residues (LOGI). These indexes showed improved glycosylation upon D-galactose treatment with a fast and near-normalization of the galactose index (LOGI) in 6 out of 8 patients and a slower normalization of the LOCGI in all patients. Total plasma glycoprofiling showed improvement of the global high mannose glycans, fucosylation, sialylation, and galactosylation status on D-galactose treatment. Our study indicates specific glycomarkers for diagnosis of mildly and severely affected PGM1-CDG patients, and to monitor the glycan-specific effects of D-galactose therapy.
Collapse
Affiliation(s)
- Nurulamin Abu Bakar
- Department of Neurology and Translational Metabolic Laboratory, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | - Christian Thiel
- Center for Child and Adolescent Medicine, Kinderheilkunde I, University of Heidelberg, Heidelberg, Germany.
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | - Ellen Crushell
- Academic Centre on Rare Diseases, University College Dublin, Dublin, Republic of Ireland.
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, Institute of Mother and Child, Warsaw, Poland.
| | - Francis Bowling
- Biochemical Diseases, Mater Children's Hospital, South Brisbane, Queensland, Australia.
| | - Lars MØrkrid
- Institute of Clinical Biochemistry, Faculty of Medicine, University of Oslo and Department of Medical Biochemistry, Oslo University Hospital, Norway.
| | - John Vissing
- Department of Neurology, University of Copenhagen, Denmark.
| | - Eva Morava
- Department of Clinical Genomics, CIM, Mayo Clinic, Rochester, Minnesota.
| | - Monique van Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Dirk J Lefeber
- Department of Neurology and Translational Metabolic Laboratory, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Demirbas D, Coelho AI, Rubio-Gozalbo ME, Berry GT. Hereditary galactosemia. Metabolism 2018; 83:188-196. [PMID: 29409891 DOI: 10.1016/j.metabol.2018.01.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
Hereditary galactosemia is an inborn error of carbohydrate metabolism. Galactose is metabolized by Leloir pathway enzymes; galactokinase (GALK), galactose-1-phosphate uridylyltransferase (GALT) and UDP-galactose 4-epimerase (GALE). The defects in these enzymes cause galactosemia in an autosomal recessive manner. The severe GALT deficiency, or classic galactosemia, is life-threatening in the newborn period. The treatment for classic galactosemia is dietary restriction of lactose. Although implementation of lactose restricted diet is efficient in resolving the acute complications, it is not sufficient to prevent long-term complications affecting the brain and female gonads, the two main target organs of damage. Implementation of molecular genetics diagnostic tools and GALT enzyme assays are instrumental in distinguishing classic galactosemia from clinical and biochemical variant forms of GALT deficiency. Better understanding of mechanisms responsible for the phenotypic variation even within the same genotype is essential to provide appropriate counseling for families. Utilization of a lactose restricted diet is also recommended for GALK deficiency and some rare forms of GALE deficiency. Novel modes of therapies are being explored; they may be beneficial if access issues to the affected tissues are circumvented and optimum use of therapeutic window is achieved.
Collapse
Affiliation(s)
- Didem Demirbas
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana I Coelho
- Department of Pediatrics, Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics, Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Colhoun HO, Treacy EP, MacMahon M, Rudd PM, Fitzgibbon M, O'Flaherty R, Stepien KM. Validation of an automated ultraperformance liquid chromatography IgG N-glycan analytical method applicable to classical galactosaemia. Ann Clin Biochem 2018; 55:593-603. [DOI: 10.1177/0004563218762957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Classical galactosaemia (OMIM #230400) is a rare disorder of carbohydrate metabolism caused by deficiency of the galactose-1-phosphate uridyltransferase enzyme. The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems, remains poorly understood. Current clinical methods of biochemical monitoring lack precision and individualization with an identified need for improved biomarkers for this condition. Methods We report the development and detailed validation of an automated ultraperformance liquid chromatography N-glycan analytical method of high peak resolution applied to galactose incorporation into human serum IgG. Samples are prepared on 96-well plates and the workflow features rapid glycoprotein denaturation, enzymatic glycan release, glycan purification on solid-supported hydrazide, fluorescent labelling and post-labelling clean-up with solid-phase extraction. Results This method is shown to be accurate and precise with repeatability (cumulative coefficients of variation) of 2.0 and 8.5%, respectively, for G0/G1 and G0/G2 ratios. Both serum and processed N-glycan samples were found to be stable at room temperature and in freeze–thaw experiments. Conclusions This high-throughput method of IgG galactose incorporation is robust, affordable and simple. This method is validated with the potential to apply as a biomarker for treatment outcomes for galactosaemia.
Collapse
Affiliation(s)
| | - Eileen P Treacy
- Department of Paediatrics, Trinity College, Dublin, Ireland
- National Centre for Inherited Metabolic Diseases, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Marguerite MacMahon
- Department of Clinical Biochemistry and Diagnostic Endocrinology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Maria Fitzgibbon
- Department of Clinical Biochemistry and Diagnostic Endocrinology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Karolina M Stepien
- National Centre for Inherited Metabolic Diseases, The Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
29
|
Balakrishnan B, Nicholas C, Siddiqi A, Chen W, Bales E, Feng M, Johnson J, Lai K. Reversal of aberrant PI3K/Akt signaling by Salubrinal in a GalT-deficient mouse model. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3286-3293. [PMID: 28844959 DOI: 10.1016/j.bbadis.2017.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
Classic Galactosemia is an autosomal recessive disorder caused by deleterious mutations in the GALT gene, which encodes galactose-1 phosphate uridylyltransferase enzyme (GALT: EC 2.7.7.12). Recent studies of primary skin fibroblasts isolated from the GalT-deficient mice demonstrated a slower growth rate, a higher level of endoplasmic reticulum (ER) stress, and down-regulation of the Phosphoinositide 3 kinase/Protein kinase B (PI3K/Akt) signaling pathway. In this study, we compared the expression levels of the PI3K/Akt signaling pathway in normal and GalT-deficient mouse tissues. In mutant mouse ovaries, phospho-Akt [pAkt (Ser473)] and pGsk3β were reduced by 62.5% and 93.5%, respectively (p<0.05 versus normal controls). In mutant cerebella, pAkt (Ser473) and pGsk3β were reduced by 62%, 50%, respectively (p<0.05). To assess the role of ER stress in the down-regulation of PI3K/Akt signaling, we examined if administration of Salubrinal, a chemical compound that alleviates ER stress, to GalT-deficient fibroblasts and animals could normalize the pathway. Our results demonstrated that Salubrinal effectively reversed the down-regulated PI3K/Akt signaling pathway in the mutant cells and animals to levels close to those of their normal counterparts. Moreover, we revealed that Salubrinal can significantly slow down the loss of Purkinje cells in the cerebella, as well as the premature loss of primordial ovarian follicles in young mutant mice. These results open the door for a new therapeutic approach for the patients with Classic Galactosemia.
Collapse
Affiliation(s)
- B Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - C Nicholas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado, United States
| | - A Siddiqi
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, United States
| | - W Chen
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - E Bales
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado, United States
| | - M Feng
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - J Johnson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado, United States.
| | - K Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States.
| |
Collapse
|
30
|
Viggiano E, Marabotti A, Politano L, Burlina A. Galactose-1-phosphate uridyltransferase deficiency: A literature review of the putative mechanisms of short and long-term complications and allelic variants. Clin Genet 2017; 93:206-215. [PMID: 28374897 DOI: 10.1111/cge.13030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022]
Abstract
Galactosemia type 1 is an autosomal recessive disorder of galactose metabolism, determined by a deficiency in the enzyme galactose-1-phosphate uridyltransferase (GALT). GALT deficiency is classified as severe or variant depending on biochemical phenotype, genotype and potential to develop acute and long-term complications. Neonatal symptoms usually resolve after galactose-restricted diet; however, some patients, despite the diet, can develop long-term complications, in particular when the GALT enzyme activity results absent or severely decreased. The mechanisms of acute and long-term complications are still discussed and several hypotheses are presented in the literature like enzymatic inhibition, osmotic stress, endoplasmic reticulum stress, oxidative stress, defects of glycosylation or epigenetic modification. This review summarizes the current knowledge of galactosemia, in particular the putative mechanisms of neonatal and long-term complications and the molecular genetics of GALT deficiency.
Collapse
Affiliation(s)
- E Viggiano
- Division of Metabolic Diseases, Department of Paediatrics, University Hospital of Padua, Padua, Italy.,Cardiomyology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Marabotti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.,Interuniversity Center "ELFID", University of Salerno, Fisciano, Italy
| | - L Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Burlina
- Division of Metabolic Diseases, Department of Paediatrics, University Hospital of Padua, Padua, Italy
| |
Collapse
|
31
|
Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 2017; 40:325-342. [PMID: 28281081 PMCID: PMC5391384 DOI: 10.1007/s10545-017-0029-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Abstract
Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.
Collapse
Affiliation(s)
- Ana I Coelho
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Rivera
- Metabolism & Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Dias Costa F, Ferdinandusse S, Pinto C, Dias A, Keldermans L, Quelhas D, Matthijs G, Mooijer PA, Diogo L, Jaeken J, Garcia P. Galactose Epimerase Deficiency: Expanding the Phenotype. JIMD Rep 2017; 37:19-25. [PMID: 28247339 DOI: 10.1007/8904_2017_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 03/01/2023] Open
Abstract
Galactose epimerase deficiency is an inborn error of metabolism due to uridine diphosphate-galactose-4'-epimerase (GALE) deficiency. We report the clinical presentation, genetic and biochemical studies in two siblings with generalized GALE deficiency.Patient 1: The first child was born with a dysmorphic syndrome. Failure to thrive was noticed during the first year. Episodes of heart failure due to dilated cardiomyopathy, followed by liver failure, occurred between 12 and 42 months. The finding of a serum transferrin isoelectrofocusing (IEF) type 1 pattern led to the suspicion of a congenital disorder of glycosylation (CDG). Follow-up disclosed psychomotor disability, deafness, and nuclear cataracts.Patient 2: The sibling of patient 1 was born with short limbs and hip dysplasia. She is deceased in the neonatal period due to intraventricular hemorrhage in the context of liver failure. Investigation disclosed galactosuria and normal transferrin glycosylation.Next-generation sequence panel analysis for CDG syndrome revealed the previously reported c.280G>A (p.[V94M]) homozygous mutation in the GALE gene. Enzymatic studies in erythrocytes (patient 1) and fibroblasts (patients 1 and 2) revealed markedly reduced GALE activity confirming generalized GALE deficiency. This report describes the fourth family with generalized GALE deficiency, expanding the clinical spectrum of this disorder, since major cardiac involvement has not been reported before.
Collapse
Affiliation(s)
- Filipa Dias Costa
- Unidade de Doenças Metabólicas, Centro de Desenvolvimento da Criança, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, EPE, Avenida Afonso Romão, Coimbra, 3000-206, Portugal.
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Carla Pinto
- Serviço de Cuidados Intensivos Pediátricos, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, EPE, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Andrea Dias
- Serviço de Cuidados Intensivos Pediátricos, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, EPE, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | | | - Dulce Quelhas
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto - UMIB/ICBAS/UP, Porto, Portugal
| | - Gert Matthijs
- Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Petra A Mooijer
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Luísa Diogo
- Unidade de Doenças Metabólicas, Centro de Desenvolvimento da Criança, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, EPE, Avenida Afonso Romão, Coimbra, 3000-206, Portugal.,Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Jaak Jaeken
- Department of Pediatrics, Centre for Metabolic Disease, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium.,Metabool Centrum - Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Paula Garcia
- Unidade de Doenças Metabólicas, Centro de Desenvolvimento da Criança, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, EPE, Avenida Afonso Romão, Coimbra, 3000-206, Portugal
| |
Collapse
|
33
|
Timson DJ. The molecular basis of galactosemia — Past, present and future. Gene 2016; 589:133-41. [DOI: 10.1016/j.gene.2015.06.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
|
34
|
Maratha A, Colhoun HO, Knerr I, Coss KP, Doran P, Treacy EP. Classical Galactosaemia and CDG, the N-Glycosylation Interface. A Review. JIMD Rep 2016; 34:33-42. [PMID: 27502837 PMCID: PMC5509556 DOI: 10.1007/8904_2016_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Classical galactosaemia is a rare disorder of carbohydrate metabolism caused by galactose-1-phosphate uridyltransferase (GALT) deficiency (EC 2.7.7.12). The disease is life threatening if left untreated in neonates and the only available treatment option is a long-term galactose restricted diet. While this is lifesaving in the neonate, complications persist in treated individuals, and the cause of these, despite early initiation of treatment, and shared GALT genotypes remain poorly understood. Systemic abnormal glycosylation has been proposed to contribute substantially to the ongoing pathophysiology. The gross N-glycosylation assembly defects observed in the untreated neonate correct over time with treatment. However, N-glycosylation processing defects persist in treated children and adults.Congenital disorders of glycosylation (CDG) are a large group of over 100 inherited disorders affecting largely N- and O-glycosylation.In this review, we compare the clinical features observed in galactosaemia with a number of predominant CDG conditions.We also summarize the N-glycosylation abnormalities, which we have described in galactosaemia adult and paediatric patients, using an automated high-throughput HILIC-UPLC analysis of galactose incorporation into serum IgG with analysis of the corresponding N-glycan gene expression patterns and the affected pathways.
Collapse
Affiliation(s)
- Ashwini Maratha
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland
| | | | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland
| | - Karen P Coss
- Faculty of Life Sciences and Medicine, Department of Infectious Diseases, King's College London, Guy's Hospital, London, UK
| | - Peter Doran
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland
| | - Eileen P Treacy
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland.
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland.
- Trinity College, Dublin, Ireland.
- Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland.
| |
Collapse
|
35
|
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models. Hum Mol Genet 2016; 25:3699-3714. [PMID: 27466186 DOI: 10.1093/hmg/ddw217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Department of Biological Sciences .,Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Liu Y, Fu D, Yu L, Xiao Y, Peng X, Liang X. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. J Chromatogr A 2016; 1455:147-155. [DOI: 10.1016/j.chroma.2016.05.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023]
|
37
|
Staubach S, Pekmez M, Hanisch FG. Differential Proteomics of Urinary Exovesicles from Classical Galactosemic Patients Reveals Subclinical Kidney Insufficiency. J Proteome Res 2016; 15:1754-61. [PMID: 27103203 DOI: 10.1021/acs.jproteome.5b00902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Classical galactosemia is caused by a nearly complete deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), resulting in a severely impaired galactose metabolism with galactose-1-phosphate and galactitol accumulation. Even on a galactose-restricted diet, patients develop serious long-term complications of the central nervous system and ovaries that may result from chronic cell-toxic effects exerted by endogenous galactose. To address the question of whether disease-associated cellular perturbations could affect the kidney function of the patients, we performed differential proteomics of detergent-resistant membranes from urinary exovesicles. Galactosemic samples (showing drastic shifts from high-mannose to complex-type N-glycosylation on exosomal N-glycoproteins) and healthy, sex-matched controls were analyzed in quadruplex iTRAQ experiments performed in biological and technical replicates. Particularly in the female patient group, the most striking finding was a drastic increase of abundant serum (glyco)proteins, like albumin, leucine-rich α-2-glycoprotein, fetuin, immunoglobulins, prostaglandin H2 d-isomerase, and α-1-microglobulin protein (AMBP), pointing to a subclinical failure of kidney filter function in galactosemic patients and resulting in a heavy overload of exosomal membranes with adsorbed serum (glyco)proteins. Several of these proteins are connected to TBMN and IgAN, proteinuria, and renal damage. The impairment of renal protein filtration was also indicated by increased protein contents derived from extracellular matrices and lysosomes.
Collapse
Affiliation(s)
- Simon Staubach
- Institute of Biochemistry II, Medical Faculty, University of Cologne , Köln, D-50931, Germany
| | - Murat Pekmez
- Institute of Biochemistry II, Medical Faculty, University of Cologne , Köln, D-50931, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne , Köln, D-50931, Germany.,Center for Molecular Medicine Cologne, University of Cologne , Köln, D-50931 Germany
| |
Collapse
|
38
|
Balakrishnan B, Chen W, Tang M, Huang X, Cakici DD, Siddiqi A, Berry G, Lai K. Galactose-1 phosphate uridylyltransferase (GalT) gene: A novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts. Biochem Biophys Res Commun 2016; 470:205-212. [PMID: 26773505 DOI: 10.1016/j.bbrc.2016.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022]
Abstract
The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (-74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT(2) Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 min, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels.
Collapse
Affiliation(s)
- Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA
| | - Wyman Chen
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA
| | - Manshu Tang
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA
| | - Xiaoping Huang
- Division of Genetics and Genomics, Department of Pediatrics, Harvard Medical School, USA
| | - Didem Demirbas Cakici
- Division of Genetics and Genomics, Department of Pediatrics, Harvard Medical School, USA
| | - Anwer Siddiqi
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, USA
| | - Gerard Berry
- Division of Genetics and Genomics, Department of Pediatrics, Harvard Medical School, USA
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, USA.
| |
Collapse
|
39
|
Classical galactosaemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis. Eur J Hum Genet 2016; 24:976-84. [PMID: 26733289 DOI: 10.1038/ejhg.2015.254] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
Classical galactosaemia (OMIM #230400), a rare disorder of carbohydrate metabolism, is caused by a deficient activity of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems remains poorly understood. The lack of validated biomarkers to determine prognosis, monitor disease progression and responses to new therapies, pose a huge challenge. We report the detailed analysis of an automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analytical method of high glycan peak resolution applied to serum IgG. This has revealed specific N-glycan processing defects observed in 40 adult galactosaemia patients (adults and adolescents), in comparison with 81 matched healthy controls. We have identified a significant increase in core fucosylated neutral glycans (P<0.0001) and a significant decrease in core fucosylated (P<0.001), non-fucosylated (P<0.0001) bisected glycans and, of specific note, decreased N-linked mannose-5 glycans (P<0.0001), in galactosaemia patients. We also report the abnormal expression of a number of related relevant N-glycan biosynthesis genes in peripheral blood mononuclear cells from 32 adult galactosaemia patients. We have noted significant dysregulation of two key N-glycan biosynthesis genes: ALG9 upregulated (P<0.001) and MGAT1 downregulated (P<0.01) in galactosaemia patients, which may contribute to its ongoing pathophysiology. Our data suggest that the use of IgG N-glycosylation analysis with matched N-glycan biosynthesis gene profiles may provide useful biomarkers for monitoring response to therapy and interventions. They also indicate potential gene modifying steps in this N-glycan biosynthesis pathway, of relevance to galactosaemia and related N-glycan biosynthesis disorders.
Collapse
|
40
|
van Scherpenzeel M, Steenbergen G, Morava E, Wevers RA, Lefeber DJ. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl Res 2015; 166:639-649.e1. [PMID: 26307094 DOI: 10.1016/j.trsl.2015.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
Abstract
Diagnostic screening of the congenital disorders of glycosylation (CDG) generally involves isoelectric focusing of plasma transferrin, a robust method easily integrated in medical laboratories. Structural information is needed as the next step, as required for the challenging classification of Golgi glycosylation defects (CDG-II). Here, we present the use of high-resolution nano liquid chromatography-chip (C8)-quadrupole time of flight mass spectrometry (nanoLC-chip [C8]-QTOF MS) for protein-specific glycoprofiling of intact transferrin, which allows screening and direct diagnosis of a number of CDG-II defects. Transferrin was immunopurified from 10 μL of plasma and analyzed by nanoLC-chip-QTOF MS. Charge distribution raw data were deconvoluted by Mass Hunter software to reconstructed mass spectra. Plasma samples were processed from controls (n = 56), patients with known defects (n = 30), and patients with secondary (n = 6) or unsolved (n = 3) cause of abnormal glycosylation. This fast and robust method, established for CDG diagnostics, requires only 2 hours analysis time, including sample preparation and analysis. For CDG-I patients, the characteristic loss of complete N-glycans could be detected with high sensitivity. Known CDG-II defects (phosphoglucomutase 1 [PGM1-CDG], mannosyl (α-1,6-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase [MGAT2-CDG], β-1,4-galactosyltransferase 1 [B4GALT1-CDG], CMP-sialic acid transporter [SLC35A1-CDG], UDP-galactose transporter [SLC35A2-CDG] and mannosyl-oligosaccharide 1,2-alpha-mannosidase [MAN1B1-CDG]) resulted in characteristic diagnostic profiles. Moreover, in the group of Golgi trafficking defects and unsolved CDG-II patients, distinct profiles were observed, which facilitate identification of the specific CDG subtype. The established QTOF method affords high sensitivity and resolution for the detection of complete glycan loss and structural assignment of truncated glycans in a single assay. The speed and robustness allow its clinical diagnostic application as a first step in the diagnostic procedure for CDG defects.
Collapse
Affiliation(s)
- Monique van Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Gerry Steenbergen
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Hayward Genetics Center, Tulane University Medical School, New Orleans, La
| | - Ron A Wevers
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Jaeken J, Lefeber DJ, Matthijs G. Clinical utility gene card for: MAN1B1 defective congenital disorder of glycosylation. Eur J Hum Genet 2015; 24:ejhg2015248. [PMID: 26577042 DOI: 10.1038/ejhg.2015.248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/06/2015] [Accepted: 10/21/2015] [Indexed: 02/03/2023] Open
Affiliation(s)
- Jaak Jaeken
- Centre for Metabolic Disease, University Hospital Gasthuisberg, Leuven, Belgium
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - Gert Matthijs
- Centre for Human Genetics, KULeuven, Leuven, Belgium
| |
Collapse
|
42
|
IgG N-Glycosylation Galactose Incorporation Ratios for the Monitoring of Classical Galactosaemia. JIMD Rep 2015; 27:47-53. [PMID: 26419375 DOI: 10.1007/8904_2015_490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 06/25/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022] Open
Abstract
Classical galactosaemia (OMIM #230400) is a rare disorder of carbohydrate metabolism caused by deficiency of the galactose-1-phosphate uridyltransferase enzyme (EC 2.7.7.12). The cause of the long-term complications, including neurological, cognitive and fertility problems in females, remains poorly understood. The relatively small number of patients with galactosaemia and the lack of validated biomarkers pose a substantial challenge for determining prognosis and monitoring disease progression and responses to new therapies. We report an improved method of automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analysis for the measurement of IgG N-glycan galactose incorporation ratios applied to the monitoring of adult patients with classical galactosaemia. We analysed 40 affected adult patients and 81 matched healthy controls. Significant differences were noted between the G0/G1 and G0/G2 incorporation ratios between galactosaemia patients and controls (p < 0.001 and <0.01, respectively). Our data indicate that the use of IgG N-glycosylation galactose incorporation analysis may be now applicable for monitoring patient dietary compliance, determining prognosis and the evaluation of potential new therapies.
Collapse
|
43
|
Jaeken J, Lefeber D, Matthijs G. Clinical utility gene card for: DPAGT1 defective congenital disorder of glycosylation. Eur J Hum Genet 2015; 23:ejhg2015177. [PMID: 26242989 DOI: 10.1038/ejhg.2015.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/30/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jaak Jaeken
- Department of Development and Regeneration, Centre for Metabolic Disease, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Dirk Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - Gert Matthijs
- Department of Human Genetics, Centre for Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Clinical utility gene card for: ALG1 defective congenital disorder of glycosylation. Eur J Hum Genet 2015; 23:ejhg20159. [PMID: 25649379 DOI: 10.1038/ejhg.2015.9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 01/07/2023] Open
|
45
|
Coss KP, Treacy EP, Cotter EJ, Knerr I, Murray DW, Shin YS, Doran PP. Systemic gene dysregulation in classical Galactosaemia: Is there a central mechanism? Mol Genet Metab 2014; 113:177-87. [PMID: 25174965 DOI: 10.1016/j.ymgme.2014.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/27/2022]
Abstract
Classical Galactosaemia is a rare disorder of carbohydrate metabolism caused by a deficiency of galactose-1-phosphate uridyltransferase (GALT). The disease is life-threatening in the neonate, and the only treatment option is life-long dietary restriction of galactose. However, long-term complications persist in treated patients including cognitive impairments, speech and language abnormalities and premature ovarian insufficiency in females. Microarray analysis of T-lymphocytes from treated adult patients identified systemic dysregulation of numerous gene pathways, including the glycosylation, inflammatory and inositol pathways. Analysis of gene expression in patient-derived dermal fibroblasts of patients exposed to toxic levels of galactose, with immunostaining, has further identified the susceptibility of the glycosylation gene alpha-1,2-mannosyltransferase (ALG9) and the inflammatory gene annexin A1 (ANXA1) to increased galactose concentrations. These data suggest that Galactosaemia is a multi-system disorder affecting numerous signalling pathways.
Collapse
Affiliation(s)
- K P Coss
- University College Dublin, Clinical Research Centre, Mater Misericordiae University Hospital, Ireland
| | - E P Treacy
- University College Dublin, Clinical Research Centre, Mater Misericordiae University Hospital, Ireland; National Centre for Inherited Metabolic Disorders, Ireland; Trinity College Dublin, Ireland.
| | - E J Cotter
- University College Dublin, Clinical Research Centre, Mater Misericordiae University Hospital, Ireland
| | - I Knerr
- National Centre for Inherited Metabolic Disorders, Ireland
| | - D W Murray
- Royal College of Surgeons in Ireland, Department of Physiology and Medical Physics, Dublin 2, Ireland
| | - Y S Shin
- University Children's Hospital and Molecular Genetics and Metabolism Laboratory, Munich, Germany
| | - P P Doran
- University College Dublin, Clinical Research Centre, Mater Misericordiae University Hospital, Ireland.
| |
Collapse
|
46
|
Jumbo-Lucioni P, Parkinson W, Broadie K. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model. Dis Model Mech 2014; 7:1365-78. [PMID: 25326312 PMCID: PMC4257005 DOI: 10.1242/dmm.017137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand levels, which are also corrected by dGALK co-removal and sugarless overexpression. These results reveal synaptomatrix glycosylation losses, altered trans-synaptic signaling pathway components, defective synaptogenesis and impaired coordinated movement in a CG neurological disease model.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
Clinical utility gene card for: ALG6 defective congenital disorder of glycosylation. Eur J Hum Genet 2014; 23:ejhg2014146. [PMID: 25052310 DOI: 10.1038/ejhg.2014.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022] Open
|
48
|
Helander A, Jaeken J, Matthijs G, Eggertsen G. Asymptomatic phosphomannose isomerase deficiency (MPI-CDG) initially mistaken for excessive alcohol consumption. Clin Chim Acta 2014; 431:15-8. [DOI: 10.1016/j.cca.2014.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
|
49
|
Clinical utility gene card for: Phosphomannose isomerase deficiency. Eur J Hum Genet 2014; 22:ejhg201429. [PMID: 24569608 DOI: 10.1038/ejhg.2014.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Jaeken J, Lefeber D, Matthijs G. Clinical utility gene card for: Phosphomannomutase 2 deficiency. Eur J Hum Genet 2014; 22:ejhg2013298. [PMID: 24424124 DOI: 10.1038/ejhg.2013.298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jaak Jaeken
- Centre for Metabolic Disease, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Dirk Lefeber
- Department of Neurology, Laboratory of Genetic, Endocrine and Metabolic Disease, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gert Matthijs
- Centre for Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|