1
|
Mukherjee MM, Biesbrock D, Abramowitz LK, Pavan M, Kumar B, Walter PJ, Azadi P, Jacobson KA, Hanover JA. Selective bioorthogonal probe for N-glycan hybrid structures. Nat Chem Biol 2024:10.1038/s41589-024-01756-5. [PMID: 39468349 DOI: 10.1038/s41589-024-01756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
Metabolic incorporation of chemically tagged monosaccharides is a facile means of tagging cellular glycoproteins and glycolipids. However, since the monosaccharide precursors are often shared by several pathways, selectivity has been difficult to attain. For example, N-linked glycosylation is a chemically complex and ubiquitous posttranslational modification, with three distinct classes of GlcNAc-containing N-glycan structures: oligomannose, hybrid and complex. Here we describe the synthesis of 1,3-Pr2-6-OTs GlcNAlk (MM-JH-1) as a next-generation metabolic chemical reporter for the selective labeling of hybrid N-glycan structures. We first developed a general strategy for defining the selectivity of labeling with chemically tagged monosaccharides. We then applied this approach to establish that MM-JH-1 is selectively incorporated into hybrid N-glycans. Using this metabolic chemical reporter as a detection tool, we performed imaging and fractionation to define features of the intracellular localization and trafficking of target proteins bearing hybrid N-glycan structures.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Matteo Pavan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Chen J, Wen P, Tang YH, Li H, Wang Z, Wang X, Zhou X, Gao XD, Fujita M, Yang G. Proteome and Glycoproteome Analyses Reveal Regulation of Protein Glycosylation Site-Specific Occupancy and Lysosomal Hydrolase Maturation by N-Glycan-Dependent ER-Quality Control. J Proteome Res 2024; 23:4409-4421. [PMID: 39235835 DOI: 10.1021/acs.jproteome.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
N-Glycan-dependent endoplasmic reticulum quality control (ERQC) primarily mediates protein folding, which determines the fate of the polypeptide. Monoglucose residues on N-glycans determine whether the nascent N-glycosylated proteins enter into and escape from the calnexin (CANX)/calreticulin (CALR) cycle, which is a central system of the ERQC. To reveal the impact of ERQC on glycosylation and protein fate, we performed comprehensive quantitative proteomic and glycoproteomic analyses using cells defective in N-glycan-dependent ERQC. Deficiency of MOGS encoding the ER α-glucosidase I, CANX, or/and CALR broadly affected protein expression and glycosylation. Among the altered glycoproteins, the occupancy of oligomannosidic N-glycans was significantly affected. Besides the expected ER stress, proteins and glycoproteins involved in pathways for lysosome and viral infection are differentially changed in those deficient cells. We demonstrated that lysosomal hydrolases were not correctly modified with mannose-6-phosphates on the N-glycans and were directly secreted to the culture medium in N-glycan-dependent ERQC mutant cells. Overall, the CANX/CALR cycle promotes the correct folding of glycosylated peptides and influences the transport of lysosomal hydrolases.
Collapse
Affiliation(s)
- Jingru Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Piaopiao Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-He Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Zibo Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuyuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Ma S, Gao J, Tian Y, Wen L. Recent progress in chemoenzymatic synthesis of human glycans. Org Biomol Chem 2024; 22:7767-7785. [PMID: 39246045 DOI: 10.1039/d4ob01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Gao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
O'Connor SE. Reduction hits the sweet spot: A revised biosynthesis of dolichol. Cell 2024; 187:3502-3503. [PMID: 38996484 DOI: 10.1016/j.cell.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 07/14/2024]
Abstract
Dolichol is a lipid that is involved in protein glycosylation, a process that is essential for all eukaryotic life. In this issue of Cell, Wilson and coworkers1 report how a rare human genetic disorder led to the discovery of dolichol biosynthesis.
Collapse
Affiliation(s)
- Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
5
|
Girgis M, Petruncio G, Russo P, Peyton S, Paige M, Campos D, Sanda M. Analysis of N- and O-linked site-specific glycosylation by ion mobility mass spectrometry: State of the art and future directions. Proteomics 2024; 24:e2300281. [PMID: 38171879 DOI: 10.1002/pmic.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.
Collapse
Affiliation(s)
- Michael Girgis
- Department of Bioengineering, College of Engineering & Computing, George Mason University, Fairfax, Virginia, USA
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Gregory Petruncio
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Steven Peyton
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Mikell Paige
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Diana Campos
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| | - Miloslav Sanda
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| |
Collapse
|
6
|
Traverssi MG, Manzano VE, Varela O, Colomer JP. Synthesis of N-glycosyl amides: conformational analysis and evaluation as inhibitors of β-galactosidase from E. coli. RSC Adv 2024; 14:2659-2672. [PMID: 38229710 PMCID: PMC10790283 DOI: 10.1039/d3ra07763b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
The synthesis of N-glycosyl amides typically involves the use of glycosyl amines as direct precursors, resulting in low yields due to hydrolysis and the loss of stereocontrol through anomerization processes. In this study, a sequential synthesis of N-glycosyl amides is proposed, employing glycosyl amines as intermediates obtained from glycosyl azides. Derivatives with gluco, galacto, or xylo configurations were synthesized. Hexose derivatives were obtained under stereocontrol to give only the β anomer, while the xylo derivatives provided a mixture of α and β anomers. Conformational analysis revealed that all β anomers adopted the 4C1 conformation, while α anomers were found in the 1C4 chair as the major conformer. After de-O-acetylation, the derivatives containing a galactose unit were evaluated as inhibitors of β-galactosidase from E. coli and were found to be moderate inhibitors.
Collapse
Affiliation(s)
- Miqueas G Traverssi
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNC Argentina
| | - Verónica E Manzano
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UBA Argentina
| | - Oscar Varela
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UBA Argentina
| | - Juan P Colomer
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNC Argentina
| |
Collapse
|
7
|
Mukherjee MM, Bond MR, Abramowitz LK, Biesbrock D, Woodroofe CC, Kim EJ, Swenson RE, Hanover JA. Tools and tactics to define specificity of metabolic chemical reporters. Front Mol Biosci 2023; 10:1286690. [PMID: 38143802 PMCID: PMC10740162 DOI: 10.3389/fmolb.2023.1286690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Metabolic chemical reporters (MCRs) provide easily accessible means to study glycans in their native environments. However, because monosaccharide precursors are shared by many glycosylation pathways, selective incorporation has been difficult to attain. Here, a strategy for defining the selectivity and enzymatic incorporation of an MCR is presented. Performing β-elimination to interrogate O-linked sugars and using commercially available glycosidases and glycosyltransferase inhibitors, we probed the specificity of widely used azide (Ac4GalNAz) and alkyne (Ac4GalNAlk and Ac4GlcNAlk) sugar derivatives. Following the outlined strategy, we provide a semiquantitative assessment of the specific and non-specific incorporation of this bioorthogonal sugar (Ac4GalNAz) into numerous N- and O-linked glycosylation pathways. This approach should be generally applicable to other MCRs to define the extent of incorporation into the various glycan species.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michelle R. Bond
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara K. Abramowitz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carolyn C. Woodroofe
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, MD, United States
| | - Eun Ju Kim
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - Rolf E. Swenson
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
9
|
Hou X, Wang Y, Bu D, Wang Y, Sun S. EMNGly: predicting N-linked glycosylation sites using the language models for feature extraction. Bioinformatics 2023; 39:btad650. [PMID: 37930896 PMCID: PMC10627407 DOI: 10.1093/bioinformatics/btad650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Indexed: 11/08/2023] Open
Abstract
MOTIVATION N-linked glycosylation is a frequently occurring post-translational protein modification that serves critical functions in protein folding, stability, trafficking, and recognition. Its involvement spans across multiple biological processes and alterations to this process can result in various diseases. Therefore, identifying N-linked glycosylation sites is imperative for comprehending the mechanisms and systems underlying glycosylation. Due to the inherent experimental complexities, machine learning and deep learning have become indispensable tools for predicting these sites. RESULTS In this context, a new approach called EMNGly has been proposed. The EMNGly approach utilizes pretrained protein language model (Evolutionary Scale Modeling) and pretrained protein structure model (Inverse Folding Model) for features extraction and support vector machine for classification. Ten-fold cross-validation and independent tests show that this approach has outperformed existing techniques. And it achieves Matthews Correlation Coefficient, sensitivity, specificity, and accuracy of 0.8282, 0.9343, 0.8934, and 0.9143, respectively on a benchmark independent test set.
Collapse
Affiliation(s)
- Xiaoyang Hou
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- Syneron Technology, Guangzhou 510000, China
| | - Dongbo Bu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaojun Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Shiwei Sun
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Ramakrishnan K, Johnson RL, Winter SD, Worthy HL, Thomas C, Humer DC, Spadiut O, Hindson SH, Wells S, Barratt AH, Menzies GE, Pudney CR, Jones DD. Glycosylation increases active site rigidity leading to improved enzyme stability and turnover. FEBS J 2023; 290:3812-3827. [PMID: 37004154 PMCID: PMC10952495 DOI: 10.1111/febs.16783] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Glycosylation is the most prevalent protein post-translational modification, with a quarter of glycosylated proteins having enzymatic properties. Yet, the full impact of glycosylation on the protein structure-function relationship, especially in enzymes, is still limited. Here, we show that glycosylation rigidifies the important commercial enzyme horseradish peroxidase (HRP), which in turn increases its turnover and stability. Circular dichroism spectroscopy revealed that glycosylation increased holo-HRP's thermal stability and promoted significant helical structure in the absence of haem (apo-HRP). Glycosylation also resulted in a 10-fold increase in enzymatic turnover towards o-phenylenediamine dihydrochloride when compared to its nonglycosylated form. Utilising a naturally occurring site-specific probe of active site flexibility (Trp117) in combination with red-edge excitation shift fluorescence spectroscopy, we found that glycosylation significantly rigidified the enzyme. In silico simulations confirmed that glycosylation largely decreased protein backbone flexibility, especially in regions close to the active site and the substrate access channel. Thus, our data show that glycosylation does not just have a passive effect on HRP stability but can exert long-range effects that mediate the 'native' enzyme's activity and stability through changes in inherent dynamics.
Collapse
Affiliation(s)
| | - Rachel L. Johnson
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Harley L. Worthy
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterUK
| | | | - Diana C. Humer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | | | | | - Andrew H. Barratt
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Christopher R. Pudney
- Department of Biology and BiochemistryUniversity of BathUK
- Centre for Therapeutic InnovationUniversity of BathUK
| | - D. Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| |
Collapse
|
11
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
12
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
13
|
Vinodh Kumar PN, Mallikarjuna MG, Jha SK, Mahato A, Lal SK, K R Y, Lohithaswa HC, Chinnusamy V. Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. Int J Biol Macromol 2023; 229:539-560. [PMID: 36603713 DOI: 10.1016/j.ijbiomac.2022.12.326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are the novel sugar transporters widely distributed among living systems. SWEETs play a crucial role in various bio-physiological processes, viz., plant developmental, nectar secretion, pollen development, and regulation of biotic and abiotic stresses, in addition to their prime sugar-transporting activity. Thus, in-depth structural, evolutionary, and functional characterization of maize SWEET transporters was performed for their utility in maize improvement. The mining of SWEET genes in the latest maize genome release (v.5) showed an uneven distribution of 20 ZmSWEETs. The comprehensive structural analyses and docking of ZmSWEETs with four sugars, viz., fructose, galactose, glucose, and sucrose, revealed frequent amino acid residues forming hydrogen (asparagine, valine, serine) and hydrophobic (tryptophan, glycine, and phenylalanine) interactions. Evolutionary analyses of SWEETs showed a mixed lineage with 50-100 % commonality of ortho-groups and -sequences evolved under strong purifying selection (Ka/Ks < 0.5). The duplication analysis showed non-functionalization (ZmSWEET18 in B73) and neo- and sub-functionalization (ZmSWEET3, ZmSWEET6, ZmSWEET9, ZmSWEET19, and ZmSWEET20) events in maize. Functional analyses of ZmSWEET genes through co-expression, in silico expression and qRT-PCR assays showed the relevance of ZmSWEETs expression in regulating drought, heat, and waterlogging stress tolerances in maize. The first ever ZmSWEET-regulatory network revealed 286 direct (ZmSWEET-TF: 140 ZmSWEET-miRNA: 146) and 1226 indirect (TF-TF: 597; TF-miRNA: 629) edges. The present investigation has given new insights into the complex transcriptional and post-transcriptional regulation and the regulatory and functional relevance of ZmSWEETs in assigning stress tolerance in maize.
Collapse
Affiliation(s)
- P N Vinodh Kumar
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | | | - Shailendra Kumar Jha
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anima Mahato
- ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | - Shambhu Krishan Lal
- School of Genetic Engineering, ICAR - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Yathish K R
- Winter Nursery Centre, ICAR-Indian Institute of Maize Research, Hyderabad, India
| | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
14
|
Pratesi D, Mirabella S, Petrucci G, Matassini C, Faggi C, Cardona F, Goti A. Stereospecific Access to α‐ and β‐N‐Glycosylamine Derivatives by a Metal Free O‐to‐N [3,3]‐Sigmatropic Rearrangement. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debora Pratesi
- Università degli Studi di Firenze: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 50019 Sesto Fiorentino ITALY
| | - Stefania Mirabella
- Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Giulia Petrucci
- Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Camilla Matassini
- Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Cristina Faggi
- Università degli Studi di Firenze: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 Sesto Fiorentino ITALY
| | - Francesca Cardona
- Università degli Studi di Firenze: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" via della Lastruccia 3-13 50019 Sesto Fiorentino ITALY
| | - Andrea Goti
- Universita' di Firenze Chemistry ""Ugo Schiff"" via della Lastruccia 13 I-50019 Sesto Fiorentino FI ITALY
| |
Collapse
|
15
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
16
|
Xue Y, Nestor G. Determination of Amide Cis/Trans Isomers in N-Acetyl-d-glucosamine: Tailored NMR Analysis of the N-Acetyl Group Conformation. Chembiochem 2022; 23:e202200338. [PMID: 35713405 PMCID: PMC9541821 DOI: 10.1002/cbic.202200338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/17/2022] [Indexed: 11/14/2022]
Abstract
N‐Acetyl‐d‐glucosamine (GlcNAc) is one of the most common amino sugars in nature, but the conformation of its N‐acetyl group has drawn little attention. We report herein the first identification of NH protons of the amide cis forms of α‐ and β‐GlcNAc by NMR spectroscopy. Relative quantification and thermodynamic analysis of both cis and trans forms was carried out in aqueous solution. The NH protons were further utilized by adapting protein NMR experiments to measure eight J‐couplings within the N‐acetyl group, of which six are sensitive to the H2‐NH conformation and two are sensitive to the amide conformation. For amide cis and trans forms, the orientation between H2 and NH was determined as anti conformation, while a small percentage of syn conformation was predicted for the amide trans form of β‐GlcNAc. This approach holds great promise for the detailed conformational analysis of GlcNAc in larger biomolecules, such as glycoproteins and polysaccharides.
Collapse
Affiliation(s)
- Yan Xue
- Swedish University of Agricultural Sciences: Sveriges lantbruksuniversitet, Department of Molecular Sciences, SWEDEN
| | - Gustav Nestor
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Almas allé 5, Box 7015, 750 07, Uppsala, SWEDEN
| |
Collapse
|
17
|
Ezema BO, Omeje KO, Bill RM, Goddard AD, O Eze SO, Fernandez-Castane A. Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii. J Biomol Struct Dyn 2022; 41:2587-2601. [PMID: 35147487 DOI: 10.1080/07391102.2022.2035821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipases are enzymes of industrial importance responsible for the hydrolysis of ester bonds of triglycerides. A lipolytic fungus was isolated and subsequently identified based on the ITS sequence analysis as putative Aspergillus flavus with accession number LC424503. The gene coding for extracellular triacylglycerol lipase was isolated from Aspergillus flavus species, sequenced, and characterised using bioinformatics tools. An open reading frame of 420 amino acid sequence was obtained and designated as Aspergillus flavus lipase (AFL) sequence. Alignment of the amino acid sequence with other lipases revealed the presence GHSLG sequence which is the lipase consensus sequence Gly-X1-Ser-X2-Gly indicating that it a classical lipase. A catalytic active site lid domain composed of TYITDTIIDLS amino acids sequence was also revealed. This lid protects the active site, control the catalytic activity and substrate selectivity in lipases. The 3-Dimensional structural model shared 34.08% sequence identity with a lipase from Yarrowia lipolytica covering 272 amino acid residues of the template model. A search of the lipase engineering database using AFL sequence revealed that it belongs to the class GX-lipase, superfamily abH23 and homologous family abH23.02, molecular weight and isoelectric point values of 46.95 KDa and 5.7, respectively. N-glycosylation sites were predicted at residues 164, 236 and 333, with potentials of 0.7250, 0.7037 and 0.7048, respectively. O-glycosylation sites were predicted at residues 355, 358, 360 and 366. A signal sequence of 37 amino acids was revealed at the N-terminal of the polypeptide. This is a short peptide sequence that marks a protein for transport across the cell membrane and indicates that AFL is an extracellular lipase. The findings on the structural and molecular properties of Aspergillus flavus lipase in this work will be crucial in future studies aiming at engineering the enzyme for biotechnology applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Benjamin O Ezema
- The Biochemistry Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria.,Department of Biochemistry, University of Nigeria, Nsukka, Nigeria.,Aston Institute of Materials Research, Aston University, Birmingham, UK.,Energy and Bioproducts Research Institute, Aston University, Birmingham, UK
| | - Kingsley O Omeje
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Alfred Fernandez-Castane
- Aston Institute of Materials Research, Aston University, Birmingham, UK.,Energy and Bioproducts Research Institute, Aston University, Birmingham, UK
| |
Collapse
|
18
|
Taherzadeh G, Campbell M, Zhou Y. Computational Prediction of N- and O-Linked Glycosylation Sites for Human and Mouse Proteins. Methods Mol Biol 2022; 2499:177-186. [PMID: 35696081 DOI: 10.1007/978-1-0716-2317-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein glycosylation is one of the most complex posttranslational modifications (PTM) that play a fundamental role in protein function. Identification and annotation of these sites using experimental approaches are challenging and time consuming. Hence, there is a demand to build fast and efficient computational methods to address this problem. Here, we present the SPRINT-Gly framework containing the largest dataset and a prediction model of glycosylation sites for a given protein sequence. In this framework, we construct a large dataset containing N- and O-linked glycosylation sites of human and mouse proteins, collected from different sources. We then introduce the SPRINT-Gly method to predict putative N- and O-linked sites. SPRINT-Gly is a machine learning-based approach consisting of a number of trained predictive models for glycosylation sites in both human and mouse proteins, separately. The method is built by incorporating sequence-based, predicted structural, and physicochemical information of the neighboring residues of each N- and O-linked glycosylation site and by training deep learning neural network and support vector machine as classifiers. SPRINT-Gly outperformed other existing methods by achieving 18% and 50% higher Matthew's correlation coefficient for N- and O-linked glycosylation site prediction, respectively. SPRINT-Gly is publicly available as an online and stand-alone predictor at https://sparks-lab.org/server/sprint-gly/ .
Collapse
Affiliation(s)
- Ghazaleh Taherzadeh
- Department of Mathematics and Computer Science, Wilkes University, Wilkes-Barre, PA, USA.
| | - Matthew Campbell
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
19
|
Pecori F, Hanamatsu H, Furukawa JI, Nishihara S. Comprehensive and Comparative Structural Glycome Analysis in Mouse Epiblast-like Cells. Methods Mol Biol 2022; 2490:179-193. [PMID: 35486246 DOI: 10.1007/978-1-0716-2281-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycosylation is one of the most abundant posttranslational modifications and is involved in a wide range of cellular processes. Glycome diversity in mammals is generated by the action of over 200 distinct glycosyltransferases and related enzymes. Nevertheless, glycosylation dynamics are tightly coordinated to allow proper organismal development. Here, using mouse embryonic stem cells (mESCs) and mouse epiblast-like cells (mEpiLCs) as model systems, we describe a robust protocol that allows comprehensive and comparative structural analysis of the glycome.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan.
- Glycan and Life System Integration Center (GaLSIC), Soka University, Tokyo, Japan.
| |
Collapse
|
20
|
Miskevich D, Chaban A, Dronina M, Abramovich I, Gottlieb E, Shams I. Comprehensive Analysis of 13C 6 Glucose Fate in the Hypoxia-Tolerant Blind Mole Rat Skin Fibroblasts. Metabolites 2021; 11:metabo11110734. [PMID: 34822392 PMCID: PMC8621580 DOI: 10.3390/metabo11110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
The bioenergetics of the vast majority of terrestrial mammals evolved to consuming glucose (Glc) for energy production under regular atmosphere (about 21% oxygen). However, some vertebrate species, such as aquatic turtles, seals, naked mole rat, and blind mole rat, Spalax, have adjusted their homeostasis to continuous function under severe hypoxic environment. The exploration of hypoxia-tolerant species metabolic strategies provides a better understanding of the adaptation to hypoxia. In this study, we compared Glc homeostasis in primary Spalax and rat skin cells under normoxic and hypoxic conditions. We used the targeted-metabolomics approach, utilizing liquid chromatography and mass spectrometry (LC-MS) to track the fate of heavy Glc carbons (13C6 Glc), as well as other methodologies to assist the interpretation of the metabolic landscape, such as bioenergetics profiling, Western blotting, and gene expression analysis. The metabolic profile was recorded under steady-state (after 24 h) of the experiment. Glc-originated carbons were unequally distributed between the cytosolic and mitochondrial domains in Spalax cells compared to the rat. The cytosolic domain is dominant apparently due to the hypoxia-inducible factor-1 alpha (HIF-1α) mastering, since its level is higher under normoxia and hypoxia in Spalax cells. Consumed Glc in Spalax cells is utilized for the pentose phosphate pathway maintaining the NADPH pool, and is finally harbored as glutathione (GSH) and UDP-GlcNAc. The cytosolic domain in Spalax cells works in the semi-uncoupled mode that limits the consumed Glc-derived carbons flux to the tricarboxylic acid (TCA) cycle and reduces pyruvate delivery; however, it maintains the NAD+ pool via lactate dehydrogenase upregulation. Both normoxic and hypoxic mitochondrial homeostasis of Glc-originated carbons in Spalax are characterized by their massive cataplerotic flux along with the axis αKG→Glu→Pro→hydroxyproline (HPro). The product of collagen degradation, HPro, as well as free Pro are apparently involved in the bioenergetics of Spalax under both normoxia and hypoxia. The upregulation of 2-hydroxyglutarate production detected in Spalax cells may be involved in modulating the levels of HIF-1α. Collectively, these data suggest that Spalax cells utilize similar metabolic frame for both normoxia and hypoxia, where glucose metabolism is switched from oxidative pathways (conversion of pyruvate to Acetyl-CoA and further TCA cycle processes) to (i) pentose phosphate pathway, (ii) lactate production, and (iii) cataplerotic pathways leading to hexosamine, GSH, and HPro production.
Collapse
Affiliation(s)
- Dmitry Miskevich
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
- Correspondence: (D.M.); (I.S.)
| | - Anastasia Chaban
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Maria Dronina
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
| | - Ifat Abramovich
- Technion Faculty of Medicine, Haifa 3525433, Israel; (I.A.); (E.G.)
| | - Eyal Gottlieb
- Technion Faculty of Medicine, Haifa 3525433, Israel; (I.A.); (E.G.)
| | - Imad Shams
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
- Correspondence: (D.M.); (I.S.)
| |
Collapse
|
21
|
den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt. Biotechnol Adv 2021; 53:107859. [PMID: 34678441 DOI: 10.1016/j.biotechadv.2021.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.
Collapse
Affiliation(s)
- Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Kim M Trollope
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
22
|
Distinct regions of the Haloferax volcanii dolichol phosphate-mannose synthase AglD mediate the assembly and subsequent processing of the lipid-linked mannose. J Bacteriol 2021; 204:e0044721. [PMID: 34633871 DOI: 10.1128/jb.00447-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haloferax volcanii AglD is currently the only archaeal dolichol phosphate (DolP)-mannose synthase shown to participate in N-glycosylation. However, the relation between AglD and Pyrococcus furiosus PF0058, the only archaeal DolP-mannose synthase for which structural information is presently available, was unclear. In this report, similarities between the PF0058 and AglD catalytic domains were revealed. At the same time, AglD includes a transmembrane domain far longer than that of PF0058 or other DolP-mannose synthases. To determine whether this extension affords AglD functions in addition to generating mannose-charged DolP, a series of Hfx. volcanii strains expressing truncated versions of AglD was generated. Mass spectrometry revealed that a version of AglD comprising the catalytic domain and only two of the six to nine predicted membrane-spanning domains could mediate mannose addition to DolP. However, in cells expressing this or other truncated versions of AglD, mannose was not transferred from the lipid to the protein-bound tetrasaccharide precursor of the N-linked pentasaccharide normally decorating Hfx. volcanii glycoproteins. These results thus point to AglD as contributing to additional aspects of Hfx. volcanii N-glycosylation beyond charging DolP with mannose. Accordingly, the possibility that AglD, possibly in coordination with AglR, translocates DolP-mannose across the plasma membrane is discussed. Layman summary In the archaea Haloferax volcanii, the dolichol phosphate (DolP)-mannose synthase AglD charges the lipid DolP with mannose, which is delivered to a protein-bound tetrasaccharide to generate the pentasaccharide decorating glycoproteins in this organism. Structural studies demonstrated the similarity of AglD to Pyrococcus furiosus PF0058, the only archaeal DolP-mannose synthase with a solved 3D structure. Truncated AglD containing the catalytic domain and only two of the predicted six to nine membrane-spanning regions catalyzed mannose-charging of DolP. Yet, no mannose was delivered to protein-linked tetrasaccharide in cells expressing AglD mutants including only up to five membrane-spanning regions, pointing to a role for the extended C-terminal region in a subsequent step of Hfx. volcanii N-glycosylation, such as DolP-mannose translocation across the plasma membrane.
Collapse
|
23
|
Ghasemi F, Khorramizadeh MR, Karkhane AA, Zomorodipour A. Studying the Expression Efficiencies of Human Clotting Factor IX Analogs, Rationally-designed for Hyper-glycosylation. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:523-535. [PMID: 34567179 PMCID: PMC8457720 DOI: 10.22037/ijpr.2020.112027.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glyco-engineering has attracted lots of interest in studies dealing with the pharmacokinetics of therapeutic proteins. Based on our previous in-silico studies, two sites were selected in the N-terminal gamma-carboxy glutamic acid-rich (Gla) domain of the human clotting factor IX (hFIX) to add new N-glycosylation sites. Site-directed mutagenesis was employed to conduct K22N and R37N substitutions and introduce new N-glycosylation sites in the mature hFIX. The expression efficiencies of the mutants, in parallel with the wild-type hFIX (hFIXwt), were assessed in suspension adapted Chinese hamster ovary (CHO-s) cells at transcriptional, translational, and post-translational levels. The transcription levels of both N-glycosylation mutants were significantly lower than that of the hFIXwt. In contrast, at the protein level, the two hFIX mutants showed higher expression. The occurrence of hyper-glycosylation was only confirmed in the case of the hFIXR37N mutant, which decreased the clotting activity. The higher expression of the hFIX mutants at protein level was evidenced, which could be attributed to higher protein stability, via omitting certain protease cleavage sites. The coagulation activity decline in the hyper-glycosylated hFIXR37N mutant is probably due to the interference of the new N-glycan with protein-protein interactions in the coagulation cascade.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Department of Medical Biotechnology, School of Advanced Technology of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Endocrinology and Metabolism Research Institute (EMRI), and Zebrafish Core Facility-EMRI, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Karkhane
- Institute of Industrial and Environmental Biotechnology (IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Alireza Zomorodipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
24
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
25
|
Wei X, Vrieling K, Kim HK, Mulder PPJ, Klinkhamer PGL. Application of methyl jasmonate and salicylic acid lead to contrasting effects on the plant's metabolome and herbivory. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110784. [PMID: 33487359 DOI: 10.1016/j.plantsci.2020.110784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
Phytohormone applications are used to mimic herbivory and can induce plant defences. This study investigated (i) metabolomic changes in leaf tissues of Jacobaea vulgaris and J. aquatica after methyl jasmonate (MeJA) and salicylic acid (SA) applications and (ii) the effects on a leaf-chewing, a leaf-mining and a piercing-sucking herbivore. MeJA treated leaves showed clearly different metabolomic profiles than control leaves, while the differences in metabolomic profiles between SA treated leaves and control leaves were less clear. More NMR peaks increased than decreased after MeJA treatment while this pattern was reversed after SA treatment. The leaf-chewing (Mamestra brassicae) and the leaf-mining herbivores (Liriomyza trifolii) fed less on MeJA-treated leaves compared to control and SA-treated leaves while they fed equally on the latter two. In J. aquatica but not in J. vulgaris, SA treatment reduced feeding damage by the piercing-sucking herbivore (Frankliniella occidentalis). Based on the herbivory and metabolomic data after phytohormone application, we made speculations as follows: For all three herbivore species, plants with high levels of threonine and citric acid showed less herbivory while plants with high levels of glucose showed more herbivory. Herbivory by thrips was lower on plants with high levels of alanine while it was higher on plants with high levels of 3,5-dicaffeoylquinic acid. The plant compounds that related to feeding of piercing-sucking herbivore were further verified with previous independent experiments.
Collapse
Affiliation(s)
- Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China; Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands.
| | - Klaas Vrieling
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Patrick P J Mulder
- RIKILT-Wageningen University & Research, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
26
|
Pecori F, Yokota I, Hanamatsu H, Miura T, Ogura C, Ota H, Furukawa JI, Oki S, Yamamoto K, Yoshie O, Nishihara S. A defined glycosylation regulatory network modulates total glycome dynamics during pluripotency state transition. Sci Rep 2021; 11:1276. [PMID: 33446700 PMCID: PMC7809059 DOI: 10.1038/s41598-020-79666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process. Collectively, our findings provide novel insights into the naïve-to-primed pluripotent state transition and advance the understanding of glycosylation complex regulation during early mouse embryonic development.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Chika Ogura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Hayato Ota
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Izumi, Sendai, Miyagi, 981-3205, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
- Glycan and Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
27
|
Mirabella S, Petrucci G, Faggi C, Matassini C, Cardona F, Goti A. Allyl Cyanate/Isocyanate Rearrangement in Glycals: Stereoselective Synthesis of 1-Amino and Diamino Sugar Derivatives. Org Lett 2020; 22:9041-9046. [PMID: 33147974 PMCID: PMC7735751 DOI: 10.1021/acs.orglett.0c03438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The [3,3]-sigmatropic allyl cyanate/isocyanate rearrangement of glycals in the presence of O-, N-, and C-nucleophiles afforded β-N-glucosyl and galactosyl carbamates, ureas, and amides in good yields. The unsaturated products were elaborated to N-glycosides by dihydroxylation, to 1,3-diaminosugars by tethered aminohydroxylation, or to 1,2-diaminosugars by iteration of the sigmatropic rearrangement. This metal-free methodology represents an excellent and general method for the stereoselective synthesis of N-glycosides and diamino sugars with complete transmission of stereochemical information.
Collapse
Affiliation(s)
- Stefania Mirabella
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Giulia Petrucci
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Cristina Faggi
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Camilla Matassini
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Cardona
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
28
|
Chiang CY, Chou CC, Chang HY, Hsu MF, Pao PJ, Chiang MH, Wang AHJ. Biochemical and molecular dynamics studies of archaeal polyisoprenyl pyrophosphate phosphatase from Saccharolobus solfataricus. Enzyme Microb Technol 2020; 139:109585. [DOI: 10.1016/j.enzmictec.2020.109585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
|
29
|
Taherzadeh G, Dehzangi A, Golchin M, Zhou Y, Campbell MP. SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Bioinformatics 2020; 35:4140-4146. [PMID: 30903686 DOI: 10.1093/bioinformatics/btz215] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/03/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively. RESULTS The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features. AVAILABILITY AND IMPLEMENTATION http://sparks-lab.org/server/SPRINT-Gly/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ghazaleh Taherzadeh
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Abdollah Dehzangi
- Department of Computer Science, Morgan State University, Baltimore, MD, USA
| | - Maryam Golchin
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.,Institute for Glycomics, Griffith University, Parklands Drive, Gold Coast, QLD, Australia
| | - Matthew P Campbell
- Institute for Glycomics, Griffith University, Parklands Drive, Gold Coast, QLD, Australia
| |
Collapse
|
30
|
Naseri R, Navabi SJ, Samimi Z, Mishra AP, Nigam M, Chandra H, Olatunde A, Tijjani H, Morais-Urano RP, Farzaei MH. Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru 2020; 28:333-358. [PMID: 32006343 PMCID: PMC7095136 DOI: 10.1007/s40199-020-00327-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Glycoproteins are organic compounds formed from proteins and carbohydrates, which are found in many parts of the living systems including the cell membranes. Furthermore, impaired metabolism of glycoprotein components plays the main role in the pathogenesis of diabetes mellitus. The aim of this study is to investigate the influence of glycoprotein levels in the treatment of diabetes mellitus. METHODS All relevant papers in the English language were compiled by searching electronic databases, including Scopus, PubMed and Cochrane library. The keywords of glycoprotein, diabetes mellitus, glycan, glycosylation, and inhibitor were searched until January 2019. RESULTS Glycoproteins are pivotal elements in the regulation of cell proliferation, growth, maturation and signaling pathways. Moreover, they are involved in drug binding, drug transportation, efflux of chemicals and stability of therapeutic proteins. These functions, structure, composition, linkages, biosynthesis, significance and biological effects are discussed as related to their use as a therapeutic strategy for the treatment of diabetes mellitus and its complications. CONCLUSIONS The findings revealed several chemical and natural compounds have significant beneficial effects on glycoprotein metabolism. The comprehension of glycoprotein structure and functions are very essential and inevitable to enhance the knowledge of glycoengineering for glycoprotein-based therapeutics as may be required for the treatment of diabetes mellitus and its associated complications. Graphical abstract.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Jafar Navabi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemwati Nandan Bahuguna Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Manisha Nigam
- Department of Biochemistry, Hemwati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Harish Chandra
- Department of Microbiology, Gurukul Kangri Vishwavidhyalya, Haridwar, Uttarakhand, 249404, India
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Habibu Tijjani
- Natural Product Research Laboratory, Department of Biochemistry, Bauchi State University, Gadau, Nigeria
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brasil
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
31
|
Callender JA, Sevillano AM, Soldau K, Kurt TD, Schumann T, Pizzo DP, Altmeppen H, Glatzel M, Esko JD, Sigurdson CJ. Prion protein post-translational modifications modulate heparan sulfate binding and limit aggregate size in prion disease. Neurobiol Dis 2020; 142:104955. [PMID: 32454127 DOI: 10.1016/j.nbd.2020.104955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023] Open
Abstract
Many aggregation-prone proteins linked to neurodegenerative disease are post-translationally modified during their biogenesis. In vivo pathogenesis studies have suggested that the presence of post-translational modifications can shift the aggregate assembly pathway and profoundly alter the disease phenotype. In prion disease, the N-linked glycans and GPI-anchor on the prion protein (PrP) impair fibril assembly. However, the relevance of the two glycans to aggregate structure and disease progression remains unclear. Here we show that prion-infected knockin mice expressing an additional PrP glycan (tri-glycosylated PrP) develop new plaque-like deposits on neuronal cell membranes, along the subarachnoid space, and periventricularly, suggestive of high prion mobility and transit through the interstitial fluid. These plaque-like deposits were largely non-congophilic and composed of full length, uncleaved PrP, indicating retention of the glycophosphatidylinositol (GPI) anchor. Prion aggregates sedimented in low density fractions following ultracentrifugation, consistent with oligomers, and bound low levels of heparan sulfate (HS) similar to other predominantly GPI-anchored prions. Collectively, these results suggest that highly glycosylated PrP primarily converts as a GPI-anchored glycoform, with low involvement of HS co-factors, limiting PrP assembly mainly to oligomers. Since PrPC is highly glycosylated, these findings may explain the high frequency of diffuse, synaptic, and plaque-like deposits in the brain as well as the rapid conversion commonly observed in human and animal prion disease.
Collapse
Affiliation(s)
| | | | - Katrin Soldau
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Timothy D Kurt
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Taylor Schumann
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Donald P Pizzo
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20251, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20251, Germany
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Christina J Sigurdson
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA 95616, USA; Departments of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
33
|
Wang H, Qu X, Zhang Z, Lei M, Tan H, Bao C, Lin S, Zhu L, Kohn J, Liu C. Tag-Free Site-Specific BMP-2 Immobilization with Long-Acting Bioactivities via a Simple Sugar-Lectin Interaction. ACS Biomater Sci Eng 2020; 6:2219-2230. [PMID: 33455345 DOI: 10.1021/acsbiomaterials.9b01730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of a biomaterial matrix with biological properties is of great importance to developing functional materials for clinical use. However, the site-specific immobilization of growth factors to endow materials with bioactivities has been a challenge to date. Considering the wide existence of glycosylation in mammalian proteins or recombinant proteins, we establish a bioaffinity-based protein immobilization strategy (bioanchoring method) utilizing the native sugar-lectin interaction between concanavalin A (Con A) and the oligosaccharide chain on glycosylated bone morphogenetic protein-2 (GBMP-2). The interaction realizes the site-specific immobilization of GBMP-2 to a substrate modified with Con A while preserving its bioactivity in a sustained and highly efficient way, as evidenced by its enhanced ability to induce osteodifferentiation compared with that of the soluble GBMP-2. Moreover, the surface with Con A-bioanchored GBMP-2 can be reused to stimulate multiple batches of C2C12 cells to differentiate almost to the same degree. Even after 4 month storage at 4 °C in phosphate-buffered saline (PBS), the Con A-bioanchored GBMP-2 still maintains the bioactivity to stimulate the differentiation of C2C12 cells. Furthermore, the ectopic ossification test proves the in vivo bioactivity of bioanchored GBMP-2. Overall, our results demonstrate that the tag-free and site (i.e., sugar chain)-specific protein immobilization strategy represents a simple and generic alternative, which is promising to apply for other glycoprotein immobilization and application. It should be noted that although the lectin we utilized can only bind to d-mannose/d-glucose, the diversity of the lectin family assures that a specific lectin could be offered for other sugar types, thus expanding the applicable scope further.
Collapse
Affiliation(s)
| | | | - Zheng Zhang
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | - Joachim Kohn
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
34
|
Arantes PR, Pedebos C, Polêto MD, Pol-Fachin L, Verli H. The Lazy Life of Lipid-Linked Oligosaccharides in All Life Domains. J Chem Inf Model 2020; 60:631-643. [PMID: 31769974 DOI: 10.1021/acs.jcim.9b00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid-linked oligosaccharides (LLOs) play an important role in the N-glycosylation pathway as the donor substrate of oligosaccharyltransferases (OSTs), which are responsible for the en bloc transfer of glycan chains onto a nascent polypeptide. The lipid component of LLO in both eukarya and archaea consists of a dolichol, and an undecaprenol in prokarya, whereas the number of isoprene units may change between species. Given the potential relevance of LLOs and their related enzymes to diverse biotechnological applications, obtaining reliable LLO models from distinct domains of life could support further studies on complex formation and their processing by OSTs, as well as protein engineering on such systems. In this work, molecular modeling techniques, such as quantum mechanics calculations, molecular dynamics simulations, and metadynamics were employed to study eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol), bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol), and archaeal (Glc1-Man1-Gal1-Man1-Glc1-Gal1-Glc1-P-Dolichol) LLOs in membrane bilayers. Microsecond molecular dynamics simulations and metadynamics calculations of LLOs revealed that glycan chains are more prone to interact with the membrane lipid head groups, while the PP linkages are positioned at the lipid phosphate head groups level. The dynamics of isoprenoid chains embedded within the bilayer are described, and membrane dynamics and related properties are also investigated. Overall, there are similarities regarding the structure and dynamics of the eukaryotic, the bacterial, and the archaeal LLOs in bilayers, which can support the comprehension of their association with OSTs. These data may support future studies on the transferring mechanism of the oligosaccharide chain to an acceptor protein.
Collapse
Affiliation(s)
- Pablo R Arantes
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil.,Laboratory of Genetic Toxicology , Federal University of Health Sciences of Porto Alegre - UFCSPA, Sarmento Leite, 245, Lab.714 , Porto Alegre , RS 90050-170 , Brazil
| | - Conrado Pedebos
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil.,School of Chemistry , University of Southampton , Southampton , SO17 1BJ , U.K
| | - Marcelo D Polêto
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil.,Departamento de Biologia Geral , Universidade Federal de Viçosa , Viçosa , MG 36570-000 , Brazil
| | | | - Hugo Verli
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil
| |
Collapse
|
35
|
Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations. Cell 2020; 180:605-632. [PMID: 32059777 PMCID: PMC7087397 DOI: 10.1016/j.cell.2020.01.025] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Despite advances in genetic and proteomic techniques, a complete portrait of the proteome and its complement of dynamic interactions and modifications remains a lofty, and as of yet, unrealized, objective. Specifically, traditional biological and analytical approaches have not been able to address key questions relating to the interactions of proteins with small molecules, including drugs, drug candidates, metabolites, or protein post-translational modifications (PTMs). Fortunately, chemists have bridged this experimental gap through the creation of bioorthogonal reactions. These reactions allow for the incorporation of chemical groups with highly selective reactivity into small molecules or protein modifications without perturbing their biological function, enabling the selective installation of an analysis tag for downstream investigations. The introduction of chemical strategies to parse and enrich subsets of the "functional" proteome has empowered mass spectrometry (MS)-based methods to delve more deeply and precisely into the biochemical state of cells and its perturbations by small molecules. In this Primer, we discuss how one of the most versatile bioorthogonal reactions, "click chemistry", has been exploited to overcome limitations of biological approaches to enable the selective marking and functional investigation of critical protein-small-molecule interactions and PTMs in native biological environments.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
L-asparaginase and 6-diazo-5-oxo-L-norleucine synergistically inhibit the growth of glioblastoma cells. J Neurooncol 2020; 146:469-475. [PMID: 32020477 DOI: 10.1007/s11060-019-03351-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Glioblastoma is an aggressive central nervous system tumor with a 5-year survival rate of < 10%. The standard therapy for glioblastoma is maximal safe resection, followed by radiation therapy and chemotherapy with temozolomide. New approaches to treatment of glioblastoma, such as targeting metabolism, have been studied. The object of this study is to evaluate whether asparagine could be a new target for treatment of glioblastoma. METHODS We investigated a potential treatment for glioblastoma that targets the amino acid metabolism. U251, U87, and SF767 glioblastoma cells were treated with L-asparaginase and/or 6-diazo-5-oxo-L-norleucine (DON). L-asparaginase hydrolyzes asparagine into aspartate and depletes asparagine. L-asparaginase has been used for the treatment of acute lymphoblastic leukemia. DON is a glutamine analog that inhibits several glutamine-utilizing enzymes, including asparagine synthetase. RESULTS Cell viability was measured after 72 h of treatment. MTS assay showed that L-asparaginase suppressed the proliferation of U251, U87, and SF767 cells in a dose-dependent manner. DON also inhibited the proliferation of these cell lines in a dose-dependent manner. Combined treatment with these drugs had a synergistic antiproliferative effect in these cell lines. Exogenous asparagine rescued the effect of inhibition of proliferation by L-asparaginase and DON. The expression of asparagine synthetase mRNA was increased in cells treated with a combination of L-asparaginase and DON. This combined treatment also induced greater apoptosis and autophagy than did single-drug treatment. CONCLUSION The results suggest that the combination of L-asparaginase and DON could be a new therapeutic option for patients with glioblastoma.
Collapse
|
37
|
Bokhari H, Maryam A, Shahid R, Siddiqi AR. Oligosaccharyltransferase PglB of Campylobacter jejuni is a glycoprotein. World J Microbiol Biotechnol 2019; 36:9. [PMID: 31858269 DOI: 10.1007/s11274-019-2784-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is the one of the leading cause of bacterial food borne gastroenteritis. PglB, a glycosyltransferase, plays a crucial role of mediating glycosylation of numerous periplasmic proteins. It catalyzes N-glycosylation at the sequon D/E-X1-N-X2-S/T in its substrate proteins. Here we report that the PglB itself is a glycoprotein which self-glycosylates at N534 site in its DYNQS sequon by its own catalytic WWDYG motif. Site-directed mutagenesis, lectin Immunoblot, and mobility shift assays confirmed that the DYNQS is an N-glycosylation motif. PglB's N-glycosylation motif is structurally and functionally similar to its widely studied glycosylation substrate, the OMPH1. Its DYNQS motif forms a solvent-exposed crest. This motif is close to a cluster of polar and hydrophilic residues, which form a loop flanked by two α helices. This arrangement extremely apposite for auto-glycosylation at N534. This self-glycosylation ability of PglB could mediate C. jejuni's ability to colonize the intestinal epithelium. Further this capability may also bear significance for the development of novel conjugated vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Habib Bokhari
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| |
Collapse
|
38
|
Rubio MV, Terrasan CRF, Contesini FJ, Zubieta MP, Gerhardt JA, Oliveira LC, de Souza Schmidt Gonçalves AE, Almeida F, Smith BJ, de Souza GHMF, Dias AHS, Skaf M, Damasio A. Redesigning N-glycosylation sites in a GH3 β-xylosidase improves the enzymatic efficiency. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:269. [PMID: 31754374 PMCID: PMC6854716 DOI: 10.1186/s13068-019-1609-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/04/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND β-Xylosidases are glycoside hydrolases (GHs) that cleave xylooligosaccharides and/or xylobiose into shorter oligosaccharides and xylose. Aspergillus nidulans is an established genetic model and good source of carbohydrate-active enzymes (CAZymes). Most fungal enzymes are N-glycosylated, which influences their secretion, stability, activity, signalization, and protease protection. A greater understanding of the N-glycosylation process would contribute to better address the current bottlenecks in obtaining high secretion yields of fungal proteins for industrial applications. RESULTS In this study, BxlB-a highly secreted GH3 β-xylosidase from A. nidulans, presenting high activity and several N-glycosylation sites-was selected for N-glycosylation engineering. Several glycomutants were designed to investigate the influence of N-glycans on BxlB secretion and function. The non-glycosylated mutant (BxlBnon-glyc) showed similar levels of enzyme secretion and activity compared to the wild-type (BxlBwt), while a partially glycosylated mutant (BxlBN1;5;7) exhibited increased activity. Additionally, there was no enzyme secretion in the mutant in which the N-glycosylation context was changed by the introduction of four new N-glycosylation sites (BxlBCC), despite the high transcript levels. BxlBwt, BxlBnon-glyc, and BxlBN1;5;7 formed similar secondary structures, though the mutants had lower melting temperatures compared to the wild type. Six additional glycomutants were designed based on BxlBN1;5;7, to better understand its increased activity. Among them, the two glycomutants which maintained only two N-glycosylation sites each (BxlBN1;5 and BxlBN5;7) showed improved catalytic efficiency, whereas the other four mutants' catalytic efficiencies were reduced. The N-glycosylation site N5 is important for improved BxlB catalytic efficiency, but needs to be complemented by N1 and/or N7. Molecular dynamics simulations of BxlBnon-glyc and BxlBN1;5 reveals that the mobility pattern of structural elements in the vicinity of the catalytic pocket changes upon N1 and N5 N-glycosylation sites, enhancing substrate binding properties which may underlie the observed differences in catalytic efficiency between BxlBnon-glyc and BxlBN1;5. CONCLUSIONS This study demonstrates the influence of N-glycosylation on A. nidulans BxlB production and function, reinforcing that protein glycoengineering is a promising tool for enhancing thermal stability, secretion, and enzymatic activity. Our report may also support biotechnological applications for N-glycosylation modification of other CAZymes.
Collapse
Affiliation(s)
- Marcelo Ventura Rubio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - César Rafael Fanchini Terrasan
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Leandro Cristante Oliveira
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP 15054-000 Brazil
| | | | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP 14049-900 Brazil
| | - Bradley Joseph Smith
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Gustavo Henrique Martins Ferreira de Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| | - Artur Hermano Sampaio Dias
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas, SP 13084-862 Brazil
| | - Munir Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas, SP 13084-862 Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-862 Brazil
| |
Collapse
|
39
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
40
|
ALG13 Deficiency Associated with Increased Seizure Susceptibility and Severity. Neuroscience 2019; 409:204-221. [DOI: 10.1016/j.neuroscience.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/31/2023]
|
41
|
Yates LE, Natarajan A, Li M, Hale ME, Mills DC, DeLisa MP. Glyco-recoded Escherichia coli: Recombineering-based genome editing of native polysaccharide biosynthesis gene clusters. Metab Eng 2019; 53:59-68. [DOI: 10.1016/j.ymben.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
|
42
|
Cai ZP, Conway LP, Huang YY, Wang WJ, Laborda P, Wang T, Lu AM, Yao HL, Huang K, Flitsch SL, Liu L, Voglmeir J. Enzymatic Synthesis of Trideuterated Sialosides. Molecules 2019; 24:molecules24071368. [PMID: 30965582 PMCID: PMC6479850 DOI: 10.3390/molecules24071368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Sialic acids are a family of acidic monosaccharides often found on the termini of cell surface proteins or lipid glycoconjugates of higher animals. Herein we describe the enzymatic synthesis of the two isotopically labeled sialic acid derivatives d3-X-Gal-α-2,3-Neu5Ac and d3-X-Gal-α-2,3-Neu5Gc. Using deuterium oxide as the reaction solvent, deuterium atoms could be successfully introduced during the enzymatic epimerization and aldol addition reactions when the sialosides were generated. NMR and mass spectrometric analyses confirmed that the resulting sialosides were indeed tri-deuterated. These compounds may be of interest as internal standards in liquid chromatography/mass spectrometric assays for biochemical or clinical studies of sialic acids. This was further exemplified by the use of this tri-deuterated sialosides as internal standards for the quantification of sialic acids in meat and egg samples.
Collapse
Affiliation(s)
- Zhi-P Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Louis P Conway
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ying Y Huang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen J Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ai M Lu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hong L Yao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun Huang
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Losev Y, Paul A, Frenkel-Pinter M, Abu-Hussein M, Khalaila I, Gazit E, Segal D. Novel model of secreted human tau protein reveals the impact of the abnormal N-glycosylation of tau on its aggregation propensity. Sci Rep 2019; 9:2254. [PMID: 30783169 PMCID: PMC6381127 DOI: 10.1038/s41598-019-39218-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and has no disease-modifying treatment yet. The hallmarks of AD are two amyloidogenic proteins: tau and amyloid β (Aβ). Tau undergoes several posttranslational modifications, including N-glycosylation. Tau was reported to be N-glycosylated in AD brains, but not in healthy counterparts, which may affect AD etiology. Here, we aimed to examine the effect of N-glycosylation on aggregation propensity of tau. To that end, a novel SH-SY5Y cell-based model was generated in which recombinant human tau (htau) is forced to be secreted from the cells. Secreted htau was found to localize in the secretory pathway compartments and to undergo N-glycosylation. Following N-glycan cleavage of the secreted htau, various biophysical results collectively indicated that the untreated N-glycosylated secreted htau is markedly less aggregative, contains thinner and shorter fibrils, as compared to treated de-glycosylated secreted htau. This finding shows that N-glycans attached to htau may affect its aggregation. This could help to better understand the effect of N-glycosylated htau on AD progression.
Collapse
Affiliation(s)
- Yelena Losev
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Ashim Paul
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Moran Frenkel-Pinter
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Malak Abu-Hussein
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Isam Khalaila
- Department of Biotechnology Engineering, Ben-Gurion University of Negev, Beer Sheva, 84105, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel.,Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel. .,Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel.
| |
Collapse
|
44
|
Xu XX, Li ST, Wang N, Kitajima T, Yoko-O T, Fujita M, Nakanishi H, Gao XD. Structural and functional analysis of Alg1 beta-1,4 mannosyltransferase reveals the physiological importance of its membrane topology. Glycobiology 2019; 28:741-753. [PMID: 29939232 DOI: 10.1093/glycob/cwy060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, the biosynthesis of a highly conserved dolichol-linked oligosaccharide (DLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) begins on the cytoplasmic face of the endoplasmic reticulum (ER) and ends within the lumen. Two functionally distinguished heteromeric glycosyltransferase (GTase) complexes are responsible for the cytosolic DLO assembly. Alg1, a β-1, 4 mannosyltransferase (MTase) physically interacts with Alg2 and Alg11 proteins to form the multienzyme complex which catalyzes the addition of all five mannose to generate the Man5GlcNAc2-PP-Dol intermediate. Despite the fact that Alg1 plays a central role in the formation of the multi-MTase has been confirmed, the topological information of Alg1 including the molecular mechanism of membrane association are still poorly understood. Using a combination of bioinformatics and biological approaches, we have undertaken a structural and functional study on Alg1 protein, in which the enzymatic activities of Alg1 and its variants were monitored by a complementation assay using the GALpr-ALG1 yeast strain, and further confirmed by a liquid chromatography-mass spectrometry-based in vitro quantitative assay. Computational and experimental evidence confirmed Alg1 shares structure similarity with Alg13/14 complex, which has been defined as a membrane-associated GT-B GTase. Particularly, we provide clear evidence that the N-terminal transmembrane domain including the following positively charged amino acids and an N-terminal amphiphilic-like α helix domain exposed on the protein surface strictly coordinate the Alg1 orientation on the ER membrane. This work provides detailed membrane topology of Alg1 and further reveals its biological importance at the spatial aspect in coordination of cytosolic DLO biosynthesis.
Collapse
Affiliation(s)
- Xin-Xin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Sheng-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Takehiko Yoko-O
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Higashi, Tsukuba, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| |
Collapse
|
45
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
46
|
Kolli V, Schumacher KN, Dodds ED. Ion mobility-resolved collision-induced dissociation and electron transfer dissociation of N-glycopeptides: gathering orthogonal connectivity information from a single mass-selected precursor ion population. Analyst 2018; 142:4691-4702. [PMID: 29119999 DOI: 10.1039/c7an01196b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycopeptide-level mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses are commonly performed to establish site-specific protein glycosylation profiles that are of central importance to gaining structure-function insights on glycoproteins. Confoundingly, the complete characterization of glycopeptide connectivity usually requires the acquisition of multiple MS/MS fragmentation spectra. Complementary ion fragmentation techniques such as collision-induced dissociation (CID) and electron transfer dissociation (ETD) are often applied in concert to address this need. While structurally informative, the requirement for acquisition of two MS/MS spectra per analyte places considerable limitations upon the breadth and depth of large-scale glycoproteomic inquiry. Here, a previously developed method of multiplexing CID and ETD is applied to the study of glycopeptides for the first time. Integration of the two dissociation methods was accomplished through addition of an ion mobility (IM) dimension that disperses the two stages of MS/MS in time. This allows the two MS/MS spectra to be acquired within a few milliseconds of one another, and to be deconvoluted in post-processing. Furthermore, the method allows both fragmentation readouts to be obtained from the same precursor ion packet, thus reducing the inefficiencies imposed by separate CID and ETD acquisitions and the relatively poor precursor ion to fragment ion conversion typical of ETD. N-Linked glycopeptide ions ranging in molecular weight from 1.8 to 6.5 kDa were generated from four model glycoproteins that collectively encompassed paucimannosidic, high mannose, and complex types of N-glycosylation. In each case, IM-resolved CID and ETD events provided complete coverage of the glycan topology and peptide sequence coverages ranging from 48.4% (over 32 amino acid residues) to 85.7% (over eight amino acid residues). The potential of this method for large-scale glycoproteomic analysis is discussed.
Collapse
Affiliation(s)
- Venkata Kolli
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
47
|
Spiciarich DR, Oh ST, Foley A, Hughes SB, Mauro MJ, Abdel-Wahab O, Press RD, Viner R, Thompson SL, Chen Q, Azadi P, Bertozzi CR, Maxson JE. A Novel Germline Variant in CSF3R Reduces N-Glycosylation and Exerts Potent Oncogenic Effects in Leukemia. Cancer Res 2018; 78:6762-6770. [PMID: 30348809 PMCID: PMC6295230 DOI: 10.1158/0008-5472.can-18-1638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/12/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
Abstract
: Mutations in the colony-stimulating factor 3 receptor (CSF3R) have been identified in the vast majority of patients with chronic neutrophilic leukemia and are present in other kinds of leukemia, such as acute myeloid leukemia. Here, we studied the function of novel germline variants in CSF3R at amino acid N610. These N610 substitutions were potently oncogenic and activated the receptor independently of its ligand GCSF. These mutations activated the JAK-STAT signaling pathway and conferred sensitivity to JAK inhibitors. Mass spectrometry revealed that the N610 residue is part of a consensus N-linked glycosylation motif in the receptor, usually linked to complex glycans. N610 was also the primary site of sialylation of the receptor. Membrane-proximal N-linked glycosylation was critical for maintaining the ligand dependence of the receptor. Mutation of the N610 site prevented membrane-proximal N-glycosylation of CSF3R, which then drove ligand-independent cellular expansion. Kinase inhibitors blocked growth of cells with an N610 mutation. This study expands the repertoire of oncogenic mutations in CSF3R that are therapeutically targetable and provides insight into the function of glycans in receptor regulation. SIGNIFICANCE: This study reveals the critical importance of membrane-proximal N-linked glycosylation of CSF3R for the maintenance of ligand dependency in leukemia.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Binding Sites
- Carcinogenesis
- Cell Membrane/metabolism
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic
- Germ-Line Mutation
- Glycosylation
- HEK293 Cells
- Humans
- Janus Kinases/metabolism
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Neutrophilic, Chronic/genetics
- Ligands
- Mass Spectrometry
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Mutation
- Proteomics
- Receptors, Colony-Stimulating Factor/genetics
- Receptors, Colony-Stimulating Factor/metabolism
- STAT Transcription Factors/metabolism
- Sequence Analysis, DNA
- Signal Transduction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- David R Spiciarich
- Department of Chemistry, University of California Berkeley, Berkeley, California
- Department of Chemistry Stanford University, Stanford, California
| | - Stephen T Oh
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri
| | - Amy Foley
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Seamus B Hughes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Richard D Press
- Department of Pathology & Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, California
| | - Sarah L Thompson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Qiushi Chen
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia
| | - Carolyn R Bertozzi
- Department of Chemistry Stanford University, Stanford, California
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Julia E Maxson
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
48
|
Khan AH, Noordin R. Strategies for humanizing glycosylation pathways and producing recombinant glycoproteins in microbial expression systems. Biotechnol Prog 2018; 35:e2752. [DOI: 10.1002/btpr.2752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Amjad Hayat Khan
- Inst. for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Penang Malaysia
| | - Rahmah Noordin
- Inst. for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
49
|
Zhou Q, Qiu H. The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. J Pharm Sci 2018; 108:1366-1377. [PMID: 30471292 DOI: 10.1016/j.xphs.2018.11.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
N-glycosylation is one of major post-translational modifications in nature, and it is essential for protein structure and function. As hydrophilic moieties of glycoproteins, N-glycans play important roles in protein stability. They protect the proteins against proteolytic degradation, aggregation, and thermal denaturation through maintaining optimal conformations. There are extensive evidences showing the involvement of N-glycans in the pharmacodynamics and pharmacokinetics of recombinant therapeutic proteins and antibodies. Highly sialylated complex-type glycans enable the longer serum half-lives of proteins against uptake through hepatic asialoglycoprotein receptor and mannose receptor for degradation in lysosomes. Moreover, the presence of nonhuman glycans results in clearance through pre-existing antibodies from serum and induces IgE-mediated anaphylaxis. N-glycans also facilitate or reduce the adverse immune responses of the proteins through interacting with multiple glycan-binding proteins, including those specific for mannose or mannose 6-phosphate. Due to the glycan impacts, a few therapeutic proteins were glycoengineered to improve the pharmacokinetics and stability. Thus, N-glycosylation should be extensively investigated and optimized for each individual protein for better efficacy and safety.
Collapse
Affiliation(s)
- Qun Zhou
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701.
| | - Huawei Qiu
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701
| |
Collapse
|
50
|
Callejas-Hernández F, Rastrojo A, Poveda C, Gironès N, Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci Rep 2018; 8:14631. [PMID: 30279473 PMCID: PMC6168536 DOI: 10.1038/s41598-018-32877-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Chagas disease is a complex illness caused by the protozoan Trypanosoma cruzi displaying highly diverse clinical outcomes. In this sense, the genome sequence elucidation and comparison between strains may lead to disease understanding. Here, two new T. cruzi strains, have been sequenced, Y using Illumina and Bug2148 using PacBio, assembled, analyzed and compared with the T. cruzi annotated genomes available to date. The assembly stats from the new sequences show effective improvement of T. cruzi genome over the actual ones. Such as, the largest contig assembled (1.3 Mb in Bug2148) in de novo attempts and the highest mean assembly coverage (71X for Y). Our analysis reveals a new genomic expansion and greater complexity for those multi-copy gene families related to infection process and disease development, such as Trans-sialidases, Mucins and Mucin Associated Surface Proteins, among others. On one side, we demonstrate that multi-copy gene families are located near telomeric regions of the "chromosome-like" 1.3 Mb contig assembled of Bug2148, where they likely suffer high evolutive pressure. On the other hand, we identified several strain-specific single copy genes that might help to understand the differences in infectivity and physiology among strains. In summary, our results indicate that T. cruzi has a complex genomic architecture that may have promoted its evolution.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cristina Poveda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| |
Collapse
|