1
|
Takeda-Uchimura Y, Ikezaki M, Akama TO, Ihara Y, Allain F, Nishitsuji K, Uchimura K. GlcNAc6ST2/CHST4 Is Essential for the Synthesis of R-10G-Reactive Keratan Sulfate/Sulfated N-Acetyllactosamine Oligosaccharides in Mouse Pleural Mesothelium. Molecules 2024; 29:764. [PMID: 38398516 PMCID: PMC10893525 DOI: 10.3390/molecules29040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan;
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Kazuchika Nishitsuji
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Kenji Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| |
Collapse
|
2
|
Wu Y, Vos GM, Huang C, Chapla D, Kimpel ALM, Moremen KW, de Vries RP, Boons GJ. Exploiting Substrate Specificities of 6- O-Sulfotransferases to Enzymatically Synthesize Keratan Sulfate Oligosaccharides. JACS AU 2023; 3:3155-3164. [PMID: 38034954 PMCID: PMC10685434 DOI: 10.1021/jacsau.3c00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Keratan sulfate (KS) is a glycosaminoglycan that is widely expressed in the extracellular matrix of various tissue types, where it is involved in many biological processes. Herein, we describe a chemo-enzymatic approach to preparing well-defined KS oligosaccharides by exploiting the known and newly discovered substrate specificities of relevant sulfotransferases. The premise of the approach is that recombinant GlcNAc-6-O-sulfotransferases (CHST2) only sulfate terminal GlcNAc moieties to give GlcNAc6S that can be galactosylated by B4GalT4. Furthermore, CHST1 can modify the internal galactosides of a poly-LacNAc chain; however, it was found that a GlcNAc6S residue greatly increases the reactivity of CHST1 of a neighboring and internal galactoside. The presence of a 2,3-linked sialoside further modulates the site of modification by CHST1, and a galactoside flanked by 2,3-Neu5Ac and GlcNAc6S is preferentially sulfated over the other Gal residues. The substrate specificities of CHST1 and 2 were exploited to prepare a panel of KS oligosaccharides, including selectively sulfated N-glycans. The compounds and several other reference derivatives were used to construct a microarray that was probed for binding by several plant lectins, Siglec proteins, and hemagglutinins of influenza viruses. It was found that not only the sulfation pattern but also the presentation of epitopes as part of an O- or N-glycan determines binding properties.
Collapse
Affiliation(s)
- Yunfei Wu
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Gaël M. Vos
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Anne L. M. Kimpel
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, Padualaan
8, Utrecht 3584 CH, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
Zhang D, Zhang Y, Zou X, Li M, Zhang H, Du Y, Wang J, Peng C, Dong C, Hou Z. CHST2-mediated sulfation of MECA79 antigens is critical for breast cancer cell migration and metastasis. Cell Death Dis 2023; 14:288. [PMID: 37095090 PMCID: PMC10126008 DOI: 10.1038/s41419-023-05797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Snail is a denoted transcriptional repressor that plays key roles in epithelial-mesenchymal transition (EMT) and metastasis. Lately, a plethora of genes can be induced by stable expression of Snail in multiple cell lines. However, the biological roles of these upregulated genes are largely elusive. Here, we report identification of a gene encoding the key GlcNAc sulfation enzyme CHST2 is induced by Snail in multiple breast cancer cells. Biologically, CHST2 depletion results in inhibition of breast cancer cell migration and metastasis, while overexpression of CHST2 promotes cell migration and lung metastasis in nude mice. In addition, the expression level of MECA79 antigen is elevated and blocking the cell surface MECA79 antigen with specific antibodies can override cell migration mediated by CHST2 upregulation. Moreover, the sulfation inhibitor sodium chlorate effectively inhibits the cell migration induced by CHST2. Collectively, these data provide novel insights into the biology of Snail/CHST2/MECA79 axis in breast cancer progression and metastasis as well as potential therapeutic strategy for the diagnosis and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Dan Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihong Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuqun Zou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengying Li
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaning Du
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chicheng Peng
- Shandong NARUI Biotechnology Co., LTD, Shandong, China
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
7
|
Type IIa RPTPs and Glycans: Roles in Axon Regeneration and Synaptogenesis. Int J Mol Sci 2021; 22:ijms22115524. [PMID: 34073798 PMCID: PMC8197235 DOI: 10.3390/ijms22115524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Type IIa receptor tyrosine phosphatases (RPTPs) play pivotal roles in neuronal network formation. It is emerging that the interactions of RPTPs with glycans, i.e., chondroitin sulfate (CS) and heparan sulfate (HS), are critical for their functions. We highlight here the significance of these interactions in axon regeneration and synaptogenesis. For example, PTPσ, a member of type IIa RPTPs, on axon terminals is monomerized and activated by the extracellular CS deposited in neural injuries, dephosphorylates cortactin, disrupts autophagy flux, and consequently inhibits axon regeneration. In contrast, HS induces PTPσ oligomerization, suppresses PTPσ phosphatase activity, and promotes axon regeneration. PTPσ also serves as an organizer of excitatory synapses. PTPσ and neurexin bind one another on presynapses and further bind to postsynaptic leucine-rich repeat transmembrane protein 4 (LRRTM4). Neurexin is now known as a heparan sulfate proteoglycan (HSPG), and its HS is essential for the binding between these three molecules. Another HSPG, glypican 4, binds to presynaptic PTPσ and postsynaptic LRRTM4 in an HS-dependent manner. Type IIa RPTPs are also involved in the formation of excitatory and inhibitory synapses by heterophilic binding to a variety of postsynaptic partners. We also discuss the important issue of possible mechanisms coordinating axon extension and synapse formation.
Collapse
|
8
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
9
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Inada R, Miyamoto K, Tanaka N, Moriguchi K, Kadomatsu K, Takeuchi K, Igarashi M, Kusunoki S. Chondroitin sulfate N-acetylgalactosyltransferase-1 knockout shows milder phenotype in experimental autoimmune encephalomyelitis than in wild type. Glycobiology 2020; 31:260-265. [PMID: 32839819 DOI: 10.1093/glycob/cwaa072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Proteoglycans (PGs) are one of the main components in the extracellular matrix of the central nervous system. Chondroitin sulfate (CS) is a glycosaminoglycan (GAG), which is composed of major PGs. Similar to keratin sulfate (KS), another GAG, CS inhibits axon regeneration. However, the influence of these GAGs on the pathogenicity of neuroimmunological diseases is unclear. Here, we induced experimental autoimmune encephalomyelitis (EAE) in mice lacking CS N-acetylgalactosaminyltransferase-1 (CSGalNAcT1-KO), an important enzyme for CS synthesis. In our study, CSGalNAcT1-KO mice showed milder EAE symptoms than those in wild-type (WT) mice. The recall response of antigen-specific lymphocytes showed that CSGalNAcT1-KO-derived lymphocytes had a milder cell proliferation response than that in WT-derived lymphocytes. These results suggest that CS contributes toward the induction phase of EAE. We previously performed EAE experiments in GlcNAc-6-O-sulfotransferase KO (GlcNAc6ST-KO) and C6ST1-KO mice, which had reduced KS and reduced CS-C, respectively. EAE in CSGalNAcT1-KO mice was more similar to that in GlcNAc6ST-KO mice than in C6ST1-KO mice. In conclusion, the distinct GAG sugar chains are associated with severe or mild phenotypes of EAE and are therefore potential new therapeutic targets for neuroimmunological diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Rino Inada
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama 589-8511, Japan
| | - Katsuichi Miyamoto
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama 589-8511, Japan
| | - Noriko Tanaka
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama 589-8511, Japan
| | - Kota Moriguchi
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama 589-8511, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University School of Medicine, Nagoya 466-8550, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, Aichi Medical University, Aichi 480-1195, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata 951-8510, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
11
|
Wang Z, Zheng Y, Zheng M, Zhong J, Ma F, Zhou B, Zhu J. Neurogenic Niche Conversion Strategy Induces Migration and Functional Neuronal Differentiation of Neural Precursor Cells Following Brain Injury. Stem Cells Dev 2020; 29:235-248. [PMID: 31797735 DOI: 10.1089/scd.2019.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glial scars formed after brain injuries provide permissive cues for endogenous neural precursor/stem cells (eNP/SCs) to undergo astrogenesis rather than neurogenesis. Following brain injury, eNP/SCs from the subventricular zone leave their niche, migrate to the injured cortex, and differentiate into reactive astrocytes that contribute to glial scar formation. In vivo neuronal reprogramming, directly converting non-neuronal cells such as reactive astrocytes or NG2 glia into neurons, has greatly improved brain injury repair strategies. However, reprogramming carries a high risk of future clinical applications such as tumorigenicity, involving virus. In this study, we constructed a neural matrix to alter the adverse niche at the injured cortex, enabling eNP/SCs to differentiate into functional neurons. We found that the neural matrix functioned as a "glial trap" that largely concentrated and limited reactive astrocytes to the core of the lesion area, thus altering the adverse niche. The eNP/SCs migrated toward the injured cortex and differentiated into functional neurons. In addition, regenerated neurites extended across the boundary of the injured cortex. Mice treated with the neural matrix demonstrated significant behavioral recovery. For the first time, we induced eNP/SC-derived functional neurons in the cortex after brain injury without the use of viruses, microRNAs, or small molecules. Our novel strategy of applying this "glial trap" to obtain functional neurons in the injured cortex may provide a safer and more natural therapeutic alternative to reprogramming in future clinical applications.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhe Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fukai Ma
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Ohmae M, Yamazaki Y, Sezukuri K, Takada J. Keratan Sulfate, a “Unique” Sulfo-Sugar: Structures, Functions, and Synthesis. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1830.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Yuji Yamazaki
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Kyohei Sezukuri
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Junko Takada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
13
|
Ohmae M, Yamazaki Y, Sezukuri K, Takada J. Keratan Sulfate, a “Unique” Sulfo-Sugar: Structures, Functions, and Synthesis. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1830.1e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Yuji Yamazaki
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Kyohei Sezukuri
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Junko Takada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
14
|
Stratoulias V, Venero JL, Tremblay M, Joseph B. Microglial subtypes: diversity within the microglial community. EMBO J 2019; 38:e101997. [PMID: 31373067 PMCID: PMC6717890 DOI: 10.15252/embj.2019101997] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/03/2022] Open
Abstract
Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.
Collapse
Affiliation(s)
- Vassilis Stratoulias
- Toxicology UnitInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología MolecularFacultad de FarmaciaUniversidad de SevillaSevillaSpain
- Instituto de Biomedicina de Sevilla‐Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Marie‐Ève Tremblay
- Department of Molecular MedicineUniversité LavalQuebecQCCanada
- Axe NeurosciencesCentre de Recherche du CHU de Québec‐Université LavalQuebecQCCanada
| | - Bertrand Joseph
- Toxicology UnitInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
15
|
Ohgomori T, Jinno S. The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpine-induced status epileptics. J Comp Neurol 2019; 528:14-31. [PMID: 31237692 DOI: 10.1002/cne.24734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Induction of keratan sulfate in microglia has been found in several animal models of neurological disorders. However, the significance of keratan sulfate-expressing microglia is not fully understood. To address this issue, we analyzed the characteristics of microglia labeled by the 5D4 epitope, a marker of high-sulfated keratan sulfate, in the mouse hippocampus during the latent period after pilocarpine-induced status epilepticus (SE). Only 5D4-negative (5D4- ) microglia were found in the CA1 region of vehicle-treated controls and pilocarpine-treated mice at 1 day after SE onset. A few 5D4+ microglia appeared in the strata oriens and radiatum at 5 days post-SE, and they were distributed into the stratum pyramidale at 14 days post-SE. The expressions of genes related to both anti- and pro-inflammatory cytokines were higher in 5D4+ cells than in 5D4- cells at 5 but not 14 days post-SE. The expressions of genes related to phagocytosis were higher in 5D4+ cells than in 5D4- cells throughout the latent period. The phagocytic activity of microglia, as measured by engulfment of the zymosan bioparticles, was higher in 5D4+ cells than in 5D4- cells. The contact ratios between excitatory synaptic boutons and microglia were also higher in 5D4+ cells than in 5D4- cells at 5 and 14 days post-SE. The excitatory/inhibitory ratios of synaptic boutons within the microglial domain were lower in 5D4+ cells than in 5D4- cells at 14 days post-SE. Our findings indicate that 5D4+ microglia may play some role in epileptogenesis via pruning of excitatory synapses during the latent period after SE.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Melrose J. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation. ACTA ACUST UNITED AC 2019; 3:e1800327. [PMID: 32627425 DOI: 10.1002/adbi.201800327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Keratan sulfate (KS) is a functional electrosensory and neuro-instructive molecule. Recent studies have identified novel low sulfation KS in auditory and sensory tissues such as the tectorial membrane of the organ of Corti and the Ampullae of Lorenzini in elasmobranch fish. These are extremely sensitive proton gradient detection systems that send signals to neural interfaces to facilitate audition and electrolocation. High and low sulfation KS have differential functional roles in song learning in the immature male zebra song-finch with high charge density KS in song nuclei promoting brain development and cognitive learning. The conductive properties of KS are relevant to the excitable neural phenotype. High sulfation KS interacts with a large number of guidance and neuroregulatory proteins. The KS proteoglycan microtubule associated protein-1B (MAP1B) stabilizes actin and tubulin cytoskeletal development during neuritogenesis. A second 12 span transmembrane synaptic vesicle associated KS proteoglycan (SV2) provides a smart gel storage matrix for the storage of neurotransmitters. MAP1B and SV2 have prominent roles to play in neuroregulation. Aggrecan and phosphacan have roles in perineuronal net formation and in neuroregulation. A greater understanding of the biology of KS may be insightful as to how neural repair might be improved.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.,Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| |
Collapse
|
17
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
18
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
19
|
Chun H, An H, Lim J, Woo J, Lee J, Ryu H, Lee CJ. Astrocytic proBDNF and Tonic GABA Distinguish Active versus Reactive Astrocytes in Hippocampus. Exp Neurobiol 2018; 27:155-170. [PMID: 30022867 PMCID: PMC6050417 DOI: 10.5607/en.2018.27.3.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 01/18/2023] Open
Abstract
Astrocytes are the most abundant cell type in the brain and they make close contacts with neurons and blood vessels. They respond dynamically to various environmental stimuli and change their morphological and functional properties. Both physiological and pathological stimuli can induce versatile changes in astrocytes, as this phenomenon is referred to as ‘astrocytic plasticity’. However, the molecular and cellular mechanisms of astrocytic plasticity in response to various stimuli remain elusive, except for the presence of hypertrophy, a conspicuous structural change which is frequently observed in activated or reactive astrocytes. Here, we investigated differential characteristics of astrocytic plasticity in a stimulus-dependent manner. Strikingly, a stab wound brain injury lead to hypertrophy of astrocytes accompanied by increased GABA expression and tonic GABA release in mouse CA1 hippocampus. In contrast, the mice experiencing enriched environment exhibited astrocytic hypertrophy with enhanced proBDNF immunoreactivity but without GABA signal. Based on the results, we define proBDNF-positive/GABA-negative hypertrophic astrocytes as ‘active’ astrocytes and GABA-positive hypertrophic astrocytes as ‘reactive’ astrocytes, respectively. We propose for the first time that astrocytic proBDNF can be a bona fide molecular marker of the active astrocytes, which are distinct from the reactive astrocytes which show hypertrophy but with aberrant GABA.
Collapse
Affiliation(s)
- Heejung Chun
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Heeyoung An
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jiwoon Lim
- Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Junsung Woo
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jaekwang Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hoon Ryu
- Center for Neuromedicine, Brain Science Institute, KIST, Seoul 02792, Korea.,Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea.,Division of Bio-Medical Science & Technology, KIST School, KIST, Seoul 02792, Korea
| |
Collapse
|
20
|
Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS, Washington PM, Rodriguez OC, Burns MP. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 2018; 13:17. [PMID: 29618365 PMCID: PMC5885297 DOI: 10.1186/s13024-018-0249-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a major cause of disability and mortality, to which there is currently no comprehensive treatment. Blood Brain Barrier (BBB) dysfunction is well documented in human TBI patients, yet the molecular mechanisms that underlie this neurovascular unit (NVU) pathology remains unclear. The apolipoprotein-E (apoE) protein has been implicated in controlling BBB integrity in an isoform dependent manner, via suppression of Cyclophilin A (CypA)-Matrix metallopeptidase-9 (MMP-9) signaling cascades, however the contribution of this pathway in TBI-induced BBB permeability is not fully investigated. METHODS We exposed C57Bl/6 mice to controlled cortical impact and assessed NVU and BBB permeability responses up to 21 days post-injury. We pharmacologically probed the role of the CypA-MMP-9 pathway in BBB permeability after TBI using Cyclosporin A (CsA, 20 mg/kg). Finally, as the apoE4 protein is known to be functionally deficient compared to the apoE3 protein, we used humanized APOE mice as a clinically relevant model to study the role of apoE on BBB injury and repair after TBI. RESULTS In C57Bl/6 mice there was an inverse relationship between soluble apoE and BBB permeability, such that damaged BBB stabilizes as apoE levels increase in the days following TBI. TBI mice displayed acute pericyte loss, increased MMP-9 production and activity, and reduced tight-junction expression. Treatment with the CypA antagonist CsA in C57Bl/6 mice attenuates MMP-9 responses and enhances BBB repair after injury, demonstrating that MMP-9 plays an important role in the timing of spontaneous BBB repair after TBI. We also show that apoe mRNA is present in both astrocytes and pericytes after TBI. We report that APOE3 and APOE4 mice have similar acute BBB responses to TBI, but APOE3 mice display faster spontaneous BBB repair than APOE4 mice. Isolated microvessel analysis reveals delayed pericyte repopulation, augmented and sustained MMP-9 expression at the NVU, and impaired stabilization of Zonula Occludens-1, Occludin and Claudin-5 expression at tight junctions in APOE4 mice after TBI compared to APOE3 mice. CONCLUSIONS These data confirm apoE as an important modulator of spontaneous BBB stabilization following TBI, and highlights the APOE4 allele as a risk factor for poor outcome after TBI.
Collapse
Affiliation(s)
- Bevan S Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stephanie S Sloley
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - David J Barton
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Maia Parsadanian
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chinyere Agbaegbu
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Kathryn Stefos
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mondona S McCann
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Patricia M Washington
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga C Rodriguez
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, D.C, 20057, USA.
| |
Collapse
|
21
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
22
|
Yu P, Pearson CS, Geller HM. Flexible Roles for Proteoglycan Sulfation and Receptor Signaling. Trends Neurosci 2018; 41:47-61. [PMID: 29150096 PMCID: PMC5748001 DOI: 10.1016/j.tins.2017.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
Abstract
Proteoglycans (PGs) in the extracellular matrix (ECM) play vital roles in axon growth and navigation, plasticity, and regeneration of injured neurons. Different classes of PGs may support or inhibit cell growth, and their functions are determined in part by highly specific structural features. Among these, the pattern of sulfation on the PG sugar chains is a paramount determinant of a diverse and flexible set of outcomes. Recent studies of PG sulfation illustrate the challenges of attributing biological actions to specific sulfation patterns, and suggest ways in which highly similar molecules may exert opposing effects on neurons. The receptors for PGs, which have yet to be fully characterized, display a similarly nuanced spectrum of effects. Different classes of PG function via overlapping families of receptors and signaling pathways. This enables them to control axon growth and guidance with remarkable specificity, but it poses challenges for determining the precise binding interactions and downstream effects of different PGs and their assorted sulfated epitopes. This review examines existing and emerging evidence for the roles of PG sulfation and receptor interactions in determining how these complex molecules influence neuronal development, growth, and function.
Collapse
Affiliation(s)
- Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Sakamoto K, Kadomatsu K. Mechanisms of axon regeneration: The significance of proteoglycans. Biochim Biophys Acta Gen Subj 2017; 1861:2435-2441. [PMID: 28596106 DOI: 10.1016/j.bbagen.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Therapeutics specific to neural injury have long been anticipated but remain unavailable. Axons in the central nervous system do not readily regenerate after injury, leading to dysfunction of the nervous system. This failure of regeneration is due to both the low intrinsic capacity of axons for regeneration and the various inhibitors emerging upon injury. After many years of concerted efforts, however, these hurdles to axon regeneration have been partially overcome. SCOPE OF REVIEW This review summarizes the mechanisms regulating axon regeneration. We highlight proteoglycans, particularly because it has become increasingly clear that these proteins serve as critical regulators for axon regeneration. MAJOR CONCLUSIONS Studies on proteoglycans have revealed that glycans not only assist in the modulation of protein functions but also act as main players-e.g., as functional ligands mediating intracellular signaling through specific receptors on the cell surface. By regulating clustering of the receptors, glycans in the proteoglycan moiety, i.e., glycosaminoglycans, promote or inhibit axon regeneration. In addition, proteoglycans are involved in various types of neural plasticity, ranging from synaptic plasticity to experience-dependent plasticity. GENERAL SIGNIFICANCE Although studies on proteins have progressively facilitated our understanding of the nervous system, glycans constitute a new frontier for further research and development in this field. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
24
|
Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B. Puzzling Out Synaptic Vesicle 2 Family Members Functions. Front Mol Neurosci 2017; 10:148. [PMID: 28588450 PMCID: PMC5438990 DOI: 10.3389/fnmol.2017.00148] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Collapse
Affiliation(s)
- Odile Bartholome
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Judit Sánchez Gil
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium.,Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), University of LiègeLiège, Belgium
| |
Collapse
|
25
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
26
|
Gao C, Fujinawa R, Yoshida T, Ueno M, Ota F, Kizuka Y, Hirayama T, Korekane H, Kitazume S, Maeno T, Ohtsubo K, Yoshida K, Yamaguchi Y, Lepenies B, Aretz J, Rademacher C, Kabata H, Hegab AE, Seeberger PH, Betsuyaku T, Kida K, Taniguchi N. A keratan sulfate disaccharide prevents inflammation and the progression of emphysema in murine models. Am J Physiol Lung Cell Mol Physiol 2016; 312:L268-L276. [PMID: 28011617 DOI: 10.1152/ajplung.00151.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/28/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022] Open
Abstract
Emphysema is a typical component of chronic obstructive pulmonary disease (COPD), a progressive and inflammatory airway disease. However, no effective treatment currently exists. Here, we show that keratan sulfate (KS), one of the major glycosaminoglycans produced in the small airway, decreased in lungs of cigarette smoke-exposed mice. To confirm the protective effect of KS in the small airway, a disaccharide repeating unit of KS designated L4 ([SO3--6]Galβ1-4[SO3--6]GlcNAc) was administered to two murine models: elastase-induced-emphysema and LPS-induced exacerbation of a cigarette smoke-induced emphysema. Histological and microcomputed tomography analyses revealed that, in the mouse elastase-induced emphysema model, administration of L4 attenuated alveolar destruction. Treatment with L4 significantly reduced neutrophil influx, as well as the levels of inflammatory cytokines, tissue-degrading enzymes (matrix metalloproteinases), and myeloperoxidase in bronchoalveolar lavage fluid, suggesting that L4 suppressed inflammation in the lung. L4 consistently blocked the chemotactic migration of neutrophils in vitro. Moreover, in the case of the exacerbation model, L4 inhibited inflammatory cell accumulation to the same extent as that of dexamethasone. Taken together, L4 represents one of the potential glycan-based drugs for the treatment of COPD through its inhibitory action against inflammation.
Collapse
Affiliation(s)
- Congxiao Gao
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Reiko Fujinawa
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Takayuki Yoshida
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Hokkaido, Japan
| | - Manabu Ueno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Fumi Ota
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Tetsuya Hirayama
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Hiroaki Korekane
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Shinobu Kitazume
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Toshitaka Maeno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuaki Ohtsubo
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan.,Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yoshida
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Yoshiki Yamaguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, Infection Immunology, Hannover, Germany
| | - Jonas Aretz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; and
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; and
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; and
| | - Kozui Kida
- Respiratory Care Clinic, Nippon Medical School, Tokyo, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, Hirosawa, Wako, Saitama, Japan;
| |
Collapse
|
27
|
Ueno R, Miyamoto K, Tanaka N, Moriguchi K, Kadomatsu K, Kusunoki S. Keratan sulfate exacerbates experimental autoimmune encephalomyelitis. J Neurosci Res 2015; 93:1874-80. [PMID: 26340909 DOI: 10.1002/jnr.23640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/08/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
Abstract
Proteoglycans (PGs) are the components of extracellular matrices in the central nervous system (CNS). Keratan sulfate (KS) is a glycosaminoglycan that is included in the KSPG that acts as an inhibitory factor in nerve regeneration after CNS injury. To investigate the role of KS in immune diseases, we induced experimental autoimmune encephalomyelitis (EAE) in mice that were deficient in the N-acetylglucosamine (GlcNAc)-6-O-sulfotransferase 1 (GlcNAc6ST1) gene (KS-KO). KS-KO mice developed less severe EAE and showed repressed recall response in the induction phase. Furthermore, GlcNAc6ST1 might have roles in the passage of the pathogenic lymphocytes through the blood-brain barrier via adhesion molecules. Thus, modulation of KS may become a treatment for neuroimmunological diseases.
Collapse
Affiliation(s)
- Rino Ueno
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | - Katsuichi Miyamoto
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | - Noriko Tanaka
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | - Kota Moriguchi
- Division of Neurology, Department of Internal Medicine 3, National Defense Medical College, Tokorozawa, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University School of Medicine, Nagoya, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
28
|
Takeda-Uchimura Y, Uchimura K, Sugimura T, Yanagawa Y, Kawasaki T, Komatsu Y, Kadomatsu K. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex. Exp Neurol 2015; 274:145-55. [PMID: 26277687 DOI: 10.1016/j.expneurol.2015.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
Proteoglycans play important roles in regulating the development and functions of the brain. They consist of a core protein and glycosaminoglycans, which are long sugar chains of repeating disaccharide units with sulfation. A recent study demonstrated that the sulfation pattern of chondroitin sulfate on proteoglycans contributes to regulation of the critical period of experience-dependent plasticity in the mouse visual cortex. In the present study, we investigated the role of keratan sulfate (KS), another glycosaminoglycan, in critical period plasticity in the mouse visual cortex. Immunohistochemical analyses demonstrated the presence of KS containing disaccharide units of N-acetylglucosamine (GlcNAc)-6-sulfate and nonsulfated galactose during the critical period, although KS containing disaccharide units of GlcNAc-6-sulfate and galactose-6-sulfate was already known to disappear before that period. The KS chains were distributed diffusely in the extracellular space and densely around the soma of a large population of excitatory and inhibitory neurons. Electron microscopic analysis revealed that the KS was localized within the perisynaptic spaces and dendrites but not in presynaptic sites. KS was mainly located on phosphacan. In mice deficient in GlcNAc-6-O-sulfotransferase 1, which is one of the enzymes necessary for the synthesis of KS chains, the expression of KS was one half that in wild-type mice. In the knockout mice, monocular deprivation during the critical period resulted in a depression of deprived-eye responses but failed to produce potentiation of nondeprived-eye responses. In addition, T-type Ca(2+) channel-dependent long-term potentiation (LTP), which occurs only during the critical period, was not observed. These results suggest that regulation by KS-phosphacan with a specific sulfation pattern is necessary for the generation of LTP and hence the potentiation of nondeprived-eye responses after monocular deprivation.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taketoshi Sugimura
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshisuke Kawasaki
- Research Center for Glycobiotechnology, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Komatsu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
29
|
Foyez T, Takeda-Uchimura Y, Ishigaki S, Narentuya, Zhang Z, Sobue G, Kadomatsu K, Uchimura K. Microglial keratan sulfate epitope elicits in central nervous tissues of transgenic model mice and patients with amyotrophic lateral sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3053-65. [PMID: 26362733 DOI: 10.1016/j.ajpath.2015.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022]
Abstract
The functional role of 5D4 antibody-reactive keratan sulfate (KS) in the pathogenesis of neurodegenerative diseases is unknown. We therefore studied the expression of 5D4-reactive KS in amyotrophic lateral sclerosis (ALS), a motor neuron-degenerative disease, with the use of SOD1(G93A) ALS model mice and patients with ALS. Histochemical and immunoelectron microscopic characterizations showed that the 5D4-reactive KS is expressed in Mac2/galectin-3-positive activated or proliferating microglia of SOD1(G93A) ALS model mice at disease end stage and that the KS is an O-linked glycan modified with sialic acid and fucose, which was thus far shown to exist in cartilage. Intriguingly, microglial KS was detected in the spinal cord and brainstem but not in the cerebral cortex of SOD1(G93A) mice. We found that KSGal6ST, a galactose-6-sulfotransferase, is required for biosynthesis of the microglial 5D4-reactive KS by generating SOD1(G93A)/KSGal6ST(-/-) mice. The requirement of GlcNAc6ST1 for this synthesis was corroborated by analyzing SOD1(G93A)/GlcNAc6ST1(-/-) mice. These results indicate that both galactose-6- and N acteylglucosamine-6-sulfated KS elicited in the spinal cord and brainstem are associated with the degeneration of spinal and bulbar lower motor neurons in ALS pathology and may play a role in disease progression via microglial activation and proliferation.
Collapse
Affiliation(s)
- Tahmina Foyez
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Narentuya
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zui Zhang
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
30
|
Fujimoto H, Ohgomori T, Abe K, Uchimura K, Kadomatsu K, Jinno S. Time-dependent localization of high- and low-sulfated keratan sulfates in the song nuclei of developing zebra finches. Eur J Neurosci 2015; 42:2716-25. [PMID: 26369722 DOI: 10.1111/ejn.13073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/01/2022]
Abstract
Keratan sulfate proteoglycans (KSPGs) and chondroitin sulfate proteoglycans (CSPGs) consist of a protein core with covalently attached glycosaminoglycan side chain. Although CSPGs are known to regulate the end of the critical period, the role of KSPGs in brain development remains unclear. Young male zebra finches memorise song templates during development. The brain regions that are responsible for song learning, known as song nuclei, are recognized as a suitable model for the study of brain development. To understand the potential role of KSPGs, here we examined the localization of KSs with different degrees of sulfation in the brain of developing male zebra finches. Exclusively in the song nuclei, an increase in expression of 5-D-4-positive (5-D-4(+)) high-sulfated KS started after hatching, and reached a plateau at the end of the sensory period, during which the young bird listens to and memorises the song of an adult tutor. By contrast, weak and ubiquitous expression of BCD-4(+) low-sulfated KS remained unchanged until the end of the sensory period, and first increased in the song nuclei at the end of the sensorimotor period, during which the young bird produces plastic songs. Immunoblot analysis showed that phosphacan was a common core protein of 5-D-4(+) KS and BCD-4(+) KS. Finally, we confirmed that the sulfotransferase responsible for the synthesis of high-sulfated KS was exclusively localised in the song nuclei. Our observations suggest that time-dependent localization of KSPGs with different sulfation patterns in the song nuclei may underlie song learning in developing male zebra finches.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Abe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
31
|
Miller GM, Hsieh-Wilson LC. Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Exp Neurol 2015; 274:115-25. [PMID: 26315937 DOI: 10.1016/j.expneurol.2015.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) play important roles in the developing and mature nervous system, where they guide axons, maintain stable connections, restrict synaptic plasticity, and prevent axon regeneration following CNS injury. The chondroitin sulfate glycosaminoglycan (CS GAG) chains that decorate CSPGs are essential for their functions. Through these sugar chains, CSPGs are able to bind and regulate the activity of a diverse range of proteins. CSPGs have been found both to promote and inhibit neuronal growth. They can promote neurite outgrowth by binding to various growth factors such as midkine (MK), pleiotrophin (PTN), brain-derived neurotrophic factor (BDNF) and other neurotrophin family members. CSPGs can also inhibit neuronal growth and limit plasticity by interacting with transmembrane receptors such as protein tyrosine phosphatase σ (PTPσ), leukocyte common antigen-related (LAR) receptor protein tyrosine phosphatase, and the Nogo receptors 1 and 3 (NgR1 and NgR3). These CS-protein interactions depend on specific sulfation patterns within the CS GAG chains, and accordingly, particular CS sulfation motifs are upregulated during development, in the mature nervous system, and in response to CNS injury. Thus, spatiotemporal regulation of CS GAG biosynthesis may provide an important mechanism to control the functions of CSPGs and to modulate intracellular signaling pathways. Here, we will discuss these sulfation-dependent processes and highlight how the CS sugars on CSPGs contribute to neuronal growth, axon guidance, and plasticity in the nervous system.
Collapse
Affiliation(s)
- Gregory M Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JCF, Fawcett JW. "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system. Exp Neurol 2015; 274:100-14. [PMID: 26277685 DOI: 10.1016/j.expneurol.2015.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023]
Abstract
Proteoglycans (PGs) are a diverse family of proteins that consist of one or more glycosaminoglycan (GAG) chains, covalently linked to a core protein. PGs are major components of the extracellular matrix (ECM) and play critical roles in development, normal function and damage-response of the central nervous system (CNS). GAGs are classified based on their disaccharide subunits, into the following major groups: chondroitin sulfate (CS), heparan sulfate (HS), heparin (HEP), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA). All except HA are modified by sulfation, giving GAG chains specific charged structures and binding properties. While significant neuroscience research has focused on the role of one PG family member, chondroitin sulfate proteoglycan (CSPG), there is ample evidence in support of a role for the other PGs in regulating CNS function in normal and pathological conditions. This review discusses the role of all the identified PG family members (CS, HS, HEP, DS, KS and HA) in normal CNS function and in the context of pathology. Understanding the pleiotropic roles of these molecules in the CNS may open the door to novel therapeutic strategies for a number of neurological conditions.
Collapse
Affiliation(s)
- Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, ON, Canada.
| | - Vivien J Coulson-Thomas
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Simona Foscarin
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
33
|
Abstract
Keratan sulfate is a glycosaminoglycan that has been investigated in the cornea and skeletal tissues for decades. Endoglycosidases and monoclonal antibodies specific for keratan sulfate have been developed. These materials have facilitated the analysis of keratan sulfate biosynthesis and structures. Likewise, they have expedited study of the biological roles of keratan sulfate in vitro and in vivo. It has been shown that keratan sulfate is also expressed in the central nervous system and functions as a regulator of neuronal regeneration/sprouting. Here, we describe methods to determine the enzymatic activity of GlcNAc6ST, which is involved in keratan sulfate biosynthesis, and to extract and prepare ocular keratan sulfate for a disaccharide composition analysis. Immunohistochemistry for an anti-keratan sulfate epitope in the brain is also described.
Collapse
Affiliation(s)
- Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan,
| |
Collapse
|
34
|
Zeng W, Ju R, Mao M. Therapeutic potential of hepatocyte growth factor against cerebral ischemia (Review). Exp Ther Med 2014; 9:283-288. [PMID: 25574187 PMCID: PMC4280917 DOI: 10.3892/etm.2014.2133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022] Open
Abstract
The effective treatment for cerebral ischemia has not yet been established. Hepatocyte growth factor (HGF) is a potent pleiotropic cytokine that is involved in cell and tissue regeneration, including in the central nervous system. Studies have demonstrated that an exogenous administration of HGF protects brain tissue from ischemic damage. In response to binding to the receptor c-Met, HGF activates the downstream signaling pathways (including the phosphatidylinositol 3-kinase/Akt, Ras/MAPK and signal transducer and activator of transcription pathways) which leads to various cellular responses involved in angiogenesis, glial scar formation, anti-apoptosis and neurogenesis. The purpose of this review is to summarize the present understanding of the therapeutic potential of HGF in cerebral ischemia.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan 610031, P.R. China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan 610031, P.R. China
| | - Meng Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
35
|
Mechanisms of axon regeneration and its inhibition: roles of sulfated glycans. Arch Biochem Biophys 2014; 558:36-41. [PMID: 24951877 DOI: 10.1016/j.abb.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022]
Abstract
Axons in the peripheral nervous system can regenerate after injury, whereas axons in the central nervous system (CNS) do not readily regenerate. Intrinsic regenerating capacity and emerging inhibitors could explain these contrasting phenotypes. Among the inhibitors, sulfated sugar chains including chondroitin sulfate and keratan sulfate have recently attracted attention, since these sugar chains strongly inhibit axon regeneration and also induce dystrophic endball formation, a hallmark of injured axons in the adult mammalian CNS. In addition, chondroitin sulfate is a negative regulator of synaptic plasticity. To overcome the inability of CNS axons to regenerate, a comprehensive understanding of both the positive and negative regulations of axon regeneration is required. These may include signaling waves from the injury site to the nucleus, intracellular signals for growth cone formation and axon regeneration, intracellular signals for the inhibition of axon regeneration, and extracellular inhibitory signals and their receptors. This review addresses these issues, with a focus on the roles of chondroitin sulfate and keratan sulfate.
Collapse
|
36
|
Hoshino H, Foyez T, Ohtake-Niimi S, Takeda-Uchimura Y, Michikawa M, Kadomatsu K, Uchimura K. KSGal6ST is essential for the 6-sulfation of galactose within keratan sulfate in early postnatal brain. J Histochem Cytochem 2014; 62:145-56. [PMID: 24152993 PMCID: PMC3902094 DOI: 10.1369/0022155413511619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Keratan sulfate (KS) comprises repeating disaccharides of galactose (Gal) and N-acetylglucosamine (GlcNAc). Residues of Gal and GlcNAc in KS are potentially modified with sulfate at their C-6 positions. The 5D4 monoclonal antibody recognizes KS structures containing Gal and GlcNAc, both 6-sulfated, and has been used most extensively to evaluate KS expression in mammalian brains. We previously showed that GlcNAc6ST1 is an enzyme responsible for the synthesis of the 5D4 epitope in developing brain and in the adult brain, where it is induced after injury. It has been unclear which sulfotransferase is responsible for Gal-6-sulfation within the 5D4 KS epitope in developing brains. We produced mice deficient in KSGal6ST, a Gal-6-sulfotransferase. Western blotting and immunoprecipitation revealed that all 5D4-immunoreactivity to proteins, including phosphacan, were abolished in KSGal6ST-deficient postnatal brains. Likewise, the 5D4 epitope, expressed primarily in the cortical marginal zone and subplate and dorsal thalamus, was eliminated in KSGal6ST-deficient mice. Disaccharide analysis showed the loss of Gal-6-sulfate in KS of the KSGal6ST-deficient brains. Transfection studies revealed that GlcNAc6ST1 and KSGal6ST cooperated in the expression of the 5D4 KS epitope in HeLa cells. These results indicate that KSGal6ST is essential for C-6 sulfation of Gal within KS in early postnatal brains.
Collapse
Affiliation(s)
- Hitomi Hoshino
- Section of Pathophysiology and Neurobiology, Research, National Center for Geriatrics and Gerontology, (HH, SO, KU), Obu, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Schwartz NB, Domowicz MS. Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:89-115. [DOI: 10.1007/978-1-4939-1154-7_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Kadomatsu K, Sakamoto K. Sulfated glycans in network rewiring and plasticity after neuronal injuries. Neurosci Res 2014; 78:50-4. [DOI: 10.1016/j.neures.2013.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
39
|
Keratan sulfate expression in microglia is diminished in the spinal cord in experimental autoimmune neuritis. Cell Death Dis 2013; 4:e946. [PMID: 24309933 PMCID: PMC3877550 DOI: 10.1038/cddis.2013.479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
Abstract
Experimental autoimmune neuritis (EAN) is an animal model of Guillain–Barré syndrome, an inflammatory demyelination disease of the peripheral nervous system. Although this disease has been extensively studied on peripheral nerves, the pathology of the central nervous system has not been fully understood. Previous studies demonstrate that expression of keratan sulfate (KS), the sugar chain of proteoglycan, is associated with activated microglia/macrophages accumulated after neuronal injuries. Unexpectedly, we found here that KS is rather diminished in rat EAN. KS was restrictively expressed in microglia in the spinal cord of normal rats. KS was positive in 50% microglia in the ventral horn and 20% in the dorsal horn. In EAN, microglia increased in number and expressed the activation marker CD68, but KS expression was abolished. Concomitantly, pro-inflammatory cytokines, i.e., interferon (IFN)-γ, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, were increased in the spinal cord of EAN rats, whereas anti-inflammatory cytokines, such as IL-4 and IL-10, were decreased. In addition, silencing of KSGal6ST attenuated KS expression on the primary cultured microglia and upregulated expression of some activation markers (TNF-α, IL-1β, and iNOS) under the stimulation with lipopolysaccharide and IFN-γ. This study demonstrates for the first time a close association of EAN and disappearance of KS on microglia. KS expression could be a useful marker to evaluate the status of polyneuropathy.
Collapse
|
40
|
Hirano K, Ohgomori T, Kobayashi K, Tanaka F, Matsumoto T, Natori T, Matsuyama Y, Uchimura K, Sakamoto K, Takeuchi H, Hirakawa A, Suzumura A, Sobue G, Ishiguro N, Imagama S, Kadomatsu K. Ablation of keratan sulfate accelerates early phase pathogenesis of ALS. PLoS One 2013; 8:e66969. [PMID: 23825599 PMCID: PMC3692529 DOI: 10.1371/journal.pone.0066969] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
Biopolymers consist of three major classes, i.e., polynucleotides (DNA, RNA), polypeptides (proteins) and polysaccharides (sugar chains). It is widely accepted that polynucleotides and polypeptides play fundamental roles in the pathogenesis of neurodegenerative diseases. But, sugar chains have been poorly studied in this process, and their biological/clinical significance remains largely unexplored. Amyotrophic lateral sclerosis (ALS) is a motoneuron-degenerative disease, the pathogenesis of which requires both cell autonomous and non-cell autonomous processes. Here, we investigated the role of keratan sulfate (KS), a sulfated long sugar chain of proteoglycan, in ALS pathogenesis. We employed ALS model SOD1(G93A) mice and GlcNAc6ST-1(-/-) mice, which are KS-deficient in the central nervous system. Unexpectedly, SOD1(G93A)GlcNAc6ST-1(-/-) mice exhibited a significantly shorter lifespan than SOD1(G93A) mice and an accelerated appearance of clinical symptoms (body weight loss and decreased rotarod performance). KS expression was induced exclusively in a subpopulation of microglia in SOD1(G93A) mice, and became detectable around motoneurons in the ventral horn during the early disease phase before body weight loss. During this phase, the expression of M2 microglia markers was transiently enhanced in SOD1(G93A) mice, while this enhancement was attenuated in SOD1(G93A)GlcNAc6ST-1(-/-) mice. Consistent with this, M2 microglia were markedly less during the early disease phase in SOD1(G93A)GlcNAc6ST-1(-/-) mice. Moreover, KS expression in microglia was also detected in some human ALS cases. This study suggests that KS plays an indispensable, suppressive role in the early phase pathogenesis of ALS and may represent a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Kenichi Hirano
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Ohgomori
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Kobayashi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiaki Tanaka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Matsumoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamitsu Natori
- Department of Health and Nutrition, Yamanashi Gakuin University, Kofu, Japan
| | - Yukihiro Matsuyama
- Department of Orthopedics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Akihiro Hirakawa
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
41
|
Yi JH, Katagiri Y, Susarla B, Figge D, Symes AJ, Geller HM. Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. J Comp Neurol 2013; 520:3295-313. [PMID: 22628090 DOI: 10.1002/cne.23156] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) play a pivotal role in many neuronal growth mechanisms including axon guidance and the modulation of repair processes following injury to the spinal cord or brain. Many actions of CSPGs in the central nervous system (CNS) are governed by the specific sulfation pattern on the glycosaminoglycan (GAG) chains attached to CSPG core proteins. To elucidate the role of CSPGs and sulfated GAG chains following traumatic brain injury (TBI), controlled cortical impact injury of mild to moderate severity was performed over the left sensory motor cortex in mice. Using immunoblotting and immunostaining, we found that TBI resulted in an increase in the CSPGs neurocan and NG2 expression in a tight band surrounding the injury core, which overlapped with the presence of 4-sulfated CS GAGs but not with 6-sulfated GAGs. This increase was observed as early as 7 days post injury (dpi), and persisted for up to 28 dpi. Labeling with markers against microglia/macrophages, NG2+ cells, fibroblasts, and astrocytes showed that these cells were all localized in the area, suggesting multiple origins of chondroitin-4-sulfate increase. TBI also caused a decrease in the expression of aggrecan and phosphacan in the pericontusional cortex with a concomitant reduction in the number of perineuronal nets. In summary, we describe a dual response in CSPGs whereby they may be actively involved in complex repair processes following TBI.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Patnode ML, Yu SY, Cheng CW, Ho MY, Tegesjö L, Sakuma K, Uchimura K, Khoo KH, Kannagi R, Rosen SD. KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology 2013; 23:381-94. [PMID: 23254996 PMCID: PMC3555504 DOI: 10.1093/glycob/cws166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 12/16/2022] Open
Abstract
The addition of sulfate to glycan structures can regulate their ability to serve as ligands for glycan-binding proteins. Although sulfate groups present on the monosaccharides glucosamine, uronate, N-acetylglucosamine and N-acetylgalactosamine are recognized by defined receptors that mediate important functions, the functional significance of galactose-6-O-sulfate (Gal6S) is not known. However, in vitro studies using synthetic glycans and sulfotransferase overexpression implicate Gal6S as a binding determinant for the lymphocyte homing receptor, L-selectin. Only two sulfotransferases have been shown to generate Gal6S, namely keratan sulfate galactose 6-O-sulfotransferase (KSGal6ST) and chondroitin 6-O-sulfotransferase-1 (C6ST-1). In the present study, we use mice deficient in KSGal6ST and C6ST-1 to test whether Gal6S contributes to ligand recognition by L-selectin in vivo. First, we establish that KSGal6ST is selectively expressed in high endothelial venules (HEVs) in lymph nodes and Peyer's patches. We also determine by mass spectrometry that KSGal6ST generates Gal6S on several classes of O-glycans in peripheral lymph nodes. Furthermore, KSGal6ST, but not C6ST-1, is required for the generation of the Gal6S-containing glycan, 6,6'-disulfo-3'sLN (Siaα2→3[6S]Galβ1→4[6S]GlcNAc) or a closely related structure in lymph node HEVs. Nevertheless, L-selectin-dependent short-term homing of lymphocytes is normal in KSGal6ST-deficient mice, indicating that the Gal6S-containing structures we detected do not contribute to L-selectin ligand recognition in this setting. These results refine our understanding of the biological ligands for L-selectin and introduce a mouse model for investigating the functions of Gal6S in other contexts.
Collapse
Affiliation(s)
- Michael L Patnode
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, CA 94143-0452, USA
| | - Shin-Yi Yu
- Institute of Biological Chemistry, and
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | - Lotten Tegesjö
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, CA 94143-0452, USA
| | - Keiichiro Sakuma
- Division of Molecular Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
| | | | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Division of Molecular Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan
| | - Steven D Rosen
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, CA 94143-0452, USA
| |
Collapse
|
43
|
Wootla B, Denic A, Warrington AE, Rodriguez M. Need for a paradigm shift in therapeutic approaches to CNS injury. Expert Rev Neurother 2012; 12:409-20. [PMID: 22449213 DOI: 10.1586/ern.12.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Irreversible damage to the nervous system can result from many causes including trauma, disruption of blood supply, pathogen infection or neurodegenerative disease. Common features following CNS injury include a disruption of axons, neuron death and injury, local B-cell and microglial activation, and the synthesis of pathogenic autoantibodies. CNS injury results in a pervasive inhibitory microenvironment that hinders regeneration. Current approaches to eliminate the inhibitory environment have met with limited success. These results argue for a paradigm shift in therapeutic approaches to CNS injury. Targeting CNS cells (neurons, oligodendrocytes and astrocytes) themselves may drive CNS repair. For example, our group and others have demonstrated that autoreactive antibodies can participate in aspects of CNS regeneration, including remyelination. We have developed recombinant autoreactive natural human IgM antibodies with the therapeutic potential for CNS repair in several neurologic diseases.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
44
|
Kilcoyne M, Sharma S, McDevitt N, O'Leary C, Joshi L, McMahon SS. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments. Biochem Biophys Res Commun 2012; 420:616-22. [PMID: 22465128 DOI: 10.1016/j.bbrc.2012.03.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/12/2012] [Indexed: 12/27/2022]
Abstract
Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining, and by day 8 in the case of WFA. This study demonstrated neuronal cell surface glycosylation changes in an inhibitory environment and indicated a return to normal glycosylation after treatment with ChABC, which may be promising for identifying potential therapies for neuronal regeneration strategies.
Collapse
Affiliation(s)
- Michelle Kilcoyne
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
45
|
Tauchi R, Imagama S, Natori T, Ohgomori T, Muramoto A, Shinjo R, Matsuyama Y, Ishiguro N, Kadomatsu K. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury. J Neuroinflammation 2012; 9:53. [PMID: 22420304 PMCID: PMC3334708 DOI: 10.1186/1742-2094-9-53] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 03/15/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. METHODS The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. RESULTS ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. CONCLUSIONS Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.
Collapse
Affiliation(s)
- Ryoji Tauchi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Chondroitin sulfate (CS) proteoglycans are strong inhibitors of structural rearrangement after injuries of the adult CNS. In addition to CS chains, keratan sulfate (KS) chains are also covalently attached to some proteoglycans. CS and KS sometimes share the same core protein, but exist as independent sugar chains. However, the biological significance of KS remains elusive. Here, we addressed the question of whether KS is involved in plasticity after spinal cord injury. Keratanase II (K-II) specifically degraded KS, i.e., not CS, in vivo. This enzyme digestion promoted the recovery of motor and sensory function after spinal cord injury in rats. Consistent with this, axonal regeneration/sprouting was enhanced in K-II-treated rats. K-II and the CS-degrading enzyme chondroitinase ABC exerted comparable effects in vivo and in vitro. However, these two enzymes worked neither additively nor synergistically. These data and further in vitro studies involving artificial proteoglycans (KS/CS-albumin) and heat-denatured or reduced/alkylated proteoglycans suggested that all three components of the proteoglycan moiety, i.e., the core protein, CS chains, and KS chains, were required for the inhibitory activity of proteoglycans. We conclude that KS is essential for, and has an impact comparable to that of CS on, postinjury plasticity. Our study also established that KS and CS are independent requirements for the proteoglycan-mediated inhibition of axonal regeneration/sprouting.
Collapse
|
47
|
Shang J, Deguchi K, Ohta Y, Liu N, Zhang X, Tian F, Yamashita T, Ikeda Y, Matsuura T, Funakoshi H, Nakamura T, Abe K. Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion. J Neurosci Res 2011; 89:86-95. [PMID: 20963849 DOI: 10.1002/jnr.22524] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/29/2010] [Accepted: 08/30/2010] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF) and glial cell line-derived neurotrophic factor (GDNF) are strong neurotrophic factors. However, their potentials in neurogenesis, angiogenesis, synaptogenesis, and antifibrosis have not been compared. Therefore, we investigated these effects of HGF and GDNF in cerebral ischemia in the rat. Wistar rats were subjected to 90 min of transient middle cerebral artery occlusion (tMCAO). Immediately after reperfusion, HGF or GDNF was given by topical application. BrdU was injected intraperitoneally twice daily 1, 2, and 3 days after tMCAO. On 14 day, we histologically evaluated infarct volume, antiapoptotic effect, neurogenesis, angiogenesis, synaptogenesis, and antifibrosis. Both HGF and GDNF significantly reduced infarct size and the number of TUNEL-positive cells, but only HGF significantly increased the number of BrdU-positive cells in the subventricular zone, and 5'-bromo-2'-deoxyuridine -positive cells differentiated into mature neurons on the ischemic side. Enhancement of angiogenesis and synaptogenesis at the ischemic boundary zone was also observed only in HGF-treated rats. HGF significantly decreased the glial scar formation and scar thickness of the brain pia mater after tMCAO, but GDNF did not. Our study shows that both HGF and GDNF had significant neurotrophic effects, but only HGF can promote the neurogenesis, angiogenesis, and synaptogenesis and inhibit fibrotic change in brains after tMCAO.
Collapse
Affiliation(s)
- Jingwei Shang
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikatacho, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hayashi M, Kadomatsu K, Kojima T, Ishiguro N. Keratan sulfate and related murine glycosylation can suppress murine cartilage damage in vitro and in vivo. Biochem Biophys Res Commun 2011; 409:732-7. [PMID: 21624346 DOI: 10.1016/j.bbrc.2011.05.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/15/2011] [Indexed: 01/30/2023]
Abstract
Keratan sulfate (KS) proteoglycan side chains are abundant in the human cartilage matrix, but these chains have been said to be absent in murine skeletal tissues. We previously showed that KS suppresses cartilage damage and ameliorates inflammation in mice arthritis model. Because mice deficient of N-acetylglucosamine 6-O-sulfotransferase-1 (GlcNAc6ST-1) (KS biosynthesis enzyme) are now available, we decided to do further examinations. We examined, in culture, the difference between GlcNAc6ST-1(-/-) and wild-type (WT) mice for interleukin (IL)-1α-induced glycosaminoglycan (GAG) release from the articular cartilage. Arthritis was induced by intravenous administration of an anti-type II collagen antibody cocktail and subsequent intraperitoneal injection of lipopolysaccharide. We examined the differences in arthritis severities in the two genotypes. After intraperitoneal KS administration in phosphate-buffered saline (PBS) or PBS alone, we evaluated the potential of KS in ameliorating arthritis and protecting against cartilage damage in deficient mice. GAG release induced by IL-1α in the explants, and severity of arthritis were greater in GlcNAc6ST-1(-/-) mice than their WT littermates. Intraperitoneal KS administration effectively suppressed arthritis induction in GlcNAc6ST-1(-/-) mice. Thus, GlcNAc6ST-1(-/-) mice cartilage is more fragile than WT mice cartilage, and exogenous KS can suppress arthritis induction in GlcNAc6ST-1(-/-) mice. Vestigial KS chain or altered glycosylation in articular cartilage in GlcNAc6ST-1(-/-) mice may be protective against arthritis and associated cartilage damage as well as cartilage damage in culture. KS may offer therapeutic opportunities for chondroprotection and suppression of joint damage in inflammatory arthritis and may become a therapeutic agent for treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Masatoshi Hayashi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|
49
|
|
50
|
Modern developments in mass spectrometry of chondroitin and dermatan sulfate glycosaminoglycans. Amino Acids 2010; 41:235-56. [PMID: 20632047 DOI: 10.1007/s00726-010-0682-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/29/2010] [Indexed: 12/16/2022]
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are special types of glycosaminoglycan (GAG) oligosaccharides able to regulate vital biological functions that depend on precise motifs of their constituent hexose sequences and the extent and location of their sulfation. As a result, the need for better understanding of CS/DS biological role called for the elaboration and application of straightforward strategies for their composition and structure elucidation. Due to its high sensitivity, reproducibility, and the possibility to rapidly generate data on fine CS/DS structure determinants, mass spectrometry (MS) based on either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) brought a major progress in the field. Here, modern developments in MS of CS/DS GAGs are gathered in a critical review covering the past 5 years. The first section is dedicated to protocols for CS/DS extraction from parent proteoglycan, digestion, and purification that are among critical prerequisites of a successful MS experiment. The second part highlights several MALDI MS aspects, the requirements, and applications of this ionization method to CS/DS investigation. An ample chapter is devoted to ESI MS strategies, which employ either capillary- or advanced chip-based sample infusion in combination with multistage MS (MS(n)) using either collision-induced (CID) or electron detachment dissociation (EDD). At last, the potential of two versatile separation techniques, capillary electrophoresis (CE), and liquid chromatography (LC) in off- and/or on-line coupling with ESI MS and MS(n), is discussed, alongside an assessment of particular buffer/solvent conditions and instrumental parameters required for CS/DS mixture separation followed by on-line mass analysis of individual components.
Collapse
|