1
|
Zemkollari M, Oostenbrink C, Grabherr R, Staudacher E. Molecular cloning, characterisation and molecular modelling of two novel T-synthases from mollusc origin. Glycobiology 2024; 34:cwae013. [PMID: 38366999 PMCID: PMC11005171 DOI: 10.1093/glycob/cwae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
The glycoprotein-N-acetylgalactosamine β1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 β1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.
Collapse
Affiliation(s)
- Marilica Zemkollari
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Erika Staudacher
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Tumoglu B, Keelaghan A, Avci FY. Tn antigen interactions of macrophage galactose-type lectin (MGL) in immune function and disease. Glycobiology 2023; 33:879-887. [PMID: 37847609 PMCID: PMC10859631 DOI: 10.1093/glycob/cwad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Protein-carbohydrate interactions are essential in maintaining immune homeostasis and orchestrating inflammatory and regulatory immune processes. This review elucidates the immune interactions of macrophage galactose-type lectin (MGL, CD301) and Tn carbohydrate antigen. MGL is a C-type lectin receptor (CLR) primarily expressed by myeloid cells such as macrophages and immature dendritic cells. MGL recognizes terminal O-linked N-acetylgalactosamine (GalNAc) residue on the surface proteins, also known as Tn antigen (Tn). Tn is a truncated form of the elongated cell surface O-glycan. The hypoglycosylation leading to Tn may occur when the enzyme responsible for O-glycan elongation-T-synthase-or its associated chaperone-Cosmc-becomes functionally inhibited. As reviewed here, Tn expression is observed in many different neoplastic and non-neoplastic diseases, and the recognition of Tn by MGL plays an important role in regulating effector T cells, immune suppression, and the recognition of pathogens.
Collapse
Affiliation(s)
- Berna Tumoglu
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Aidan Keelaghan
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| |
Collapse
|
3
|
Morio A, Lee JM, Fujii T, Mon H, Masuda A, Kakino K, Xu J, Banno Y, Kusakabe T. The biological role of core 1β1-3galactosyltransferase (T-synthase) in mucin-type O-glycosylation in Silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103936. [PMID: 36990248 DOI: 10.1016/j.ibmb.2023.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
O-glycosylation of secreted and membrane-bound proteins is an important post-translational modification that affects recognition of cell surface receptors, protein folding, and stability. However, despite the importance of O-linked glycans, their biological functions have not yet been fully elucidated and the synthetic pathway of O-glycosylation has not been investigated in detail, especially in the silkworm. In this study, we aimed to investigate O-glycosylation in silkworms by analyzing the overall structural profiles of mucin-type O-glycans using LC-MS. We found GalNAc or GlcNAc monosaccharide and core 1 disaccharide (Galβ1-3-GalNAcα1-Ser/Thr) were major components of the O-glycan attached to secreted proteins produced in silkworms. Furthermore, we characterized the 1 b1,3-galactosyltransferase (T-synthase) required for synthesis of the core 1 structure, common to many animals. Five transcriptional variants and four protein isoforms were identified in silkworms, and the biological functions of these isoforms were investigated. We found that BmT-synthase isoforms 1 and 2 were localized in the Golgi apparatus in cultured BmN4 cells and functioned both in cultured cells and silkworms. Additionally, a specific functional domain of T-synthase, called the stem domain, was found to be essential for activity and is presumed to be needed for dimer formation and galactosyltransferase activity. Altogether, our results elucidated the O-glycan profile and function of T-synthase in the silkworm. Our findings allow the practical comprehension of O-glycosylation required for employing silkworms as a productive expression system.
Collapse
Affiliation(s)
- Akihiro Morio
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, 2716-1 Kurakake 2716-1, Ohra-gun Chiyoda-machi, Gunma, 370-0503, Gunma, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Yutaka Banno
- Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Wilson IBH, Yan S, Jin C, Dutkiewicz Z, Rendić D, Palmberger D, Schnabel R, Paschinger K. Increasing Complexity of the N-Glycome During Caenorhabditis Development. Mol Cell Proteomics 2023; 22:100505. [PMID: 36717059 PMCID: PMC7614267 DOI: 10.1016/j.mcpro.2023.100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-β-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following β-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
5
|
Zemkollari M, Blaukopf M, Grabherr R, Staudacher E. Expression and Characterisation of the First Snail-Derived UDP-Gal: Glycoprotein-N-acetylgalactosamine β-1,3-Galactosyltransferase (T-Synthase) from Biomphalaria glabrata. Molecules 2023; 28:552. [PMID: 36677618 PMCID: PMC9865085 DOI: 10.3390/molecules28020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
UDP-Gal: glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase (T-synthase, EC 2.4.1.122) catalyses the transfer of the monosaccharide galactose from UDP-Gal to GalNAc-Ser/Thr, synthesizing the core 1 mucin type O-glycan. Such glycans play important biological roles in a number of recognition processes. The crucial role of these glycans is acknowledged for mammals, but a lot remains unknown regarding invertebrate and especially mollusc O-glycosylation. Although core O-glycans have been found in snails, no core 1 β-1,3-galactosyltransferase has been described so far. Here, the sequence of the enzyme was identified by a BlastP search of the NCBI Biomphalaria glabrata database using the human T-synthase sequence (NP_064541.1) as a template. The obtained gene codes for a 388 amino acids long transmembrane protein with two putative N-glycosylation sites. The coding sequence was synthesised and expressed in Sf9 cells. The expression product of the putative enzyme displayed core 1 β-1,3-galactosyltransferase activity using pNP-α-GalNAc as the substrate. The enzyme showed some sequence homology (49.40% with Homo sapiens, 53.69% with Drosophila melanogaster and 49.14% with Caenorhabditis elegans) and similar biochemical parameters with previously characterized T-synthases from other phyla. In this study we present the identification, expression and characterisation of the UDP-Gal: glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase from the fresh-water snail Biomphalaria glabrata, which is the first cloned T-synthase from mollusc origin.
Collapse
Affiliation(s)
- Marilica Zemkollari
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Erika Staudacher
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
6
|
González-Ramírez AM, Grosso AS, Yang Z, Compañón I, Coelho H, Narimatsu Y, Clausen H, Marcelo F, Corzana F, Hurtado-Guerrero R. Structural basis for the synthesis of the core 1 structure by C1GalT1. Nat Commun 2022; 13:2398. [PMID: 35504880 PMCID: PMC9065035 DOI: 10.1038/s41467-022-29833-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
C1GalT1 is an essential inverting glycosyltransferase responsible for synthesizing the core 1 structure, a common precursor for mucin-type O-glycans found in many glycoproteins. To date, the structure of C1GalT1 and the details of substrate recognition and catalysis remain unknown. Through biophysical and cellular studies, including X-ray crystallography of C1GalT1 complexed to a glycopeptide, we report that C1GalT1 is an obligate GT-A fold dimer that follows a SN2 mechanism. The binding of the glycopeptides to the enzyme is mainly driven by the GalNAc moiety while the peptide sequence provides optimal kinetic and binding parameters. Interestingly, to achieve glycosylation, C1GalT1 recognizes a high-energy conformation of the α-GalNAc-Thr linkage, negligibly populated in solution. By imposing this 3D-arrangement on that fragment, characteristic of α-GalNAc-Ser peptides, C1GalT1 ensures broad glycosylation of both acceptor substrates. These findings illustrate a structural and mechanistic blueprint to explain glycosylation of multiple acceptor substrates, extending the repertoire of mechanisms adopted by glycosyltransferases. The glycosyltransferase C1GalT1 directs a key step in protein O-glycosylation important for the expression of the cancer-associated Tn and T antigens. Here, the authors provide molecular insights into the function of C1GalT1 by solving the crystal structure of the Drosophila enzyme-substrate complex.
Collapse
Affiliation(s)
- Andrés Manuel González-Ramírez
- Institute of Biocompuation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - Ana Sofia Grosso
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2829-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Helena Coelho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2829-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Filipa Marcelo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2829-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain.
| | - Ramon Hurtado-Guerrero
- Institute of Biocompuation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain. .,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark. .,Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|
7
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Petit D, Teppa RE, Harduin-Lepers A. A phylogenetic view and functional annotation of the animal β1,3-glycosyltransferases of the GT31 CAZy family. Glycobiology 2020; 31:243-259. [PMID: 32886776 PMCID: PMC8022947 DOI: 10.1093/glycob/cwaa086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The formation of β1,3-linkages on animal glycoconjugates is catalyzed by a subset of β1,3-glycosyltransferases grouped in the Carbohydrate-Active enZYmes family glycosyltransferase-31 (GT31). This family represents an extremely diverse set of β1,3-N-acetylglucosaminyltransferases [B3GNTs and Fringe β1,3-N-acetylglucosaminyltransferases], β1,3-N-acetylgalactosaminyltransferases (B3GALNTs), β1,3-galactosyltransferases [B3GALTs and core 1 β1,3-galactosyltransferases (C1GALTs)], β1,3-glucosyltransferase (B3GLCT) and β1,3-glucuronyl acid transferases (B3GLCATs or CHs). The mammalian enzymes were particularly well studied and shown to use a large variety of sugar donors and acceptor substrates leading to the formation of β1,3-linkages in various glycosylation pathways. In contrast, there are only a few studies related to other metazoan and lower vertebrates GT31 enzymes and the evolutionary relationships of these divergent sequences remain obscure. In this study, we used bioinformatics approaches to identify more than 920 of putative GT31 sequences in Metazoa, Fungi and Choanoflagellata revealing their deep ancestry. Sequence-based analysis shed light on conserved motifs and structural features that are signatures of all the GT31. We leverage pieces of evidence from gene structure, phylogenetic and sequence-based analyses to identify two major subgroups of GT31 named Fringe-related and B3GALT-related and demonstrate the existence of 10 orthologue groups in the Urmetazoa, the hypothetical last common ancestor of all animals. Finally, synteny and paralogy analysis unveiled the existence of 30 subfamilies in vertebrates, among which 5 are new and were named C1GALT2, C1GALT3, B3GALT8, B3GNT10 and B3GNT11. Altogether, these various approaches enabled us to propose the first comprehensive analysis of the metazoan GT31 disentangling their evolutionary relationships.
Collapse
Affiliation(s)
- Daniel Petit
- Glycosylation et différenciation cellulaire, EA 7500, Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Roxana Elin Teppa
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
9
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
10
|
Xu J, Morio A, Morokuma D, Nagata Y, Hino M, Masuda A, Li Z, Mon H, Kusakabe T, Lee JM. A functional polypeptide N-acetylgalactosaminyltransferase (PGANT) initiates O-glycosylation in cultured silkworm BmN4 cells. Appl Microbiol Biotechnol 2018; 102:8783-8797. [PMID: 30136207 DOI: 10.1007/s00253-018-9309-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
Mucin-type O-glycosylation is initiated by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts or PGANTs), attaching GalNAc to serine or threonine residue of a protein substrate. In the insect model from Lepidoptera, silkworm (Bombyx mori), however, O-glycosylation pathway is totally unexplored and remains largely unknown. In this study, as the first report regarding protein O-glycosylation analysis in silkworms, we verified the O-glycan profile that a common core 1 Gal (β1-3) GalNAc disaccharide branch without terminally sialylated structure is mainly formed for a baculovirus-produced human proteoglycan 4 (PRG4) protein. Intriguingly, functional screenings in cultured silkworm BmN4 cells for nine Bmpgants reveal that Bmpgant2 is the solo functional BmPGANT for PRG4, implying that Bmpgants may have unique cell/tissue or protein substrate preferences. Furthermore, a recombinant BmPGANT2 protein was successfully purified from silkworm-BEVS and exhibited a high ability to transfer GalNAc for both peptide and protein substrates. Taken together, the present results clarified the functional BmPGANT2 in cultured silkworm cells, providing crucial fundamental insights for future studies dissecting the detailed silkworm O-glycosylation pathways and productions of glycoproteins with O-glycans.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Akihiro Morio
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Daisuke Morokuma
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yudai Nagata
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Masato Hino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|
11
|
T-Synthase Deficiency Enhances Oncogenic Features in Human Colorectal Cancer Cells via Activation of Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9532389. [PMID: 30035127 PMCID: PMC6032660 DOI: 10.1155/2018/9532389] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
Background Immature truncated O-glycans such as Tn antigen are frequently detected in human colorectal cancer (CRC); however, the precise pathological consequences of Tn antigen expression on CRC are unknown. T-synthase is the key enzyme required for biosynthesis of mature O-glycans. Here we investigated the functional roles of Tn antigen expression mediated by T-synthase deficiency in CRC cells. Methods To knock out T-synthase, we used CRISPR-Cas9 technology to target C1GALT1, the gene encoding T-synthase, in a CRC cell line (HCT116). Deletion of T-synthase was confirmed by western blotting, and expression of Tn antigen was determined by flow cytometry in HCT116 cells. We then assessed the biological effects of T-synthase deficiency on oncogenic behaviors in HCT116 cells. Furthermore, we analyzed the mechanistic role of T-synthase deficiency in cancer cells by determining the epithelial-mesenchymal transition (EMT) pathway. Results We showed that forced knockout of T-synthase in HCT116 cells significantly induced Tn antigen expression, which represented the occurrence of aberrant O-glycosylation. Loss of T-synthase significantly enhanced cell proliferation and adhesion, as well as migration and invasiveness in culture. More importantly, we demonstrated that T-synthase deficiency directly induced classical EMT characteristics in cancer cells. E-cadherin, a typical epithelial cell marker, was markedly decreased in T-synthase knockout HCT 116 cells, accompanied by an enhanced expression of mesenchymal markers including snail and fibronectin (FN). Conclusions These findings indicate that T-synthase deficiency in CRC cells not only is responsible for aberrant O-glycosylation, but also triggers the molecular process of EMT pathway, which may translate to increased invasiveness and metastasis in cancers.
Collapse
|
12
|
|
13
|
Piyush T, Rhodes JM, Yu LG. MUC1 O-glycosylation contributes to anoikis resistance in epithelial cancer cells. Cell Death Discov 2017; 3:17044. [PMID: 28725490 PMCID: PMC5511859 DOI: 10.1038/cddiscovery.2017.44] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 05/26/2017] [Accepted: 06/03/2017] [Indexed: 02/07/2023] Open
Abstract
Anoikis is a fundamental cellular process for maintaining tissue homeostasis. Resistance to anoikis is a hallmark of oncogenic epithelial-mesenchymal transition and is a pre-requisite for metastasis. Previous studies have revealed that the heavily glycosylated mucin protein MUC1, which is overexpressed in all types of epithelial cancer cells, prevents anoikis initiation in response to loss of adhesion. This effect of MUC1 is largely attributed to its extracellular domain that provides cell surface anoikis-initiating molecules with a 'homing' microenvironment. The present study investigated the influence of O-glycosylation on MUC1 extracellular domain on MUC1-mediated cell resistance to anoikis. It shows that stable suppression of the Core 1Gal-transferase (C1GT) by shRNA substantially reduces O-glycosylation in MUC1-positively transfected human colon cancer HCT116 cells and in high MUC1-expressing SW620 cells. Suppression of C1GT significantly increased anoikis of the MUC1-positive, but not MUC1-negative, cells in response to suspended culture. This effect was shown to be associated with increased ligand accessibility to cell surface anoikis-initiating molecules such as E-cadherin, integrinβ1 and Fas. These results indicate that the extensive O-glycosylation on MUC1 extracellular domain contributes to MUC1-mediated cell resistance to anoikis by facilitating MUC1-mediated prohibition of activation of the cell surface anoikis-initiating molecules in response to loss of cell adhesion. This provides insight into the molecular mechanism of anoikis regulation and highlights the importance of cellular glycosylation in cancer progression and metastasis.
Collapse
Affiliation(s)
- Tushar Piyush
- Gastroenterology Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Jonathan M Rhodes
- Gastroenterology Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Lu-Gang Yu
- Gastroenterology Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
14
|
Hanes MS, Moremen KW, Cummings RD. Biochemical characterization of functional domains of the chaperone Cosmc. PLoS One 2017; 12:e0180242. [PMID: 28665962 PMCID: PMC5493369 DOI: 10.1371/journal.pone.0180242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023] Open
Abstract
Cosmc is an endoplasmic reticulum chaperone necessary for normal protein O-GalNAc glycosylation through regulation of T-synthase, its single client. Loss-of-function of Cosmc results in expression of the Tn antigen, which is associated with multiple human diseases including cancer. Despite intense interest in dysregulated expression of the Tn antigen, little is known about the structure and function of Cosmc, including domain organization, secondary structure, oligomerization, and co-factors. Limited proteolysis experiments show that Cosmc contains a structured N-terminal domain (CosmcΔ256), and biochemical characterization of CosmcΔ256 reveals wild type chaperone activity. Interestingly, CosmcE152K, which shows loss of function in vivo, exhibits wild type-like activity in vitro. Cosmc and CosmcE152K heterogeneously oligomerize and form monomeric, dimeric, trimeric, and tetrameric species, while CosmcΔ256 is predominantly monomeric as characterized by chemical crosslinking and blue native page electrophoresis. Additionally, Cosmc selectively binds divalent cations in thermal shift assays and metal binding is abrogated by the CosmcΔ256 truncation, and perturbed by the E152K mutation. Therefore, the N-terminal domain of Cosmc mediates T-synthase binding and chaperone function, whereas the C-terminal domain is necessary for oligomerization and metal binding. Our results provide new structure-function insight to Cosmc, indicate that Cosmc behaves as a modular protein and suggests points of modulation or regulation of in vivo chaperone function.
Collapse
Affiliation(s)
- Melinda S. Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Mucin-Type O-Glycosylation in Invertebrates. Molecules 2015; 20:10622-40. [PMID: 26065637 PMCID: PMC6272458 DOI: 10.3390/molecules200610622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.
Collapse
|
16
|
Ichimiya T, Maeda M, Sakamura S, Kanazawa M, Nishihara S, Kimura Y. Identification of β1,3-galactosyltransferases responsible for biosynthesis of insect complex-type N-glycans containing a T-antigen unit in the honeybee. Glycoconj J 2015; 32:141-51. [PMID: 25931033 DOI: 10.1007/s10719-015-9585-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022]
Abstract
Honeybees (Apis mellifera) produce unique complex-type N-glycans bearing a Galβ1-3GalNAc (T-antigen) unit, and honeybee-specific N-glycans are linked to royal jelly glycoproteins. In this study, we identified two novel honeybee β1,3-galactosyltransferase (β1,3-GalT) genes responsible for biosynthesis of the T-antigen in insect N-glycans. The products of the two putative β1,3-GalT genes (β1,3-GalT1 and β1,3-GalT2), which were expressed in Sf21 insect cells, transferred galactose (Gal) residues to GalNAc2GlcNAc2Man3GlcNAc2-PA to form the Galβ1-3GalNAc unit, indicating that the identified genes were involved in biosynthesis of the β1-3 Gal-containing N-glycan. Therefore, using biochemistry and molecular biology techniques, we revealed a unique N-glycan biosynthesis mechanism in the cephalic region of honeybees, which has not previously been found in other animal or plant cells.
Collapse
Affiliation(s)
- Tomomi Ichimiya
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease--mucin-type O-glycans in cancer. Adv Cancer Res 2015; 126:53-135. [PMID: 25727146 DOI: 10.1016/bs.acr.2014.11.002] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mucin-type O-glycans are a class of glycans initiated with N-acetylgalactosamine (GalNAc) α-linked primarily to Ser/Thr residues within glycoproteins and often extended or branched by sugars or saccharides. Most secretory and membrane-bound proteins receive this modification, which is important in regulating many biological processes. Alterations in mucin-type O-glycans have been described across tumor types and include expression of relatively small-sized, truncated O-glycans and altered terminal structures, both of which are associated with patient prognosis. New discoveries in the identity and expression of tumor-associated O-glycans are providing new avenues for tumor detection and treatment. This chapter describes mucin-type O-glycan biosynthesis, altered mucin-type O-glycans in primary tumors, including mechanisms for structural changes and contributions to the tumor phenotype, and clinical approaches to detect and target altered O-glycans for cancer treatment and management.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
18
|
Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2015; 14:63-81. [PMID: 24643043 DOI: 10.3233/cbm-130375] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Tn antigen is a tumor-associated carbohydrate antigen that is not normally expressed in peripheral tissues or blood cells. Expression of this antigen, which is found in a majority of human carcinomas of all types, arises from a blockage in the normal O-glycosylation pathway in which glycans are extended from the common precursor GalNAcα1-O-Ser/Thr (Tn antigen). This precursor is generated in the Golgi apparatus on newly synthesized glycoproteins by a family of polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs) and then extended to the common core 1 O-glycan Galβ1-3GalNAcα1-O-Ser/Thr (T antigen) by a single enzyme termed the T-synthase (core 1 β3-galactosyltransferase or C1GalT). Formation of the active form of the T-synthase requires a unique molecular chaperone termed Cosmc, encoded by Cosmc on the X-chromosome (Xq24 in humans, Xc3 in mice). Cosmc resides in the endoplasmic reticulum (ER) and prevents misfolding, aggregation, and proteasome-dependent degradation of newly synthesized T-synthase. Loss of expression of active T-synthase or Cosmc can lead to expression of the Tn antigen, along with its sialylated version Sialyl Tn antigen as observed in several cancers. Both genetic and epigenetic pathways, in addition to potential metabolic regulation, can result in abnormal expression of the Tn antigen. Engineered expression of the Tn antigen by disruption of either C1GalT (T-syn) or Cosmc in mice is associated with a tremendous range of pathologies and engineered expression of the Tn antigen in mouse embryos leads to embryonic death. Studies indicate that many membrane glycoproteins expressing the Tn antigen and/or truncated O-glycans may be dysfunctional, due to degradation and/or misfolding. Thus, expression of normal O-glycans is associated with health and homeostasis whereas truncation of O-glycans, e.g. the Tn and/or Sialyl Tn antigens is associated with cancer and other pathologies.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajindra P Aryal
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew R Kudelka
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Parsons LM, Mizanur RM, Jankowska E, Hodgkin J, O′Rourke D, Stroud D, Ghosh S, Cipollo JF. Caenorhabditis elegans bacterial pathogen resistant bus-4 mutants produce altered mucins. PLoS One 2014; 9:e107250. [PMID: 25296196 PMCID: PMC4189790 DOI: 10.1371/journal.pone.0107250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022] Open
Abstract
Caenorabditis elegans bus-4 glycosyltransferase mutants are resistant to infection by Microbacterium nematophilum, Yersinia pestis and Yersinia pseudotuberculosis and have altered susceptibility to two Leucobacter species Verde1 and Verde2. Our objective in this study was to define the glycosylation changes leading to this phenotype to better understand how these changes lead to pathogen resistance. We performed MALDI-TOF MS, tandem MS and GC/MS experiments to reveal fine structural detail for the bus-4 N- and O-glycan pools. We observed dramatic changes in O-glycans and moderate ones in N-glycan pools compared to the parent strain. Ce core-I glycans, the nematode's mucin glycan equivalent, were doubled in abundance, halved in charge and bore shifts in terminal substitutions. The fucosyl O-glycans, Ce core-II and neutral fucosyl forms, were also increased in abundance as were fucosyl N-glycans. Quantitative expression analysis revealed that two mucins, let-653 and osm-8, were upregulated nearly 40 fold and also revealed was a dramatic increase in GDP-Man 4,6 dehydratease expression. We performed detailed lectin binding studies that showed changes in glycoconjugates in the surface coat, cuticle surface and intestine. The combined changes in cell surface glycoconjugate distribution, increased abundance and altered properties of mucin provide an environment where likely the above pathogens are not exposed to normal glycoconjugate dependent cues leading to barriers to these bacterial infections.
Collapse
Affiliation(s)
- Lisa M. Parsons
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Rahman M. Mizanur
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Ewa Jankowska
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Jonathan Hodgkin
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Delia O′Rourke
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dave Stroud
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Salil Ghosh
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - John F. Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Mickum ML, Prasanphanich NS, Heimburg-Molinaro J, Leon KE, Cummings RD. Deciphering the glycogenome of schistosomes. Front Genet 2014; 5:262. [PMID: 25147556 PMCID: PMC4122909 DOI: 10.3389/fgene.2014.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mansoni and other Schistosoma sp. are multicellular parasitic helminths (worms) that infect humans and mammals worldwide. Infection by these parasites, which results in developmental maturation and sexual differentiation of the worms over a period of 5–6 weeks, induces antibodies to glycan antigens expressed in surface and secreted glycoproteins and glycolipids. There is growing interest in defining these unusual parasite-synthesized glycan antigens and using them to understand immune responses, their roles in immunomodulation, and in using glycan antigens as potential vaccine targets. A key problem in this area, however, has been the lack of information about the enzymes involved in elaborating the complex repertoire of glycans represented by the schistosome glycome. Recent availability of the nuclear genome sequences for Schistosoma sp. has created the opportunity to define the glycogenome, which represents the specific genes and cognate enzymes that generate the glycome. Here we describe the current state of information in regard to the schistosome glycogenome and glycome and highlight the important classes of glycans and glycogenes that may be important in their generation.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Nina S Prasanphanich
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | | | - Kristoffer E Leon
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
21
|
Aryal RP, Ju T, Cummings RD. Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J Biol Chem 2014; 289:11630-11641. [PMID: 24616093 DOI: 10.1074/jbc.m114.555870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identify a cryptic linear and relatively hydrophobic peptide in the N-terminal stem region of the T-synthase that is essential for binding to Cosmc (Cosmc binding region within T-synthase, or CBRT). Using this sequence information, we synthesized a peptide containing CBRT and found that it directly interacts with Cosmc and also inhibits Cosmc-assisted in vitro refolding of denatured T-synthase. Moreover, engineered T-synthase carrying mutations within CBRT exhibited diminished binding to Cosmc that resulted in the formation of inactive T-synthase. To confirm the general recognition of CBRT by Cosmc, we performed a domain swap experiment in which we inserted the stem region of the T-synthase into the human β4GalT1 and found that the CBRT element can confer Cosmc binding onto the β4GalT1 chimera. Thus, CBRT is a unique recognition motif for Cosmc to promote its regulation and formation of active T-synthase and represents the first sequence-specific chaperone recognition system in the ER/Golgi required for normal protein O-glycosylation.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
22
|
Abstract
Mucin-type O-glycosylation is an evolutionarily conserved protein modification present on membrane-bound and secreted proteins. Aberrations in O-glycosylation are responsible for certain human diseases and are associated with disease risk factors. Recent studies have demonstrated essential roles for mucin-type O-glycosylation in protein secretion, stability, processing, and function. Here, we summarize our current understanding of the diverse roles of mucin-type O-glycosylation during eukaryotic development. Appreciating how this conserved modification operates in developmental processes will provide insight into its roles in human disease and disease susceptibilities.
Collapse
Affiliation(s)
- Duy T Tran
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | |
Collapse
|
23
|
Aryal RP, Ju T, Cummings RD. Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation. J Biol Chem 2012; 287:15317-29. [PMID: 22416136 DOI: 10.1074/jbc.m111.312587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The interaction of the endoplasmic reticulum molecular chaperone Cosmc with its specific client T-synthase (Core 1 β1-3-galactosyltransferase) is required for folding of the enzyme and eventual movement of the T-synthase to the Golgi, but the mechanism of interaction is unclear. Here we show that the lumenal domain of recombinant Cosmc directly interacts specifically in either free form or covalently bound to solid supports with denatured T-synthase but not with the active dimeric form of the enzyme. This leads to formation of a relatively stable complex of Cosmc and denatured T-synthase accompanied by formation of reactivated enzyme in an ATP-independent fashion that is not regulated by redox, calcium, pH, or intermolecular disulfide bond formation. The partly refolded and active T-synthase remains tightly bound noncovalently to Cosmc. Dissociation of T-synthase from the complex is promoted by further interactions of the complex with free forms of either native or non-native T-synthase. Taken together, these results demonstrate a novel mechanism in which Cosmc cycles to bind non-native T-synthase, leading to enzyme activity and release in a client-driven process.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
24
|
Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl 2011; 50:1770-91. [PMID: 21259410 PMCID: PMC7159538 DOI: 10.1002/anie.201002313] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Indexed: 01/01/2023]
Abstract
Glycoproteins in animal cells contain a variety of glycan structures that are added co- and/or posttranslationally to proteins. Of over 20 different types of sugar-amino acid linkages known, the two major types are N-glycans (Asn-linked) and O-glycans (Ser/Thr-linked). An abnormal mucin-type O-glycan whose expression is associated with cancer and several human disorders is the Tn antigen. It has a relatively simple structure composed of N-acetyl-D-galactosamine with a glycosidic α linkage to serine/threonine residues in glycoproteins (GalNAcα1-O-Ser/Thr), and was one of the first glycoconjugates to be chemically synthesized. The Tn antigen is normally modified by a specific galactosyltransferase (T-synthase) in the Golgi apparatus of cells. Expression of active T-synthase is uniquely dependent on the molecular chaperone Cosmc, which is encoded by a gene on the X chromosome. Expression of the Tn antigen can arise as a consequence of mutations in the genes for T-synthase or Cosmc, or genes affecting other steps of O-glycosylation pathways. Because of the association of the Tn antigen with disease, there is much interest in the development of Tn-based vaccines and other therapeutic approaches based on Tn expression.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322 (USA), Fax: (+1) 404‐727‐2738
| | - Vivianne I. Otto
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich (Switzerland)
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322 (USA), Fax: (+1) 404‐727‐2738
| |
Collapse
|
25
|
Ju T, Otto VI, Cummings RD. Das Tn-Antigen - strukturell einfach und biologisch komplex. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201002313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Gravato-Nobre MJ, Stroud D, O'Rourke D, Darby C, Hodgkin J. Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans. Genetics 2011; 187:141-55. [PMID: 20980242 PMCID: PMC3018313 DOI: 10.1534/genetics.110.122002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property--contact recognition of hermaphrodites by males during mating--was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway.
Collapse
Affiliation(s)
- Maria J. Gravato-Nobre
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Delia O'Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Creg Darby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| |
Collapse
|
27
|
Abstract
Mucin type O-glycosylation involves sequential actions of several glycosyltransferases in the Golgi apparatus. Among those enzymes, a single gene product termed core 1 beta3-galactosyltransferase (T-synthase) in vertebrates is the key enzyme that converts the precursor Tn antigen GalNAcalpha1-Ser/Thr to the core 1 structure, Galbeta1-3GalNAcalpha1-Ser/Thr, also known as T antigen. This represents the most common structure within typical O-glycans of membrane and secreted glycoproteins. Formation of the active T-synthase requires that it interacts with Core 1 beta3Gal-T Specific Molecular Chaperone (Cosmc), which is a specific molecular chaperone in the endoplasmic reticulum (ER). T-synthase activity is commonly measured by its ability to transfer [3H]Gal from UDP-[3H]Gal to an artificial acceptor GalNAcalpha-1-O-phenyl to form [3H]Galbeta1-3GalNAcalpha-1-O-phenyl, which can then be isolated and quantified. Because the primary function of Cosmc is to form active T-synthase, the activity of Cosmc is assessed indirectly by its ability to promote formation of active T-synthase when it is coexpressed with T-synthase in cells lacking functional Cosmc. Such cells include insect cells, which constitutively lack Cosmc, and Cosmc-deficient mammalian cell lines. Cosmc is encoded by the X-linked Cosmc gene (Xq24 in human, Xc3 in mice), thus, acquired mutations in Cosmc, which have been observed in several human diseases, such as Tn syndrome and cancers, cause a loss of T-synthase, and expression of the Tn antigen. The methods described here allow the functional activities of such mutated Cosmc (mCosmc) to be measured and compared to wild-type (wtCosmc).
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | | |
Collapse
|
28
|
Butschi A, Titz A, Wälti MA, Olieric V, Paschinger K, Nöbauer K, Guo X, Seeberger PH, Wilson IBH, Aebi M, Hengartner MO, Künzler M. Caenorhabditis elegans N-glycan core beta-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2. PLoS Pathog 2010; 6:e1000717. [PMID: 20062796 PMCID: PMC2798750 DOI: 10.1371/journal.ppat.1000717] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/04/2009] [Indexed: 12/01/2022] Open
Abstract
The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galbeta1,4Fucalpha1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galbeta1,4Fucalpha1,6GlcNAc trisaccharide at 1.5 A resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms.
Collapse
Affiliation(s)
- Alex Butschi
- Institute of Molecular Biology, University of Zürich, Zürich, Switzerland
| | - Alexander Titz
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Martin A. Wälti
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Vincent Olieric
- Swiss Light Source (SLS), Paul-Scherrer-Institute (PSI), Villigen, Switzerland
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Katharina Nöbauer
- VetOMICS Core Facility for Proteomics & Metabolomics Studies, University of Veterinary Medicine, Vienna, Austria
| | - Xiaoqiang Guo
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Peter H. Seeberger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Iain B. H. Wilson
- Department of Chemistry, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Markus Aebi
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | | | - Markus Künzler
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
van Die I, Cummings RD. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology 2009; 20:2-12. [PMID: 19748975 DOI: 10.1093/glycob/cwp140] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.
Collapse
Affiliation(s)
- Irma van Die
- Department of Molecular Cell Biology & Immunology, VU University Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
Ju T, Aryal RP, Stowell CJ, Cummings RD. Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. ACTA ACUST UNITED AC 2008; 182:531-42. [PMID: 18695044 PMCID: PMC2500138 DOI: 10.1083/jcb.200711151] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regulatory pathways for protein glycosylation are poorly understood, but expression of branchpoint enzymes is critical. A key branchpoint enzyme is the T-synthase, which directs synthesis of the common core 1 O-glycan structure (T-antigen), the precursor structure for most mucin-type O-glycans in a wide variety of glycoproteins. Formation of active T-synthase, which resides in the Golgi apparatus, requires a unique molecular chaperone, Cosmc, encoded on Xq24. Cosmc is the only molecular chaperone known to be lost through somatic acquired mutations in cells. We show that Cosmc is an endoplasmic reticulum (ER)–localized adenosine triphosphate binding chaperone that binds directly to human T-synthase. Cosmc prevents the aggregation and ubiquitin-mediated degradation of the T-synthase. These results demonstrate that Cosmc is a molecular chaperone in the ER required for this branchpoint glycosyltransferase function and show that expression of the disease-related Tn antigen can result from deregulation or loss of Cosmc function.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
31
|
Yoshida H, Fuwa TJ, Arima M, Hamamoto H, Sasaki N, Ichimiya T, Osawa KI, Ueda R, Nishihara S. Identification of the Drosophila core 1 1,3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes. Glycobiology 2008; 18:1094-104. [DOI: 10.1093/glycob/cwn094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
32
|
Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj J 2008; 26:325-34. [PMID: 18695988 DOI: 10.1007/s10719-008-9162-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/12/2008] [Indexed: 12/19/2022]
Abstract
In this special issue of the Glycoconjugate Journal focusing on glycosciences and development, we summarize recent advances in our understanding of the role of mucin-type O-glycans in development and disease. The presence of this widespread protein modification has been known for decades, yet identification of its biological functions has been hampered by the redundancy and complexity of the enzyme family controlling the initiation of O-glycosylation, as well as the diversity of extensions of the core sugar. Recent studies in organisms as diverse as mammals and Drosophila have yielded insights into the function of this highly abundant and evolutionarily-conserved protein modification. Gaining an understanding of mucin-type O-glycans in these diverse systems will elucidate crucial conserved processes underlying many aspects of development and homeostasis.
Collapse
|
33
|
Nguyen K, van Die I, Grundahl KM, Kawar ZS, Cummings RD. Molecular cloning and characterization of the Caenorhabditis elegans alpha1,3-fucosyltransferase family. Glycobiology 2007; 17:586-99. [PMID: 17369288 DOI: 10.1093/glycob/cwm023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genome of Caenorhabditis elegans encodes five genes with homology to known alpha1,3 fucosyltransferases (alpha1,3FTs), but their expression and functions are poorly understood. Here we report the molecular cloning and characterization of these C. elegans alpha1,3FTs (CEFT-1 through -5). The open-reading frame for each enzyme predicts a type II transmembrane protein and multiple potential N-glycosylation sites. We prepared recombinant epitope-tagged forms of each CEFT and found that they had unusual acceptor specificity, cation requirements, and temperature sensitivity. CEFT-1 acted on the N-glycan pentasaccharide core acceptor to generate Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-Asn. In contrast, CEFT-2 did not act on the pentasaccharide acceptor, but instead utilized a LacdiNAc acceptor to generate GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc, which is a novel activity. CEFT-3 utilized a LacNAc acceptor to generate Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc without requiring cations. CEFT-4 was similar to CEFT-3, but its activity was enhanced by some divalent cations. Recombinant CEFT-5 was well expressed, but did not act on available acceptors. Each CEFT was optimally active at room temperature and rapidly lost activity at 37 degrees C. Promoter analysis showed that CEFT-1 is expressed in C. elegans eggs and adults, but its expression was restricted to a few neuronal cells at the head and tail. We prepared deletion mutants for each enzyme for phenotypic analysis. While loss of CEFT-1 correlated with loss of pentasaccharide core activity and core alpha1,3-fucosylated glycans in worms, loss of other enzymes did not correlate with any phenotypic changes. These results suggest that each of the alpha1,3FTs in C. elegans has unique specificity and expression patterns.
Collapse
Affiliation(s)
- Kiem Nguyen
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|