1
|
Sulc A, Czétány P, Máté G, Balló A, Semjén D, Szántó Á, Márk L. MALDI Imaging Mass Spectrometry Reveals Lipid Alterations in Physiological and Sertoli Cell-Only Syndrome Human Testicular Tissue Sections. Int J Mol Sci 2024; 25:8358. [PMID: 39125928 PMCID: PMC11313448 DOI: 10.3390/ijms25158358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Azoospermia, the absence of sperm cells in semen, affects around 15% of infertile males. Sertoli cell-only syndrome (SCOS) is the most common pathological lesion in the background of non-obstructive azoospermia and is characterised by the complete absence of germinal epithelium, with Sertoli cells exclusively present in the seminiferous tubules. Studies have shown a correlation between successful spermatogenesis and male fertility with lipid composition of spermatozoa, semen, seminal plasma or testis. The aim of this research was to discover the correlation between the Johnsen scoring system and phospholipid expressions in testicular cryosections of SCOS patients. MALDI imaging mass spectrometry is used to determine spatial distributions of molecular species, such as phospholipids. Phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingomyelins (SMs) are the most abundant phospholipids in mammalian cells and testis. SMs, the structural components of plasma membranes, are crucial for spermatogenesis and sperm function. Plasmalogens, are unique PCs in testis with strong antioxidative properties. This study, using imaging mass spectrometry, demonstrates the local distribution of phospholipids, particularly SMs, PCs, plasmalogens and PEs in human testicular samples with SCOS for the first time. This study found a strong relationship between the Johnsen scoring system and phospholipid expression levels in human testicular tissues. Future findings could enable routine diagnostic techniques during microTESE procedures for successful sperm extraction.
Collapse
Affiliation(s)
- Alexandra Sulc
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
| | - Péter Czétány
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Gábor Máté
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - András Balló
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Dávid Semjén
- Institute of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Imaging Centre for Life and Material Sciences, University of Pécs, 7624 Pécs, Hungary
- HUN-REN-PTE, Human Reproduction Research Group, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Koch J, Watschinger K, Werner ER, Keller MA. Tricky Isomers—The Evolution of Analytical Strategies to Characterize Plasmalogens and Plasmanyl Ether Lipids. Front Cell Dev Biol 2022; 10:864716. [PMID: 35573699 PMCID: PMC9092451 DOI: 10.3389/fcell.2022.864716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Typically, glycerophospholipids are represented with two esterified fatty acids. However, by up to 20%, a significant proportion of this lipid class carries an ether-linked fatty alcohol side chain at the sn-1 position, generally referred to as ether lipids, which shape their specific physicochemical properties. Among those, plasmalogens represent a distinct subgroup characterized by an sn-1 vinyl-ether double bond. The total loss of ether lipids in severe peroxisomal defects such as rhizomelic chondrodysplasia punctata indicates their crucial contribution to diverse cellular functions. An aberrant ether lipid metabolism has also been reported in multifactorial conditions including Alzheimer’s disease. Understanding the underlying pathological implications is hampered by the still unclear exact functional spectrum of ether lipids, especially in regard to the differentiation between the individual contributions of plasmalogens (plasmenyl lipids) and their non-vinyl-ether lipid (plasmanyl) counterparts. A primary reason for this is that exact identification and quantification of plasmalogens and other ether lipids poses a challenging and usually labor-intensive task. Diverse analytical methods for the detection of plasmalogens have been developed. Liquid chromatography–tandem mass spectrometry is increasingly used to resolve complex lipid mixtures, and with optimized parameters and specialized fragmentation strategies, discrimination between ethers and plasmalogens is feasible. In this review, we recapitulate historic and current methodologies for the recognition and quantification of these important lipids and will discuss developments in this field that can contribute to the characterization of plasmalogens in high structural detail.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Markus A. Keller,
| |
Collapse
|
4
|
Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int J Mol Sci 2021; 22:ijms222212393. [PMID: 34830273 PMCID: PMC8623934 DOI: 10.3390/ijms222212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.
Collapse
|
5
|
Nakashima Y, Eto F, Ishihara K, Yamazaki F, Sato S, Sakurai T, Kahyo T, Setou M. Development of sheet-enhanced technique (Set) method for matrix-assisted laser desorption/ionization imaging mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8703. [PMID: 31840282 DOI: 10.1002/rcm.8703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE The key to successful experiments in matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is to apply the matrix uniformly to the sample. With the development of automated equipment, uniform matrix application has made great progress while the sample preparation required to acquire a better image becomes complicated. METHODS The approach is to apply the matrix uniformly to tape and adhere it to the tissue section. We call this the sheet-enhanced technique (Set) method. RESULTS The Set method promotes ionization of biomolecules as well as the spray method. This procedure does not require the preparation and application of a matrix solution for each experiment, dramatically reducing the time and effort of matrix deposition. CONCLUSIONS In the present study, we have developed the Set method as a new matrix application method. The method promotes ionization of biomolecules as well as the spray method for MALDI-IMS.
Collapse
Affiliation(s)
- Yuko Nakashima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuku Ishihara
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Fumiyoshi Yamazaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shumpei Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takanobu Sakurai
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
6
|
Governini L, Semplici B, Pavone V, Crifasi L, Marrocco C, De Leo V, Arlt E, Gudermann T, Boekhoff I, Luddi A, Piomboni P. Expression of Taste Receptor 2 Subtypes in Human Testis and Sperm. J Clin Med 2020; 9:E264. [PMID: 31963712 PMCID: PMC7019805 DOI: 10.3390/jcm9010264] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022] Open
Abstract
Taste receptors (TASRs) are expressed not only in the oral cavity but also throughout the body, thus suggesting that they may play different roles in organ systems beyond the tongue. Recent studies showed the expression of several TASRs in mammalian testis and sperm, indicating an involvement of these receptors in male gametogenesis and fertility. This notion is supported by an impaired reproductive phenotype of mouse carrying targeted deletion of taste receptor genes, as well as by a significant correlation between human semen parameters and specific polymorphisms of taste receptor genes. To better understand the biological and thus clinical significance of these receptors for human reproduction, we analyzed the expression of several members of the TAS2Rs family of bitter receptors in human testis and in ejaculated sperm before and after in vitro selection and capacitation. Our results provide evidence for the expression of TAS2R genes, with TAS2R14 being the most expressed bitter receptor subtype in both testis tissue and sperm cells, respectively. In addition, it was observed that in vitro capacitation significantly affects both the expression and the subcellular localization of these receptors in isolated spermatozoa. Interestingly, α-gustducin and α-transducin, two Gα subunits expressed in taste buds on the tongue, are also expressed in human spermatozoa; moreover, a subcellular redistribution of both G protein α-subunits to different sub-compartments of sperm was registered upon in vitro capacitation. Finally, we shed light on the possible downstream transduction pathway initiated upon taste receptor activation in the male reproductive system. Performing ultrasensitive droplets digital PCR assays to quantify RNA copy numbers of a distinct gene, we found a significant correlation between the expression of TAS2Rs and TRPM5 (r = 0.87), the cation channel involved in bitter but also sweet and umami taste transduction in taste buds on the tongue. Even if further studies are needed to clarify the precise functional role of taste receptors for successful reproduction, the presented findings significantly extend our knowledge of the biological role of TAS2Rs for human male fertility.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Bianca Semplici
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Valentina Pavone
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Laura Crifasi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Camilla Marrocco
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Muenchen, Germany; (E.A.); (T.G.); (I.B.)
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Muenchen, Germany; (E.A.); (T.G.); (I.B.)
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Muenchen, Germany; (E.A.); (T.G.); (I.B.)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| |
Collapse
|
7
|
Engel KM, Jakop U, Müller K, Grunewald S, Paasch U, Schiller J. MALDI MS Analysis to Investigate the Lipid Composition of Sperm. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666181030123256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The sperm plasma membrane meets the requirements of sperm transit
through the female genital tract and subsequent fertilization. Commonly, the (phospho)lipid composition
of sperm is characterized by tremendous amounts of highly unsaturated fatty acyl residues such
as docosahexaenoic and docosapentaenoic acid. While human sperm contain almost exclusively diacyl
lipids, many animal sperm additionally contain significant amounts of ether lipids such as alkylacyl-
and alkenyl-acyl lipids (plasmalogens).
Hypothesis/Objective:
It is suggested that deviations from the typical lipid composition are indicative
of pathological changes. Therefore, simple methods to elucidate the sperm lipid composition are essential.
Method:
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is a fast
and simple method. Since the selection of the most suitable matrix is a crucial step in MALDI MS,
this topic will be highlighted. It will also be shown that MALDI MS can be easily combined with
thin-layer chromatography to overcome ion suppression effects.
Results:
The lipid composition of sperm from different species can be elucidated by MALDI MS.
However, different matrix compounds have to be used to record positive and negative ion mass spectra.
Since some sperm (glyco)lipids are characterized by the presence of sulfate residues which suppress
the detection of less acidic lipids in the negative ion mode, previous separation is often necessary.
It will be also emphasized that plasmalogens can be easily identified by either enzymatic digestion
or treatment with acids.
Conclusion:
MALDI MS is a reliable method to obtain sperm lipid fingerprints in a simple and convenient
way.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Ulrike Jakop
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Sonja Grunewald
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Uwe Paasch
- Dermatology, Venerology and Allergology Clinic, Andrological Unit, University Hospital Leipzig, Philipp-Rosenthal- Straße 23, D-04103, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
8
|
Lopalco P, Vitale R, Cho YS, Totaro P, Corcelli A, Lobasso S. Alteration of Cholesterol Sulfate/Seminolipid Ratio in Semen Lipid Profile of Men With Oligoasthenozoospermia. Front Physiol 2019; 10:1344. [PMID: 31736776 PMCID: PMC6828844 DOI: 10.3389/fphys.2019.01344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
The reduction of sperm motility and count, or oligoasthenozoospermia, is one of the major causes of reduced fertility or infertility in men. Lipid composition of spermatozoa is important in determining their functional characteristics, in particular on motility, acrosomal exocytosis or fusogenic properties of the sperm. Here we investigated the levels of semen lipids in 11 infertile patients with severe oligoasthenozoospermia and 9 normozoospermic subjects with normal motility values. Sperm polar and neutral lipids were analyzed by thin-layer chromatography (TLC) and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Semen of patients with oligoasthenozoospermia showed a reduction of the degree of fatty acid unsaturation in the phospholipids chains that might affect the membrane fluidity. Furthermore, a significant higher cholesterol sulfate/seminolipid ratio was found in semen of oligoasthenozoospermic patients than in subjects with normal motility values, suggesting a critical role of sulfolipids in semen quality. The results may facilitate the understanding of the role of lipids on male fertility and offer interesting perspectives to find innovative treatments for oligoasthenozoospermia.
Collapse
Affiliation(s)
- Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Rita Vitale
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Yoon Sung Cho
- Centre for Medically Assisted Procreation, Santa Maria Hospital, Bari, Italy
| | - Pasquale Totaro
- Centre for Medically Assisted Procreation, Santa Maria Hospital, Bari, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Dias IHK, Ferreira R, Gruber F, Vitorino R, Rivas-Urbina A, Sanchez-Quesada JL, Vieira Silva J, Fardilha M, de Freitas V, Reis A. Sulfate-based lipids: Analysis of healthy human fluids and cell extracts. Chem Phys Lipids 2019; 221:53-64. [PMID: 30910732 DOI: 10.1016/j.chemphyslip.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Sulfate-based lipids (SL) have been proposed as players in inflammation, immunity and infection. In spite of the many biochemical processes linked to SL, analysis on this class of lipids has only focused on specific SL sub-classes in individual fluids or cells leaving a range of additional SL in other biological samples unaccounted for. This study describes the mass spectrometry screening of SL in lipid extracts of human fluids (saliva, plasma, urine, seminal fluid) and primary human cells (RBC, neutrophils, fibroblasts and skin epidermal) using targeted precursor ion scanning (PIS) approach. The PIS 97 mass spectra reveal a wide diversity of SL including steroid sulfates, sulfoglycolipids and other unidentified SL, as well as metabolites such as taurines, sulfated polyphenols and hypurate conjugates. Semi-quantification of SL revealed that plasma exhibited the highest content of SL whereas seminal fluid and epithelial cells contained the highest sulphur to phosphorous (S/P) ratio. The complexity of biofluids and cells sulfateome presented in this study highlight the importance of expanding the panel of synthetic sulfate-based lipid standards. Also, the heterogenous distribution of SL provides evidence for the interplay of sulfotransferases/sulfatases, opening new avenues for biomarker discovery in oral health, cardiovascular, fertility and dermatology research areas.
Collapse
Affiliation(s)
| | - Rita Ferreira
- Departamento de Quimica, Research Unit of Química Orgânica, Produtos Naturais e Agro-alimentares (QOPNA), Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Florian Gruber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - José Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - Joana Vieira Silva
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal; Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
10
|
Tanphaichitr N, Kongmanas K, Faull KF, Whitelegge J, Compostella F, Goto-Inoue N, Linton JJ, Doyle B, Oko R, Xu H, Panza L, Saewu A. Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog Lipid Res 2018; 72:18-41. [PMID: 30149090 PMCID: PMC6239905 DOI: 10.1016/j.plipres.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
Sulfogalactosylglycerolipid (SGG, aka seminolipid) is selectively synthesized in high amounts in mammalian testicular germ cells (TGCs). SGG is an ordered lipid and directly involved in cell adhesion. SGG is indispensable for spermatogenesis, a process that greatly depends on interaction between Sertoli cells and TGCs. Spermatogenesis is disrupted in mice null for Cgt and Cst, encoding two enzymes essential for SGG biosynthesis. Sperm surface SGG also plays roles in fertilization. All of these results indicate the significance of SGG in male reproduction. SGG homeostasis is also important in male fertility. Approximately 50% of TGCs become apoptotic and phagocytosed by Sertoli cells. SGG in apoptotic remnants needs to be degraded by Sertoli lysosomal enzymes to the lipid backbone. Failure in this event leads to a lysosomal storage disorder and sub-functionality of Sertoli cells, including their support for TGC development, and consequently subfertility. Significantly, both biosynthesis and degradation pathways of the galactosylsulfate head group of SGG are the same as those of sulfogalactosylceramide (SGC), a structurally related sulfoglycolipid important for brain functions. If subfertility in males with gene mutations in SGG/SGC metabolism pathways manifests prior to neurological disorder, sperm SGG levels might be used as a reporting/predicting index of the neurological status.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics/Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | - James-Jules Linton
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Brendon Doyle
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hongbin Xu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luigi Panza
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Nakashima Y, Setou M. Distribution of Antisense Oligonucleotides in Rat Eyeballs Using MALDI Imaging Mass Spectrometry. Mass Spectrom (Tokyo) 2018; 7:A0070. [PMID: 30214850 PMCID: PMC6131115 DOI: 10.5702/massspectrometry.a0070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
Oligonucleotide-based therapeutics such as antisense oligonucleotides, small interfering RNAs (siRNAs), decoy and aptamer have been extensively developed. To investigate the pharmacokinetics of oligonucleotide therapeutics, it is common to label a radioisotope in a nucleic acid and visualize it. However, if the labeled terminal nucleotide is decomposed by a nuclease in vivo, only the labeled nucleotide is detected, and it is impossible to observe the nucleic acid exhibiting the drug effect. The distribution of biomolecules, such as phospholipids, proteins, and glycolipids, can be obtained and visualized without labeling using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). MALDI-IMS is also used in pharmacokinetic analysis to visualize a parent drug and its metabolites simultaneously. In this study, we reported a methodology for oligonucleotides analysis by MALDI-IMS. When phosphorothioate antisense oligonucleotide was administered into the eyeball of rats, it reached the retina after 30 min without undergoing decomposition by nucleases.
Collapse
Affiliation(s)
- Yuko Nakashima
- International Mass Imaging Center and Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Japan
| | - Mitsutoshi Setou
- International Mass Imaging Center and Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Japan
- Preeminent Medical Photonics Education & Research Center, Japan
- Department of Anatomy, The University of Hong Kong, China
| |
Collapse
|
12
|
Influence of spermatozoal lipidomic profile on the cryoresistance of frozen spermatozoa from stallions. Theriogenology 2018; 108:161-166. [DOI: 10.1016/j.theriogenology.2017.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022]
|
13
|
Goto-Inoue N, Sato T, Morisasa M, Kashiwagi A, Kashiwagi K, Sugiura Y, Sugiyama E, Suematsu M, Mori T. Utilizing mass spectrometry imaging to map the thyroid hormones triiodothyronine and thyroxine in Xenopus tropicalis tadpoles. Anal Bioanal Chem 2017; 410:1333-1340. [DOI: 10.1007/s00216-017-0775-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023]
|
14
|
Utilizing mass spectrometry imaging to map the thyroid hormones triiodothyronine and thyroxine in Xenopus tropicalis tadpoles. Anal Bioanal Chem 2017. [DOI: 10.1007/s00216-017-0775-y pmid: 29247380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
15
|
MALDI imaging: beyond classic diagnosis. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:212-218. [PMID: 29382489 DOI: 10.1016/j.bmhimx.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 02/04/2023] Open
Abstract
Mass spectrometry has been the focus of technology development and application for imaging for several decades. Imaging mass spectrometry using matrix-assisted laser desorption ionization is a new and effective tool for molecular studies of complex biological samples such as tissue sections. As histological features remain intact throughout the analysis of a section, distribution maps of multiple analytes can be correlated with histological and clinical features. Spatial molecular arrangements can be assessed without the need for target-specific reagents, allowing the discovery of diagnostic and prognostic markers of different cancer types and enabling the determination of effective therapies.
Collapse
|
16
|
Luddi A, Gori M, Crifasi L, Marrocco C, Belmonte G, Costantino-Ceccarini E, Piomboni P. Impaired spermatogenesis in the twitcher mouse: A morphological evaluation from the seminiferous tubules to epididymal transit. Syst Biol Reprod Med 2017; 63:77-85. [PMID: 28103109 DOI: 10.1080/19396368.2016.1271918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spermatogenesis is a complex process of proliferation and differentiation during male germ cell development whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa. In this developmental process the interactions between different cell types are finely regulated, hence any disruption in these relationships leads to male infertility. The twitcher mouse, the murine model of Krabbe disease, is characterized by deficiency of galactosylceramidase, an enzyme also involved in the metabolism of the galactosyl-alkyl-acyl-glycerol, the precursor of sulfogalactosyl-alkyl-acyl-glycerol, the most abundant glycolipid in spermatozoa. Twitcher mice are sterile due to alterations of spermatogenesis resulting in the production of spermatozoa with abnormally swollen acrosomes and bent flagella, mainly at the midpiece-principal piece junction. The current study employs light, fluorescence, and electron microscopy to examine the defective spermiogenesis leading to the morphological abnormalities of mature sperm. This study reveals that alterations in germ cell development can be initially detected at the stage VIII and IX of spermatogenesis. The disrupted spermatogenetic process leads to a reduced number of elongating spermatids and spermatozoa in these mutant animals. Electron microscopy analysis demonstrates major acrosomal and chromatin condensation defects in the mutants. In addition, in twitcher mice, the epididymal architecture is impaired, with stereocilia of caput and corpus broken, detached and completely spread out into the lumen. These findings indicate that seminolipid expression is crucial for proper development of spermatocytes and spermatids and for their normal differentiation into mature spermatozoa. ABBREVIATIONS GALC: galactosylceramidase; GalAAG: galactosyl-alkyl-acyl-glycerol; SGalAAG: sulfogalactosylalkylacylglycerol; PND: postnatal day; PAS: periodic acid-Schiff stain; TEM: transmission electron microscopy; SEM: scanning electron microscopy; PFA: paraformaldheyde.
Collapse
Affiliation(s)
- Alice Luddi
- a Department of Molecular and Developmental Medicine , University of Siena , Siena, Italy
| | - Martina Gori
- a Department of Molecular and Developmental Medicine , University of Siena , Siena, Italy
| | - Laura Crifasi
- a Department of Molecular and Developmental Medicine , University of Siena , Siena, Italy
| | - Camilla Marrocco
- a Department of Molecular and Developmental Medicine , University of Siena , Siena, Italy
| | - Giuseppe Belmonte
- a Department of Molecular and Developmental Medicine , University of Siena , Siena, Italy
| | | | - Paola Piomboni
- a Department of Molecular and Developmental Medicine , University of Siena , Siena, Italy
| |
Collapse
|
17
|
Goto-Inoue N, Kashiwagi A, Kashiwagi K, Mori T. Metabolomic approach for identifying and visualizing molecular tissue markers in tadpoles of Xenopus tropicalis by mass spectrometry imaging. Biol Open 2016; 5:1252-9. [PMID: 27422901 PMCID: PMC5051643 DOI: 10.1242/bio.019646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In developmental and cell biology it is crucial to evaluate the dynamic profiles of metabolites. An emerging frog model system using Xenopus tropicalis, whose genome sequence and inbred strains are available, is now ready for metabolomics investigation in amphibians. In this study we applied matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) analysis to identify and visualize metabolomic molecular markers in tadpoles of Xenopus tropicalis. We detected tissue-specific peaks and visualized their distribution in tissues, and distinguished 19 tissues and their specific peaks. We identified, for the first time, some of their molecular localizations via tandem mass spectrometric analysis: hydrocortisone in artery, L-DOPA in rhombencephalon, taurine in eye, corticosterone in gill, heme in heart, inosine monophosphate and carnosine in muscle, dopamine in nerves, and phosphatidylethanolamine (16:0/20:4) in pharynx. This is the first MALDI-MSI study of X. tropicalis tadpoles, as in small tadpoles it is hard to distinguish and dissect the various organs. Furthermore, until now there has been no data about the metabolomic profile of each organ. Our results suggest that MALDI-MSI is potentially a powerful tool for examining the dynamics of metabolomics in metamorphosis as well as conformational changes due to metabolic changes. Summary: We applied matrix-assisted laser desorption/ionization−mass spectrometry imaging analyses to identify and visualize metabolomic molecular markers in tadpoles of Xenopus tropicalis. We found new molecular markers in various tissues and cells.
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Akihiko Kashiwagi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Keiko Kashiwagi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
18
|
Effect of dietary fish oil on mouse testosterone level and the distribution of eicosapentaenoic acid-containing phosphatidylcholine in testicular interstitium. Biochem Biophys Rep 2016; 7:259-265. [PMID: 28955915 PMCID: PMC5613343 DOI: 10.1016/j.bbrep.2016.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 11/24/2022] Open
Abstract
Low levels of serum testosterone are characteristically associated with diabetes, coronary atherosclerosis, obstructive sleep apnea, rheumatoid arthritis, and chronic obstructive pulmonary disease. Testosterone replacement therapy is effective against many of these disorders, indicating the importance of maintaining a healthy testosterone level. In this study, we investigated the effects of fish oil on murine testosterone metabolism and analyzed the dynamics of relevant lipids in testes by matrix-assisted laser desorption ionization mass spectrometry imaging. Testosterone was upregulated in mice that received fish oil. In the testicular interstitium, eicosapentaenoic acid-containing phosphatidylcholine was distributed characteristically. These data suggest that eicosapentaenoic acid is involved in testosterone metabolism. Testosterone was upregulated in mice that received fish oil. In the testicular interstitium, EPA-containing PC was distributed characteristically. Leydig cells have a system to incorporate EPA selectively into the plasma membrane. EPA may be crucial in testosterone metabolism.
Collapse
|
19
|
Zhang XC, Wei ZW, Gong XY, Si XY, Zhao YY, Yang CD, Zhang SC, Zhang XR. Integrated Droplet-Based Microextraction with ESI-MS for Removal of Matrix Interference in Single-Cell Analysis. Sci Rep 2016; 6:24730. [PMID: 27126222 PMCID: PMC4850364 DOI: 10.1038/srep24730] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/04/2016] [Indexed: 11/24/2022] Open
Abstract
Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis.
Collapse
Affiliation(s)
- Xiao-Chao Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen-Wei Wei
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Yun Gong
- National Institute of Metrology, Beijing 100013, China
| | - Xing-Yu Si
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yao-Yao Zhao
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Dui Yang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Si-Chun Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin-Rong Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Yamazaki K, Masaki N, Kohmura-Kobayashi Y, Yaguchi C, Hayasaka T, Itoh H, Setou M, Kanayama N. Decrease in Sphingomyelin (d18:1/16:0) in Stem Villi and Phosphatidylcholine (16:0/20:4) in Terminal Villi of Human Term Placentas with Pathohistological Maternal Malperfusion. PLoS One 2015; 10:e0142609. [PMID: 26569622 PMCID: PMC4646668 DOI: 10.1371/journal.pone.0142609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022] Open
Abstract
Placental villi play pivotal roles in feto-maternal transportation and phospholipids constitute a major part of the villous membrane. We have been developing and optimizing an imaging system based on a matrix-assisted laser desorption/ionization (MALDI)-based mass spectrometer, which provides clear two-dimensional molecular distribution patterns using highly sensitive mass spectrometry from mixtures of ions generated on tissue surfaces. We recently applied this technology to normal human uncomplicated term placentas and detected the specific distribution of sphingomyelin (SM) (d18:1/16:0) in stem villi and phosphatidylcholine (PC) (16:0/20:4) in terminal villi. In the present study, we applied this technology to nine placentas with maternal or fetal complications, and determined whether a relationship existed between these specific distribution patterns of phospholipid molecules and the six representative pathological findings of placentas, i.e., villitis of unknown etiology (VUE), thrombus, atherosis, chorioamnionitis (CAM), immature terminal villi, and multiple branched terminal villi. In two placentas with the first and second largest total number of positive pathological findings, i.e., five and three positive findings, the specific distribution of SM (d18:1/16:0) in stem villi and PC (16:0/20:4) in terminal villi disappeared. The common pathological findings in these two placentas were atherosis, immature terminal villi, and multiple branched terminal villi, suggesting the possible involvement of the underperfusion of maternal blood into the intervillous space. On the other hand, the number of pathological findings were two or less in the seven other placentas, in which no specific relationships were observed between the differential expression patterns of these two phospholipids in stem and terminal villi and the pathological findings of the placentas; however, the specific distribution pattern of SM (d18:1/16:0) in stem villi disappeared in four placentas, while that of PC (16:0/20:4) in terminal villi was preserved. These results suggested that the absence of the specific distribution of PC (16:0/20:4) in terminal villi, possibly in combination with the absence of SM (d18:1/16:0) in stem villi, was linked to placental morphological changes in response to maternal underperfusion of the placenta.
Collapse
Affiliation(s)
- Kaori Yamazaki
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noritaka Masaki
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kohmura-Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Chizuko Yaguchi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Faculty of Health Sciences, Health Innovation & Technology Center, Hokkaido University, Sapporo, Japan
- Department of Food and Health Research by NB and LSI, Global Research Center for Food & Medical Innovation, Sapporo, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- * E-mail:
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
21
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
22
|
Changes of phosphatidylcholine and fatty acids in germ cells during testicular maturation in three developmental male morphotypes of Macrobrachium rosenbergii revealed by imaging mass spectrometry. PLoS One 2015; 10:e0120412. [PMID: 25781176 PMCID: PMC4363669 DOI: 10.1371/journal.pone.0120412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/21/2015] [Indexed: 11/26/2022] Open
Abstract
Testis maturation, germ cell development and function of sperm, are related to lipid composition. Phosphatidylcholines (PCs) play a key role in the structure and function of testes. As well, increases of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are essential for male fertility. This study is the first report to show the composition and distribution of PCs and total fatty acids (FAs) in three groups of seminiferous tubules (STs) classified by cellular associations [i.e., A (STs with mostly early germ cells), B (STs with mostly spermatids), and C (STs with spermatozoa)], in three morphotypes of Macrobrachium rosenbergii, [i.e., small male (SM), orange claw male (OC), and blue claw male (BC)]. Thin layer chromatography exhibited levels of PCs reaching maxima in STs of group B. Imaging mass spectrometry showed remarkably high signals corresponding to PC (16:0/18:1), PC (18:0/18:2), PC (18:2/20:5), and PC (16:0/22:6) in STs of groups A and B. Moreover, most signals were detected in the early developing cells and the intertubular area, but not at the area containing spermatozoa. Finally, gas chromatography-mass spectrometry indicated that the major FAs present in the testes were composed of 14:0, 16:0, 17:0, 18:0, 16:1, 18:1, 18:2, 20:1, 20:2, 20:4, 20:5, and 22:6. The testes of OC contained the greatest amounts of these FAs while the testes of BC contained the least amounts of these FAs, and there was more EPA (20:5) in the testes of SM and OC than those in the BC. The increasing amounts of FAs in the SM and OC indicate that they are important for spermatogenesis and spermiogenesis. This knowledge will be useful in formulating diets containing PUFA and HUFA for prawn broodstocks in order to improve testis development, and lead to increased male fecundity.
Collapse
|
23
|
Soltwisch J, Kettling H, Vens-Cappell S, Wiegelmann M, Müthing J, Dreisewerd K. Mass spectrometry imaging with laser-induced postionization. Science 2015; 348:211-5. [PMID: 25745064 DOI: 10.1126/science.aaa1051] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can simultaneously record the lateral distribution of numerous biomolecules in tissue slices, but its sensitivity is restricted by limited ionization. We used a wavelength-tunable postionization laser to initiate secondary MALDI-like ionization processes in the gas phase. In this way, we could increase the ion yields for numerous lipid classes, liposoluble vitamins, and saccharides, imaged in animal and plant tissue with a 5-micrometer-wide laser spot, by up to two orders of magnitude. Critical parameters for initiation of the secondary ionization processes are pressure of the cooling gas in the ion source, laser wavelength, pulse energy, and delay between the two laser pulses. The technology could enable sensitive MALDI-MS imaging with a lateral resolution in the low micrometer range.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Hans Kettling
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany. Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Simeon Vens-Cappell
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany. Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Marcel Wiegelmann
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany. Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstrasse 3, 48149 Münster, Germany.
| |
Collapse
|
24
|
Sosnowski P, Zera T, Wilenska B, Szczepanska-Sadowska E, Misicka A. Imaging and identification of endogenous peptides from rat pituitary embedded in egg yolk. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:327-335. [PMID: 26406344 DOI: 10.1002/rcm.7112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE Mass spectrometry imaging (MSI) can provide accurate data containing the spatial distribution of endogenous peptides in tissue sections without previous treatment. One of the key issues in analyzing small samples is establishing a proper technique for mounting and manipulating collected tissue in order to avoid contamination of the sample with optimal cutting temperature (OCT) resin. METHODS We present a method for embedding rat pituitary tissue in a frozen egg yolk block, which enables its further imaging in experiments on a matrix-assisted laser desorption/ionization (MALDI) mass spectrometer with time-of-flight (TOF) analyzer. Embedding the sample in the egg yolk prevents contamination from the OCT resin, which decreases MALDI signal quality. RESULTS In the present study we detected numerous m/z peaks related to endogenous peptides. We identified fifteen peptides and their post-translational modifications by tandem mass spectrometry (MS/MS) directly on tissue sections of the hypophysis posterior and intermediate lobes; among these peptides were vasopressin, oxytocin, copeptin, melanocyte-stimulating hormones and beta-endorphin. We also showed that egg yolk itself does not affect localization of peptides in the pituitary. CONCLUSIONS Egg yolk embedding enables preparation of tissue sections from small tissue fragments to organs such as the pituitary gland, which is suitable for localization and identification of endogenous peptides by the MALDI-MSI and MALDI-MS/MS techniques.
Collapse
Affiliation(s)
- Piotr Sosnowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Beata Wilenska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| |
Collapse
|
25
|
Zaima N, Goto-Inoue N, Moriyama T. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry: New Technology for Vascular Pathology. J Vasc Res 2014; 51:144-8. [DOI: 10.1159/000362123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/11/2014] [Indexed: 01/30/2023] Open
|
26
|
Goto-Inoue N, Yamada K, Inagaki A, Furuichi Y, Ogino S, Manabe Y, Setou M, Fujii NL. Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Sci Rep 2013; 3:3267. [PMID: 24253370 PMCID: PMC3834553 DOI: 10.1038/srep03267] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/29/2013] [Indexed: 02/08/2023] Open
Abstract
Although it is clear that lipids are responsible for insulin resistance, it is poorly understood what types of lipids are involved. In this study, we verified the characteristic lipid species in skeletal muscle of a chronic exercise training model and a high-fat induced-obesity model. Three different lipidomics analyses revealed phospholipid qualitative changes. As a result, linoleic acid-containing phosphatidylcholine and sphingomyelin and docosahexanoic acid-containing phosphatidylcholine were characterized as chronic exercise training-induced lipids. On the contrary, arachidonic acid-containing phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositol were characterized as high-fat diet-induced lipids. In addition, minor sphingomyelin, which has long-chain fatty acids, was identified as a high-fat diet-specific lipid. This is the first report to reveal compositional changes in phospholipid molecular species in chronic exercise and high-fat-diet-induced insulin-resistant models. Due to their influence on cell permeability and receptor stability at the cell membrane, these molecules may contribute to the mechanisms underlying insulin sensitivity and several metabolic disorders.
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- 1] Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan [2] Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Current status and future perspectives of mass spectrometry imaging. Int J Mol Sci 2013; 14:11277-301. [PMID: 23759983 PMCID: PMC3709732 DOI: 10.3390/ijms140611277] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023] Open
Abstract
Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology.
Collapse
|
28
|
|
29
|
Taki T. Bio-recognition and functional lipidomics by glycosphingolipid transfer technology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:302-20. [PMID: 23883610 PMCID: PMC3758962 DOI: 10.2183/pjab.89.302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Through glycosphingolipid biochemical research, we developed two types of transcription technologies. One is a biochemical transfer of glycosphingolipids to peptides. The other is a physicochemical transfer of glycosphingolipids in silica gel to the surface of a plastic membrane. Using the first technology, we could prepare peptides which mimic the shapes of glycosphingolipid molecules by biopanning with a phage-displayed peptide library and anti-glycosphingolipid antibodies as templates. The peptides thus obtained showed biological properties and functions similar to those of the original glycosphingolipids, such as lectin binding, glycosidase modulation, inhibition of tumor metastasis and immune response against the original antigen glycosphingolipid, and we named them glyco-replica peptides. The results showed that the newly prepared peptides could be used effectively as a bio-recognition system and suggest that the glyco-replica peptides can be widely applied to therapeutic fields. Using the second technology, we could establish a functional lipidomics with a thin-layer chromatography-blot/matrix-assisted laser desorption ionization-time of flight mass spectrometry (TLC-Blot/MALDI-TOF MS) system. By transferring glycosphingolipids on a plastic membrane surface from a TLC plate, innovative biochemical approaches such as simple purification of individual glycosphingolipids, binding studies, and enzyme reactions could be developed. The combinations of these biochemical approaches and MALDI-TOF MS on the plastic membrane could provide new strategies for glycosphingolipid science and the field of lipidomics. In this review, typical applications of these two transfer technologies are introduced.(Communicated by Kunihiko SUZUKI, M.J.A.).
Collapse
Affiliation(s)
- Takao Taki
- Tokushima Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| |
Collapse
|
30
|
Valbuena G, Alonso E, de Ubago MM, Madrid JF, Díaz-Flores L, Sáez FJ. Histochemical identification of sialylated glycans in Xenopus laevis testis. J Anat 2012; 221:318-30. [PMID: 22881213 DOI: 10.1111/j.1469-7580.2012.01548.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2012] [Indexed: 11/27/2022] Open
Abstract
Carbohydrate chains of glycoprotein and glycosphingolipids are highly diverse molecules involved in many cell functions, including cell recognition, adhesion and signalling. Sialylated glycans are of special interest because the terminal position of sialic acid (NeuAc) in glycans linked by different ways to subterminal monosaccharides has been shown to be involved in several biological processes, as occurs with gangliosides, which have been reported as being essential in spermatogenesis in mammals. Some glycan-binding proteins, the lectins, which specifically recognize glycan sequences, have been extensively used to characterize tissue and cell carbohydrates by means of cytochemical techniques. The aim of the present work was to determine the presence of NeuAc by means of histochemical techniques in the testis of Xenopus laevis, an animal model widely used in cell and molecular biology research. However, considering that some NeuAc-binding lectins are capable of binding to N-acetylglucosamine (GlcNAc), other GlcNAc-binding lectins were also assayed. The results showed that NeuAc is mainly expressed in the interstitium, and only a weak labelling in the male germ cells was observed. Most NeuAc was located in O-linked oligosaccharides, but some masked NeuAc in N-glycans were identified in primary and secondary spermatogonia and spermatocytes. By contrast, GlcNAc was widely expressed in all germ cell types. Deglycosylative pre-treatments suggest that both N- and O-glycans and/or glycolipids could be responsible for this labelling. In addition, GlcNAc in O-linked oligosaccharides has been identified in spermatogonial cells. The acrosome of spermatids was always negative. Variations of glycan expression have been found in different cell types, suggesting that glycosylation is modified during spermatogenetic development.
Collapse
Affiliation(s)
- Galder Valbuena
- Department of Cell Biology and Histology, UFI11/44, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Yoshimura Y, Enomoto H, Moriyama T, Kawamura Y, Setou M, Zaima N. Visualization of anthocyanin species in rabbiteye blueberry Vaccinium ashei by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 2012; 403:1885-95. [DOI: 10.1007/s00216-012-5876-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/12/2012] [Accepted: 02/14/2012] [Indexed: 02/02/2023]
|
32
|
Lagarrigue M, Lavigne R, Guével B, Com E, Chaurand P, Pineau C. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry: A Promising Technique for Reproductive Research1. Biol Reprod 2012; 86:74. [DOI: 10.1095/biolreprod.111.094896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
33
|
Goto-Inoue N, Manabe Y, Miyatake S, Ogino S, Morishita A, Hayasaka T, Masaki N, Setou M, Fujii NL. Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 2012; 403:1863-71. [DOI: 10.1007/s00216-012-5809-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
|
34
|
Yoshimura Y, Zaima N, Moriyama T, Kawamura Y. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS One 2012; 7:e31285. [PMID: 22363605 PMCID: PMC3281930 DOI: 10.1371/journal.pone.0031285] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/05/2012] [Indexed: 11/18/2022] Open
Abstract
Black rice (Oryza sativa L. Japonica) contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside) were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside) were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS.
Collapse
Affiliation(s)
- Yukihiro Yoshimura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
- * E-mail:
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
| | - Yukio Kawamura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
| |
Collapse
|
35
|
Taki T. An Approach to Glycobiology from Glycolipidomics: Ganglioside Molecular Scanning in the Brains of Patients with Alzheimer’s Disease by TLC-Blot/Matrix Assisted Laser Desorption/Ionization-Time of Flight MS. Biol Pharm Bull 2012; 35:1642-7. [DOI: 10.1248/bpb.b12-00400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takao Taki
- Tokushima Institute, Otsuka Pharmaceutical Co., Ltd
| |
Collapse
|
36
|
Imaging Mass Spectrometry. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-394297-5.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
|
37
|
Goto-Inoue N, Hayasaka T, Zaima N, Setou M. Imaging mass spectrometry reveals changes of metabolites distribution in mouse testis during testicular maturation. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naoko Goto-Inoue
- Graduate School of Human Health Sciences; Tokyo Metropolitan University; 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1 Handayama, Higashi-Ku Hamamatsu Shizuoka 431-3192 Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture; Kinki University; 3327-204 Nakamachi Nara Nara 631-8505 Japan
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1 Handayama, Higashi-Ku Hamamatsu Shizuoka 431-3192 Japan
| |
Collapse
|
38
|
Goto-Inoue N, Hayasaka T, Zaima N, Setou M. Imaging mass spectrometry for lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:961-9. [DOI: 10.1016/j.bbalip.2011.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 11/24/2022]
|
39
|
Li H, Hummon AB. Imaging Mass Spectrometry of Three-Dimensional Cell Culture Systems. Anal Chem 2011; 83:8794-801. [DOI: 10.1021/ac202356g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haohang Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
40
|
Berry KAZ, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 2011; 111:6491-512. [PMID: 21942646 PMCID: PMC3199966 DOI: 10.1021/cr200280p] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Karin A. Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Joseph A. Hankin
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Robert M. Barkley
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Jeffrey M. Spraggins
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB 3, 465 21 Ave. S., Nashville, TN 37232
| | - Richard M. Caprioli
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB 3, 465 21 Ave. S., Nashville, TN 37232
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| |
Collapse
|
41
|
Xu H, Kongmanas K, Kadunganattil S, Smith CE, Rupar T, Goto-Inoue N, Hermo L, Faull KF, Tanphaichitr N. Arylsulfatase A deficiency causes seminolipid accumulation and a lysosomal storage disorder in Sertoli cells. J Lipid Res 2011; 52:2187-2197. [PMID: 21965315 DOI: 10.1194/jlr.m019661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfogalactosylglycerolipid (SGG) is the major sulfoglycolipid of male germ cells. During spermatogenesis, apoptosis occurs in >50% of total germ cells. Sertoli cells phagocytose these apoptotic germ cells and degrade their components using lysosomal enzymes. Here we demonstrated that SGG was a physiological substrate of Sertoli lysosomal arylsulfatase A (ARSA). SGG accumulated in Sertoli cells of Arsa(-/-) mice, and at 8 months of age, this buildup led to lysosomal swelling and other cellular abnormalities typical of a lysosomal storage disorder. This disorder likely compromised Sertoli cell functions, manifesting as impaired spermatogenesis and production of sperm with near-zero fertilizing ability in vitro. Fecundity of Arsa(-/-) males was thus reduced when they were older than 5 months. Sperm SGG is known for its roles in fertilization. Therefore, the minimal sperm fertilizing ability of 8-month-old Arsa(-/-) males may be explained by the 50% reduction of their sperm SGG levels, a result that was also observed in testicular germ cells. These unexpected decreases in SGG levels might be partly due to depletion of the backbone lipid palmitylpalmitoylglycerol that is generated from the SGG degradation pathway in Sertoli cells and normally recycled to new generations of primary spermatocytes for SGG synthesis.
Collapse
Affiliation(s)
- Hongbin Xu
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y4E9, Canada; Department of Biochemistry/Microbiology/Immunology University of Ottawa, Ottawa ON K1H8M5, Canada
| | - Kessiri Kongmanas
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y4E9, Canada; Department of Biochemistry/Microbiology/Immunology University of Ottawa, Ottawa ON K1H8M5, Canada
| | - Suraj Kadunganattil
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y4E9, Canada; Department of Biochemistry/Microbiology/Immunology University of Ottawa, Ottawa ON K1H8M5, Canada; Department of Obstetrics/Gynaecology, Faculty of Medicine, University of Ottawa, Ottawa ON K1H8M5, Canada
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A2B2, Canada
| | - Tony Rupar
- Departments of Pediatrics University of Western Ontario, London, ON N6A5W9, Canada; Biochemistry, University of Western Ontario, London, ON N6A5W9, Canada
| | - Naoko Goto-Inoue
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan; and
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A2B2, Canada
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90024
| | - Nongnuj Tanphaichitr
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y4E9, Canada; Department of Biochemistry/Microbiology/Immunology University of Ottawa, Ottawa ON K1H8M5, Canada; Department of Obstetrics/Gynaecology, Faculty of Medicine, University of Ottawa, Ottawa ON K1H8M5, Canada.
| |
Collapse
|
42
|
Masterson TA, Dill AL, Eberlin LS, Mattarozzi M, Cheng L, Beck SDW, Bianchi F, Cooks RG. Distinctive glycerophospholipid profiles of human seminoma and adjacent normal tissues by desorption electrospray ionization imaging mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1326-33. [PMID: 21953186 PMCID: PMC10712021 DOI: 10.1007/s13361-011-0134-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 05/31/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.
Collapse
Affiliation(s)
- Timothy A Masterson
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zaima N, Sasaki T, Tanaka H, Cheng XW, Onoue K, Hayasaka T, Goto-Inoue N, Enomoto H, Unno N, Kuzuya M, Setou M. Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions. Atherosclerosis 2011; 217:427-32. [PMID: 21514591 DOI: 10.1016/j.atherosclerosis.2011.03.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/18/2011] [Accepted: 03/30/2011] [Indexed: 01/28/2023]
Abstract
AIMS Imaging mass spectrometry (IMS) enables the visualization of individual molecules present on tissue sections. We attempted to identify and visualize specific markers for aortic atherosclerotic lesions. METHODS AND RESULTS Atherosclerotic lesions were obtained from aortic roots of apolipoprotein E (ApoE)-deficient mice at 60 weeks of age and from femoral arteries of humans with peripheral artery occlusive disease. IMS was performed with a matrix-assisted laser desorption/ionization mass spectrometry time-of-flight (TOF)/TOF-type instrument. The molecular ions at m/z 671.6 and 673.6 were found to be specific molecules in the mouse and human lipid-rich regions. These molecules were assigned as cholesterol linoleate (CE 18:2) and cholesterol oleate (CE 18:1). In the case of the human samples, triacylglycerol was also localized in the lipid-rich regions. The distributions of the molecular ions at m/z 804.5 and 832.5 were the same as the distribution of both the mouse and the human SMCs. These molecules were assigned as phosphatidylcholine (PC) (diacyl 16:0/20:4) and PC (diacyl 18:0/20:4). The molecular ion at m/z 566.9 was localized in the mouse calcified regions, and the molecular ions at m/z 539.0 were localized in the human calcified regions. CONCLUSIONS The IMS-based histopathologic examination (IbHE) revealed the characteristic peaks of lipid-rich regions, SMCs, and calcified regions in the atherosclerotic lesions. In addition, IbHE revealed the characteristic distribution of lipids in human atherosclerotic lesions. These data indicate that an IMS-based pathologic approach is of considerable value as a new histopathologic examination.
Collapse
Affiliation(s)
- Nobuhiro Zaima
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hayasaka T, Goto-Inoue N, Ushijima M, Yao I, Yuba-Kubo A, Wakui M, Kajihara S, Matsuura M, Setou M. Development of imaging mass spectrometry (IMS) dataset extractor software, IMS convolution. Anal Bioanal Chem 2011; 401:183-93. [PMID: 21416168 DOI: 10.1007/s00216-011-4778-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/25/2022]
Abstract
Imaging mass spectrometry (IMS) is a powerful tool for detecting and visualizing biomolecules in tissue sections. The technology has been applied to several fields, and many researchers have started to apply it to pathological samples. However, it is very difficult for inexperienced users to extract meaningful signals from enormous IMS datasets, and the procedure is time-consuming. We have developed software, called IMS Convolution with regions of interest (ROI), to automatically extract meaningful signals from IMS datasets. The processing is based on the detection of common peaks within the ordered area in the IMS dataset. In this study, the IMS dataset from a mouse eyeball section was acquired by a mass microscope that we recently developed, and the peaks extracted by manual and automatic procedures were compared. The manual procedure extracted 16 peaks with higher intensity in mass spectra averaged in whole measurement points. On the other hand, the automatic procedure using IMS Convolution easily and equally extracted peaks without any effort. Moreover, the use of ROIs with IMS Convolution enabled us to extract the peak on each ROI area, and all of the 16 ion images on mouse eyeball tissue were from phosphatidylcholine species. Therefore, we believe that IMS Convolution with ROIs could automatically extract the meaningful peaks from large-volume IMS datasets for inexperienced users as well as for researchers who have performed the analysis.
Collapse
Affiliation(s)
- Takahiro Hayasaka
- Department of Molecular Anatomy, Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zaima N, Goto-Inoue N, Hayasaka T, Enomoto H, Setou M. Authenticity assessment of beef origin by principal component analysis of matrix-assisted laser desorption/ionization mass spectrometric data. Anal Bioanal Chem 2011; 400:1865-71. [DOI: 10.1007/s00216-011-4818-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/30/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
|
46
|
Zaima N, Goto-Inoue N, Adachi K, Setou M. Selective Analysis of Lipids by Thin-Layer Chromatography Blot Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. J Oleo Sci 2011; 60:93-8. [DOI: 10.5650/jos.60.93] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Matrix-assisted laser desorption/ionization imaging mass spectrometry. Int J Mol Sci 2010; 11:5040-55. [PMID: 21614190 PMCID: PMC3100838 DOI: 10.3390/ijms11125040] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 11/25/2010] [Accepted: 11/27/2010] [Indexed: 12/24/2022] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful tool that enables the simultaneous detection and identification of biomolecules in analytes. MALDI-imaging mass spectrometry (MALDI-IMS) is a two-dimensional MALDI-mass spectrometric technique used to visualize the spatial distribution of biomolecules without extraction, purification, separation, or labeling of biological samples. MALDI-IMS has revealed the characteristic distribution of several biomolecules, including proteins, peptides, amino acids, lipids, carbohydrates, and nucleotides, in various tissues. The versatility of MALDI-IMS has opened a new frontier in several fields such as medicine, agriculture, biology, pharmacology, and pathology. MALDI-IMS has a great potential for discovery of unknown biomarkers. In this review, we describe the methodology and applications of MALDI-IMS for biological samples.
Collapse
|
48
|
Imaging Mass Spectrometry Reveals Unique Lipid Distribution in Primary Varicose Veins. Eur J Vasc Endovasc Surg 2010; 40:657-63. [DOI: 10.1016/j.ejvs.2010.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 08/03/2010] [Indexed: 01/28/2023]
|
49
|
Goto-Inoue N, Setou M, Zaima N. Visualization of spatial distribution of gamma-aminobutyric acid in eggplant (Solanum melongena) by matrix-assisted laser desorption/ionization imaging mass spectrometry. ANAL SCI 2010; 26:821-5. [PMID: 20631446 DOI: 10.2116/analsci.26.821] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We applied imaging mass spectrometry (IMS) to determine the spatial distribution of gamma-aminobutyric acid (GABA). We found that GABA had a specific localization in seeds. We also visualized various biomolecules as well as GABA with higher spatial resolution than in the previous report. Our work suggests that IMS might be a powerful tool for exploring functional food factors, investigating the specific distribution of nutrients in unused natural resources, and evaluating the quality of functional foods.
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | |
Collapse
|
50
|
Kongmanas K, Xu H, Yaghoubian A, Franchini L, Panza L, Ronchetti F, Faull K, Tanphaichitr N. Quantification of seminolipid by LC-ESI-MS/MS-multiple reaction monitoring: compensatory levels in Cgt(+/⁻) mice. J Lipid Res 2010; 51:3548-58. [PMID: 20817833 DOI: 10.1194/jlr.d010116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seminolipid, also known as sulfogalactosylglycerolipid (SGG), plays important roles in male reproduction. Therefore, an accurate and sensitive method for SGG quantification in testes and sperm is needed. Here we compare SGG quantitation by the traditional colorimetric Azure A assay with LC-ESI-MS/MS using multiple reaction monitoring (MRM). Inclusion of deuterated SGG as the internal standard endowed accuracy to the MRM method. The results showed reasonable agreement between the two procedures for purified samples, but for crude lipid extracts, the colorimetric assay significantly overestimated the SGG content. Using ESI-MS/MS MRM, C16:0-alkyl/C16:0-acyl SGG of Cgt(+/⁻) mice was quantified to be 406.06 ± 23.63 μg/g testis and 0.13 ± 0.02 μg/million sperm, corresponding to 78% and 87% of the wild-type values, respectively. CGT (ceramide galactosyltransferase) is a critical enzyme in the SGG biosynthesis pathway. Cgt⁻/⁻ males depleted of SGG are infertile due to spermatogenesis arrest. However, Cgt(+/⁻) males sire offspring. The higher than 50% expression level of SGG in Cgt(+/⁻) animals, compared with the wild-type expression, might be partly due to compensatory translation of the active CGT enzyme. The results also indicated that 78% of SGG levels in Cgt(+/⁻) mice were sufficient for normal spermatogenesis.
Collapse
Affiliation(s)
- Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|