1
|
Chen J, Wen P, Tang YH, Li H, Wang Z, Wang X, Zhou X, Gao XD, Fujita M, Yang G. Proteome and Glycoproteome Analyses Reveal Regulation of Protein Glycosylation Site-Specific Occupancy and Lysosomal Hydrolase Maturation by N-Glycan-Dependent ER-Quality Control. J Proteome Res 2024; 23:4409-4421. [PMID: 39235835 DOI: 10.1021/acs.jproteome.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
N-Glycan-dependent endoplasmic reticulum quality control (ERQC) primarily mediates protein folding, which determines the fate of the polypeptide. Monoglucose residues on N-glycans determine whether the nascent N-glycosylated proteins enter into and escape from the calnexin (CANX)/calreticulin (CALR) cycle, which is a central system of the ERQC. To reveal the impact of ERQC on glycosylation and protein fate, we performed comprehensive quantitative proteomic and glycoproteomic analyses using cells defective in N-glycan-dependent ERQC. Deficiency of MOGS encoding the ER α-glucosidase I, CANX, or/and CALR broadly affected protein expression and glycosylation. Among the altered glycoproteins, the occupancy of oligomannosidic N-glycans was significantly affected. Besides the expected ER stress, proteins and glycoproteins involved in pathways for lysosome and viral infection are differentially changed in those deficient cells. We demonstrated that lysosomal hydrolases were not correctly modified with mannose-6-phosphates on the N-glycans and were directly secreted to the culture medium in N-glycan-dependent ERQC mutant cells. Overall, the CANX/CALR cycle promotes the correct folding of glycosylated peptides and influences the transport of lysosomal hydrolases.
Collapse
Affiliation(s)
- Jingru Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Piaopiao Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-He Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Zibo Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuyuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Chen JN, Zhang YN, Tian LG, Zhang Y, Li XY, Ning B. Down-regulating Circular RNA Prkcsh suppresses the inflammatory response after spinal cord injury. Neural Regen Res 2022; 17:144-151. [PMID: 34100450 PMCID: PMC8451560 DOI: 10.4103/1673-5374.314114] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of conserved, endogenous non-coding RNAs that are involved in transcriptional and post-transcriptional gene regulation and are highly enriched in the nervous system. They participate in the survival and differentiation of multiple nerve cells, and may even promote the recovery of neurological function after stroke. However, their role in the inflammatory response after spinal cord injury remains unclear. In the present study, we established a mouse model of T9 spinal cord injury using the modified Allen’s impact method, and identified 16,013 circRNAs and 960 miRNAs that were differentially expressed after spinal cord injury. Of these, the expression levels of circPrkcsh were significantly different between injured and sham-treated mice. We then treated astrocytes with tumor necrosis factor-α in vitro to simulate the inflammatory response after spinal cord injury. Our results revealed an elevated expression of circPrkcsh with a concurrent decrease in miR-488 expression in injured cells. We also found that circPrkcsh regulated the expression of the inflammation-related gene Ccl2. Furthermore, in tumor necrosis factor-α-treated astrocytes, circPrkcsh knockdown decreased the expression of Ccl2 by upregulating miR-488 expression, and reduced the secretion of inflammatory cytokines in vitro. These findings suggest that differentially expressed circRNAs participate in the inflammatory response after spinal cord injury and act as the regulators of certain microRNAs. Furthermore, circPrkcsh may be used as an miR-488 sponge to regulate Ccl2 expression, which might provide a new potential therapy for SCI. The study was approved by the Animal Ethics Committee of Shandong University of China (approval No. KYLL-20170303) on March 3, 2017.
Collapse
Affiliation(s)
- Jia-Nan Chen
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yi-Ning Zhang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Li-Ge Tian
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ying Zhang
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xin-Yu Li
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Bin Ning
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
4
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
5
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
6
|
Abstract
N-glycosylation is a highly conserved glycan modification, and more than 7000 proteins are N-glycosylated in humans. N-glycosylation has many biological functions such as protein folding, trafficking, and signal transduction. Thus, glycan modification to proteins is profoundly involved in numerous physiological and pathological processes. The N-glycan precursor is biosynthesized in the endoplasmic reticulum (ER) from dolichol phosphate by sequential enzymatic reactions to generate the dolichol-linked oligosaccharide composed of 14 sugar residues, Glc3Man9GlcNAc2. The oligosaccharide is then en bloc transferred to the consensus sequence N-X-S/T (X represents any amino acid except proline) of nascent proteins. Subsequently, the N-glycosylated nascent proteins enter the folding step, in which N-glycans contribute largely to attaining the correct protein fold by recruiting the lectin-like chaperones, calnexin, and calreticulin. Despite the N-glycan-dependent folding process, some glycoproteins do not fold correctly, and these misfolded glycoproteins are destined to degradation by proteasomes in the cytosol. Properly folded proteins are transported to the Golgi, and N-glycans undergo maturation by the sequential reactions of glycosidases and glycosyltransferases, generating complex-type N-glycans. N-Acetylglucosaminyltransferases (GnT-III, GnT-IV, and GnT-V) produce branched N-glycan structures, affording a higher complexity to N-glycans. In this chapter, we provide an overview of the biosynthetic pathway of N-glycans in the ER and Golgi.
Collapse
|
7
|
PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway. Nat Commun 2019; 10:3185. [PMID: 31320625 PMCID: PMC6639383 DOI: 10.1038/s41467-019-11019-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive mechanism that aims at restoring ER homeostasis under severe environmental stress. Malignant cells are resistant to environmental stress, which is largely due to an activated UPR. However, the molecular mechanisms by which different UPR branches are selectively controlled in tumor cells are not clearly understood. Here, we provide evidence that PRKCSH, previously known as glucosidase II beta subunit, functions as a regulator for selective activation of the IRE1α branch of UPR. PRKCSH boosts ER stress–mediated autophosphorylation and oligomerization of IRE1α through mutual interaction. PRKCSH contributes to the induction of tumor-promoting factors and to tumor resistance to ER stress. Increased levels of PRKCSH in various tumor tissues are positively correlated with the expression of XBP1-target genes. Taken together, our data provide a molecular rationale for selective activation of the IRE1α branch in tumors and adaptation of tumor cells to severe environmental stress. Cancer cells utilise the unfolded protein response (UPR) to adapt to environmental and ER stress. Here, the authors show that the glycosidase II beta subunit, PRKSCH, protects cancer cells from ER stress, by interacting with IRE1α and activating the IRE1α-XBP1 branch of the UPR.
Collapse
|
8
|
Kniss A, Kazemi S, Löhr F, Berger M, Rogov VV, Güntert P, Sommer T, Jarosch E, Dötsch V. Structural investigation of glycan recognition by the ERAD quality control lectin Yos9. JOURNAL OF BIOMOLECULAR NMR 2018; 72:1-10. [PMID: 30066206 DOI: 10.1007/s10858-018-0201-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Yos9 is an essential component of the endoplasmic reticulum associated protein degradation (ERAD) system that is responsible for removing terminally misfolded proteins from the ER lumen and mediating proteasomal degradation in the cytosol. Glycoproteins that fail to attain their native conformation in the ER expose a distinct oligosaccharide structure, a terminal α1,6-linked mannose residue, that is specifically recognized by the mannose 6-phoshate receptor homology (MRH) domain of Yos9. We have determined the structure of the MRH domain of Yos9 in its free form and complexed with 3α, 6α-mannopentaose. We show that binding is achieved by loops between β-strands performing an inward movement and that this movement also affects the entire β-barrel leading to a twist. These rearrangements may facilitate the processing of client proteins by downstream acting factors. In contrast, other oligosaccharides such as 2α-mannobiose bind weakly with only locally occurring chemical shift changes underscoring the specificity of this substrate selection process within ERAD.
Collapse
Affiliation(s)
- Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sina Kazemi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Maren Berger
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
- Institute for Biology, Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Ernst Jarosch
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Satoh T, Kato K. Structural Aspects of ER Glycoprotein Quality-Control System Mediated by Glucose Tagging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:149-169. [PMID: 30484248 DOI: 10.1007/978-981-13-2158-0_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N-linked oligosaccharides attached to proteins act as tags for glycoprotein quality control, ensuring their appropriate folding and trafficking in cells. Interactions with a variety of intracellular lectins determine glycoprotein fates. Monoglucosylated glycoforms are the hallmarks of incompletely folded glycoproteins in the protein quality-control system, in which glucosidase II and UDP-glucose/glycoprotein glucosyltransferase are, respectively, responsible for glucose trimming and attachment. In this review, we summarize a recently emerging view of the structural basis of the functional mechanisms of these key enzymes as well as substrate N-linked oligosaccharides exhibiting flexible structures, as revealed by applying a series of biophysical techniques including small-angle X-ray scattering, X-ray crystallography, high-speed atomic force microscopy , electron microscopy , and computational simulation in conjunction with NMR spectroscopy.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan. .,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
10
|
Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2016; 147:269-284. [DOI: 10.1007/s00418-016-1513-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
|
11
|
Satoh T, Toshimori T, Noda M, Uchiyama S, Kato K. Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control. Protein Sci 2016; 25:2095-2101. [PMID: 27576940 DOI: 10.1002/pro.3031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Takayasu Toshimori
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
12
|
van Meel E, Lee WS, Liu L, Qian Y, Doray B, Kornfeld S. Multiple Domains of GlcNAc-1-phosphotransferase Mediate Recognition of Lysosomal Enzymes. J Biol Chem 2016; 291:8295-307. [PMID: 26833567 PMCID: PMC4825028 DOI: 10.1074/jbc.m116.714568] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Indexed: 12/24/2022] Open
Abstract
The Golgi enzyme UDP-GlcNAc:lysosomal enzymeN-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), an α2β2γ2hexamer, mediates the initial step in the addition of the mannose 6-phosphate targeting signal on newly synthesized lysosomal enzymes. This tag serves to direct the lysosomal enzymes to lysosomes. A key property of GlcNAc-1-phosphotransferase is its unique ability to distinguish the 60 or so lysosomal enzymes from the numerous non-lysosomal glycoproteins with identical Asn-linked glycans. In this study, we demonstrate that the two Notch repeat modules and the DNA methyltransferase-associated protein interaction domain of the α subunit are key components of this recognition process. Importantly, different combinations of these domains are involved in binding to individual lysosomal enzymes. This study also identifies the γ-binding site on the α subunit and demonstrates that in the majority of instances the mannose 6-phosphate receptor homology domain of the γ subunit is required for optimal phosphorylation. These findings serve to explain how GlcNAc-1-phosphotransferase recognizes a large number of proteins that lack a common structural motif.
Collapse
Affiliation(s)
- Eline van Meel
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Wang-Sik Lee
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lin Liu
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yi Qian
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Balraj Doray
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stuart Kornfeld
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
13
|
Hossain TJ, Harada Y, Hirayama H, Tomotake H, Seko A, Suzuki T. Structural Analysis of Free N-Glycans in α-Glucosidase Mutants of Saccharomyces cerevisiae: Lack of the Evidence for the Occurrence of Catabolic α-Glucosidase Acting on the N-Glycans. PLoS One 2016; 11:e0151891. [PMID: 27010459 PMCID: PMC4807098 DOI: 10.1371/journal.pone.0151891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
Saccharomyces cerevisiae produces two different α-glucosidases, Glucosidase 1 (Gls1) and Glucosidase 2 (Gls2), which are responsible for the removal of the glucose molecules from N-glycans (Glc3Man9GlcNAc2) of glycoproteins in the endoplasmic reticulum. Whether any additional α-glucosidases playing a role in catabolizing the glucosylated N-glycans are produced by this yeast, however, remains unknown. We report herein on a search for additional α-glucosidases in S. cerevisiae. To this end, the precise structures of cytosolic free N-glycans (FNGs), mainly derived from the peptide:N-glycanase (Png1) mediated deglycosylation of N-glycoproteins were analyzed in the endoplasmic reticulum α-glucosidase-deficient mutants. 12 new glucosylated FNG structures were successfully identified through 2-dimentional HPLC analysis. On the other hand, non-glucosylated FNGs were not detected at all under any culture conditions. It can therefore be safely concluded that no catabolic α-glucosidases acting on N-glycans are produced by this yeast.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Haruna Tomotake
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project, Wako, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
- * E-mail:
| |
Collapse
|
14
|
Structural basis for two-step glucose trimming by glucosidase II involved in ER glycoprotein quality control. Sci Rep 2016; 6:20575. [PMID: 26847925 PMCID: PMC4742823 DOI: 10.1038/srep20575] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/06/2016] [Indexed: 01/10/2023] Open
Abstract
The endoplasmic reticulum (ER) has a sophisticated protein quality control system for the efficient folding of newly synthesized proteins. In this system, a variety of N-linked oligosaccharides displayed on proteins serve as signals recognized by series of intracellular lectins. Glucosidase II catalyzes two-step hydrolysis at α1,3-linked glucose–glucose and glucose–mannose residues of high-mannose-type glycans to generate a quality control protein tag that is transiently expressed on glycoproteins and recognized by ER chaperones. Here we determined the crystal structures of the catalytic α subunit of glucosidase II (GIIα) complexed with two different glucosyl ligands containing the scissile bonds of first- and second-step reactions. Our structural data revealed that the nonreducing terminal disaccharide moieties of the two kinds of substrates can be accommodated in a gourd-shaped bilocular pocket, thereby providing a structural basis for substrate-binding specificity in the two-step deglucosylation catalyzed by this enzyme.
Collapse
|
15
|
D'Alessio C, Dahms NM. Glucosidase II and MRH-domain containing proteins in the secretory pathway. Curr Protein Pept Sci 2015; 16:31-48. [PMID: 25692846 DOI: 10.2174/1389203716666150213160438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/25/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022]
Abstract
N-glycosylation in the endoplasmic reticulum (ER) consists of the transfer of a preassembled glycan conserved among species (Glc3Man9GlcNAc2) from a lipid donor to a consensus sequence within a nascent protein that is entering the ER. The protein-linked glycans are then processed by glycosidases and glycosyltransferases in the ER producing specific structures that serve as signalling molecules for the fate of the folding glycoprotein: to stay in the ER during the folding process, to be retrotranslocated to the cytosol for proteasomal degradation if irreversibly misfolded, or to pursue transit through the secretory pathway as a mature glycoprotein. In the ER, each glycan signalling structure is recognized by a specific lectin. A domain similar to that of the mannose 6-phosphate receptors (MPRs) has been identified in several proteins of the secretory pathway. These include the beta subunit of glucosidase II (GII), a key enzyme in the early processing of the transferred glycan that removes middle and innermost glucoses and is involved in quality control of glycoprotein folding in the ER (QC), the lectins OS-9 and XTP3-B, proteins involved in the delivery of ER misfolded proteins to degradation (ERAD), the gamma subunit of the Golgi GlcNAc-1-phosphotransferase, an enzyme involved in generating the mannose 6-phosphate (M6P) signal for sorting acidic hydrolases to lysosomes, and finally the MPRs that deliver those hydrolytic enzymes to the lysosome. Each of the MRH-containing proteins recognizes a different signalling N-glycan structure. Three-dimensional structures of some of the MRH domains have been solved, providing the basis to understand recognition mechanisms.
Collapse
Affiliation(s)
| | - Nancy M Dahms
- Laboratory of Glycobiology, Fundación Instituto Leloir - Instituto de Investigaciones Bioquimicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina, and School of Sciences, University of Buenos Aires, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Abstract
The endoplasmic reticulum (ER) supports many cellular processes and performs diverse functions, including protein synthesis, translocation across the membrane, integration into the membrane, folding, and posttranslational modifications including N-linked glycosylation; and regulation of Ca2+ homeostasis. In mammalian systems, the majority of proteins synthesized by the rough ER have N-linked glycans critical for protein maturation. The N-linked glycan is used as a quality control signal in the secretory protein pathway. A series of chaperones, folding enzymes, glucosidases, and carbohydrate transferases support glycoprotein synthesis and processing. Perturbation of ER-associated functions such as disturbed ER glycoprotein quality control, protein glycosylation and protein folding results in activation of an ER stress coping response. Collectively this ER stress coping response is termed the unfolded protein response (UPR), and occurs through the activation of complex cytoplasmic and nuclear signaling pathways. Cellular and ER homeostasis depends on balanced activity of the ER protein folding, quality control, and degradation pathways; as well as management of the ER stress coping response.
Collapse
|
17
|
Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Lett 2015; 589:3379-87. [PMID: 26226420 DOI: 10.1016/j.febslet.2015.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022]
Abstract
Glycoprotein synthesis is initiated in the endoplasmic reticulum (ER) lumen upon transfer of a glycan (Glc3Man9GlcNAc2) from a lipid derivative to Asn residues (N-glycosylation). N-Glycan-dependent quality control of glycoprotein folding in the ER prevents exit to Golgi of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones (calnexin and calreticulin) that recognize monoglucosylated polymannose protein-linked glycans, lectin-associated oxidoreductase acting on monoglucosylated glycoproteins (ERp57), a glucosyltransferase that creates monoglucosylated epitopes in protein-linked glycans (UGGT) and a glucosidase (GII) that removes the glucose units added by UGGT. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded glycoproteins or in not completely assembled multimeric glycoprotein complexes. Glycoproteins that fail to properly fold are eventually driven to proteasomal degradation in the cytosol following the ER-associated degradation pathway, in which the extent of N-glycan demannosylation by ER mannosidases play a relevant role in the identification of irreparably misfolded glycoproteins.
Collapse
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | - Armando J Parodi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
18
|
Olson LJ, Orsi R, Peterson FC, Parodi AJ, Kim JJP, D'Alessio C, Dahms NM. Crystal Structure and Functional Analyses of the Lectin Domain of Glucosidase II: Insights into Oligomannose Recognition. Biochemistry 2015; 54:4097-111. [PMID: 26062005 DOI: 10.1021/acs.biochem.5b00256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Glycans are modified as part of a quality control mechanism during glycoprotein folding in the endoplasmic reticulum (ER). Glucosidase II (GII) plays a critical role by generating monoglucosylated glycans that are recognized by lectin chaperones, calnexin and calreticulin. To understand how the hydrolytic activity of GIIα is enhanced by the mannose 6-phosphate receptor (MPR) homology domain (MRH domain) of its β subunit, we now report a 1.6 Å resolution crystal structure of the MRH domain of GIIβ bound to mannose. A comparison of ligand-bound and unbound structures reveals no major difference in their overall fold, but rather a repositioning of side chains throughout the binding pocket, including Y372. Mutation of Y372 inhibits GII activity, demonstrating an important role for Y372 in regulating GII activity. Comparison of the MRH domains of GIIβ, MPRs, and the ER lectin OS-9 identified conserved residues that are critical for the structural integrity and architecture of the carbohydrate binding pocket. As shown by nuclear magnetic resonance spectroscopy, mutations of the primary binding pocket residues and adjacent W409, all of which inhibit the activity of GII both in vitro and in vivo, do not cause a significant change in the overall fold of the GIIβ MRH domain but impact locally the stability of the binding pocket. W409 does not directly contact mannose; rather, its indole ring is stabilized by binding into a hydrophobic pocket of an adjacent crystallographic neighbor. This suggests that W409 interacts with a hydrophobic region of the GIIβ or GIIα subunit to modulate its effect on GII activity.
Collapse
Affiliation(s)
- Linda J Olson
- †Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ramiro Orsi
- ‡Laboratory of Glycobiology, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Francis C Peterson
- †Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Armando J Parodi
- ‡Laboratory of Glycobiology, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Jung-Ja P Kim
- †Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Cecilia D'Alessio
- ‡Laboratory of Glycobiology, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina.,§School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Nancy M Dahms
- †Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
19
|
Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities. Molecules 2015; 20:7637-56. [PMID: 25923514 PMCID: PMC6272786 DOI: 10.3390/molecules20057637] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/18/2022] Open
Abstract
In the post genomic era, glycomics—the systematic study of all glycan structures of a given cell or organism—has emerged as an indispensable technology in various fields of biology and medicine. Lectins are regarded as “decipherers of glycans”, being useful reagents for their structural analysis, and have been widely used in glycomic studies. However, the inconsistent activity and availability associated with the plant-derived lectins that comprise most of the commercially available lectins, and the limit in the range of glycan structures covered, have necessitated the development of innovative tools via engineering of lectins on existing scaffolds. This review will summarize the current state of the art of lectin engineering and highlight recent technological advances in this field. The key issues associated with the strategy of lectin engineering including selection of template lectin, construction of a mutagenesis library, and high-throughput screening methods are discussed.
Collapse
|
20
|
Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum. Molecules 2015; 20:2475-91. [PMID: 25647580 PMCID: PMC6272264 DOI: 10.3390/molecules20022475] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/04/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023] Open
Abstract
In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.
Collapse
|
21
|
Anji A, Miller H, Raman C, Phillips M, Ciment G, Kumari M. Expression of α-subunit of α-glucosidase II in adult mouse brain regions and selected organs. J Neurosci Res 2014; 93:82-93. [PMID: 25131991 DOI: 10.1002/jnr.23470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/22/2014] [Accepted: 07/16/2014] [Indexed: 01/14/2023]
Abstract
α-Glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in the folding of nascent glycoproteins, is heterodimeric, consisting of α (GIIα) and β (GIIβ) subunits. The catalytic GIIα subunit, with the help of mannose 6-phosphate receptor homology domain of GIIβ, sequentially hydrolyzes two α1-3-linked glucose residues in the second step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding are crucial for protein stability and trafficking and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies, such as viral infection, cancer, and diabetes. Despite the widespread use of GIIα inhibitory drugs and the role of GIIα in brain function, little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to the GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. By using this antibody, we showed that the GIIα protein is highly expressed in testis, kidney, and lung, with the lowest amount in heart. GIIα polypeptide levels in whole brain were comparable to those in spleen. However, a higher expression of GIIα protein was detected in the cerebral cortex, reflecting its continuous requirement in correct folding of cell surface proteins.
Collapse
Affiliation(s)
- Antje Anji
- Department of Anatomy and Physiology, CVM, Kansas State University, Manhattan, Kansas
| | | | | | | | | | | |
Collapse
|
22
|
YAMAMOTO K. Intracellular lectins are involved in quality control of glycoproteins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:67-82. [PMID: 24522156 PMCID: PMC3948941 DOI: 10.2183/pjab.90.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glycoprotein quality control is categorized into three kinds of reactions; the folding of nascent glycoproteins, ER-associated degradation of misfolded or unassembled glycoproteins, and transport and sorting of correctly folded glycoproteins. In all three processes, N-glycans on the glycoproteins are used as tags that are recognized by intracellular lectins. We analyzed the functions of these intracellular lectins and their sugar-binding specificities. The results clearly showed that the A, B, and C-arms of high mannose-type glycans participate in the folding, transport and sorting, and degradation, respectively, of newly synthesized peptides. After correctly folded glycoproteins are transported to the Golgi apparatus, N-glycans are trimmed into Man3GlcNAc2 and then rebuilt into various complex-type glycans in the Golgi, resulting in the addition of diverse sugar structures that allow glycoproteins to play various roles outside of the cells.
Collapse
Affiliation(s)
- Kazuo YAMAMOTO
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Corresponding should be addressed: K. Yamamoto, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan (e-mail: )
| |
Collapse
|
23
|
Olson LJ, Orsi R, Alculumbre SG, Peterson FC, Stigliano ID, Parodi AJ, D'Alessio C, Dahms NM. Structure of the lectin mannose 6-phosphate receptor homology (MRH) domain of glucosidase II, an enzyme that regulates glycoprotein folding quality control in the endoplasmic reticulum. J Biol Chem 2013; 288:16460-16475. [PMID: 23609449 DOI: 10.1074/jbc.m113.450239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Here we report for the first time the three-dimensional structure of a mannose 6-phosphate receptor homology (MRH) domain present in a protein with enzymatic activity, glucosidase II (GII). GII is involved in glycoprotein folding in the endoplasmic reticulum. GII removes the two innermost glucose residues from the Glc3Man9GlcNAc2 transferred to nascent proteins and the glucose added by UDP-Glc:glycoprotein glucosyltransferase. GII is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit. GIIβ participates in the endoplasmic reticulum localization of GIIα and mediates in vivo enhancement of N-glycan trimming by GII through its C-terminal MRH domain. We determined the structure of a functional GIIβ MRH domain by NMR spectroscopy. It adopts a β-barrel fold similar to that of other MRH domains, but its binding pocket is the most shallow known to date as it accommodates a single mannose residue. In addition, we identified a conserved residue outside the binding pocket (Trp-409) present in GIIβ but not in other MRHs that influences GII glucose trimming activity.
Collapse
Affiliation(s)
- Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ramiro Orsi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Solana G Alculumbre
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ivan D Stigliano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Armando J Parodi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Cecilia D'Alessio
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina; School of Sciences, University of Buenos Aires, C1428EHA Buenos Aires, Argentina.
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
24
|
Watanabe S, Kakudo A, Ohta M, Mita K, Fujiyama K, Inumaru S. Molecular cloning and characterization of the α-glucosidase II from Bombyx mori and Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:319-327. [PMID: 23376632 DOI: 10.1016/j.ibmb.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.
Collapse
Affiliation(s)
- Satoko Watanabe
- Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Matsushima H, Hirano M, Ito Y, Totani K. Diverse Effects of Macromolecular Crowding on the Sequential Glycan-Processing Pathway Involved in Glycoprotein Quality Control. Chembiochem 2013; 14:753-8. [DOI: 10.1002/cbic.201300028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 12/20/2022]
|
26
|
Qin SY, Hu D, Matsumoto K, Takeda K, Matsumoto N, Yamaguchi Y, Yamamoto K. Malectin forms a complex with ribophorin I for enhanced association with misfolded glycoproteins. J Biol Chem 2012; 287:38080-9. [PMID: 22988243 DOI: 10.1074/jbc.m112.394288] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malectin is an endoplasmic reticulum-resident lectin, which recognizes di-glucosylated Glc(2)Man(9)GlcNAc(2) (G2M9) N-glycans on newly synthesized glycoproteins. We previously demonstrated that malectin preferentially associates with misfolded glycoproteins and inhibits their secretion (Chen, Y., Hu, D., Yabe, R., Tateno, H., Qin, S. Y., Matsumoto, N., Hirabayashi, J., and Yamamoto, K. (2011) Mol. Biol. Cell 22, 3559-3570). The sugar binding activity of malectin is required for this process. However, because G2M9 N-glycans are generated at the very early stage of processing and are typically found on both misfolded glycoproteins and glycoproteins undergoing folding, other mechanisms must underlie the preference of malectin for misfolded glycoproteins. Here, we searched for proteins that were co-immunoprecipitated with malectin, and we found that malectin formed a stable complex with an endoplasmic reticulum-resident transmembrane protein, ribophorin I. Co-expression of malectin and ribophorin I significantly enhanced the association between malectin and a folding-defective α1-antitrypsin variant (null Hong Kong) and reduced its secretion; however, secretion of wild-type α1-antitrypsin was not affected. The enhanced association and reduced secretion were counteracted by siRNA-mediated down-regulation of ribophorin I. Also, a reporter assay revealed that ribophorin I preferentially interacted with misfolded ribonuclease A but not with the native form, suggesting that ribophorin I may function as a chaperone that recognizes misfolded proteins inside cells. These results provide the first evidence of the mechanism by which malectin preferentially associates with misfolded glycoproteins.
Collapse
Affiliation(s)
- Sheng-Ying Qin
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
De Pourcq K, Tiels P, Van Hecke A, Geysens S, Vervecken W, Callewaert N. Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One 2012; 7:e39976. [PMID: 22768188 PMCID: PMC3386995 DOI: 10.1371/journal.pone.0039976] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as “generally recognized as safe.” Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man3GlcNAc2 structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man5GlcNAc2 and GlcMan5GlcNAc2 glycans, and to a lesser extent with Glc2Man5GlcNAc2 glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man3GlcNAc2 structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man3GlcNAc2), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.
Collapse
Affiliation(s)
- Karen De Pourcq
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Petra Tiels
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- L-Probe, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Annelies Van Hecke
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Geysens
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Oxyrane Belgium, Ghent, Belgium
| | - Wouter Vervecken
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Oxyrane Belgium, Ghent, Belgium
| | - Nico Callewaert
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- L-Probe, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
28
|
Kato K. Structural Biology of Post-translational Modifications of Proteins. YAKUGAKU ZASSHI 2012; 132:563-73. [DOI: 10.1248/yakushi.132.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
- The Glycoscience Institute, Ochanomizu University
- GLYECE Co., Ltd
| |
Collapse
|
29
|
Hu D, Tateno H, Kuno A, Yabe R, Hirabayashi J. Directed evolution of lectins with sugar-binding specificity for 6-sulfo-galactose. J Biol Chem 2012; 287:20313-20. [PMID: 22493425 DOI: 10.1074/jbc.m112.351965] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
6-sulfo-galactose (6S-Gal) is a prevalent motif observed in highly sulfated keratan sulfate, which is closely associated with the glioblastoma malignancy while acting as a critical determinant for endogenous lectins. However, facile detection of this unique glycoepitope is greatly hampered because of a lack of appropriate probes. We have previously reported tailoring an α2-6-linked sialic acid-binding lectin from a ricin-B chain-like galactose-binding protein, EW29Ch, by a reinforced ribosome display system following an error-prone PCR. In this study, we challenged the creation of novel lectins to recognize 6S-Gal-terminated glycans by incorporating a high-throughput screening system with a glycoconjugate microarray. After two rounds of selection procedures, 20 mutants were obtained and 12 were then successfully expressed in Escherichia coli, 8 of which showed a significant affinity for 6'-Sulfo-LN (6-O-sulfo-Galβ1-4GlcNAc), which the parental EW29Ch lacked. Analysis of two representative mutants by frontal affinity chromatography revealed a substantial affinity (K(d) ∼3 μm) for a 6S-Gal-terminated glycan. On the basis of the observation that all eight mutants have a common mutation at Glu-20 to Lys, site-directed mutagenesis experiments were performed focusing on this aspect. The results clearly indicated that the E20K mutation is necessary and sufficient to acquire the specificity for 6S-Gal. We also confirmed a difference in binding between E20K and EW29Ch to CHO cells, in which enzymes to catalyze the synthesis of 6S-Gal were overexpressed. The results clearly demonstrate that these mutants have potential to distinguish between cells containing different amounts of 6S-Gal-terminated glycans. This new technology will be used to provide novel tools essential for sulfoglycomics.
Collapse
Affiliation(s)
- Dan Hu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | |
Collapse
|
30
|
Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta Gen Subj 2012; 1820:1327-37. [PMID: 22240168 DOI: 10.1016/j.bbagen.2011.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/27/2011] [Accepted: 12/27/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND N-linked oligosaccharides operate as tags for protein quality control, consigning glycoproteins to different fates, i.e. folding in the endoplasmic reticulum (ER), vesicular transport between the ER and the Golgi complex, and ER-associated degradation of glycoproteins, by interacting with a panel of intracellular lectins in the early secretory pathway. SCOPE OF REVIEW This review summarizes the current state of knowledge regarding the molecular and structural basis for glycoprotein-fate determination in cells that is achieved through the actions of the intracellular lectins and its partner proteins. MAJOR CONCLUSIONS Cumulative frontal affinity chromatography (FAC) data demonstrated that the intracellular lectins exhibit distinct sugar-binding specificity profiles. The glycotopes recognized by these lectins as fate determinants are embedded in the triantennary structures of the high-mannose-type oligosaccharides and are exposed upon trimming of the outer glucose and mannose residues during the N-glycan processing pathway. Furthermore, recently emerged 3D structural data offer mechanistic insights into functional interplay between an intracellular lectin and its binding partner in the early secretory pathway. GENERAL SIGNIFICANCE Structural biology approaches in conjunction with FAC methods provide atomic pictures of the mechanisms behind the glycoprotein-fate determination in cells. This article is a part of a Special issue entitled: Glycoproteomics.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | |
Collapse
|
31
|
Satoh T. Molecular and Structural Basis for Sugar Recognition by Mannose 6-Phosphate Receptor Homology Domain-Containing Lectins and Proteins. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Synthesis and α-Glucosidase II inhibitory activity of valienamine pseudodisaccharides relevant to N-glycan biosynthesis. Bioorg Med Chem Lett 2011; 21:5219-23. [DOI: 10.1016/j.bmcl.2011.07.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022]
|
33
|
Cumpstey I, Frigell J, Pershagen E, Akhtar T, Moreno-Clavijo E, Robina I, Alonzi DS, Butters TD. Amine-linked diglycosides: Synthesis facilitated by the enhanced reactivity of allylic electrophiles, and glycosidase inhibition assays. Beilstein J Org Chem 2011; 7:1115-23. [PMID: 21915215 PMCID: PMC3169339 DOI: 10.3762/bjoc.7.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/25/2011] [Indexed: 11/23/2022] Open
Abstract
Diglycose derivatives, consisting of two monosaccharides linked at non-anomeric positions by a bridging nitrogen atom, have been synthesised. Conversion of one of the precursor monosaccharide coupling components into an unsaturated derivative enhances its electrophilicity at the allylic position, facilitating coupling reactions. Mitsunobu coupling between nosylamides and 2,3-unsaturated-4-alcohols gave the 4-amino-pseudodisaccharides with inversion of configuration as single regio- and diastereoisomers. A palladium-catalysed coupling between an amine and a 2,3-unsaturated 4-trichloroacetimidate gave a 2-amino-pseudodisaccharide as the major product, along with other minor products. Derivatisation of the C=C double bond in pseudodisaccharides allowed the formation of Man(N4–6)Glc and Man(N4–6)Man diglycosides. The amine-linked diglycosides were found to show weak glycosidase inhibitory activity.
Collapse
Affiliation(s)
- Ian Cumpstey
- Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen Y, Hu D, Yabe R, Tateno H, Qin SY, Matsumoto N, Hirabayashi J, Yamamoto K. Role of malectin in Glc(2)Man(9)GlcNAc(2)-dependent quality control of α1-antitrypsin. Mol Biol Cell 2011; 22:3559-70. [PMID: 21813736 PMCID: PMC3183012 DOI: 10.1091/mbc.e11-03-0201] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In cells, human malectin stably interacted with newly synthesized ATNHK, but not AT, via G2M9 glycans. The interaction of ATNHK with malectin resulted in enhanced ERAD of ATNHK and prevented the secretion of the misfolded glycoprotein. These findings provide evidence of a role of malectin in glycoprotein quality control via recognition of G2M9. Malectin was first discovered as a novel endoplasmic reticulum (ER)–resident lectin from Xenopus laevis that exhibits structural similarity to bacterial glycosylhydrolases. Like other intracellular lectins involved in glycoprotein quality control, malectin is highly conserved in animals. Here results from in vitro membrane-based binding assays and frontal affinity chromatography confirm that human malectin binds specifically to Glc2Man9GlcNAc2 (G2M9) N-glycan, with a Ka of 1.97 × 105 M−1, whereas binding to Glc1Man9GlcNAc2 (G1M9), Glc3Man9GlcNAc2 (G3M9), and other N-glycans is barely detectable. Metabolic labeling and immunoprecipitation experiments demonstrate that before entering the calnexin cycle, the folding-defective human α1-antitrypsin variant null Hong Kong (ATNHK) stably associates with malectin, whereas wild-type α1-antitrypsin (AT) or N-glycan–truncated variant of ATNHK (ATNHK-Q3) dose not. Moreover, malectin overexpression dramatically inhibits the secretion of ATNHK through a mechanism that involves enhanced ER-associated protein degradation; by comparison, the secretion of AT and ATNHK-Q3 is only slightly affected by malectin overexpression. ER-stress induced by tunicamycin results in significantly elevated mRNA transcription of malectin. These observations suggest a possible role of malectin in regulating newly synthesized glycoproteins via G2M9 recognition.
Collapse
Affiliation(s)
- Yang Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562 Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Castonguay AC, Olson LJ, Dahms NM. Mannose 6-phosphate receptor homology (MRH) domain-containing lectins in the secretory pathway. Biochim Biophys Acta Gen Subj 2011; 1810:815-26. [PMID: 21723917 DOI: 10.1016/j.bbagen.2011.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mannose 6-phosphate receptor homology (MRH) domain-containing family of proteins, which include recycling receptors (mannose 6-phosphate receptors, MPRs), resident endoplasmic reticulum (ER) proteins (glucosidase II β-subunit, XTP3-B, OS-9), and a Golgi glycosyltransferase (GlcNAc-phosphotransferase γ-subunit), are characterized by the presence of one or more MRH domains. Many MRH domains act as lectins and bind specific phosphorylated (MPRs) or non-phosphorylated (glucosidase II β-subunit, XTP3-B and OS-9) high mannose-type N-glycans. The MPRs are the only proteins known to bind mannose 6-phosphate (Man-6-P) residues via their MRH domains. SCOPE OF REVIEW Recent biochemical and structural studies that have provided valuable insight into the glycan specificity and mechanisms of carbohydrate recognition by this diverse group of MRH domain-containing proteins are highlighted. MAJOR CONCLUSIONS Currently, three-dimensional structures are known for ten MRH domains, revealing the conservation of a similar fold. OS-9 and the MPRs use the same four residues (Gln, Arg, Glu, and Tyr) to bind mannose. GENERAL SIGNIFICANCE The MRH domain-containing proteins play key roles in the secretory pathway: glucosidase II, XTP3-B, and OS-9 are involved in the recognition of nascent glycoproteins, whereas the MPRs play an essential role in lysosome biogenesis by targeting Man-6-P-containing lysosomal enzymes to the lysosome.
Collapse
Affiliation(s)
- Alicia C Castonguay
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
36
|
Stigliano ID, Alculumbre SG, Labriola CA, Parodi AJ, D'Alessio C. Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Mol Biol Cell 2011; 22:1810-23. [PMID: 21471007 PMCID: PMC3103398 DOI: 10.1091/mbc.e11-01-0019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A decrease in N-glycan mannose content significantly diminishes in vivo glucosidase II–mediated deglucosylation rates but does not affect in vivo UDP-glucose:glycoprotein glucosyltransferase–mediated glucosylation, thus increasing the possibility of displaying monoglucosylated structures able to interact with calnexin/calreticulin for longer time periods. Glucosidase II (GII) sequentially removes the two innermost glucose residues from the glycan (Glc3Man9GlcNAc2) transferred to proteins. GII also participates in cycles involving the lectin/chaperones calnexin (CNX) and calreticulin (CRT) as it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase (UGGT). GII is a heterodimer in which the α subunit (GIIα) bears the active site, and the β subunit (GIIβ) modulates GIIα activity through its C-terminal mannose 6-phosphate receptor homologous (MRH) domain. Here we report that, as already described in cell-free assays, in live Schizosaccharomyces pombe cells a decrease in the number of mannoses in the glycan results in decreased GII activity. Contrary to previously reported cell-free experiments, however, no such effect was observed in vivo for UGGT. We propose that endoplasmic reticulum α-mannosidase–mediated N-glycan demannosylation of misfolded/slow-folding glycoproteins may favor their interaction with the lectin/chaperone CNX present in S. pombe by prolonging the half-lives of the monoglucosylated glycans (S. pombe lacks CRT). Moreover, we show that even N-glycans bearing five mannoses may interact in vivo with the GIIβ MRH domain and that the N-terminal GIIβ G2B domain is involved in the GIIα–GIIβ interaction. Finally, we report that protists that transfer glycans with low mannose content to proteins have nevertheless conserved the possibility of displaying relatively long-lived monoglucosylated glycans by expressing GIIβ MRH domains with a higher specificity for glycans with high mannose content.
Collapse
Affiliation(s)
- Ivan D Stigliano
- Laboratory of Glycobiology, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, C1405BWE, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
37
|
Structural Basis for Oligosaccharide Recognition of Misfolded Glycoproteins by OS-9 in ER-Associated Degradation. Mol Cell 2010; 40:905-16. [DOI: 10.1016/j.molcel.2010.11.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/24/2010] [Accepted: 09/24/2010] [Indexed: 11/21/2022]
|
38
|
Miyagawa A, Totani K, Matsuo I, Ito Y. Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT. Biochem Biophys Res Commun 2010; 403:322-8. [PMID: 21075077 DOI: 10.1016/j.bbrc.2010.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
In glycoprotein quality control system in the endoplasmic reticulum (ER), UGGT (UDP-glucose:glycoprotein glucosyltransferase) and glucosidase II (G-II) play key roles. UGGT serves as a glycoprotein folding sensor by virtue of its unique specificity to glucosylate glycoproteins at incompletely folded stage. By using various UDP-Glc analogues, we first analyzed donor specificity of UGGT, which was proven to be rather narrow. However, marginal activity was observed with UDP-galactose and UDP-glucuronic acid as well as with 3-, 4- and 6-deoxy glucose analogues to give corresponding transfer products. Intriguingly, G-II smoothly converted all of them back to Man(9)GlcNAc(2), providing an indication that G-II has a promiscuous activity as a broad specificity hexosidase.
Collapse
Affiliation(s)
- Atsushi Miyagawa
- RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
39
|
Hosokawa N, Kamiya Y, Kato K. The role of MRH domain-containing lectins in ERAD. Glycobiology 2010; 20:651-60. [PMID: 20118070 DOI: 10.1093/glycob/cwq013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endoplasmic reticulum (ER) quality control system ensures that newly synthesized proteins in the early secretory pathway are in the correct conformation. Polypeptides that have failed to fold into native conformers are subsequently retrotranslocated and degraded by the cytosolic ubiquitin-proteasome system, a process known as endoplasmic reticulum-associated degradation (ERAD). Most of the polypeptides that enter the ER are modified by the addition of N-linked oligosaccharides, and quality control of these glycoproteins is assisted by lectins that recognize specific sugar moieties and molecular chaperones that recognize unfolded proteins, resulting in proper protein folding and ERAD substrate selection. In Saccharomyces cerevisiae, Yos9p, a lectin that contains a mannose 6-phosphate receptor homology (MRH) domain, was identified as an important component of ERAD. Yos9p was shown to associate with the membrane-embedded ubiquitin ligase complex, Hrd1p-Hrd3p, and provide a proofreading mechanism for ERAD. Meanwhile, the function of the mammalian homologues of Yos9p, OS-9 and XTP3-B remained elusive until recently. Recent studies have determined that both OS-9 and XTP3-B are ER resident proteins that associate with the HRD1-SEL1L ubiquitin ligase complex and are important for the regulation of ERAD. Moreover, recent studies have identified the N-glycan species with which both yeast Yos9p and mammalian OS-9 associate as M7A, a Man(7)GlcNAc(2) isomer that lacks the alpha1,2-linked terminal mannose from both the B and C branches. M7A has since been demonstrated to be a degradation signal in both yeast and mammals.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.
| | | | | |
Collapse
|
40
|
D'Alessio C, Caramelo JJ, Parodi AJ. UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control. Semin Cell Dev Biol 2010; 21:491-9. [PMID: 20045480 DOI: 10.1016/j.semcdb.2009.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 12/22/2022]
Abstract
The N-glycan-dependent quality control of glycoprotein folding prevents endoplasmic to Golgi exit of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones that recognize monoglucosylated polymannose glycans, a lectin-associated oxidoreductase acting on monoglucosylated glycoproteins, a glucosyltransferase that creates monoglucosytlated epitopes in protein-linked glycans and a glucosidase that removes the glucose units added by the glucosyltransferase. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded species or in not completely assembled complexes. The glucosidase is a dimeric heterodimer composed of a catalytic subunit and an additional one that is partially responsible for the ER localization of the enzyme and for the enhancement of the deglucosylation rate as its mannose 6-phosphate receptor homologous domain presents the substrate to the catalytic site. This review deals with our present knowledge on the glucosyltransferase and the glucosidase.
Collapse
Affiliation(s)
- Cecilia D'Alessio
- Laboratory of Glycobiology, Fundación Instituto Leloir, Avda. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | | | | |
Collapse
|
41
|
Ishiwata A, Lee YJ, Ito Y. Recent advances in stereoselective glycosylation through intramolecular aglycon delivery. Org Biomol Chem 2010; 8:3596-608. [DOI: 10.1039/c004281a] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
|
43
|
|
44
|
|
45
|
Mikami K, Yamaguchi D, Tateno H, Hu D, Qin SY, Kawasaki N, Yamada M, Matsumoto N, Hirabayashi J, Ito Y, Yamamoto K. The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation. Glycobiology 2009; 20:310-21. [DOI: 10.1093/glycob/cwp175] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|