1
|
Smolkova D, Gregus M, Vesely H, Cmelik R, Pizova H, Bobal P, Lavicka J. Synthesis and application of BODIPY-based fluorescent labeling tag for oligosaccharide and N-linked glycan analysis by high-performance liquid chromatography with fluorescence detection. Anal Chim Acta 2024; 1285:342032. [PMID: 38057064 DOI: 10.1016/j.aca.2023.342032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Glycosylation analysis is still challenging, not only because of the extreme structure complexity and conjugation diversity of glycans but also because of instrumental aspects such as the sensitivity limits of analyses. Therefore, glycan analysis by chromatographic methods is very often combined with fluorescence detection in addition to MS. The majority of fluorescent labeling employed before LC separation is based on 2-aminobenzamide, which has several disadvantages such as low labeling yield, poor fluorescence properties, and MS ionization efficiency. Therefore, even after several decades of development of new labels, there is still a need for new labeling tags with improved characteristics. RESULTS We present the application of a newly synthesized fluorescent label designed for oligosaccharide and glycan analysis by high-performance liquid chromatography with fluorescence detection (HPLC/FLD). The novel hydrazide derivative of dipyrrometheneboron difluoride (BODIPY) was synthesized from 2,4-dimethylpyrrole, methyl succinyl chloride, and boron trifluoride etherate followed by a reaction with hydrazine. The synthesized label was characterized by several analytical methods including NMR, UV/Vis and fluorescence spectroscopy, and mass spectrometry. The labeling reaction via hydrazone formation chemistry was optimized by labeling of maltooligosaccharide standards. The analysis of maltohexaose labeled by BODIPY-hydrazide followed by HPLC/FLD analysis provided the limit of detection in the low tens of femtomole. The presented method based on fluorescence detection is at least 30 times more sensitive than the standard approach employing labeling by 2-aminobenzamide. In addition, the labeling method by BODIPY-hydrazide was used for N-linked glycan profiling of several glycoproteins (ribonuclease B, immunoglobulin G) by RP-HPLC/FLD as well as HILIC/FLD analysis. SIGNIFICANCE This work represents the design, synthesis, and application of a new fluorescent label based on the BODIPY core and hydrazone formation chemistry for oligosaccharide and glycan analysis by HPLC/FLD. The proposed approach significantly improved the oligosaccharide and glycan analysis in comparison to the commonly used procedure employing 2-aminobenzamide.
Collapse
Affiliation(s)
- Denisa Smolkova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic; Masaryk University, Department of Chemistry, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Gregus
- Masaryk University, Department of Chemical Drugs, Palackeho trida 1, 612 00, Brno, Czech Republic
| | - Hubert Vesely
- Masaryk University, Department of Chemical Drugs, Palackeho trida 1, 612 00, Brno, Czech Republic
| | - Richard Cmelik
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Hana Pizova
- Masaryk University, Department of Chemical Drugs, Palackeho trida 1, 612 00, Brno, Czech Republic
| | - Pavel Bobal
- Masaryk University, Department of Chemical Drugs, Palackeho trida 1, 612 00, Brno, Czech Republic.
| | - Jana Lavicka
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Liew CY, Luo HS, Yang TY, Hung AT, Magoling BJA, Lai CPK, Ni CK. Identification of the High Mannose N-Glycan Isomers Undescribed by Conventional Multicellular Eukaryotic Biosynthetic Pathways. Anal Chem 2023. [PMID: 37235553 DOI: 10.1021/acs.analchem.2c05599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
N-linked glycosylation is one of the most important post-translational modifications of proteins. Current knowledge of multicellular eukaryote N-glycan biosynthesis suggests high mannose N-glycans are generated in the endoplasmic reticulum and Golgi apparatus through conserved biosynthetic pathways. According to conventional biosynthetic pathways, four Man7GlcNAc2 isomers, three Man6GlcNAc2 isomers, and one Man5GlcNAc2 isomer are generated during this process. In this study, we applied our latest mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to re-examine high mannose N-glycans extracted from various multicellular eukaryotes which are not glycosylation mutants. LODES/MSn identified many high mannose N-glycan isomers previously unreported in plantae, animalia, cancer cells, and fungi. A database consisting of retention time and CID MSn mass spectra was constructed for all possible MannGlcNAc2 (n = 5, 6, 7) isomers that include the isomers by removing arbitrary numbers and positions of mannose from canonical N-glycan, Man9GlcNAc2. Many N-glycans in this database are not found in current N-glycan mass spectrum libraries. The database is useful for rapid high mannose N-glycan isomeric identification.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
| | - Hong-Sheng Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Yi Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - An-Ti Hung
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bryan John Abel Magoling
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
Liew CY, Chen JL, Tsai ST, Ni CK. Identification of side-reaction products generated during the ammonia-catalyzed release of N-glycans. Carbohydr Res 2022; 522:108686. [DOI: 10.1016/j.carres.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
|
4
|
She YM, Tam RY, Li X, Rosu-Myles M, Sauvé S. Resolving Isomeric Structures of Native Glycans by Nanoflow Porous Graphitized Carbon Chromatography-Mass Spectrometry. Anal Chem 2020; 92:14038-14046. [PMID: 32960038 DOI: 10.1021/acs.analchem.0c02951] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Characterization of the structural diversity of glycans by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains an analytical challenge in large-scale glycomics applications because of the presence of heterogeneous composition, ubiquitous isomers, lability of post-translational glycan modifications, and complexity of data interpretation. High-resolution separation of glycan isomers differentiating from positional, linkage, branching, and anomeric structures is often a prerequisite to ensure the comprehensive glycan identification. Here, we developed a straightforward method using self-packed capillary porous graphitic carbon (PGC) columns for nanoflow LC-MS/MS analyses of native glycans released from glycoproteins. The technique enables highly resolved chromatographic separation of over 20 high-mannose glycan isomers in ribonuclease B and a diverse range of hybrid and complex-type sialoglycoforms of fetuin. The distinct structures of anomeric glycans and linkage sialoglycan isomers, α2,3 and α2,6, were identified by the characteristic MS/MS fragment ions. A glycan sequencing strategy utilizing diagnostic ions and complementary fragments specific to branching residues was established to simplify the MS/MS data interpretation of closely related isomeric structures. To promote the PGC-LC-MS/MS-based method for glycome-wide applications, we extended analyses to native sulfoglycans from the egg-propagated and cell culture-derived influenza vaccines and demonstrate the high-resolution separation and structural characterization of underivatized neutral and anionic glycoforms including oligomannosidic glycan anomers, sialoglycan linkage isomers, and regioisomers of afucosylated and fucosylated sulfoglycans containing sulfated-6-GlcNAc and sulfated-4-GalNAc residues.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Roger Y Tam
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Simon Sauvé
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
5
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
6
|
Orthogonal Technologies for NISTmAb N-Glycan Structure Elucidation and Quantitation. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1201.ch004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
7
|
Schiel JE, Rogstad SM, Boyne MT. Comparison of Traditional 2-AB Fluorescence LC-MS/MS and Automated LC-MS for the Comparative Glycan Analysis of Monoclonal Antibodies. J Pharm Sci 2015; 104:2464-72. [PMID: 26053232 DOI: 10.1002/jps.24522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023]
Abstract
Monoclonal antibody therapeutics are a heterogeneous mixture of glycoforms. Multiple methods exist for defining the glycan composition and relative abundance of species present. In the current report, two MS-based methods were compared for their ability to both identify glycans and monitor differences in the glycoprofile. Gross changes in the glycoprofile can be identified either by visual inspection of fluorescence profiles and correlated to glycan identities when coupled with online MS/MS (LC-F-MS/MS) or through extracted ion chromatograms using LC-MS. In the present study, both an LC-F-MS/MS method and an automated LC-MS label free approach were able to identify minor differences in low abundance glycoforms, and data indicate a disparity in glycosylation between the analyzed batches of US and foreign-sourced mAb X. Thus, either method may be useful in characterizing monoclonal antibody therapeutics products and could serve as a potential screening test for understanding process, comparability, similarity, and possibly detecting counterfeit agents.
Collapse
Affiliation(s)
- John E Schiel
- National Institute of Standards and Technology, Biomolecular Measurement Division, Gaithersburg, Maryland, 20899
| | - Sarah M Rogstad
- Division of Pharmaceutical Research, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Michael T Boyne
- Division of Pharmaceutical Research, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| |
Collapse
|
8
|
Higel F, Seidl A, Demelbauer U, Viertlboeck-Schudy M, Koppenburg V, Kronthaler U, Sörgel F, Friess W. N-glycan PK Profiling Using a High Sensitivity nanoLCMS Work-Flow with Heavy Stable Isotope Labeled Internal Standard and Application to a Preclinical Study of an IgG1 Biopharmaceutical. Pharm Res 2015; 32:3649-59. [PMID: 26017302 PMCID: PMC4596906 DOI: 10.1007/s11095-015-1724-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/21/2015] [Indexed: 12/18/2022]
Abstract
Purpose In this study an innovative, highly sensitive work-flow is presented that allows the analysis of a possible influence of individual glyco-variants on pharmacokinetics already during pre-clinical development. Possible effects on the pharmacokinetics caused by glyco-variants have been subject of several studies with in part contradictory results which can be related to differences in the set-up. Methods Using 96-well plate based affinity purification an IgG1 antibody was isolated from preclinical samples and glycans were analyzed individually by nanoLCMS. Prerequisite was a reference standard based on stable heavy isotope labeled glycans. The high sensitivity and low sample consumption enabled the integration into the preclinical development program. Results The data of an IgG1 biopharmaceutical from a preclinical rabbit study showed that some N-glycoforms have a different PK profile compared with the average of all molecule variants as determined by ELISA. IgG1 high mannose glycoforms M5 and M6 were removed from circulation at a higher rate. Conclusion The results of the preclinical study demonstrated the applicability of the developed innovative workflow. The PK profile of glyco-variants could be determined individually. It was concluded that M6 was converted by mannosidases in circulation to M5 which in turn was selectively cleared by mannose receptor binding which is in-line with previously published results. Therefore the developed technology delivers reliable results and can be applied for PK profiling of other mAbs and other types of biopharmaceuticals. Electronic supplementary material The online version of this article (doi:10.1007/s11095-015-1724-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabian Higel
- Analytical Characterization, Sandoz Biopharmaceuticals, HEXAL AG, Keltenring 1+3, 82041, Oberhaching, Germany.
| | - Andreas Seidl
- Analytical Characterization, Sandoz Biopharmaceuticals, HEXAL AG, Keltenring 1+3, 82041, Oberhaching, Germany.
| | - Uwe Demelbauer
- Process Analytics, Sandoz Biopharmaceuticals, Schaftenau, Austria
| | | | - Vera Koppenburg
- Clinical Bioanalytics, Sandoz Biopharmaceuticals, HEXAL AG, Oberhaching, Germany
| | - Ulrich Kronthaler
- Clinical R&D, Sandoz Biopharmaceuticals, HEXAL AG, Holzkirchen, Germany
| | - Fritz Sörgel
- IBMP - Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universität München, Munich, Germany
| |
Collapse
|
9
|
|
10
|
Hmiel LK, Brorson KA, Boyne MT. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem 2014; 407:79-94. [DOI: 10.1007/s00216-014-8108-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
|
11
|
Zhang Q, Feng X, Li H, Liu BF, Lin Y, Liu X. Methylamidation for isomeric profiling of sialylated glycans by nanoLC-MS. Anal Chem 2014; 86:7913-9. [PMID: 25022802 DOI: 10.1021/ac501844b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The analysis of isomeric glycans is a challenging task. In this work, a new strategy was developed for isomer-specific glycan profiling using nanoLC-MS with PGC as the stationary phase. Native glycans were derivatized in the presence of methylamine and trispyrrolidinophosphonium hexafluorophosphate and reduced by the ammonia-borane complex. Methylamidation stabilized the retention time and peak width and improved the detection sensitivity of sialylated glycans to 2-80-fold in comparison to previous ESI-MS methods using the positive-ion mode. Up to 19 tetrasialylated glycan species were identified in the derivatized human serum sample, which were difficult to detect in the sample without derivatization. Furthermore, due to high detection sensitivity and chromatographic resolution, more isomeric glycans could be identified from the model glycoprotein Fetuin and the human serum sample. As a result, up to seven isomers were observed for the disialylated biantennary glycan released from Fetuin, and three of them were identified for the first time in this study. Using the developed analytical strategy, a total of 293 glycan species were obtained from the human serum sample, representing an increase of over 100 peaks in comparison to the underivatized sample. The strategy greatly facilitates the profiling of isomeric glycans and the analysis of trace-level samples.
Collapse
Affiliation(s)
- Qiwei Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
12
|
Anumula KR. Single tag for total carbohydrate analysis. Anal Biochem 2014; 457:31-7. [PMID: 24769375 DOI: 10.1016/j.ab.2014.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/18/2022]
Abstract
Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis.
Collapse
|
13
|
Hanneman AJ, Strand J, Huang CT. Profiling and Characterization of Sialylated N-glycans by 2D-HPLC (HIAX/PGC) with Online Orbitrap MS/MS and Offline MSn. J Pharm Sci 2014; 103:400-8. [DOI: 10.1002/jps.23792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/14/2013] [Accepted: 10/30/2013] [Indexed: 01/14/2023]
|
14
|
Everest-Dass AV, Abrahams JL, Kolarich D, Packer NH, Campbell MP. Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:895-906. [PMID: 23605685 DOI: 10.1007/s13361-013-0610-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 05/13/2023]
Abstract
Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure-function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- Biomolecular Frontiers Research Centre, Macquarie University, North Ryde, NSW, Australia
| | | | | | | | | |
Collapse
|
15
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
16
|
Hua S, Williams CC, Dimapasoc LM, Ro GS, Ozcan S, Miyamoto S, Lebrilla CB, An HJ, Leiserowitz GS. Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer. J Chromatogr A 2013; 1279:58-67. [PMID: 23380366 PMCID: PMC5628020 DOI: 10.1016/j.chroma.2012.12.079] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/17/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022]
Abstract
Aberrant glycosylation has been observed for decades in essentially all types of cancer, and is now well established as an indicator of carcinogenesis. Mining the glycome for biomarkers, however, requires analytical methods that can rapidly separate, identify, and quantify isomeric glycans. We have developed a rapid-throughput method for chromatographic glycan profiling using microfluidic chip-based nanoflow liquid chromatography (nano-LC)/mass spectrometry. To demonstrate the utility of this method, we analyzed and compared serum samples from epithelial ovarian cancer cases (n=46) and healthy control individuals (n=48). Over 250 N-linked glycan compound peaks with over 100 distinct N-linked glycan compositions were identified. Statistical testing identified 26 potential glycan biomarkers based on both compositional and structure-specific analyses. Using these results, an optimized model was created incorporating the combined abundances of seven potential glycan biomarkers. The receiver operating characteristic (ROC) curve of this optimized model had an area under the curve (AUC) of 0.96, indicating robust discrimination between cancer cases and healthy controls. Rapid-throughput chromatographic glycan profiling was found to be an effective platform for structure-specific biomarker discovery.
Collapse
Affiliation(s)
- Serenus Hua
- Department of Chemistry, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Reinhold V, Zhang H, Hanneman A, Ashline D. Toward a platform for comprehensive glycan sequencing. Mol Cell Proteomics 2013; 12:866-73. [PMID: 23438731 DOI: 10.1074/mcp.r112.026823] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
From a series of recently published reports, an analytical platform has been proposed for a quantitative and qualitative measure of N- and O-glycosylation, complete with peptide-glycan connectivity and detailed structural understanding. As distant as this may appear, a best methods approach will appear that must move us beyond the cartoon stage of structural understanding. Thus, with this unifying goal in mind, we summarize a series of individually promising first phase protocols of sample preparation (release, purification, and quantification) that remain congruent with a concluding phase (methylation and MS(n)) for documented structural detail. Sequential enzymatic N-glycan and chemical O-glycan release from glycopeptides with intervening solid phase extraction and derivatization will provide for a comparative quantification measure of glycosylation. The O-glycan release will be nonreductive and coupled with Michael addition to a pyrazolone analog (1-phenyl-3-methyl-5-pyrazolone) with both the peptide and glycan labeled. The product glycans are stable to methylation and appropriate for sequential disassembly (MS(n)). An application using human serum and cancer samples has been detailed characterizing sLe(x) and comparable valence epitopes. This integrated platform will provide opportunities at variable points to contrast, share, and advance alternative protocols in a collaborative effort that is greatly needed. This integrated platform provides end point opportunities to confirm structural details compiled from synthetic standards and well characterized biologics by MS(n).
Collapse
Affiliation(s)
- Vernon Reinhold
- Glycomics Center, University of New Hampshire, Durham, New Hampshire 03824, USA.
| | | | | | | |
Collapse
|
18
|
Higel F, Demelbauer U, Seidl A, Friess W, Sörgel F. Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem 2013; 405:2481-93. [PMID: 23371526 PMCID: PMC3581771 DOI: 10.1007/s00216-012-6690-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/05/2012] [Accepted: 12/20/2012] [Indexed: 01/30/2023]
Abstract
N-Glycosylation is a common post-translational modification of monoclonal antibodies with a potential effect on the efficacy and safety of the drugs; detailed knowledge about this glycosylation is therefore crucial. We have developed a reversed-phase liquid chromatographic–mass spectrometric method, with different fluorescent labels, for analysis of N-glycosylation, and compared the sensitivity and selectivity of the methods. Our work demonstrates that anthranilic acid as fluorescent label in combination with reversed-phase liquid chromatography–mass spectrometry is an advantageous method for identification and quantification of neutral and acidic N-glycans. Our results show that mass spectrometry-based quantification correlates with quantification by fluorescence. Chromatographic discrimination between several structural glycan isomers was achieved. The sharp peaks of the eluting anthranilic acid-labeled N-glycans enabled on-line mass spectrometric analysis of even low-abundance glycan species. The method is broadly applicable to N-glycan analysis and is an orthogonal analytical method to the widely established hydrophilic-interaction liquid chromatography of 2-aminobenzamide-labeled N-glycans for characterization of N-glycans derived from biopharmaceuticals.
Collapse
Affiliation(s)
- Fabian Higel
- Hexal AG, Sandoz Biopharmaceuticals, Keltenring 1+3, 82041 Oberhaching, Germany
| | - Uwe Demelbauer
- Hexal AG, Sandoz Biopharmaceuticals, Keltenring 1+3, 82041 Oberhaching, Germany
| | - Andreas Seidl
- Hexal AG, Sandoz Biopharmaceuticals, Keltenring 1+3, 82041 Oberhaching, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwigs-Maximilians-Universität, Butenandtstrasse 5-13, Building B, 81377 Munich, Germany
| | - Fritz Sörgel
- IBMP—Institute for Biomedical and Pharmaceutical Research, Paul-Ehrlich-Straße 19, 90562 Nürnberg-Heroldsberg, Germany
| |
Collapse
|
19
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|
20
|
Alley WR, Novotny MV. Structural glycomic analyses at high sensitivity: a decade of progress. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:237-65. [PMID: 23560930 PMCID: PMC3992932 DOI: 10.1146/annurev-anchem-062012-092609] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems.
Collapse
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
- Department of Medicine, Indiana University, Indianapolis, Indiana 46202
| |
Collapse
|
21
|
Ozohanics O, Turiák L, Puerta A, Vékey K, Drahos L. High-performance liquid chromatography coupled to mass spectrometry methodology for analyzing site-specific N-glycosylation patterns. J Chromatogr A 2012; 1259:200-12. [DOI: 10.1016/j.chroma.2012.05.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
|
22
|
Zhang H, Wang Z, Stupak J, Ghribi O, Geiger JD, Liu QY, Li J. Targeted glycomics by selected reaction monitoring for highly sensitive glycan compositional analysis. Proteomics 2012; 12:2510-22. [PMID: 22821818 DOI: 10.1002/pmic.201100567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/02/2012] [Accepted: 04/06/2012] [Indexed: 12/18/2022]
Abstract
The development of glycomics increasingly requires the detection and quantification of large numbers of glycans, which is only partially achieved by current glycomics approaches. Taking advantage of selected reaction monitoring to enhance both sensitivity and selectivity, we report here a strategy termed targeted glycomics that enables highly sensitive and consistent identification and quantification of diverse glycans across multiple samples at the same time. In this proof-of-principle study, we validated the method by analyzing global N-glycans expressed in different systems: single proteins, cancer cells, and serum samples. A dynamic range of three orders of magnitude was obtained for the detection of all five glycans released from ribonuclease B. The limit of detection of 80 attomole for Man(9)GlcNAc(2) demonstrated the excellent sensitivity of the method. The capability of the strategy to identify diverse glycans was demonstrated by identification and detection of 162 different glycans and isomers from pancreatic cancer cells. The sensitivity of the method was illustrated further by the ability to detect eight glycans from 250 cancer cells and five glycans released from 100 cancer cells. In serum obtained from rabbits fed control diet or diet enriched with 2% cholesterol, differences to 42 glycans were accurately measured and this indicates that this strategy might find use in studies of biomarker discovery and validation.
Collapse
Affiliation(s)
- Hongquan Zhang
- National Research Council Canada-Institute for Biological Sciences, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Schiel JE. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem 2012; 404:1141-9. [PMID: 22733248 DOI: 10.1007/s00216-012-6185-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/13/2022]
Abstract
A glycoprotein exists as a heterogeneous mixture of forms due to differential glycosylation, each of which may confer different functionality and/or serve as a biochemical marker for disease. The complex structure of glycans make them a bioanalytical challenge requiring multiple mass spectrometry based approaches to gain different types of information. The following article will briefly describe recently utilized mass spectrometry methods to identify glycosylation sites and measure glycan composition, sequence, branching, and relative quantities. Potential metrological developments are discussed in light of current trends toward complete, reliable glycoanalytical characterization in a high-throughput manner.
Collapse
Affiliation(s)
- John E Schiel
- National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD 20899, USA.
| |
Collapse
|
24
|
Karlsson NG, McGuckin MA. O-Linked glycome and proteome of high-molecular-mass proteins in human ovarian cancer ascites: Identification of sulfation, disialic acid and O-linked fucose. Glycobiology 2012; 22:918-29. [PMID: 22422444 DOI: 10.1093/glycob/cws060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The O-linked glycosylation of the main acidic high-molecular-weight glycoprotein from ascites fluid from patients with ovarian cancer were analyzed. The O-linked oligosaccharides were shown to consist of mainly highly sialylated core 1 and 2 structures with a smaller amount of sulfated core 2 structures. These structures were shown to be able to be further extended into small keratan sulfate (KS)-type oligosaccharides with up to four N-acetyllactosamine units. Proteomic studies of the acidic fraction of ascites fluid from patients with ovarian cancer showed that this fraction was enriched in proteoglycans. Among them, lumican, agrin, versican and dystroglycans were potential candidates, with threonine- and serine-rich domains that could carry a significant amount of O-linked glycosylation, including also the O-linked KS. Glycomic analysis using liquid chromatography (LC)-tandem mass spectrometry (MS/MS) also showed that the disialic acid NeuAc-NeuAc- was frequently found as the terminating structure on the O-linked core 1 and 2 oligosaccharides from one ascites sample. Also, a small amount of the epidermal growth factor (EGF)-associated O-linked fucose structure Gal-GlcNAc-Fucitol was detected with and without sialic acid in the LC-MS/MS analysis. Candidate proteins containing O-linked fucose were suggested to be proteoglycan-type molecules containing the O-linked fucose EGF consensus domain.
Collapse
|
25
|
Pabst M, Grass J, Toegel S, Liebminger E, Strasser R, Altmann F. Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology 2011; 22:389-99. [DOI: 10.1093/glycob/cwr138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Jiao J, Zhang H, Reinhold VN. High Performance IT-MS Sequencing of Glycans (Spatial Resolution of Ovalbumin Isomers). INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 303:109-117. [PMID: 21686090 PMCID: PMC3115573 DOI: 10.1016/j.ijms.2011.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This report outlines and applies a high performance sequencing technology to evaluate the glycome of a common model glycoprotein, ovalbumin. The targets were the N-linked glycans enzymatically released from the protein, the N-glycoproteome. These product glycans were reduced, methylated and directly infused into the MS using a chip-based nanoelectrospray with the ions structurally characterized by sequential disassembly. Ten major ions were selected for detailed analysis. Isomer topologies (glycan connectivity) were determined from ion pathways of disassembly. Linkage information was revealed by specific cross-ring cleavage fragments within smaller oligomers. Both connectivity and linkage features were assisted with described bioinformatic tools and details confirmed with a standards library of fragments. The number of isomeric structures found within these 10 parent ions were 37, more than double earlier reports, and setting a new goal for developing technology. In this non-chromatographic, high performance spatial approach, the focus has been patterned to be comprehensive, and stay within the bounds of a plausible high throughput strategy consistent with automation. Selective structures are described in the text to appraise readers of the general approach; a more comprehensive coverage has been included in supplemental material.
Collapse
Affiliation(s)
| | | | - Vernon N. Reinhold
- To whom correspondence should be addressed: Vernon N. Reinhold, Glycomics Center, Gregg Hall, University of New Hampshire, 35 Colovos Road, Durham, NH 03824,
| |
Collapse
|
27
|
Abstract
The profound biological relevance of protein and lipid glycosylation has made glycomics (i.e., the comprehensive study of all glycans in a cell or organism), an indispensable field of research in the life sciences. Consequently, numerous strategies have been developed for a high-throughput analysis of complex glycan mixtures, with mass spectrometry (MS) playing a key role. In particular, nanoelectrospray ionization (ESI-) MS( n ), employing multiple cycles of isolation and fragmentation of native or derivatized precursor ions, is recognized as a highly valuable tool in this context, as it allows, at least in part, structural characterization of glycans without prior fractionation. This chapter describes suitable work flows for this purpose and illustrates both advantages and limitations for this type of analysis. Furthermore, the use of newly developed software tools for data handling is outlined.
Collapse
Affiliation(s)
- Christina Bleckmann
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Giessen, Germany
| | | | | |
Collapse
|