1
|
Insights about the structure of farnesyl diphosphate synthase (FPPS) and the activity of bisphosphonates on the proliferation and ultrastructure of Leishmania and Giardia. Parasit Vectors 2020; 13:168. [PMID: 32248823 PMCID: PMC7132869 DOI: 10.1186/s13071-020-04019-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background The enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol. FPPS is ubiquitous in eukaryotes and is inhibited by nitrogen-containing bisphosphonates (N-BP). N-BP activity and the mechanisms of cell death as well as damage to the ultrastructure due to N-BP has not yet been investigated in Leishmania infantum and Giardia. Thus, we evaluated the effect of N-BP on cell viability and ultrastructure and then performed structural modelling and phylogenetic analysis on the FPPS enzymes of Leishmania and Giardia. Methods We performed multiple sequence alignment with MAFFT, phylogenetic analysis with MEGA7, and 3D structural modelling for FPPS with Modeller 9.18 and on I-Tasser server. We performed concentration curves with N-BP in Leishmania promastigotes and Giardia trophozoites to estimate the IC50via the MTS/PMS viability method. The ultrastructure was evaluated by transmission electron microscopy, and the mechanism of cell death by flow cytometry. Results The nitrogen-containing bisphosphonate risedronate had stronger anti-proliferative activity in Leishmania compared to other N-BPs with an IC50 of 13.8 µM, followed by ibandronate and alendronate with IC50 values of 85.1 µM and 112.2 µM, respectively. The effect of N-BPs was much lower on trophozoites of Giardia than Leishmania (IC50 of 311 µM for risedronate). Giardia treated with N-BP displayed concentric membranes around the nucleus and nuclear pyknosis. Leishmania had mitochondrial swelling, myelin figures, double membranes, and plasma membrane blebbing. The same population labelled with annexin-V and 7-AAD had a loss of membrane potential (TMRE), indicative of apoptosis. Multiple sequence alignments and structural alignments of FPPS proteins showed that Giardia and Leishmania FPPS display low amino acid identity but possess the conserved aspartate-rich motifs. Conclusions Giardia and Leishmania FPPS enzymes are phylogenetically distant but display conserved protein signatures. The N-BPs effect on FPPS was more pronounced in Leishmania than Giardia. This might be due to general differences in metabolism and differences in the FPPS catalytic site.![]()
Collapse
|
2
|
Chen CC, Zhang L, Yu X, Ma L, Ko TP, Guo RT. Versatile cis-isoprenyl Diphosphate Synthase Superfamily Members in Catalyzing Carbon–Carbon Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
3
|
Amerik AY, Martirosyan YT, Gachok IV. Regulation of Natural Rubber Biosynthesis by Proteins Associated with Rubber Particles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s106816201801003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Hoffmann R, Grabińska K, Guan Z, Sessa WC, Neiman AM. Long-Chain Polyprenols Promote Spore Wall Formation in Saccharomyces cerevisiae. Genetics 2017; 207:1371-1386. [PMID: 28978675 PMCID: PMC5714454 DOI: 10.1534/genetics.117.300322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
Dolichols are isoprenoid lipids of varying length that act as sugar carriers in glycosylation reactions in the endoplasmic reticulum. In Saccharomyces cerevisiae, there are two cis-prenyltransferases that synthesize polyprenol-an essential precursor to dolichol. These enzymes are heterodimers composed of Nus1 and either Rer2 or Srt1. Rer2-Nus1 and Srt1-Nus1 can both generate dolichol in vegetative cells, but srt1∆ cells grow normally while rer2∆ grows very slowly, indicating that Rer2-Nus1 is the primary enzyme used in mitotically dividing cells. In contrast, SRT1 performs an important function in sporulating cells, where the haploid genomes created by meiosis are packaged into spores. The spore wall is a multilaminar structure and SRT1 is required for the generation of the outer chitosan and dityrosine layers of the spore wall. Srt1 specifically localizes to lipid droplets associated with spore walls, and, during sporulation there is an SRT1-dependent increase in long-chain polyprenols and dolichols in these lipid droplets. Synthesis of chitin by Chs3, the chitin synthase responsible for chitosan layer formation, is dependent on the cis-prenyltransferase activity of Srt1, indicating that polyprenols are necessary to coordinate assembly of the spore wall layers. This work shows that a developmentally regulated cis-prenyltransferase can produce polyprenols that function in cellular processes besides protein glycosylation.
Collapse
Affiliation(s)
- Reuben Hoffmann
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| | - Kariona Grabińska
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710
| | - William C Sessa
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| |
Collapse
|
5
|
Grabińska KA, Edani BH, Park EJ, Kraehling JR, Sessa WC. A conserved C-terminal R XG motif in the NgBR subunit of cis-prenyltransferase is critical for prenyltransferase activity. J Biol Chem 2017; 292:17351-17361. [PMID: 28842490 DOI: 10.1074/jbc.m117.806034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/16/2017] [Indexed: 11/06/2022] Open
Abstract
cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. In eukaryotes and archaea, cis-PT is the first enzyme committed to the synthesis of dolichyl phosphate, an obligate lipid carrier in protein glycosylation reactions. The homodimeric bacterial enzyme, undecaprenyl diphosphate synthase, generates 11 isoprene units and has been structurally and mechanistically characterized in great detail. Recently, we discovered that unlike undecaprenyl diphosphate synthase, mammalian cis-PT is a heteromer consisting of NgBR (Nus1) and hCIT (dehydrodolichol diphosphate synthase) subunits, and this composition has been confirmed in plants and fungal cis-PTs. Here, we establish the first purification system for heteromeric cis-PT and show that both NgBR and hCIT subunits function in catalysis and substrate binding. Finally, we identified a critical RXG sequence in the C-terminal tail of NgBR that is conserved and essential for enzyme activity across phyla. In summary, our findings show that eukaryotic cis-PT is composed of the NgBR and hCIT subunits. The strong conservation of the RXG motif among NgBR orthologs indicates that this subunit is critical for the synthesis of polyprenol diphosphates and cellular function.
Collapse
Affiliation(s)
- Kariona A Grabińska
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Ban H Edani
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eon Joo Park
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jan R Kraehling
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - William C Sessa
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
6
|
Eichler J, Guan Z. Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:589-599. [PMID: 28330764 DOI: 10.1016/j.bbalip.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/28/2022]
Abstract
N-glycosylation, a post-translational modification whereby glycans are covalently linked to select Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be distinguished on the basis of their length, degree of saturation and by other traits. As is true for many facets of their biology, Archaea, best known in their capacity as extremophiles, present unique approaches for synthesizing phosphodolichols. At the same time, general insight into the assembly and processing of glycan-bearing phosphodolichols has come from studies of the archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol biology are addressed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Grabińska KA, Park EJ, Sessa WC. cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases. J Biol Chem 2016; 291:18582-90. [PMID: 27402831 PMCID: PMC5000101 DOI: 10.1074/jbc.r116.739490] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity.
Collapse
Affiliation(s)
- Kariona A Grabińska
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eon Joo Park
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - William C Sessa
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
8
|
Kwon M, Kwon EJ, Ro D. cis-Prenyltransferase and Polymer Analysis from a Natural Rubber Perspective. Methods Enzymol 2016; 576:121-45. [DOI: 10.1016/bs.mie.2016.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Park EJ, Grabińska KA, Guan Z, Stránecký V, Hartmannová H, Hodaňová K, Barešová V, Sovová J, Jozsef L, Ondrušková N, Hansíková H, Honzík T, Zeman J, Hůlková H, Wen R, Kmoch S, Sessa WC. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab 2014; 20:448-57. [PMID: 25066056 PMCID: PMC4161961 DOI: 10.1016/j.cmet.2014.06.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/28/2014] [Accepted: 06/14/2014] [Indexed: 11/20/2022]
Abstract
Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.
Collapse
Affiliation(s)
- Eon Joo Park
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Kariona A Grabińska
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, DUMC 2927, Durham, NC 27710, USA
| | - Viktor Stránecký
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hartmannová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Kateřina Hodaňová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Veronika Barešová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jana Sovová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Levente Jozsef
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Nina Ondrušková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hansíková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jiří Zeman
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Helena Hůlková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic.
| | - William C Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Juchimiuk M, Orłowski J, Gawarecka K, Świeżewska E, Ernst JF, Palamarczyk G. Candida albicans cis-prenyltransferase Rer2 is required for protein glycosylation, cell wall integrity and hypha formation. Fungal Genet Biol 2014; 69:1-12. [DOI: 10.1016/j.fgb.2014.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 11/28/2022]
|
11
|
Surmacz L, Plochocka D, Kania M, Danikiewicz W, Swiezewska E. cis-Prenyltransferase atCPT6 produces a family of very short-chain polyisoprenoids in planta. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:240-50. [PMID: 24291644 DOI: 10.1016/j.bbalip.2013.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
Abstract
cis-Prenyltransferases (CPTs) comprise numerous enzymes synthesizing isoprenoid hydrocarbon skeleton with isoprenoid units in the cis (Z) configuration. The chain-length specificity of a particular plant CPT is in most cases unknown despite thecomposition of the accumulated isoprenoids in the tissue of interest being well established. In this report AtCPT6, one of the nine Arabidopsis thaliana CPTs, is shown to catalyze the synthesis of a family of very short-chain polyisoprenoid alcohols of six, seven, and eight isoprenoid units, those of seven units dominating The product specificity of AtCPT6 was established in vivo following its expression in the heterologous system of the yeast Saccharomyces cerevisiae and was confirmed by the absence of specific products in AtCPT6 T-DNA insertion mutants and their overaccumulation in AtCPT6-overexpressing plants. These observations are additionally validated in silico using an AtCPT6 model obtained by homology modeling. AtCPT6 only partially complements the function of the yeast homologue of CPT-Rer2 since it restores the growth but not protein glycosylation in rer2delta yeast.This is the first in planta characterization of specific products of a plant CPT producing polyisoprenoids. Their distribution suggests that a joint activity of several CPTs is required to produce the complex mixture of polyisoprenoid alcohols found in Arabidopsis roots.
Collapse
|
12
|
Breitling J, Aebi M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:a013359. [PMID: 23751184 DOI: 10.1101/cshperspect.a013359] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The attachment of glycans to asparagine residues of proteins is an abundant and highly conserved essential modification in eukaryotes. The N-glycosylation process includes two principal phases: the assembly of a lipid-linked oligosaccharide (LLO) and the transfer of the oligosaccharide to selected asparagine residues of polypeptide chains. Biosynthesis of the LLO takes place at both sides of the endoplasmic reticulum (ER) membrane and it involves a series of specific glycosyltransferases that catalyze the assembly of the branched oligosaccharide in a highly defined way. Oligosaccharyltransferase (OST) selects the Asn-X-Ser/Thr consensus sequence on polypeptide chains and generates the N-glycosidic linkage between the side-chain amide of asparagine and the oligosaccharide. This ER-localized pathway results in a systemic modification of the proteome, the basis for the Golgi-catalyzed modification of the N-linked glycans, generating the large diversity of N-glycoproteome in eukaryotic cells. This article focuses on the processes in the ER. Based on the highly conserved nature of this pathway we concentrate on the mechanisms in the eukaryotic model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jörg Breitling
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
13
|
Aebi M. N-linked protein glycosylation in the ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2430-7. [PMID: 23583305 DOI: 10.1016/j.bbamcr.2013.04.001] [Citation(s) in RCA: 497] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 01/18/2023]
Abstract
N-linked protein glycosylation in the endoplasmic reticulum (ER) is a conserved two phase process in eukaryotic cells. It involves the assembly of an oligosaccharide on a lipid carrier, dolichylpyrophosphate and the transfer of the oligosaccharide to selected asparagine residues of polypeptides that have entered the lumen of the ER. The assembly of the oligosaccharide (LLO) takes place at the ER membrane and requires the activity of several specific glycosyltransferases. The biosynthesis of the LLO initiates at the cytoplasmic side of the ER membrane and terminates in the lumen where oligosaccharyltransferase (OST) selects N-X-S/T sequons of polypeptide and generates the N-glycosidic linkage between the side chain amide of asparagine and the oligosaccharide. The N-glycosylation pathway in the ER modifies a multitude of proteins at one or more asparagine residues with a unique carbohydrate structure that is used as a signalling molecule in their folding pathway. In a later stage of glycoprotein processing, the same systemic modification is used in the Golgi compartment, but in this process, remodelling of the N-linked glycans in a protein-, cell-type and species specific manner generates the high structural diversity of N-linked glycans observed in eukaryotic organisms. This article summarizes the current knowledge of the N-glycosylation pathway in the ER that results in the covalent attachment of an oligosaccharide to asparagine residues of polypeptide chains and focuses on the model organism Saccharomyces cerevisiae. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Markus Aebi
- Department of Biology, Institute of Microbiology, Zurich, Switzerland.
| |
Collapse
|
14
|
Guan Z, Eichler J. Liquid chromatography/tandem mass spectrometry of dolichols and polyprenols, lipid sugar carriers across evolution. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:800-6. [PMID: 21570481 DOI: 10.1016/j.bbalip.2011.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/12/2011] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
Abstract
Across evolution, dolichols and polyprenols serve as sugar carriers in biosynthetic processes that include protein glycosylation and lipopolysaccharide biogenesis. Liquid chromatography coupled with electrospray ionization mass spectrometry offers a powerful tool for studying dolichols and polyprenols in their alcohol or glycan-modified forms in members of all three domains of life. In the following, recent examples of the how different versions of this analytical approach, namely reverse phase liquid chromatography-multiple reaction monitoring, normal phase liquid chromatography/tandem mass spectrometry and normal phase liquid chromatography-precursor ion scan detection have respectively served to address novel aspects of dolichol or polyprenol biology in Eukarya, Archaea and Bacteria.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
15
|
Polyisoprenoids – Secondary metabolites or physiologically important superlipids? Biochem Biophys Res Commun 2011; 407:627-32. [DOI: 10.1016/j.bbrc.2011.03.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/14/2011] [Indexed: 01/11/2023]
|
16
|
Rush JS, Matveev S, Guan Z, Raetz CRH, Waechter CJ. Expression of functional bacterial undecaprenyl pyrophosphate synthase in the yeast rer2{Delta} mutant and CHO cells. Glycobiology 2010; 20:1585-93. [PMID: 20685834 PMCID: PMC3003547 DOI: 10.1093/glycob/cwq107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 11/12/2022] Open
Abstract
During evolution the average chain length of polyisoprenoid glycosyl carrier lipids increased from C55 (prokaryotes) to C75 (yeast) to C95 (mammalian cells). In this study, the ability of the E. coli enzyme, undecaprenyl pyrophosphate synthase (UPPS), to complement the loss of the yeast cis-isoprenyltransferase in the rer2Δ mutant was tested to determine if (55)dolichyl phosphate (Dol-P) could functionally substitute in the protein N-glycosylation pathway for (75)Dol-P, the normal isoprenologue synthesized in S. cerevisiae. First, expression of UPPS in the yeast mutant was found to complement the growth and the hypoglycosylation of carboxypeptidase Y defects suggesting that the (55)polyprenyl-P-P intermediate was converted to (55)Dol-P and that (55)Dol-P could effectively substitute for (75)Dol-P in the biosynthesis and function of Man-P-Dol, Glc-P-Dol and Glc(3)Man(9)GlcNAc(2)-P-P-Dol (mature DLO) in the protein N-glycosylation pathway and glycosylphosphatidylinositol anchor assembly. In support of this conclusion, mutant cells expressing UPPS (1) synthesized (55)Dol-P based on MS analysis, (2) utilized (55)Dol-P to form Man-P-(55)Dol in vitro and in vivo, and (3) synthesized N-linked glycoproteins at virtually normal rates as assessed by metabolic labeling with [(3)H]mannose. In addition, an N-terminal GFP-tagged construct of UPPS was shown to localize to the endoplasmic reticulum of Chinese hamster ovary cells. Consistent with the synthesis of (55)Dol-P by the transfected cells, microsomes from the transfected cells synthesized the [(14)C](55)polyprenyl-P-P intermediate when incubated with [(14)C]isopentenyl pyrophosphate and [(3)H]Man-P-(55)Dol when incubated with GDP-[(3)H]Man. These results indicate that (C55)polyisoprenoid chains, significantly shorter than the natural glycosyl carrier lipid, can function in the transbilayer movement of DLOs in the endoplasmic reticulum of yeast and mammalian cells, and that conserved sequences in the cis-isoprenyltransferases are recognized by, yet to be identified, binding partners in the endoplasmic reticulum of mammalian cells.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S. Limestone St., Lexington, KY 40536, USA
| | - Sergey Matveev
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S. Limestone St., Lexington, KY 40536, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - C J Waechter
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S. Limestone St., Lexington, KY 40536, USA
| |
Collapse
|