1
|
Chen X. Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates. Acc Chem Res 2024; 57:234-246. [PMID: 38127793 PMCID: PMC10795189 DOI: 10.1021/acs.accounts.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Sialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
2
|
Lin L, Chen X, Lin G, Chen L, Xu Y, Zeng Y. FUT3 facilitates glucose metabolism of lung adenocarcinoma via activation of NF-κB pathway. BMC Pulm Med 2023; 23:436. [PMID: 37946130 PMCID: PMC10636925 DOI: 10.1186/s12890-023-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Fucosyltransferases (FUTs) molecules have been identified to be involved in carcinogenesis of malignant tumors. Nevertheless, the biological function of fucosyltransferases-3 (FUT3) in lung adenocarcinoma (LUAD) malignant phenotype remains unclear. Herein, we investigated the association between FUT3 and LUAD pathological process. METHODS Immunochemistry, RT-qPCR and western blot assays were conducted to evaluate the expression of FUT3 in LUAD and corresponding adjacent tissues. The prognostic value of FUT3 was assessed via Kaplan‑Meier plotter database. The biological process and potential mechanism of FUT3 in LUAD were conducted via GSEA. Additionally, immunofluorescence and metabolite activity detection were performed to determine the potential role of FUT3 in LUAD glucose metabolism. The active biomarkers associated with NF-κB signaling pathway were detected via western blot. Subcutaneous tumor model was conducted to analyze the effect of FUT3 on tumorigenesis of LUAD. RESULTS FUT3 was remarkably upregulated in LUAD tissues compared with adjacent tissues from individuals. FUT3 overexpression may predict poor prognosis of LUAD patients. Knockdown of FUT3 significantly inhibited tumor proliferation, migration and glucometabolic alteration in LUAD cells. Moreover, GSEA demonstrated that elevated FUT3 was positively related to NF-κB signaling pathway. Additionally, in vitro and in vivo assays also indicated that downregulation of FUT3 resulted in the suppression of oncogenesis and glucose metabolism via inactivation of NF-κB pathway. CONCLUSION Our findings demonstrated that FUT3 was involved in glucometabolic process and tumorigenesis of LUAD via NF-κB signaling pathway. FUT3 may be an optimal target for diagnosis and treatment of LUAD patients.
Collapse
Affiliation(s)
- Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, Quanzhou, Fujian Province, 362000, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350000, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
3
|
Bose P, Jaiswal MK, Singh SK, Singh RK, Tiwari VK. Growing impact of sialic acid-containing glycans in future drug discovery. Carbohydr Res 2023; 527:108804. [PMID: 37031650 DOI: 10.1016/j.carres.2023.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.
Collapse
|
4
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
5
|
Bowles WHD, Gloster TM. Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Front Mol Biosci 2021; 8:705133. [PMID: 34395532 PMCID: PMC8358268 DOI: 10.3389/fmolb.2021.705133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Sialidases (SAs) and sialyltransferases (STs), the enzymes responsible for removing and adding sialic acid to other glycans, play essential roles in viruses, bacteria, parasites, and humans. Sialic acid is often the terminal sugar on glycans protruding from the cell surface in humans and is an important component for recognition and cell function. Pathogens have evolved to exploit this and use sialic acid to either “cloak” themselves, ensuring they remain undetected, or as a mechanism to enable release of virus progeny. The development of inhibitors against SAs and STs therefore provides the opportunity to target a range of diseases. Inhibitors targeting viral, bacterial, or parasitic enzymes can directly target their pathogenicity in humans. Excellent examples of this can be found with the anti-influenza drugs Zanamivir (Relenza™, GlaxoSmithKline) and Oseltamivir (Tamiflu™, Roche and Gilead), which have been used in the clinic for over two decades. However, the development of resistance against these drugs means there is an ongoing need for novel potent and specific inhibitors. Humans possess 20 STs and four SAs that play essential roles in cellular function, but have also been implicated in cancer progression, as glycans on many cancer cells are found to be hyper-sialylated. Whilst much remains unknown about how STs function in relation to disease, it is clear that specific inhibitors of them can serve both as tools to gain a better understanding of their activity and form the basis for development of anti-cancer drugs. Here we review the recent developments in the design of SA and ST inhibitors against pathogens and humans.
Collapse
Affiliation(s)
- William H D Bowles
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
6
|
Weinborn V, Li Y, Shah IM, Yu H, Dallas DC, German JB, Mills DA, Chen X, Barile D. Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. Int Dairy J 2019; 102. [PMID: 32089591 DOI: 10.1016/j.idairyj.2019.104583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of mothers' milk is associated with reduced incidence and severity of enteric infections, leading to reduced morbidity in breastfed infants. Fucosylated and sialylated human milk oligosaccharides (HMO) are important for both direct antimicrobial action - likely via a decoy effect - and indirect antimicrobial action through commensal growth enhancement. Bovine milk oligosaccharides (BMO) are a potential source of HMO-mimics as BMO resemble HMO; however, they have simpler and less fucosylated structures. BMO isolated at large scales from bovine whey permeate were modified by the addition of fucose and/or sialic acid to generate HMO-like glycans using high-yield and cost-effective one-pot multienzyme approaches. Quadrupole time-of-flight LC/MS analysis revealed that 22 oligosaccharides were synthesized and 9 had identical composition to known HMO. Preliminary anti-adherence activity assays indicated that fucosylated BMO decreased the uptake of enterohemorrhagic Escherichia coli O157:H7 by human intestinal epithelial Caco-2 cells more effectively than native BMO.
Collapse
Affiliation(s)
- Valerie Weinborn
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - J Bruce German
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
7
|
Bai J, Wu Z, Sugiarto G, Gadi MR, Yu H, Li Y, Xiao C, Ngo A, Zhao B, Chen X, Guan W. Biochemical characterization of Helicobacter pylori α1-3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydr Res 2019; 480:1-6. [PMID: 31132553 DOI: 10.1016/j.carres.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
Fucosylated human milk oligosaccharides (HMOs) have important biological functions. Enzymatic synthesis of such compounds requires robust fucosyltransferases. A C-terminal 66-amino acid truncated version of Helicobacter pylori α1-3-fucosyltransferase (Hp3FT) is a good candidate. Hp3FT was biochemically characterized to identify optimal conditions for enzymatic synthesis of fucosides. While N-acetyllactosamine (LacNAc) and lactose were both suitable acceptors, the former is preferred. At a low guanosine 5'-diphospho-β-L-fucose (GDP-Fuc) to acceptor ratio, Hp3FT selectively fucosylated LacNAc. Based on these enzymatic characteristics, diverse fucosylated HMOs, including 3-fucosyllactose (3-FL), lacto-N-fucopentaose (LNFP) III, lacto-N-neofucopentaose (LNnFP) V, lacto-N-neodifucohexaose (LNnDFH) II, difuco- and trifuco-para-lacto-N-neohexaose (DF-paraLNnH and TF-para-LNnH), were synthesized enzymatically by varying the ratio of the donor and acceptor as well as controlling the order of multiple glycosyltransferase-catalyzed reactions.
Collapse
Affiliation(s)
- Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhigang Wu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Cong Xiao
- Department of Chemistry, Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Alice Ngo
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
8
|
Meng C, Sasmal A, Zhang Y, Gao T, Liu CC, Khan N, Varki A, Wang F, Cao H. Chemoenzymatic Assembly of Mammalian O-Mannose Glycans. Angew Chem Int Ed Engl 2018; 57:9003-9007. [PMID: 29802667 DOI: 10.1002/anie.201804373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Indexed: 12/27/2022]
Abstract
O-Mannose glycans account up to 30 % of total O-glycans in the brain. Previous synthesis and functional studies have only focused on the core M3 O-mannose glycans of α-dystroglycan, which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 core M1 and core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of five judiciously designed core structures, and the diversity-oriented modification of the core structures with three enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed four steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies, and brain proteins were also explored by using a printed O-mannose glycan array.
Collapse
Affiliation(s)
- Caicai Meng
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Yan Zhang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Tian Gao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, CA, 92093, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| |
Collapse
|
9
|
Meng C, Sasmal A, Zhang Y, Gao T, Liu CC, Khan N, Varki A, Wang F, Cao H. Chemoenzymatic Assembly of Mammalian O-Mannose Glycans. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caicai Meng
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Yan Zhang
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Tian Gao
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Naazneen Khan
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Ajit Varki
- Glycobiology Research and Training Center; University of California; San Diego CA 92093 USA
| | - Fengshan Wang
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Hongzhi Cao
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| |
Collapse
|
10
|
Yu H, Li Y, Wu Z, Li L, Zeng J, Zhao C, Wu Y, Tasnima N, Wang J, Liu H, Gadi MR, Guan W, Wang PG, Chen X. H. pylori α1-3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chem Commun (Camb) 2018; 53:11012-11015. [PMID: 28936496 DOI: 10.1039/c7cc05403c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Helicobacter pylori α1-3/4-fucosyltransferase (Hp3/4FT) was expressed in Escherichia coli at a level of 30 mg L-1 culture and used as a diverse catalyst in a one-pot multienzyme (OPME) system for high-yield production of l-fucose-containing carbohydrates including Lewis antigens such as Lewis a, b, and x, O-sulfated Lewis x, and sialyl Lewis x and human milk fucosides such as 3-fucosyllactose (3-FL), lacto-N-fucopentaose (LNFP) III, and lacto-N-difuco-hexaose (LNDFH) II and III. Noticeably, while difucosylation of tetrasaccharides was readily achieved using an excess amount of donor, the synthesis of LNFP III was achieved by Hp3/4FT-catalyzed selective fucosylation of the N-acetyllactosamine (LacNAc) component in lacto-N-neotetraose (LNnT).
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Discovering potential serological biomarker for chronic Hepatitis B Virus-related hepatocellular carcinoma in Chinese population by MAL-associated serum glycoproteomics analysis. Sci Rep 2017; 7:38918. [PMID: 28079114 PMCID: PMC5228127 DOI: 10.1038/srep38918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The accuracy of current biomarkers for the diagnosis of hepatocellular carcinoma (HCC), especially chronic Hepatitis B Virus (HBV)-related HCC, is limited. Recent progress in glycoproteomics has provided a novel platform for screening novel serological biomarkers of HCC. In this study, lectin affinity chromatography by Maackia amurensis lectin (MAL) and iTRAQ combined with mass spectrometric analysis were performed to enrich and identify the glycoprotein fractions in serum samples from HBV-related HCC patients and from healthy controls. Seventeen differential MAL-associated glycoproteins were identified. Among them, Galectin 3 binding protein (Gal-3BP) was selected for further evaluated by ELISA analysis and showed a high diagnostic potential of HBV-related HCC, with the AUC of 0.898 and a sensitivity, specificity and accuracy of 80.00%, 93.75% and 86.88%, respectively. Moreover, we constructed a predictive model through the combined use of serum Gal-3BP and Alpha Fetoprotein (AFP), which improved the sensitivity (from 87.5% to 95%), specificity (from 93.75% to 95%) and accuracy (from 90.63% to 95%) of diagnosing early HCC. These data suggested serum Gal-3BP level is a promising biomarker to identify HBV-related HCC and the combined use of serum Gal-3BP and AFP improves the diagnostic potential of HBV-HCC compared with AFP alone in current clinical practice.
Collapse
|
12
|
Wu Z, Liu Y, Ma C, Li L, Bai J, Byrd-Leotis L, Lasanajak Y, Guo Y, Wen L, Zhu H, Song J, Li Y, Steinhauer DA, Smith DF, Zhao B, Chen X, Guan W, Wang PG. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org Biomol Chem 2016; 14:11106-11116. [PMID: 27752690 PMCID: PMC5951163 DOI: 10.1039/c6ob01982j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans play diverse roles in a wide range of biological processes. Research on glycan-binding events is essential for learning their biological and pathological functions. However, the functions of terminal and internal glycan epitopes exhibited during binding with glycan-binding proteins (GBPs) and/or viruses need to be further identified. Therefore, a focused library of 36 biantennary asparagine (Asn)-linked glycans with some presenting tandem glycan epitopes was synthesized via a combined Core Isolation/Enzymatic Extension (CIEE) and one-pot multienzyme (OPME) synthetic strategy. These N-glycans include those containing a terminal sialyl N-acetyllactosamine (LacNAc), sialyl Lewis x (sLex) and Siaα2-8-Siaα2-3/6-R structures with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) sialic acid form, LacNAc, Lewis x (Lex), α-Gal, and Galα1-3-Lex; and tandem epitopes including α-Gal, Lex, Galα1-3-Lex, LacNAc, and sialyl LacNAc, presented with an internal sialyl LacNAc or 1-2 repeats of an internal LacNAc or Lex component. They were synthesized in milligram-scale, purified to over 98% purity, and used to prepare a glycan microarray. Binding studies using selected plant lectins, antibodies, and viruses demonstrated, for the first time, that when interpreting the binding between glycans and GBPs/viruses, not only the structure of the terminal glycan epitopes, but also the internal epitopes and/or modifications of terminal epitopes needs to be taken into account.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lauren Byrd-Leotis
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - He Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - David A Steinhauer
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Wanyi Guan
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA. and College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
13
|
Santra A, Yu H, Tasnima N, Muthana MM, Li Y, Zeng J, Kenyond NJ, Louie AY, Chen X. Systematic Chemoenzymatic Synthesis of O-Sulfated Sialyl Lewis x Antigens. Chem Sci 2016; 7:2827-2831. [PMID: 28138383 PMCID: PMC5269574 DOI: 10.1039/c5sc04104j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
O-Sulfated sialyl Lewis x antigens play important roles in nature. However, due to their structural complexity, they are not readily accessible by either chemical or enzymatic synthetic processes. Taking advantage of a bacterial sialyltransferase mutant that can catalyze the transfer of different sialic acid forms from the corresponding sugar nucleotide donors to Lewis x antigens which are fucosylated glycans as well as an efficient one-pot multienzyme (OPME) sialylation system, O-sulfated sialyl Lewis x antigens containing different sialic acid forms and O-sulfation at different locations were systematically synthesized by chemoenzymatic methods.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Hai Yu
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Nova Tasnima
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Musleh M Muthana
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Yanhong Li
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Jie Zeng
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA) ; School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003 (China)
| | - Nicholas J Kenyond
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, CA 95616 (USA)
| | - Angelique Y Louie
- Department of Biomedical Engineering, University of California, Davis, CA 95616 (USA)
| | - Xi Chen
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| |
Collapse
|
14
|
Yu H, Chen X. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org Biomol Chem 2016; 14:2809-18. [PMID: 26881499 PMCID: PMC4795158 DOI: 10.1039/c6ob00058d] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
15
|
Zhao C, Wu Y, Yu H, Shah IM, Li Y, Zeng J, Liu B, Mills DA, Chen X. The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongates α1-2-fucosyltransferase. Chem Commun (Camb) 2016; 52:3899-902. [PMID: 26864394 PMCID: PMC4775349 DOI: 10.1039/c5cc10646j] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel α1-2-fucosyltransferase from Thermosynechococcus elongatus BP-1 (Te2FT) with high fucosyltransferase activity and low donor hydrolysis activity was discovered and characterized. It was used in an efficient one-pot multienzyme (OPME) fucosylation system for the high-yield synthesis of human blood group H antigens containing β1-3-linked galactosides and an important human milk oligosaccharide (HMOS) lacto-N-fucopentaose I (LNFP I) on preparative and gram scales. LNFP I was shown to be selectively consumed by Bifidobacterium longum subsp. infantis but not Bifidobacterium animalis subsp. lactis and is a potential prebiotic.
Collapse
Affiliation(s)
- Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Yijing Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Ishita M. Shah
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - David A. Mills
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, Tel: +1 530 754–6037; Fax: +1 530 752-8995
| |
Collapse
|
16
|
Zhang Y, Meng C, Jin L, Chen X, Wang F, Cao H. Chemoenzymatic synthesis of α-dystroglycan core M1 O-mannose glycans. Chem Commun (Camb) 2015; 51:11654-7. [PMID: 26100261 PMCID: PMC4617230 DOI: 10.1039/c5cc02913a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The diversity-oriented chemoenzymatic synthesis of α-dystroglycan (α-DG) core M1 O-mannose glycans has been achieved via a three-step sequential one-pot multienzyme (OPME) glycosylation of a chemically prepared disaccharyl serine intermediate. The high flexibility and efficiency of this chemoenzymatic strategy was demonstrated for the synthesis of three more complex core M1 O-mannose glycans for the first time along with three previously reported core M1 structures.
Collapse
Affiliation(s)
- Yan Zhang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Caicai Meng
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Lan Jin
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Key Laboratory of Chemical Biology(Ministry of Education), Shandong University, Jinan 250012, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
17
|
Boutard B, Vankerckhove S, Markine-Goriaynoff N, Sarlet M, Desmecht D, McFadden G, Vanderplasschen A, Gillet L. The α2,3-sialyltransferase encoded by myxoma virus is a virulence factor that contributes to immunosuppression. PLoS One 2015; 10:e0118806. [PMID: 25705900 PMCID: PMC4338283 DOI: 10.1371/journal.pone.0118806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Myxoma virus (MYXV) induces a lethal disease called Myxomatosis in European rabbits. MYXV is one of the rare viruses that encodes an α2,3-sialyltransferase through its M138L gene. In this study, we showed that although the absence of the enzyme was not associated with any in vitro deficit, the M138L deficient strains are highly attenuated in vivo. Indeed, while all rabbits infected with the parental and the revertant strains died within 9 days post-infection from severe myxomatosis, all but one rabbit inoculated with the M138L deficient strains survived the infection. In primary lesions, this resistance to the infection was associated with an increased ability of innate immune cells, mostly neutrophils, to migrate to the site of virus replication at 4 days post-infection. This was followed by the development of a better specific immune response against MYXV. Indeed, at day 9 post-infection, we observed an important proliferation of lymphocytes and an intense congestion of blood vessels in lymph nodes after M138L knockouts infection. Accordingly, in these rabbits, we observed an intense mononuclear cell infiltration throughout the dermis in primary lesions and higher titers of neutralizing antibodies. Finally, this adaptive immune response provided protection to these surviving rabbits against a challenge with the MYXV WT strain. Altogether, these results show that expression of the M138L gene contributes directly or indirectly to immune evasion by MYXV. In the future, these results could help us to better understand the pathogenesis of myxomatosis but also the importance of glycans in regulation of immune responses.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- DNA, Viral/blood
- DNA, Viral/genetics
- DNA, Viral/immunology
- Gene Knockout Techniques
- Host-Pathogen Interactions/immunology
- Immune Tolerance/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Male
- Myxoma virus/immunology
- Myxoma virus/pathogenicity
- Myxoma virus/physiology
- Myxomatosis, Infectious/blood
- Myxomatosis, Infectious/immunology
- Myxomatosis, Infectious/virology
- Rabbits
- Sialyltransferases/genetics
- Sialyltransferases/immunology
- Sialyltransferases/metabolism
- Survival Analysis
- Time Factors
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virulence/genetics
- Virulence/immunology
- Virulence Factors/genetics
- Virulence Factors/immunology
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Bérengère Boutard
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Sophie Vankerckhove
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Nicolas Markine-Goriaynoff
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Mickaël Sarlet
- Pathology, Department of Morphology and Pathology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
18
|
Chen C, Zhang Y, Xue M, Liu XW, Li Y, Chen X, Wang PG, Wang F, Cao H. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chem Commun (Camb) 2015; 51:7689-92. [DOI: 10.1039/c5cc01330e] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A highly efficient sequential one-pot multienzyme (OPME) approach for the synthesis of lacto-N-neotetraose (LNnT) and its derivatives at preparative scale was reported.
Collapse
Affiliation(s)
- Congcong Chen
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Yan Zhang
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Mengyang Xue
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Xian-wei Liu
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Yanhong Li
- Department of Chemistry
- University of California
- One Shields Avenue
- Davis
- USA
| | - Xi Chen
- Department of Chemistry
- University of California
- One Shields Avenue
- Davis
- USA
| | - Peng George Wang
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Fengshan Wang
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Hongzhi Cao
- National Glycoengineering Research Center
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| |
Collapse
|
19
|
Regulations of glycolipid: XI. glycosyltransferase (GSL: GLTs) genes involved in SA-LeX and related GSLs biosynthesis in carcinoma cells by Biosimilar apoptotic agents: potential anticancer drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 842:329-54. [PMID: 25408353 DOI: 10.1007/978-3-319-11280-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
20
|
Adak AK, Yu CC, Liang CF, Lin CC. Synthesis of sialic acid-containing saccharides. Curr Opin Chem Biol 2013; 17:1030-8. [PMID: 24182749 DOI: 10.1016/j.cbpa.2013.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022]
Abstract
Sialic acids are a diverse family of negatively charged monosaccharides with a shared nine-carbon carboxylated backbone, and they often serve as the terminal positions of cell surface glycoproteins and glycolipids. Sialic acids play essential roles in mediating or modulating numerous pathological, biological, and immunological recognition events. Advances in synthesis have provided chemically well-defined and structurally homogeneous sialic acid-containing carbohydrates that are crucial for studying glycobiology. This review highlights recent innovations in the chemical and chemoenzymatic synthesis of difficult α-sialosides, with a particular focus on methods developed for α-selective sialylation in the synthesis of O-linked and S-linked oligosialic acids.
Collapse
Affiliation(s)
- Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|
21
|
Yu H, Lau K, Li Y, Sugiarto G, Chen X. One-pot multienzyme synthesis of Lewis x and sialyl Lewis x antigens. ACTA ACUST UNITED AC 2012; 4:233-247. [PMID: 25000293 DOI: 10.1002/9780470559277.ch110277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
L-Fucose has been found abundantly in human milk oligosaccharides, bacterial lipopolysaccharides, glycolipids, and many N- and O-linked glycans produced by mammalian cells. Fucose-containing carbohydrates have important biological functions. Alterations in the expression of fucosylated oligosaccharides have been observed in several pathological processes such as cancer and atherosclerosis. Chemical formation of fucosidic bonds is challenging due to its acid lability. Enzymatic construction of fucosidic bonds by fucosyltransferases is highly efficient and selective but requires the expensive sugar nucleotide donor guanosine 5'- diphosphate-L-fucose (GDP-Fuc). Here, we describe a protocol for applying a one-pot three-enzyme system in synthesizing structurally defined fucose-containing oligosaccharides from free L-fucose. In this system, GDP-Fuc is generated from L-fucose, adenosine 5'-triphosphate (ATP), and guanosine 5'-triphosphate (GTP) by a bifunctional L-fucokinase/GDP-fucose pyrophosphorylase (FKP). An inorganic pyrophosphatase (PpA) is used to degrade the by-product pyrophosphate (PPi) to drive the reaction towards the formation of GDP-Fuc. In situ generated GDP-Fuc is then used by a suitable fucosyltransferase for the formation of fucosides. The three-enzyme reactions are carried out in one pot without the need for high cost sugar nucleotide or isolation of intermediates. The time for the synthesis is 4-24 hours. Purification and characterization of products can be completed in 2-3 days.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Kam Lau
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Go Sugiarto
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
22
|
Sugiarto G, Lau K, Qu J, Li Y, Lim S, Mu S, Ames JB, Fisher AJ, Chen X. A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. ACS Chem Biol 2012; 7:1232-40. [PMID: 22583967 DOI: 10.1021/cb300125k] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycosyltransferases are important catalysts for enzymatic and chemoenzymatic synthesis of complex carbohydrates and glycoconjugates. The glycosylation efficiencies of wild-type glycosyltransferases vary considerably when different acceptor substrates are used. Using a multifunctional Pasteurella multocida sialyltransferase 1 (PmST1) as an example, we show here that the sugar nucleotide donor hydrolysis activity of glycosyltransferases contributes significantly to the low yield of glycosylation when a poor acceptor substrate is used. With a protein crystal structure-based rational design, we generated a single mutant (PmST1 M144D) with decreased donor hydrolysis activity without significantly affecting its α2-3-sialylation activity when a poor fucose-containing acceptor substrate was used. The single mutant also has a drastically decreased α2-3-sialidase activity. X-ray and NMR structural studies revealed that unlike the wild-type PmST1, which changes to a closed conformation once a donor binds, the M144D mutant structure adopts an open conformation even in the presence of the donor substrate. The PmST1 M144D mutant with decreased donor hydrolysis and reduced sialidase activity has been used as a powerful catalyst for efficient chemoenzymatic synthesis of complex sialyl Lewis(x) antigens containing different sialic acid forms. This work sheds new light on the effect of donor hydrolysis activity of glycosyltransferases on glycosyltransferase-catalyzed reactions and provides a novel strategy to improve glycosyltransferase substrate promiscuity by decreasing its donor hydrolysis activity.
Collapse
Affiliation(s)
- Go Sugiarto
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Kam Lau
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Jingyao Qu
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Yanhong Li
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Sunghyuk Lim
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Shengmao Mu
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - James B. Ames
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Andrew J. Fisher
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| | - Xi Chen
- Department
of Chemistry and ‡Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue,
Davis, California 95616, United States
| |
Collapse
|
23
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|