1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Mayo KH. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Int J Mol Sci 2023; 24:14083. [PMID: 37762385 PMCID: PMC10531749 DOI: 10.3390/ijms241814083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Extra- and intra-cellular activity occurs under the direction of numerous inter-molecular interactions, and in any tissue or cell, molecules are densely packed, thus promoting those molecular interactions. Galectins and chemokines, the focus of this review, are small, protein effector molecules that mediate various cellular functions-in particular, cell adhesion and migration-as well as cell signaling/activation. In the past, researchers have reported that combinations of these (and other) effector molecules act separately, yet sometimes in concert, but nevertheless physically apart and via their individual cell receptors. This view that each effector molecule functions independently of the other limits our thinking about functional versatility and cooperation, and, in turn, ignores the prospect of physiologically important inter-molecular interactions, especially when both molecules are present or co-expressed in the same cellular environment. This review is focused on such protein-protein interactions with chemokines and galectins, the homo- and hetero-oligomeric structures that they can form, and the functional consequences of those paired interactions.
Collapse
Affiliation(s)
- Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Yu X, Qian J, Ding L, Yin S, Zhou L, Zheng S. Galectin-1: A Traditionally Immunosuppressive Protein Displays Context-Dependent Capacities. Int J Mol Sci 2023; 24:ijms24076501. [PMID: 37047471 PMCID: PMC10095249 DOI: 10.3390/ijms24076501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Galectin–Carbohydrate interactions are indispensable to pathogen recognition and immune response. Galectin-1, a ubiquitously expressed 14-kDa protein with an evolutionarily conserved β-galactoside binding site, translates glycoconjugate recognition into function. That galectin-1 is demonstrated to induce T cell apoptosis has led to substantial attention to the immunosuppressive properties of this protein, such as inducing naive immune cells to suppressive phenotypes, promoting recruitment of immunosuppressing cells as well as impairing functions of cytotoxic leukocytes. However, only in recent years have studies shown that galectin-1 appears to perform a pro-inflammatory role in certain diseases. In this review, we describe the anti-inflammatory function of galectin-1 and its possible mechanisms and summarize the existing therapies and preclinical efficacy relating to these agents. In the meantime, we also discuss the potential causal factors by which galectin-1 promotes the progression of inflammation.
Collapse
|
4
|
Miller MC, Dregni AJ, Platt D, Mayo KH. PLG-007 and Its Active Component Galactomannan-α Competitively Inhibit Enzymes That Hydrolyze Glucose Polymers. Int J Mol Sci 2022; 23:ijms23147739. [PMID: 35887087 PMCID: PMC9316267 DOI: 10.3390/ijms23147739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
PLG-007 is a developmental therapeutic compound that has been clinically shown to reduce the magnitude of postprandial glucose excursions and has the potential to be an adjunct treatment for diabetes and inflammatory-related diseases. The present investigation is aimed at understanding the molecular mechanism of action of PLG-007 and its galactomannan (GM) components GMα and GMβ (in a 1:4 mass ratio, respectively) on enzyme (i.e., α-amylase, maltase, and lactase) hydrolysis of glucose polymers using colorimetric assays and 13C HSQC NMR spectroscopy. The starch–iodine colorimetric assay indicated that GMα strongly inhibits α-amylase activity (~16-fold more potent than GMβ) and thus is the primary active component in PLG-007. 13C HSQC experiments, used to follow the α-amylase-mediated hydrolysis of starch and amylopectin, further demonstrate the α-amylase inhibitory effect of GMα via α-amylase-mediated hydrolysis of starch and amylopectin. Maltohexaose (MT6) was used to circumvent the relative kinetic complexity of starch/amylopectin degradation in Michaelis–Menten analyses. The Vmax, KM, and Ki parameters were determined using peak volume integrals from 13C HSQC NMR spectra. In the presence of PLG-007 with α-amylase and MT6, the increase in KM from 7.5 ± 0.6 × 10−3 M (control) to 21 ± 1.4 × 10−3 M, with no significant change in Vmax, indicates that PLG-007 is a competitive inhibitor of α-amylase. Using KM values, Ki was estimated to be 2.1 ± 0.9 × 10−6 M; however, the microscopic Ki value of GMα is expected to be larger as the binding stoichiometry is likely to be greater than 1:1. Colorimetric assays also demonstrated that GMα is a competitive inhibitor of the enzymes maltase and lactase. Overall, this study provides insight as to how PLG-007 (GMα) is likely to function in vivo.
Collapse
Affiliation(s)
- Michelle C. Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA; (M.C.M.); (A.J.D.)
| | - Aurelio J. Dregni
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA; (M.C.M.); (A.J.D.)
| | - David Platt
- Bioxytran Inc., 75 2nd Ave., Suite 605, Needham, MA 02494, USA;
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA; (M.C.M.); (A.J.D.)
- Correspondence:
| |
Collapse
|
5
|
Daunorubicin glycoconjugates with natural galectin ligands. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Greer PFC, Rich A, Coates DE. Effects of galectin-1 inhibitor OTX008 on oral squamous cell carcinoma cells in vitro and the role of AP-1 and the MAPK/ERK pathway. Arch Oral Biol 2021; 134:105335. [PMID: 34891102 DOI: 10.1016/j.archoralbio.2021.105335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the in vitro effects of inhibiting galectin-1 using the small-molecule inhibitor OTX008 on oral squamous cell carcinoma (OSCC) cell lines and the role of the MAPK pathway. METHODS One normal oral keratinocyte (NOK) and three OSCC cell lines were cultured in vitro and the expression of galectin-1 protein by each quantified using ELISA. Cell lines were treated with galectin-1 (50, 100 and 150 ng/mL) or OTX008 (12.5, 25, 50 and 100 μg/mL) and cell viability assayed (n = 3). OSCC cell lines with and without 25 μg/mL OTX008 (n = 3) treatment for 48 h, were analysed using qRT2-PCR with a custom array, to assess relative gene expression. RESULTS All cell lines were found to express galectin-1 protein. Exogenous galectin-1 significantly reduced cell viability in one OSCC cell line over time while the others were only minimally affected. OTX008 treatment reduced cell viability in a dose and time-dependent manner in all cell lines and this was associated with significant regulation of FOS gene expression in the OSCC cell lines. CONCLUSION OTX008 decreased the viability of OSCC and NOK cells in a dose-dependent manner. The significant regulation of FOS suggests OTX008 causes early induction of the MAPK pathway via the immediate response gene FOS as a subunit of the AP-1 complex.
Collapse
Affiliation(s)
- Philippa F C Greer
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Alison Rich
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
The marriage of chemokines and galectins as functional heterodimers. Cell Mol Life Sci 2021; 78:8073-8095. [PMID: 34767039 PMCID: PMC8629806 DOI: 10.1007/s00018-021-04010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Trafficking of leukocytes and their local activity profile are of pivotal importance for many (patho)physiological processes. Fittingly, microenvironments are complex by nature, with multiple mediators originating from diverse cell types and playing roles in an intimately regulated manner. To dissect aspects of this complexity, effectors are initially identified and structurally characterized, thus prompting familial classification and establishing foci of research activity. In this regard, chemokines present themselves as role models to illustrate the diversification and fine-tuning of inflammatory processes. This in turn discloses the interplay among chemokines, their cell receptors and cognate glycosaminoglycans, as well as their capacity to engage in new molecular interactions that form hetero-oligomers between themselves and other classes of effector molecules. The growing realization of versatility of adhesion/growth-regulatory galectins that bind to glycans and proteins and their presence at sites of inflammation led to testing the hypothesis that chemokines and galectins can interact with each other by protein-protein interactions. In this review, we present some background on chemokines and galectins, as well as experimental validation of this chemokine-galectin heterodimer concept exemplified with CXCL12 and galectin-3 as proof-of-principle, as well as sketch out some emerging perspectives in this arena.
Collapse
|
8
|
Porciúncula-González C, Cagnoni AJ, Fontana C, Mariño KV, Saenz-Méndez P, Giacomini C, Irazoqui G. Structural insights in galectin-1-glycan recognition: Relevance of the glycosidic linkage and the N-acetylation pattern of sugar moieties. Bioorg Med Chem 2021; 44:116309. [PMID: 34293617 DOI: 10.1016/j.bmc.2021.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Galectins, soluble lectins widely expressed intra- and extracellularly in different cell types, play major roles in deciphering the cellular glycocode. Galectin-1 (Gal-1), a prototype member of this family, presents a carbohydrate recognition domain (CRD) with specific affinity for β-galactosides such as N-acetyllactosamine (β-d-Galp-(1 → 4)-d-GlcpNAc), and mediate numerous physiological and pathological processes. In this work, Gal-1 binding affinity for β-(1 → 6) galactosides, including β-d-Galp-(1 → 6)-β-d-GlcpNAc-(1 → 4)-d-GlcpNAc was evaluated, and their performance was compared to that of β-(1 → 4) and β-(1 → 3) galactosides. To this end, the trisaccharide β-d-Galp-(1 → 6)-β-d-GlcpNAc-(1 → 4)-d-GlcpNAc was enzymatically synthesized, purified and structurally characterized. To evaluate the affinity of Gal-1 for the galactosides, competitive solid phase assays (SPA) and isothermal titration calorimetry (ITC) studies were carried out. The experimental dissociation constants and binding energies obtained were compared to those calculated by molecular docking. These analyses evidenced the critical role of the glycosidic linkage between the terminal galactopyranoside residue and the adjacent monosaccharide, as galactosides bearing β-(1 → 6) glycosidic linkages showed dissociation constants six- and seven-fold higher than those involving β-(1 → 4) and β-(1 → 3) linkages, respectively. Moreover, docking experiments revealed the presence of hydrogen bond interactions between the N-acetyl group of the glucosaminopyranose moiety of the evaluated galactosides and specific amino acid residues of Gal-1, relevant for galectin-glycan affinity. Noticeably, the binding free energies (ΔGbindcalc) derived from the molecular docking were in good agreement with experimental values determined by ITC measurements (ΔGbindexp), evidencing a good correlation between theoretical and experimental approaches, which validates the in silico simulations and constitutes an important tool for the rational design of future optimized ligands.
Collapse
Affiliation(s)
- Cecilia Porciúncula-González
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores, 2124, 11800 Montevideo, Uruguay; Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, Isidoro de María 1614, 11800 Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay
| | - Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Carolina Fontana
- Laboratorio de Espectroscopía y Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte (S.R.A. Facultad de Química), UdelaR, Ruta 3 km 363, 60000 Paysandú, Uruguay
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Patricia Saenz-Méndez
- Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, Isidoro de María 1614, 11800 Montevideo, Uruguay; Department of Engineering and Chemical Sciences, Faculty of Health, Science and Technology, Karlstad University, Universitetsgatan 2, 651 88 Karlstad, Sweden
| | - Cecilia Giacomini
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores, 2124, 11800 Montevideo, Uruguay
| | - Gabriela Irazoqui
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores, 2124, 11800 Montevideo, Uruguay.
| |
Collapse
|
9
|
Vilaró P, Sampl C, Teichert G, Schlemmer W, Hobisch M, Weissl M, Panizzolo L, Ferreira F, Spirk S. Interactions and Dissociation Constants of Galactomannan Rendered Cellulose Films with Concavalin A by SPR Spectroscopy. Polymers (Basel) 2020; 12:E3040. [PMID: 33353119 PMCID: PMC7766192 DOI: 10.3390/polym12123040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Interactions of biomolecules at interfaces are important for a variety of physiological processes. Among these, interactions of lectins with monosaccharides have been investigated extensively in the past, while polysaccharide-lectin interactions have scarcely been investigated. Here, we explore the adsorption of galactomannans (GM) extracted from Prosopis affinis on cellulose thin films determined by a combination of multi-parameter surface plasmon resonance spectroscopy (MP-SPR) and atomic force microscopy (AFM). The galactomannan adsorbs spontaneously on the cellulose surfaces forming monolayer type coverage (0.60 ± 0.20 mg·m-2). The interaction of a lectin, Concavalin A (ConA), with these GM rendered cellulose surfaces using MP-SPR has been investigated and the dissociation constant KD (2.1 ± 0.8 × 10-8 M) was determined in a range from 3.4 to 27.3 nM. The experiments revealed that the galactose side chains as well as the mannose reducing end of the GM are weakly interacting with the active sites of the lectins, whereas these interactions are potentially amplified by hydrophobic effects between the non-ionic GM and the lectins, thereby leading to an irreversible adsorption.
Collapse
Affiliation(s)
- Pilar Vilaró
- Sede Tacuarembó, Espacio de Ciencia y Tecnología Química, Universidad de la República, CENUR Nores-te. Ruta 5 Km 386, Tacuarembó 45000, Uruguay; (P.V.); (F.F.)
| | - Carina Sampl
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Gundula Teichert
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Werner Schlemmer
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Mathias Hobisch
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Michael Weissl
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Luis Panizzolo
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay;
| | - Fernando Ferreira
- Sede Tacuarembó, Espacio de Ciencia y Tecnología Química, Universidad de la República, CENUR Nores-te. Ruta 5 Km 386, Tacuarembó 45000, Uruguay; (P.V.); (F.F.)
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| |
Collapse
|
10
|
Zheng Y, Su J, Miller MC, Geng J, Xu X, Zhang T, Mayzel M, Zhou Y, Mayo KH, Tai G. Topsy-turvy binding of negatively charged homogalacturonan oligosaccharides to galectin-3. Glycobiology 2020; 31:341-350. [PMID: 32909036 DOI: 10.1093/glycob/cwaa080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 is crucial to many physiological and pathological processes. The generally accepted dogma is that galectins function extracellularly by binding specifically to β(1→4)-galactoside epitopes on cell surface glycoconjugates. Here, we used crystallography and NMR spectroscopy to demonstrate that negatively charged homogalacturonans (HG, linear polysaccharides of α(1→4)-linked-D-galacturonate (GalA)) bind to the galectin-3 carbohydrate recognition domain. The HG carboxylates at the C6 positions in GalA rings mandate that this saccharide bind galectin-3 in an unconventional, "topsy-turvy" orientation that is flipped by about 180o relative to that of the canonical β-galactoside lactose. In this binding mode, the reducing end GalA β-anomer of HGs takes the position of the nonreducing end galactose residue in lactose. This novel orientation maintains interactions with the conserved tryptophan and seven of the most crucial lactose-binding residues, albeit with different H-bonding interactions. Nevertheless, the HG molecular orientation and new interactions have essentially the same thermodynamic binding parameters as lactose. Overall, our study provides structural details for a new type of galectin-sugar interaction that broadens glycospace for ligand binding to Gal-3 and suggests how the lectin may recognize other negatively charged polysaccharides like glycoaminoglycans (e.g. heparan sulfate) on the cell surface. This discovery impacts on our understanding of galectin-mediated biological function.
Collapse
Affiliation(s)
- Yi Zheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Jie Geng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Tao Zhang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Maksim Mayzel
- Bruker BioSpin AG, Applications Department, Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
11
|
|
12
|
Zhang Z, Miller MC, Xu X, Song C, Zhang F, Zheng Y, Zhou Y, Tai G, Mayo KH. NMR-based insight into galectin-3 binding to endothelial cell adhesion molecule CD146: Evidence for noncanonical interactions with the lectin's CRD β-sandwich F-face. Glycobiology 2020; 29:608-618. [PMID: 31094416 DOI: 10.1093/glycob/cwz036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
Galectin-3 (Gal-3) binds to cell adhesion glycoprotein CD146 to promote cytokine secretion and mediate endothelial cell migration. Here, we used Nuclear Magnetic Resonance (NMR) 15N-Heteronuclear Single Quantum Coherence (HSQC) spectroscopy to investigate binding between 15N-labeled Gal-3 and the extracellular domain (eFL) of purified CD146 (five Ig-like ectodomains D1-D5) and a shorter, D5-deleted version of CD146 (D1-D4). Binding of Gal-3 and its carbohydrate recognition domain (CRD) to CD146 D1-D4 is greatly reduced vis-à-vis CD146 eFL, supporting the proposal of a larger number of glycosylation sites on D5. Even though the canonical sugar-binding β-sheet S-face (β-strands 1, 10, 3, 4, 5, 6) of the Gal-3 β-sandwich is involved in interactions with CD146 (e.g. N-linked glycosylation sites), equivalent HSQC spectral perturbations at residues on the opposing Gal-3 F-face β-sheet (β-strands 11, 2, 7, 8, 9) indicate involvement of the Gal-3 F-face in binding CD146. This is supported by the observation that addition of lactose, while significantly attenuating Gal-3 binding (primarily with the S-face) to CD146 eFL, does not abolish it. Bio-Layer Interferometry studies with Gal-3 F-face mutants yield KD values to demonstrate a significant decrease (L203A) or increase (V204A, L218A, T243A) in net binding to CD146 eFL compared to wild type Gal-3. However, HSQC lactose titrations show no highly significant effects on sugar binding to the Gal-3 CRD S-face. Overall, our findings indicate that Gal-3 binding to CD146 is more involved than simple interactions with β-galactoside epitopes on the cell receptor, and that there is a direct role for the lectin's CRD F-face in the CD146 binding process.
Collapse
Affiliation(s)
- Zhongyu Zhang
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Michelle C Miller
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xuejiao Xu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Chengcheng Song
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fan Zhang
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yi Zheng
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Liu Q, Aouidat F, Sacco P, Marsich E, Djaker N, Spadavecchia J. Galectin-1 protein modified gold (III)-PEGylated complex-nanoparticles: Proof of concept of alternative probe in colorimetric glucose detection. Colloids Surf B Biointerfaces 2019; 185:110588. [PMID: 31654887 DOI: 10.1016/j.colsurfb.2019.110588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 01/06/2023]
Abstract
Galectins (Gal) are a family of dimeric lectins, composed by two galactoside-binding sites implicated in the regulation of cancer progression and immune responses. In this study, we report for the first time the synthesis and the physical-chemical characterization of galectin-1-complex-gold COOH-terminated polyethlenglicole (PEG)-coated NPs (Gal-1 IN PEG-AuNPs) and their ability to recognize glucose in an aqueous solution with a concentration varying from 10 mM to 100 pM. The chemical protocol consistsof three steps: (i) complexation between galectin-1Gal-1 and tetrachloroauric acid (HAuCl4) to form gold-protein grains; (ii) staking process of COOH-terminated polyethlenglicole molecules (PEG) onto Gal-1-Au complex and (iii) reduction of hybrid metal ions to obtain a colloidal stable solution. During the complexation, the spectral signatures related to the Gal-1 orientation on the gold surface have been found to change due to its protonation state. The effective glucose monitoring was detected by UV-vis, Raman spectroscopy and Transmission Electron Microscopy (TEM). Overall, we observed that the interaction is strongly dependent on the Gal-1 conformation at the surface of gold nanoparticles.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fatima Aouidat
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Nadia Djaker
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
14
|
Miller MC, Zheng Y, Zhou Y, Tai G, Mayo KH. Galectin-3 binds selectively to the terminal, non-reducing end of β(1→4)-galactans, with overall affinity increasing with chain length. Glycobiology 2019; 29:74-84. [PMID: 30204870 DOI: 10.1093/glycob/cwy085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Galactans are linear polysaccharides of β(1→4)-linked galactose residues. Although they can antagonize galectin function, the nature of their binding to galectins needs to be better defined to develop them as drugs. Here, we investigated interactions between galectin-3 (Gal-3) and a series of galactans ranging in weight average molecular weight from 670 to 7550 Da. 15N-1H HSQC NMR studies with 15N-labeled Gal-3 carbohydrate recognition domain (CRD) indicate that each of these galactans interacts primarily with residues in β-strands 4, 5 and 6 on the canonical, β-galactoside sugar binding S-face. Although these galactans also bind to full length Gal-3 (CRD plus N-terminal tail) to the same extent, it appears that binding to the S-face attenuates interactions between the CRD F-face and N-terminal tail, making interpretation of site-specific binding unclear. Following assignment of galactan 13C and 1H resonances using HSQC, HMBC and TOCSY experiments, we used 13C-1H HSQC data to demonstrate that the Gal-3 CRD binds to the terminal, non-reducing end of these galactans, regardless of their size, but with binding affinity increasing as the galactan chain length increases. Overall, our findings increase understanding as to how galactans interact with Gal-3 at the non-reducing, terminal end of galactose-containing polysaccharides as found on the cell surface.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN, USA
| | - Yi Zheng
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Differential recognition of Haemophilus influenzae whole bacterial cells and isolated lipooligosaccharides by galactose-specific lectins. Sci Rep 2018; 8:16292. [PMID: 30389954 PMCID: PMC6215012 DOI: 10.1038/s41598-018-34383-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
Bacterial surfaces are decorated with carbohydrate structures that may serve as ligands for host receptors. Based on their ability to recognize specific sugar epitopes, plant lectins are extensively used for bacteria typing. We previously observed that the galactose-specific agglutinins from Ricinus communis (RCA) and Viscum album (VAA) exhibited differential binding to nontypeable Haemophilus influenzae (NTHi) clinical isolates, their binding being distinctly affected by truncation of the lipooligosaccharide (LOS). Here, we examined their binding to the structurally similar LOS molecules isolated from strains NTHi375 and RdKW20, using microarray binding assays, saturation transfer difference NMR, and molecular dynamics simulations. RCA bound the LOSRdKW20 glycoform displaying terminal Galβ(1,4)Glcβ, whereas VAA recognized the Galα(1,4)Galβ(1,4)Glcβ epitope in LOSNTHi375 but not in LOSRdKW20, unveiling a different presentation. Binding assays to whole bacterial cells were consistent with LOSNTHi375 serving as ligand for VAA, and also suggested recognition of the glycoprotein HMW1. Regarding RCA, comparable binding to NTHi375 and RdKW20 cells was observed. Interestingly, an increase in LOSNTHi375 abundance or expression of HMW1 in RdKW20 impaired RCA binding. Overall, the results revealed that, besides the LOS, other carbohydrate structures on the bacterial surface serve as lectin ligands, and highlighted the impact of the specific display of cell surface components on lectin binding.
Collapse
|
16
|
Blaum BS, Neu U, Peters T, Stehle T. Spin ballet for sweet encounters: saturation-transfer difference NMR and X-ray crystallography complement each other in the elucidation of protein-glycan interactions. Acta Crystallogr F Struct Biol Commun 2018; 74:451-462. [PMID: 30084394 PMCID: PMC6096479 DOI: 10.1107/s2053230x18006581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/28/2018] [Indexed: 03/11/2023] Open
Abstract
Biomolecular NMR spectroscopy has limitations in the determination of protein structures: an inherent size limit and the requirement for expensive and potentially difficult isotope labelling pose considerable hurdles. Therefore, structural analysis of larger proteins is almost exclusively performed by crystallography. However, the diversity of biological NMR applications outperforms that of any other structural biology technique. For the characterization of transient complexes formed by proteins and small ligands, notably oligosaccharides, one NMR technique has recently proven to be particularly powerful: saturation-transfer difference NMR (STD-NMR) spectroscopy. STD-NMR experiments are fast and simple to set up, with no general protein size limit and no requirement for isotope labelling. The method performs best in the moderate-to-low affinity range that is of interest in most of glycobiology. With small amounts of unlabelled protein, STD-NMR experiments can identify hits from mixtures of potential ligands, characterize mutant proteins and pinpoint binding epitopes on the ligand side. STD-NMR can thus be employed to complement and improve protein-ligand complex models obtained by other structural biology techniques or by purely computational means. With a set of protein-glycan interactions from our own work, this review provides an introduction to the technique for structural biologists. It exemplifies how crystallography and STD-NMR can be combined to elucidate protein-glycan (and other protein-ligand) interactions in atomic detail, and how the technique can extend structural biology from simplified systems amenable to crystallization to more complex biological entities such as membranes, live viruses or entire cells.
Collapse
Affiliation(s)
- Bärbel S. Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Ursula Neu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Miller MC, Zheng Y, Yan J, Zhou Y, Tai G, Mayo KH. Novel polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization. Glycobiology 2018; 27:1038-1051. [PMID: 28973299 DOI: 10.1093/glycob/cwx071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Interactions between galectins and polysaccharides are crucial to many biological processes, and yet these are some of the least understood, usually being limited to studies with small saccharides and short oligosaccharides. The present study is focused on human galectin-3 (Gal-3) interactions with a 60 kDa rhamnogalacturonan RG-I-4 that we use as a model to garner information as to how galectins interact with large polysaccharides, as well as to develop this agent as a therapeutic against human disease. Gal-3 is unique among galectins, because as the only chimera-type, it has a long N-terminal tail (NT) that has long puzzled investigators due to its dynamic, disordered nature and presence of numerous prolines. Here, we use 15N-1H heteronuclear single quantum coherence NMR spectroscopy to demonstrate that multiple sites on RG-I-4 provide epitopes for binding to three sites on 15N-labeled Gal-3, two within its carbohydrate recognition domain (CRD) and one at a novel site within the NT encompassing the first 40 residues that are highly conserved among all species of Gal-3. Moreover, strong binding of RG-I-4 to the Gal-3 NT occurs on a very slow time scale, suggesting that it may be mediated by cis-trans proline isomerization, a well-recognized modulator of many biological activities. The NT binding epitope within RG-I-4 appears to reside primarily in the side chains of the polysaccharide, some of which are galactans. Our results provide new insight into the role of the NT in Gal-3 function.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Y Zheng
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Jingmin Yan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Dings RPM, Miller MC, Griffin RJ, Mayo KH. Galectins as Molecular Targets for Therapeutic Intervention. Int J Mol Sci 2018; 19:ijms19030905. [PMID: 29562695 PMCID: PMC5877766 DOI: 10.3390/ijms19030905] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are a family of small, highly conserved, molecular effectors that mediate various biological processes, including chemotaxis and angiogenesis, and that function by interacting with various cell surface glycoconjugates, usually targeting β-galactoside epitopes. Because of their significant involvement in various biological functions and pathologies, galectins have become a focus of therapeutic discovery for clinical intervention against cancer, among other pathological disorders. In this review, we focus on understanding galectin structure-function relationships, their mechanisms of action on the molecular level, and targeting them for therapeutic intervention against cancer.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers. Biochem J 2018; 475:1003-1018. [PMID: 29321242 DOI: 10.1042/bcj20170658] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
The delineation of the physiological significance of protein (lectin)-glycan recognition and the structural analysis of individual lectins have directed our attention to studying them in combination. In this report, we tested the hypothesis of hybrid formation by using binary mixtures of homodimeric galectin-1 and -7 as well as a proteolytically truncated version of chimera-type galectin-3. Initial supportive evidence is provided by affinity chromatography using resin-presented galectin-7. Intriguingly, the extent of cell binding by cross-linking of surface counter-receptor increased significantly for monomeric galectin-3 form by the presence of galectin-1 or -7. Pulsed-field gradient NMR (nuclear magnetic resonance) diffusion measurements on these galectin mixtures indicated formation of heterodimers as opposed to larger oligomers. 15N-1H heteronuclear single quantum coherence NMR spectroscopy and molecular dynamics simulations allowed us to delineate how different galectins interact in the heterodimer. The possibility of domain exchange between galectins introduces a new concept for understanding the spectrum of their functionality, particularly when these effector molecules are spatially and temporally co-expressed as found in vivo.
Collapse
|
20
|
Dissecting the Structure-Activity Relationship of Galectin-Ligand Interactions. Int J Mol Sci 2018; 19:ijms19020392. [PMID: 29382172 PMCID: PMC5855614 DOI: 10.3390/ijms19020392] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023] Open
Abstract
Galectins are β-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.
Collapse
|
21
|
Macromolecular assemblies of complex polysaccharides with galectin-3 and their synergistic effects on function. Biochem J 2017; 474:3849-3868. [PMID: 28986508 DOI: 10.1042/bcj20170143] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Although pectin-derived polysaccharides can antagonize galectin function in various pathological disorders, the nature of their binding interactions needs to be better defined for developing them as drugs. Moreover, given their relatively large size and complexity, pectin-derived polysaccharides are also useful as model systems to assess inter-polysaccharide and protein-polysaccharide interactions. Here, we investigated interactions between galectin-3 (Gal-3) and pectin-derived polysaccharides: a rhamnogalacturonan (RG) and two homogalacturonans (HGs). BioLayer Interferometry and fluorescence-linked immunosorbent assays indicate that these polysaccharides bind Gal-3 with macroscopic or apparent KD values of 49 nM, 46 µM, and 138 µM, respectively. 15N-1H heteronuclear single quantum coherence (HSQC) NMR studies reveal that these polysaccharides interact primarily with the F-face of the Gal-3 carbohydrate recognition domain. Even though their binding to Gal-3 does not inhibit Gal-3-mediated T-cell apoptosis and only weakly attenuates hemagglutination, their combination in specific proportions increases activity synergistically along with avidity for Gal-3. This suggests that RG and HG polysaccharides act in concert, a proposal supported by polysaccharide particle size measurements and 13C-1H HSQC data. Our model has HG interacting with RG to promote increased avidity of RG for Gal-3, likely by exposing additional lectin-binding sites on the RG. Overall, the present study contributes to our understanding of how complex HG and RG polysaccharides interact with Gal-3.
Collapse
|
22
|
Lacetera A, Berbís MÁ, Nurisso A, Jiménez-Barbero J, Martín-Santamaría S. Computational Chemistry Tools in Glycobiology: Modelling of Carbohydrate–Protein Interactions. COMPUTATIONAL TOOLS FOR CHEMICAL BIOLOGY 2017. [DOI: 10.1039/9781788010139-00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular modelling provides a major impact in the field of glycosciences, helping in the characterisation of the molecular basis of the recognition between lectins from pathogens and human glycoconjugates, and in the design of glycocompounds with anti-infectious properties. The conformational properties of oligosaccharides are complex, and therefore, the simulation of these properties is a challenging task. Indeed, the development of suitable force fields is required for the proper simulation of important problems in glycobiology, such as the interatomic interactions responsible for oligosaccharide and glycoprotein dynamics, including O-linkages in oligo- and polysaccharides, and N- and O-linkages in glycoproteins. The computational description of representative examples is discussed, herein, related to biologically active oligosaccharides and their interaction with lectins and other proteins, and the new routes open for the design of glycocompounds with promising biological activities.
Collapse
Affiliation(s)
- Alessandra Lacetera
- Center for Biological Research CIB-CSIC. Ramiro de Maeztu, 9 28040-Madrid Spain
| | - M. Álvaro Berbís
- Center for Biological Research CIB-CSIC. Ramiro de Maeztu, 9 28040-Madrid Spain
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences University of Geneva, University of Lausanne, Rue Michel Servet 1 CH-1211 Geneva 4 Switzerland
| | | | | |
Collapse
|
23
|
Laaf D, Bojarová P, Pelantová H, Křen V, Elling L. Tailored Multivalent Neo-Glycoproteins: Synthesis, Evaluation, and Application of a Library of Galectin-3-Binding Glycan Ligands. Bioconjug Chem 2017; 28:2832-2840. [PMID: 28976746 DOI: 10.1021/acs.bioconjchem.7b00520] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Galectin-3 (Gal-3), a member of the β-galactoside-binding lectin family, is a tumor biomarker and involved in tumor angiogenesis and metastasis. Gal-3 is therefore considered as a promising target for early cancer diagnosis and anticancer therapy. We here present the synthesis of a library of tailored multivalent neo-glycoproteins and evaluate their Gal-3 binding properties. By the combinatorial use of glycosyltransferases and chemo-enzymatic reactions, we first synthesized a set of N-acetyllactosamine (Galβ1,4GlcNAc; LacNAc type 2)-based oligosaccharides featuring five different terminating glycosylation epitopes, respectively. Neo-glycosylation of bovine serum albumin (BSA) was accomplished by dialkyl squarate coupling to lysine residues resulting in a library of defined multivalent neo-glycoproteins. Solid-phase binding assays with immobilized neo-glycoproteins revealed distinct affinity and specificity of the multivalent glycan epitopes for Gal-3 binding. In particular, neo-glycoproteins decorated with N',N″-diacetyllactosamine (GalNAcβ1,4GlcNAc; LacdiNAc) epitopes showed high selectivity and were demonstrated to capture Gal-3 from human serum with high affinity. Furthermore, neo-glycoproteins with terminal biotinylated LacNAc glycan motif could be utilized as Gal-3 detection agents in a sandwich enzyme-linked immunosorbent assay format. We conclude that, in contrast to antibody-based capture steps, the presented neo-glycoproteins are highly useful to detect functionally intact Gal-3 with high selectivity and avidity. We further gain novel insights into the binding affinity of Gal-3 using tailored multivalent neo-glycoproteins, which have the potential for an application in the context of cancer-related biomedical research.
Collapse
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 20, 52074 Aachen, Germany
| |
Collapse
|
24
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
25
|
Antonik PM, Volkov AN, Broder UN, Re DL, van Nuland NAJ, Crowley PB. Anomer-Specific Recognition and Dynamics in a Fucose-Binding Lectin. Biochemistry 2016; 55:1195-203. [PMID: 26845253 DOI: 10.1021/acs.biochem.5b01212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sugar binding by a cell surface ∼29 kDa lectin (RSL) from the bacterium Ralstonia solanacearum was characterized by NMR spectroscopy. The complexes formed with four monosaccharides and four fucosides were studied. Complete resonance assignments and backbone dynamics were determined for RSL in the sugar-free form and when bound to l-fucose or d-mannose. RSL was found to interact with both the α- and the β-anomer of l-fucose and the "fucose like" sugars d-arabinose and l-galactose. Peak splitting was observed for some resonances of the binding site residues. The assignment of the split signals to the α- or β-anomer was confirmed by comparison with the spectra of RSL bound to methyl-α-l-fucoside or methyl-β-l-fucoside. The backbone dynamics of RSL were sensitive to the presence of ligand, with the protein adopting a more compact structure upon binding to l-fucose. Taking advantage of tryptophan residues in the binding sites, we show that the indole resonance is an excellent reporter on ligand binding. Each sugar resulted in a distinct signature of chemical shift perturbations, suggesting that tryptophan signals are a sufficient probe of sugar binding.
Collapse
Affiliation(s)
- Paweł M Antonik
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland.,Department of Food BioSciences, Teagasc Food Research Centre , Ashtown, Dublin 15, Ireland
| | - Alexander N Volkov
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Research Centre, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ursula N Broder
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| | - Daniele Lo Re
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| | - Nico A J van Nuland
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Research Centre, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| |
Collapse
|
26
|
Miller MC, Ippel H, Suylen D, Klyosov AA, Traber PG, Hackeng T, Mayo KH. Binding of polysaccharides to human galectin-3 at a noncanonical site in its carbohydrate recognition domain. Glycobiology 2016; 26:88-99. [PMID: 26646771 PMCID: PMC4851716 DOI: 10.1093/glycob/cwv073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/07/2015] [Accepted: 08/22/2015] [Indexed: 12/30/2022] Open
Abstract
Galectin-3 (Gal-3) is a multifunctional lectin, unique to galectins by the presence of a long N-terminal tail (NT) off of its carbohydrate recognition domain (CRD). Many previous studies have investigated binding of small carbohydrates to its CRD. Here, we used nuclear magnetic resonance spectroscopy ((15)N-(1)H heteronuclear single quantum coherence data) to assess binding of (15)N-Gal-3 (and truncated (15)N-Gal-3 CRD) to several, relatively large polysaccharides, including eight varieties of galactomannans (GMs), as well as a β(1 → 4)-polymannan and an α-branched mannan. Overall, we found that these polysaccharides with a larger carbohydrate footprint interact primarily with a noncanonical carbohydrate-binding site on the F-face of the Gal-3 CRD β-sandwich, and to a less extent, if at all, with the canonical carbohydrate-binding site on the S-face. While there is no evidence for interaction with the NT itself, it does appear that the NT somehow mediates stronger interactions between the Gal-3 CRD and the GMs. Significant Gal-3 resonance broadening observed during polysaccharide titrations indicates that interactions occur in the intermediate exchange regime, and analysis of these data allows estimation of affinities and stoichiometries that range from 4 × 10(4) to 12 × 10(4) M(-1) per site and multiple sites per polysaccharide, respectively. We also found that lactose can still bind to the CRD S-face of GM-bound Gal-3, with the binding of one ligand attenuating affinity of the other. These data are compared with previous results on Gal-1, revealing differences and similarities. They also provide research direction to the development of these polysaccharides as galectin-targeting therapeutics in the clinic.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Hans Ippel
- Department of Biochemistry and CARIM, University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Dennis Suylen
- Department of Biochemistry and CARIM, University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Anatole A Klyosov
- Galectin Therapeutics, 4960 Peachtree Industrial Blvd., Suite 240, Norcross, GA 30071, USA
| | - Peter G Traber
- Galectin Therapeutics, 4960 Peachtree Industrial Blvd., Suite 240, Norcross, GA 30071, USA
| | - Tilman Hackeng
- Department of Biochemistry and CARIM, University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Möckl L, Horst AK, Kolbe K, Lindhorst TK, Bräuchle C. Microdomain Formation Controls Spatiotemporal Dynamics of Cell-Surface Glycoproteins. Chembiochem 2015; 16:2023-8. [PMID: 26296625 DOI: 10.1002/cbic.201500361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/07/2022]
Abstract
The effect of galectin-mediated microdomain formation on the spatiotemporal dynamics of glycosylated membrane proteins in human microvascular endothelial cells (HMEC-1) was studied qualitatively and quantitatively by high-resolution fluorescence microscopy and artificially mimicked by metabolic glycoprotein engineering. Two types of membrane proteins, sialic acid-bearing proteins (SABPs) and mucin-type proteins (MTPs), were investigated. For visualization they were metabolically labeled with azido sugars and then coupled to a cyclooctyne-conjugated fluorescent dye by click chemistry. Both spatial (diffusion) and temporal (residence time) dynamics of SABPs and MTPs on the membrane were investigated after treatment with exogenous galectin-1 or -3. Strong effects of galectin-mediated lattice formation were observed for MTPs (decreased spatial mobility), but not for SABPs. Lattice formation also strongly decreased the turnover of MTPs (increased residence time on the cell membrane). The effects of galectin-mediated crosslinking was accurately mimicked by streptavidin-mediated crosslinking of biotin-tagged glycoproteins and verified by single-molecule tracking. This technique allows the induction of crosslinking of membrane proteins under precisely controlled conditions, thereby influencing membrane residence time and the spatial dynamics of glycans on the cell membrane in a controlled way.
Collapse
Affiliation(s)
- Leonhard Möckl
- Department of Physical Chemistry, Ludwig Maximilian University Munich, Butenandtstrasse 11, 81377, Munich, Germany
| | - Andrea K Horst
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Katharina Kolbe
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098, Kiel, Germany
| | - Christoph Bräuchle
- Department of Physical Chemistry, Ludwig Maximilian University Munich, Butenandtstrasse 11, 81377, Munich, Germany.
| |
Collapse
|
28
|
Vértesy S, Michalak M, Miller MC, Schnölzer M, André S, Kopitz J, Mayo KH, Gabius HJ. Structural significance of galectin design: impairment of homodimer stability by linker insertion and partial reversion by ligand presence. Protein Eng Des Sel 2015; 28:199-210. [PMID: 25796447 DOI: 10.1093/protein/gzv014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/11/2015] [Indexed: 11/13/2022] Open
Abstract
Lectins translate information encoded in glycan chains of cellular glycoconjugates into bioeffects. The topological presentation of contact sites for cognate sugar binding is a crucial factor toward this end. To dissect the significance of such phylogenetically conserved properties, the design and engineering of non-natural variants are attractive approaches. Here, a homodimeric human lectin, i.e. adhesion/growth-regulatory galectin-1, is converted into a tandem-repeat display by introducing the 33-amino-acid linker of another family member (i.e. galectin-8). The yield of variant was reduced by about a third. This protein had ∼10-fold higher activity in hemagglutination. Nearly complete sequence determination by mass-spectrometric in-source decay and fingerprinting excluded the presence of any modifications. When (1)H-(15)N heteronuclear single-quantum coherence data on the (15)N-labeled variant and wild-type protein were compared, changes in chemical shifts, signal intensities and resonance multiplicities revealed reduction of stability of interfacial contacts between the lectin domains and an increase in inter-domain flexibility. When both binding sites in the variant were loaded with ligand, association of the two carbohydrate recognition domains was enhanced, corroborated by gel filtration. Dynamic changes in the spatial presentation of the two lectin domains in the context of a tandem-repeat display can alter counterreceptor targeting relative to the fixed positions found in the proto-type galectin homodimer.
Collapse
Affiliation(s)
- Sabine Vértesy
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| | - Malwina Michalak
- Abteilung für Angewandte Tumorbiologie, Pathologisches Institut, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Str., Minneapolis, MN 55455, USA
| | - Martina Schnölzer
- Funktionelle Proteomanalyse, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| | - Jürgen Kopitz
- Abteilung für Angewandte Tumorbiologie, Pathologisches Institut, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Str., Minneapolis, MN 55455, USA
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| |
Collapse
|
29
|
Thio- and selenoglycosides as ligands for biomedically relevant lectins: valency-activity correlations for benzene-based dithiogalactoside clusters and first assessment for (di)selenodigalactosides. Bioorg Med Chem Lett 2014; 25:931-5. [PMID: 25599835 DOI: 10.1016/j.bmcl.2014.12.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/26/2023]
Abstract
Substitution of the oxygen atom in the glycosidic linkage by a disulfide bond or by selenium makes the resulting glycoside resistant to hydrolysis. To clarify the consequences for affinity to lectins we prepared benzene-based mono- to trivalent dithiogalactosides. Inhibitory capacity increased with valency for a plant toxin, the synthetic compounds potently blocking its binding to a lactose-presenting matrix and to cells. Human galectins were much less sensitive to the disulfides than the toxin. This differential response constitutes a beneficial effect to avoid cross-reactivity in vivo. Symmetrical selenodigalactoside and diselenodigalactoside were prepared and similarly tested. Both compounds proved rather equally bioactive for the toxin, graded activity was measured for human galectins. This result directs attention to further studies to relate Se-dependent alterations in bond angle and length as well as van der Waals radius to binding properties of selenoglycosides to biomedically relevant lectins.
Collapse
|
30
|
Rauthu SR, Shiao TC, André S, Miller MC, Madej É, Mayo KH, Gabius HJ, Roy R. Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem 2014; 16:126-39. [DOI: 10.1002/cbic.201402474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 12/28/2022]
|
31
|
Blanchard H, Yu X, Collins PM, Bum-Erdene K. Galectin-3 inhibitors: a patent review (2008–present). Expert Opin Ther Pat 2014; 24:1053-65. [DOI: 10.1517/13543776.2014.947961] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
33
|
Traber PG, Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One 2013; 8:e83481. [PMID: 24367597 PMCID: PMC3867460 DOI: 10.1371/journal.pone.0083481] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and resultant liver fibrosis is a major health problem without effective therapy. Some data suggest that galectin-3 null mice are resistant to the development of NASH with fibrosis. We examined the ability of two complex carbohydrate drugs that bind galectin-3, GM-CT-01 and GR-MD-02, to treat NASH with fibrosis in a murine model. GR-MD-02 treatment resulted in marked improvement in liver histology with significant reduction in NASH activity and collagen deposition. Treatments seemed also to improve both glomerulopathy and interstitial fibrosis observed in kidneys. The improvement in liver histology was evident when animals were treated early in disease or after establishment of liver fibrosis. In all measures, GM-CT-01 had an intermediate effect between vehicle and GR-MD-02. Galectin-3 protein expression was increased in NASH with highest expression in macrophages surrounding lipid laden hepatocytes, and reduced following treatment with GR-MD-02, while the number of macrophages was unchanged. Treatment with GR-MD-02 also reduced the expression of pathological indicators including iNOS, an important TH1 inflammatory mediator, CD36, a scavenger receptor for lipoproteins on macrophages, and α-smooth muscle actin, a marker for activated stellate cells which are the primary collagen producing cells in liver fibrosis. We conclude that treatment with these galectin-3 targeting drugs improved histopathological findings of NASH and markedly reduced fibrosis in a murine model of NASH. While the mechanisms require further investigation, the treatment effect is associated with a reduction of galectin-3 expressed by activated macrophages which was associated with regression of NASH, including hepatocellular fat accumulation, hepatocyte ballooning, intra-portal and intra-lobular inflammatory infiltrate, and deposition of collagen. Similar effects were found with GM-CT-01, but with approximately four-fold lower potency than GR-MD-02. The results, in combination with previous experiments in toxin-induced fibrosis, suggest that these galectin-targeting drugs may have potential in human NASH with fibrosis.
Collapse
Affiliation(s)
- Peter G. Traber
- Galectin Therapeutics Inc, Norcross, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| | - Eliezer Zomer
- Galectin Therapeutics Inc, Norcross, Georgia, United States of America
| |
Collapse
|
34
|
Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI, Friedman SL. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One 2013; 8:e75361. [PMID: 24130706 PMCID: PMC3793988 DOI: 10.1371/journal.pone.0075361] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 protein is critical to the development of liver fibrosis because galectin-3 null mice have attenuated fibrosis after liver injury. Therefore, we examined the ability of novel complex carbohydrate galectin inhibitors to treat toxin-induced fibrosis and cirrhosis. Fibrosis was induced in rats by intraperitoneal injections with thioacetamide (TAA) and groups were treated with vehicle, GR-MD-02 (galactoarabino-rhamnogalaturonan) or GM-CT-01 (galactomannan). In initial experiments, 4 weeks of treatment with GR-MD-02 following completion of 8 weeks of TAA significantly reduced collagen content by almost 50% based on Sirius red staining. Rats were then exposed to more intense and longer TAA treatment, which included either GR-MD-02 or GM-CT-01 during weeks 8 through 11. TAA rats treated with vehicle developed extensive fibrosis and pathological stage 6 Ishak fibrosis, or cirrhosis. Treatment with either GR-MD-02 (90 mg/kg ip) or GM-CT-01 (180 mg/kg ip) given once weekly during weeks 8–11 led to marked reduction in fibrosis with reduction in portal and septal galectin-3 positive macrophages and reduction in portal pressure. Vehicle-treated animals had cirrhosis whereas in the treated animals the fibrosis stage was significantly reduced, with evidence of resolved or resolving cirrhosis and reduced portal inflammation and ballooning. In this model of toxin-induced liver fibrosis, treatment with two galectin protein inhibitors with different chemical compositions significantly reduced fibrosis, reversed cirrhosis, reduced galectin-3 expressing portal and septal macrophages, and reduced portal pressure. These findings suggest a potential role of these drugs in human liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Peter G. Traber
- Galectin Therapeutics Inc, Norcross, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| | - Hsin Chou
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Eliezer Zomer
- Galectin Therapeutics Inc, Norcross, Georgia, United States of America
| | - Feng Hong
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Anatole Klyosov
- Galectin Therapeutics Inc, Norcross, Georgia, United States of America
| | - Maria-Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| |
Collapse
|
35
|
Barrientos G, Freitag N, Tirado-González I, Unverdorben L, Jeschke U, Thijssen VL, Blois SM. Involvement of galectin-1 in reproduction: past, present and future. Hum Reprod Update 2013; 20:175-93. [DOI: 10.1093/humupd/dmt040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
36
|
Conformational Selection in Glycomimetics: Human Galectin-1 Only Recognizessyn-Ψ-Type Conformations of β-1,3-Linked Lactose and ItsC-Glycosyl Derivative. Chemistry 2013; 19:14581-90. [DOI: 10.1002/chem.201301244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/24/2013] [Indexed: 01/09/2023]
|
37
|
The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 2013; 18:4026-53. [PMID: 23558543 PMCID: PMC6269965 DOI: 10.3390/molecules18044026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 01/21/2023] Open
Abstract
Coding of biological information is not confined to nucleic acids and proteins. Endowed with the highest level of structural versatility among biomolecules, the glycan chains of cellular glycoconjugates are well-suited to generate molecular messages/signals in a minimum of space. The sequence and shape of oligosaccharides as well as spatial aspects of multivalent presentation are assumed to underlie the natural specificity/selectivity that cellular glycans have for endogenous lectins. In order to eventually unravel structure-activity profiles cyclic scaffolds have been used as platforms to produce glycoclusters and afford valuable tools. Using adhesion/growth-regulatory galectins and the pan-galectin ligand lactose as a model, emerging insights into the potential of cyclodextrins, cyclic peptides, calixarenes and glycophanes for this purpose are presented herein. The systematic testing of lectin panels with spatially defined ligand presentations can be considered as a biomimetic means to help clarify the mechanisms, which lead to the exquisite accuracy at which endogenous lectins select their physiological counterreceptors from the complexity of the cellular glycome.
Collapse
|
38
|
Kumar S, Frank M, Schwartz-Albiez R. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations. PLoS One 2013; 8:e59761. [PMID: 23555773 PMCID: PMC3612102 DOI: 10.1371/journal.pone.0059761] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
Human Galectin-8 (Gal-8) is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD) joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD) simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose) and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB) as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose) are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76). Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.
Collapse
Affiliation(s)
- Sonu Kumar
- D015, Translational Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | - Reinhard Schwartz-Albiez
- D015, Translational Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| |
Collapse
|
39
|
Ermakova E, Miller MC, Nesmelova IV, López-Merino L, Berbís MA, Nesmelov Y, Tkachev YV, Lagartera L, Daragan VA, André S, Cañada FJ, Jiménez-Barbero J, Solís D, Gabius HJ, Mayo KH. Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity. Glycobiology 2013; 23:508-23. [PMID: 23376190 DOI: 10.1093/glycob/cwt005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The product of p53-induced gene 1 is a member of the galectin family, i.e., galectin-7 (Gal-7). To move beyond structural data by X-ray diffraction, we initiated the study of the lectin by nuclear magnetic resonance (NMR) and circular dichroism spectroscopies, and molecular dynamics (MD) simulations. In concert, our results indicate that lactose binding to human Gal-7 induces long-range effects (minor conformational shifts and changes in structural dynamics) throughout the protein that result in stabilization of the dimer state, with evidence for positive cooperativity. Monte Carlo fits of (15)N-Gal-7 HSQC titrations with lactose using a two-site model yield K1 = 0.9 ± 0.6 × 10(3) M(-1) and K2 = 3.4 ± 0.8 × 10(3) M(-1). Ligand binding-induced stabilization of the Gal-7 dimer was supported by several lines of evidence: MD-based calculations of interaction energies between ligand-loaded and ligand-free states, gel filtration data and hetero-FRET spectroscopy that indicate a highly reduced tendency for dimer dissociation in the presence of lactose, CD-based thermal denaturation showing that the transition temperature of the lectin is significantly increased in the presence of lactose, and saturation transfer difference (STD) NMR using a molecular probe of the monomer state whose presence is diminished in the presence of lactose. MD simulations with the half-loaded ligand-bound state also provided insight into how allosteric signaling may occur. Overall, our results reveal long-range effects on Gal-7 structure and dynamics, which factor into entropic contributions to ligand binding and allow further comparisons with other members of the galectin family.
Collapse
Affiliation(s)
- Elena Ermakova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mayo KH. From Carbohydrate to Peptidomimetic Inhibitors of Galectins. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1115.ch003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Kevin H. Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, Minnesota 55455
| |
Collapse
|
41
|
André S, Jarikote DV, Yan D, Vincenz L, Wang GN, Kaltner H, Murphy PV, Gabius HJ. Synthesis of bivalent lactosides and their activity as sensors for differences between lectins in inter- and intrafamily comparisons. Bioorg Med Chem Lett 2012; 22:313-8. [DOI: 10.1016/j.bmcl.2011.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 02/02/2023]
|
42
|
Martín-Santamaría S, Gabius HJ, Jiménez-Barbero J. Structural studies on the interaction of saccharides and glycomimetics with galectin-1: A 3D perspective using a combined molecular modeling and NMR approach. PURE APPL CHEM 2011. [DOI: 10.1351/pac-con-11-10-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of a variety of saccharides and mimetics thereof with lectin receptors has been studied using a combination of molecular modeling protocols and NMR spectroscopy techniques. It is shown that both methods complement each other in a synergistic manner to provide a detailed perspective of the conformational and structural features of the recognition process.
Collapse
Affiliation(s)
- Sonsoles Martín-Santamaría
- 1Department of Chemistry, Faculty of Pharmacy, Universidad San Pablo CEU, 28668-Boadilla del Monte, Madrid, Spain
| | - Hans-Joachim Gabius
- 2Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstrasse 13, 80539 München, Germany
| | - Jesús Jiménez-Barbero
- 3Department of Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
43
|
Plum M, Michel Y, Wallach K, Raiber T, Blank S, Bantleon FI, Diethers A, Greunke K, Braren I, Hackl T, Meyer B, Spillner E. Close-up of the immunogenic α1,3-galactose epitope as defined by a monoclonal chimeric immunoglobulin E and human serum using saturation transfer difference (STD) NMR. J Biol Chem 2011; 286:43103-11. [PMID: 21990360 DOI: 10.1074/jbc.m111.291823] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Anaphylaxis mediated by carbohydrate structures is a controversially discussed phenomenon. Nevertheless, IgE with specificity for the xenotransplantation antigen α1,3-Gal (α-Gal) are associated with a delayed type of anaphylaxis, providing evidence for the clinical relevance of carbohydrate epitopes in allergy. The aim of this study was to dissect immunoreactivity, interaction, and fine epitope of α-Gal-specific antibodies to obtain insights into the recognition of carbohydrate epitopes by IgE antibodies and their consequences on a molecular and cellular level. The antigen binding moiety of an α-Gal-specific murine IgM antibody was employed to construct chimeric IgE and IgG antibodies. Reactivity and specificity of the resulting antibodies were assessed by means of ELISA and receptor binding studies. Using defined carbohydrates, interaction of the IgE and human serum was assessed by mediator release assays, surface plasmon resonance (SPR), and saturation transfer difference NMR analyses. The α-Gal-specific chimeric IgE and IgG antibodies were proven functional regarding interaction with antigen and Fc receptors. SPR measurements demonstrated affinities in the micromolar range. In contrast to a reference antibody, anti-Gal IgE did not induce mediator release, potentially reflecting the delayed type of anaphylaxis. The α1,3-Gal epitope fine structures of both the recombinant IgE and affinity-purified serum were defined by saturation transfer difference NMR, revealing similar contributions of carbohydrate residues and participation of both galactose residues in interaction. The antibodies generated here constitute the principle underlying α1,3-Gal-mediated anaphylaxis. The complementary data of affinity and fine specificity may help to elucidate the recognition of carbohydrates by the adaptive immune response and the molecular requirements of carbohydrate-based anaphylaxis.
Collapse
Affiliation(s)
- Melanie Plum
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|