1
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
2
|
Dhurua S, Jana M. Conformational preferences of heparan sulfate to recognize the CXCL8 dimer in aqueous medium: degree of sulfation and hydrogen bonds. Phys Chem Chem Phys 2024; 26:21888-21904. [PMID: 39105690 DOI: 10.1039/d4cp01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The sulfation pattern and epimerization of the long-chain sulfated polysaccharide heparan sulfate (HS) cause structural diversity and regulate various physiological and pathological processes when binding with proteins. In this work, we performed a series of molecular dynamics simulations of three variants of the octadecasaccharide HS with varying sulfation positions in aqueous medium in their free forms and in the presence of the chemokine CXCL8 dimer. The free energy of binding depicts the sulfation at the 6-O position of GlcNAc (HS6S), and both 3-O and 6-O positions of GlcNAc (HS3S6S) of HS variants are more likely to bind with the CXCL8 dimer than the triply sulfated HS2S3S6S, which is sulfated at the 2-O position of GlcUA additionally along with 3-O and 6-O positions of GlcNAc. Binding between HS and CXCL8 was driven by electrostatic and van der Waals interactions predominantly regardless of the sulfation pattern; however, unfavorable entropic contribution suppressed the interaction between HS and CXCL8. The contribution of different amino acid residues to the binding energetics suggested that basic amino acids line up the binding site of CXCL8. This study further acknowledges the role of interfacial water that is structured and bound with HS through hydrogen bonds, exhibiting differential hydrogen bond relaxation dynamics compared to when the HS molecules are free. Moreover, this study identifies that with the increase in sulfation, the HS-water hydrogen bond relaxation occurs faster with the complexation, while the reverse trend is followed in their free forms. Significant structural adaptation of the different sulfated HS molecules, as verified from the free energy landscapes generated from various reaction coordinates, root-mean-square-deviations, end-to-end distances, including ring pucker angles, dihedral flexibility, and the high conformational entropy cost arising from the glycosidic bonds, suggests that the different sulfated variants of HS undergo significant structural transformation to bind with CXCL8. The presence of a CXCL8 dimer imposes the bound forms of HS to adopt non-linear structures with skew-boat conformations. The atomistic details of the study would help in understanding the selectivity and conformational diversity, as well as the role of solvents in the recognition of CXCL8 by different sulfated variants of HS molecules.
Collapse
Affiliation(s)
- Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
| |
Collapse
|
3
|
Piszczatowski RT, Bülow HE, Steidl U. Heparan sulfates and heparan sulfate proteoglycans in hematopoiesis. Blood 2024; 143:2571-2587. [PMID: 38639475 DOI: 10.1182/blood.2023022736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.
Collapse
Affiliation(s)
- Richard T Piszczatowski
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Departments of Oncology, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
4
|
Wang Z, Wang W, Gong H, Jiang Y, Liu R, Yu G, Li G, Cai C. Structural Elucidation of Glycosaminoglycans in the Tissue of Flounder and Isolation of Chondroitin Sulfate C. Mar Drugs 2024; 22:198. [PMID: 38786589 PMCID: PMC11123320 DOI: 10.3390/md22050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 μg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiwen Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Gong
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yudi Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renjie Liu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.W.); (H.G.); (Y.J.); (R.L.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Shivgan AT, Marzinek JK, Krah A, Matsudaira P, Verma CS, Bond PJ. Coarse-Grained Model of Glycosaminoglycans for Biomolecular Simulations. J Chem Theory Comput 2024; 20:3308-3321. [PMID: 38358378 DOI: 10.1021/acs.jctc.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Proteoglycans contain glycosaminoglycans (GAGs) which are negatively charged linear polymers made of repeating disaccharide units of uronic acid and hexosamine units. They play vital roles in numerous physiological and pathological processes, particularly in governing cellular communication and attachment. Depending on their sulfonation state, acetylation, and glycosidic linkages, GAGs belong to different families. The high molecular weight, heterogeneity, and flexibility of GAGs hamper their characterization at atomic resolution, but this may be circumvented via coarse-grained (CG) approaches. In this work, we report a CG model for a library of common GAG types in their isolated or proteoglycan-linked states compatible with version 2.2 (v2.2) of the widely popular CG Martini force field. The model reproduces conformational and thermodynamic properties for a wide variety of GAGs, as well as matching structural and binding data for selected proteoglycan test systems. The parameters developed here may thus be employed to study a range of GAG-containing biomolecular systems, thereby benefiting from the efficiency and broad applicability of the Martini framework.
Collapse
Affiliation(s)
- Aishwary T Shivgan
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Alexander Krah
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Paul Matsudaira
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore
| | - Chandra S Verma
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- School of Biological sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore
| | - Peter J Bond
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| |
Collapse
|
6
|
Hirani P, McDermott J, Rajeeve V, Cutillas PR, Jones JL, Pennington DJ, Wight TN, Santamaria S, Alonge KM, Pearce OM. Versican Associates with Tumor Immune Phenotype and Limits T-cell Trafficking via Chondroitin Sulfate. CANCER RESEARCH COMMUNICATIONS 2024; 4:970-985. [PMID: 38517140 PMCID: PMC10989462 DOI: 10.1158/2767-9764.crc-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.
Collapse
Affiliation(s)
- Priyanka Hirani
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Jacqueline McDermott
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Pedro R. Cutillas
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - J. Louise Jones
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Pennington
- Centre for Immunobiology, Blizard Institute, Barts and the London Medical School, Queen Mary University of London, London, United Kingdom
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, United Kingdom
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Oliver M.T. Pearce
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Dürig JN, Schulze C, Bosse M, Penk A, Huster D, Keller S, Rademann J. Dimerization and Crowding in the Binding of Interleukin 8 to Dendritic Glycosaminoglycans as Artificial Proteoglycans. Chemistry 2024; 30:e202302758. [PMID: 38010268 DOI: 10.1002/chem.202302758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The interactions of glycosaminoglycans (GAG) with proteins of the extracellular matrix govern and regulate complex physiological functions including cellular growth, immune response, and inflammation. Repetitive presentation of GAG binding motifs, as found in native proteoglycans, might enhance GAG-protein binding through multivalent interactions. Here, we report the chemical synthesis of dendritic GAG oligomers constructed of nonasulfated hyaluronan tetrasaccharides for investigating the binding of the protein chemokine interleukin 8 (IL-8) to artificial, well-defined proteoglycan architectures. Binding of mutant monomeric and native dimerizable IL-8 was investigated by NMR spectroscopy and isothermal titration calorimetry. Dendritic oligomerization of GAG increased the binding affinity of both monomeric and dimeric IL-8. Monomeric IL-8 bound to monomeric and dimeric GAG with KD values of 7.3 and 0.108 μM, respectively. The effect was less pronounced for dimerizable wild-type IL-8, for which GAG dimerization improved the affinity from 34 to 5 nM. Binding of dimeric IL-8 to oligomeric GAG was limited by steric crowding effects, strongly reducing the affinity of subsequent binding events. In conclusion, the strongest effect of GAG oligomerization was the amplified binding of IL-8 monomers, which might concentrate monomeric protein in the extracellular matrix and thus promote protein dimerization under physiological conditions.
Collapse
Affiliation(s)
- Jan-Niklas Dürig
- Institute of Pharmacy - Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany) Corresponding author
| | - Christian Schulze
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Mathias Bosse
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Anja Penk
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, Field of Excellence BioHealth, BioTechMed-Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
| | - Jörg Rademann
- Institute of Pharmacy - Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany) Corresponding author
| |
Collapse
|
8
|
Holmes SG, Desai UR. Assessing Genetic Algorithm-Based Docking Protocols for Prediction of Heparin Oligosaccharide Binding Geometries onto Proteins. Biomolecules 2023; 13:1633. [PMID: 38002315 PMCID: PMC10669598 DOI: 10.3390/biom13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although molecular docking has evolved dramatically over the years, its application to glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as either fully "rigid" or fully "flexible" in molecular docking. We reasoned that an intermediate semi-rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate (Hp/HS) topologies. Herein, we study 18 Hp/HS-protein co-complexes containing chains from disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking protocol is likely to perform better when no crystal structure information is available. We also present a new parameter for parsing selective versus non-selective GAG-protein systems, which relies on two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e., GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is expected to be particularly useful in high-throughput screening of GAG sequences for identifying promising druggable targets as well as drug-like Hp/HS sequences.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| |
Collapse
|
9
|
Schulze C, Danielsson A, Liwo A, Huster D, Samsonov SA, Penk A. Ligand binding of interleukin-8: a comparison of glycosaminoglycans and acidic peptides. Phys Chem Chem Phys 2023; 25:24930-24947. [PMID: 37694394 DOI: 10.1039/d3cp02457a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recognition and binding of regulatory proteins to glycosaminoglycans (GAGs) from the extracellular matrix is a process of high biological importance. The interaction between negatively charged sulfate or carboxyl groups of the GAGs and clusters of basic amino acids on the protein is crucial in this binding process and it is believed that electrostatics represent the key factor for this interaction. However, given the rather undirected nature of electrostatics, it is important to achieve a clear understanding of its role in protein-GAG interactions and how specificity and selectivity in these systems can be achieved, when the classical key-lock binding motif is not applicable. Here, we compare protein binding of a highly charged heparin (HP) hexasaccharide with four de novo designed decapeptides of varying negative net charge. The charge density of these peptides was comparable to typical GAGs of the extracellular matrix. We used the regulatory protein interleukin-8 (IL-8) because its interactions with GAGs are well described. All four peptide ligands bind to the same epitope of IL-8 but show much weaker binding affinity as revealed in 1H-15N HSQC NMR titration experiments. Complementary molecular docking and molecular dynamics simulations revealed further atomistic details of the interaction mode of GAG versus peptide ligands. Overall, similar contributions to the binding energy and hydrogen bond formation are determined for HP and the highly charged peptides, suggesting that the entropic loss of the peptides upon binding likely account for the remarkably different affinity of GAG versus peptide ligands to IL-8.
Collapse
Affiliation(s)
- Christian Schulze
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| | - Annemarie Danielsson
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Anja Penk
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| |
Collapse
|
10
|
Dhurua S, Jana M. Sulfation Effects of Chondroitin Sulfate to Bind a Chemokine in Aqueous Medium: Conformational Heterogeneity and Dynamics from Molecular Simulation. J Chem Inf Model 2023; 63:5660-5675. [PMID: 37611186 DOI: 10.1021/acs.jcim.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The sulfation patterns and degree of sulfation of chondroitin sulfate (CS), an important class of glycosaminoglycans (GAG), and their interactions with chemokines are accountable for various diseases. To realize the underlying mechanism of such complex biological phenomena at a molecular level and their application in rational drug design, a study on conformations and dynamics of CSs is necessary. To explore this, in this study, we performed a series of atomistic molecular dynamics (MD) simulations with different sulfated variants of octadecasaccharide CS, like CS-C, CS-E, and CS-T, in their free forms and when bound to the protein chemokine CXCL8 dimer in an aqueous medium. The calculated binding free energy of CSs with the CXCL8 dimer is favorable, and the degree of sulfation favors the complexation process further with prominent hydrophobic and hydrogen-bonded interactions. We find that the recognition is associated with the configurational entropy loss of the CS molecules as calculated from the Gaussian mixture approach, which supports that the degree of sulfation regulates the process. Cluster analysis through the k-means algorithm and end-to-end distance measurement revealed that although the free CS molecules adopted linear conformations, the nonlinear conformations during binding with protein were noted. Adaptation of nonlinear forms in the bound forms is noteworthy for the less-sulfated CS-C and CS-E. Apart from favorable 4C1 conformations, the occasional appearance of skew-boat forms from the free-energy map of ring pucker for the GlcUA unit was observed, which remains unaffected by the sulfation. We find that during recognition, the average relaxation time of intra-CS and inter-CS-CXCL8 hydrogen bonds (HBs) is about a magnitude lesser than that of CS-water HBs, most prominent on the involvement of higher sulfated CS-T analogues. The translational motion of surrounded water molecules in CSs exhibited sublinear diffusion, and the degree of sublinearity increases around the heavily sulfated molecules due to the hindrance created by them as well as the presence of the chemokine and exhibited markedly slow heterogeneous diffusion.
Collapse
Affiliation(s)
- Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
11
|
Bojarski KK, Samsonov SA. In silico insights into procathepsin S maturation mediated by glycosaminoglycans. J Mol Graph Model 2023; 120:108406. [PMID: 36707295 DOI: 10.1016/j.jmgm.2023.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Procathepsins, inactive precursors of cathepsins are present in the extracellular matrix (ECM) and in lysosomes. Their active forms are involved in a number of biologically relevant processes, including bone resorption, intracellular proteolysis and regulation of programmed cell death. These processes might be mediated by glycosaminoglycans (GAGs), long unbranched periodic negatively charged polysaccharides. GAGs are also present in ECM and play important role in anticoagulation, angiogenesis and tissue regeneration. GAGs not only mediate the enzymatic activity of cathepsins but can also regulate the process of procathepsin maturation, as it was shown for procathepsin B and S. In this study, we propose the molecular mechanism underlying the biological role of GAGs in procathepsin S maturation and compare our findings with computational data obtained for procathepsin B. We rigorously analyse procathepsin S-GAG complexes in terms of their dynamics, free energy and potential allosteric regulation. We conclude that the GAG binding region might have an effect on the dynamics of procathepsin S structure and so affect its maturation by two different mechanisms.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
12
|
Jiang L, Xu F, Li C, Liu T, Zhao Q, Liu Y, Zhao Y, Li Y, Zhang Z, Tang X, Zhang J. Sulfotransferase 1C2 promotes hepatocellular carcinoma progression by enhancing glycolysis and fatty acid metabolism. Cancer Med 2023; 12:10738-10754. [PMID: 36880364 PMCID: PMC10225225 DOI: 10.1002/cam4.5759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is aggressive liver cancer. Despite advanced imaging and other diagnostic measures, HCC in a significant portion of patients had reached the advanced stage at the first diagnosis. Unfortunately, there is no cure for advanced HCC. As a result, HCC is still a leading cause of cancer death, and there is a pressing need for new diagnostic markers and therapeutic targets. METHODS We investigated sulfotransferase 1C2 (SUTL1C2), which we recently showed was overexpressed in human HCC cancerous tissues. Specifically, we analyzed the effects of SULT1C2 knockdown on the growth, survival, migration, and invasiveness of two HCC cell lines, i.e., HepG2 and Huh7 cells. We also studied the transcriptomes and metabolomes in the two HCC cell lines before and after SULT1C2 knockdown. Based on the transcriptome and metabolome data, we further investigated the SULT1C2 knockdown-mediated shared changes, i.e., glycolysis and fatty acid metabolism, in the two HCC cell lines. Finally, we performed rescue experiments to determine whether the inhibitory effects of SULT1C2 knockdown could be rescued via overexpression. RESULTS We showed that SULT1C2 overexpression promoted the growth, survival, migration, and invasiveness of HCC cells. In addition, SULT1C2 knockdown resulted in a wide range of gene expression and metabolome changes in HCC cells. Moreover, analysis of shared alterations showed that SULT1C2 knockdown significantly suppressed glycolysis and fatty acid metabolism, which could be rescued via SULT1C2 overexpression. CONCLUSIONS Our data suggest that SULT1C2 is a potential diagnostic marker and therapeutic target for human HCC.
Collapse
Affiliation(s)
- Liya Jiang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Chenglong Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ting Liu
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yamei Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhendong Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary MedicineLong Island UniversityBrookvilleNew YorkUSA
- Division of Regenerative Medicine, Department of Medicine, Department of Basic Science, School of MedicineLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
13
|
Dhurua S, Jana M. Understanding Conformational Properties and Role of Hydrogen Bonds in Glycosaminoglycans-Interleukin8 Complexes in Aqueous Medium by Molecular Dynamics Simulation. Chemphyschem 2023; 24:e202200440. [PMID: 36239153 DOI: 10.1002/cphc.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Atomistic molecular dynamics simulations were performed under ambient conditions to explore the conformational features and binding affinities of hexameric glycosaminoglycans (GAGs) with chemokine Interleukin8 (IL8) in an aqueous medium. We tried to understand the role of hydrogen bonds (HBs) involving conserved water in mediating the interactions. The Luzar-Chandler model was adopted to study the kinetics of HB breaking and formation concerning different water-mediated HBs. The conformational flexibilities of bound GAGs are due to the flexible glycosidic linkages than the occasional/rare ring pucker conformation. The free energy landscape constructed with ϕ, and ψ, depicted that different conformational minima associated with the glycosidic linkage flexibility of the GAGs in bound states are separated by energy barriers. The binding affinities of IL8 towards GAGs are favored through the electrostatic and non-polar solvation interactions. 4-different types of conserved water were explored in the solvent-mediated binding of GAGs with IL8. The average lifetime of the IL8-GAG direct HB pairs was ∼ten times less than the IL8-GAG-shared water HBs. This is due to the rapid establishment of HB breaking and reformation kinetics involving water of a shared layer. We find that despite the highly negatively charged surface of GAGs, the IL8 surface populated by non-cationic amino acids could serve as a promising binding site in addition to the cationic surface of the protein.
Collapse
Affiliation(s)
- Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, 769008, Rourkela, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, 769008, Rourkela, India
| |
Collapse
|
14
|
Pągielska M, Samsonov SA. Molecular Dynamics-Based Comparative Analysis of Chondroitin and Dermatan Sulfates. Biomolecules 2023; 13:biom13020247. [PMID: 36830616 PMCID: PMC9953526 DOI: 10.3390/biom13020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glycosaminoglycans (GAGs) are a class of linear anionic periodic polysaccharides containing disaccharide repetitive units. These molecules interact with a variety of proteins in the extracellular matrix and so participate in biochemically crucial processes such as cell signalling affecting tissue regeneration as well as the onset of cancer, Alzheimer's or Parkinson's diseases. Due to their flexibility, periodicity and chemical heterogeneity, often termed "sulfation code", GAGs are challenging molecules both for experiments and computation. One of the key questions in the GAG research is the specificity of their intermolecular interactions. In this study, we make a step forward to deciphering the "sulfation code" of chondroitin sulfates-4,6 (CS4, CS6, where the numbers correspond to the position of sulfation in NAcGal residue) and dermatan sulfate (DS), which is different from CSs by the presence of IdoA acid instead of GlcA. We rigorously investigate two sets of these GAGs in dimeric, tetrameric and hexameric forms with molecular dynamics-based descriptors. Our data clearly suggest that CS4, CS6 and DS are substantially different in terms of their structural, conformational and dynamic properties, which contributes to the understanding of how these molecules can be different when they bind proteins, which could have practical implications for the GAG-based drug design strategies in the regenerative medicine.
Collapse
|
15
|
Guvench O. Atomic-Resolution Experimental Structural Biology and Molecular Dynamics Simulations of Hyaluronan and Its Complexes. Molecules 2022; 27:7276. [PMID: 36364098 PMCID: PMC9658939 DOI: 10.3390/molecules27217276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2023] Open
Abstract
This review summarizes the atomic-resolution structural biology of hyaluronan and its complexes available in the Protein Data Bank, as well as published studies of atomic-resolution explicit-solvent molecular dynamics simulations on these and other hyaluronan and hyaluronan-containing systems. Advances in accurate molecular mechanics force fields, simulation methods and software, and computer hardware have supported a recent flourish in such simulations, such that the simulation publications now outnumber the structural biology publications by an order of magnitude. In addition to supplementing the experimental structural biology with computed dynamic and thermodynamic information, the molecular dynamics studies provide a wealth of atomic-resolution information on hyaluronan-containing systems for which there is no atomic-resolution structural biology either available or possible. Examples of these summarized in this review include hyaluronan pairing with other hyaluronan molecules and glycosaminoglycans, with ions, with proteins and peptides, with lipids, and with drugs and drug-like molecules. Despite limitations imposed by present-day computing resources on system size and simulation timescale, atomic-resolution explicit-solvent molecular dynamics simulations have been able to contribute significant insight into hyaluronan's flexibility and capacity for intra- and intermolecular non-covalent interactions.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| |
Collapse
|
16
|
Schuiringa GH, Mihajlovic M, van Donkelaar CC, Vermonden T, Ito K. Creating a Functional Biomimetic Cartilage Implant Using Hydrogels Based on Methacrylated Chondroitin Sulfate and Hyaluronic Acid. Gels 2022; 8:gels8070457. [PMID: 35877542 PMCID: PMC9315485 DOI: 10.3390/gels8070457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The load-bearing function of articular cartilage tissue contrasts with the poor load-bearing capacity of most soft hydrogels used for its regeneration. The present study explores whether a hydrogel based on the methacrylated natural polymers chondroitin sulfate (CSMA) and hyaluronic acid (HAMA), injected into warp-knitted spacer fabrics, could be used to create a biomimetic construct with cartilage-like mechanical properties. The swelling ratio of the combined CSMA/HAMA hydrogels in the first 20 days was higher for hydrogels with a higher CSMA concentration, and these hydrogels also degraded quicker, whereas those with a 1.33 wt% of HAMA were stable for more than 120 days. When confined by a polyamide 6 (PA6) spacer fabric, the volumetric swelling of the combined CSMA/HAMA gels (10 wt%, 6.5 × CSMA:HAMA ratio) was reduced by ~53%. Both the apparent peak and the equilibrium modulus significantly increased in the PA6-restricted constructs compared to the free-swelling hydrogels after 28 days of swelling, and no significant differences in the moduli and time constant compared to native bovine cartilage were observed. Moreover, the cell viability in the CSMA/HAMA PA6 constructs was comparable to that in gelatin–methacrylamide (GelMA) PA6 constructs at one day after polymerization. These results suggest that using a HydroSpacer construct with an extracellular matrix (ECM)-like biopolymer-based hydrogel is a promising approach for mimicking the load-bearing properties of native cartilage.
Collapse
Affiliation(s)
- Gerke H. Schuiringa
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
| | - Marko Mihajlovic
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
- Correspondence:
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
| |
Collapse
|
17
|
Kogut MM, Danielsson A, Ricard-Blum S, Samsonov SA. Impact of calcium ions on the structural and dynamic properties of heparin oligosaccharides by computational analysis. Comput Biol Chem 2022; 99:107727. [PMID: 35841830 DOI: 10.1016/j.compbiolchem.2022.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022]
Abstract
Heparin (HP) belongs to glycosaminoglycans (GAGs), anionic linear polysaccharides composed of repetitive disaccharide units. They are key players in many biological processes occurring in the extracellular matrix and at the cell surface. GAGs are challenging molecules for computational research due to their high chemical heterogeneity, flexibility, periodicity, pseudosymmetry, predominantly electrostatics-driven nature of interactions with their protein partners and potential multipose binding. The molecular mechanisms underlying GAG interactions mediated by divalent ions, which are important for GAG binding to several proteins, are not well understood. The goal of this study was to characterize the binding of Ca2+ to two HP oligosaccharides of different lengths (dp10 and dp18, dp: degree of polymerization) and their impact on HP conformational space and their dynamic behavior with the use of molecular dynamics (MD)-based approaches with two Ca2+ parameter sets. MD data suggested that the flexibility of the monosaccharides, the glycosidic linkages and ring puckering were not affected by the presence of Ca2+, in contrast to H-bond propensities and the calculated Rg for a fraction of the oligosaccharide populations in both dp10 and dp18. Moreover, the essential differences in the data obtained by using two Ca2+ parameter sets were reported.
Collapse
Affiliation(s)
- Małgorzata M Kogut
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Annemarie Danielsson
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, Villeurbanne CEDEX F-69622, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland.
| |
Collapse
|
18
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
19
|
In silico and in vitro mapping of specificity patterns of glycosaminoglycans towards cysteine cathepsins B, L, K, S and V. J Mol Graph Model 2022; 113:108153. [DOI: 10.1016/j.jmgm.2022.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
20
|
Danielsson A, Kogut MM, Maszota-Zieleniak M, Chopra P, Boons GJ, Samsonov SA. Molecular Dynamics-based descriptors of 3-O-Sulfated Heparan Sulfate as Contributors of Protein Binding Specificity. Comput Biol Chem 2022; 99:107716. [DOI: 10.1016/j.compbiolchem.2022.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
21
|
Brunori F, Padhi DK, Alshanski I, Freyse J, Dürig JN, Penk A, Vaccaro L, Hurevich M, Rademann J, Yitzchaik S. Sulfation Pattern Dependent Iron(III) Mediated Interleukin-8 Glycan Binding. Chembiochem 2021; 23:e202100552. [PMID: 34851004 DOI: 10.1002/cbic.202100552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Indexed: 12/30/2022]
Abstract
Cytokines such as interleukin-8 activate the immune system during infection and interact with sulfated glycosaminoglycans with specific sulfation patterns. In some cases, these interactions are mediated by metal ion binding which can be used to tune surface-based glycan-protein interactions. We evaluated the effect of both hyaluronan sulfation degree and Fe3+ on interleukin-8 binding by electrochemical impedance spectroscopy and surface characterizations. Our results show that sulfation degree and metal ion interactions have a synergistic effect in tuning the electrochemical response of the glycated surfaces to the cytokine.
Collapse
Affiliation(s)
- Francesco Brunori
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel.,Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologiae Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Deepak Kumar Padhi
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Joanna Freyse
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, Berlin, 14195, Germany
| | - Jan-Niklas Dürig
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, Berlin, 14195, Germany
| | - Anja Penk
- Institute of Medical Physics and Biophysics, Leipzig University, Medical Faculty, Härtelstraße 16/18, 04107, Leipzig, Germany
| | - Luigi Vaccaro
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologiae Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Mattan Hurevich
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Jörg Rademann
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, Berlin, 14195, Germany
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
22
|
Schuurmans CC, Brouwer AJ, Jong JAW, Boons GJPH, Hennink WE, Vermonden T. Hydrolytic (In)stability of Methacrylate Esters in Covalently Cross-Linked Hydrogels Based on Chondroitin Sulfate and Hyaluronic Acid Methacrylate. ACS OMEGA 2021; 6:26302-26310. [PMID: 34660989 PMCID: PMC8515582 DOI: 10.1021/acsomega.1c03395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Chondroitin sulfate (CS) and hyaluronic acid (HA) methacrylate (MA) hydrogels are under investigation for biomedical applications. Here, the hydrolytic (in)stability of the MA esters in these polysaccharides and hydrogels is investigated. Hydrogels made with glycidyl methacrylate-derivatized CS (CSGMA) or methacrylic anhydride (CSMA) degraded after 2-25 days in a cross-linking density-dependent manner (pH 7.4, 37 °C). HA methacrylate (HAMA) hydrogels were stable over 50 days under the same conditions. CS(G)MA hydrogel degradation rates increased with pH, due to hydroxide-driven ester hydrolysis. Desulfated chondroitin MA hydrogels also degrade, indicating that sulfate groups are not responsible for CS(G)MA's hydrolytic sensitivity (pH 7.0-8.0, 37 °C). This sensitivity is likely because CS(G)MA's N-acetyl-galactosamines do not form hydrogen bonds with adjacent glucuronic acid oxygens, whereas HAMA's N-acetyl-glucosamines do. This bond absence allows CS(G)MA higher chain flexibility and hydration and could increase ester hydrolysis sensitivity in CS(G)MA networks. This report helps in biodegradable hydrogel development based on endogenous polysaccharides for clinical applications.
Collapse
Affiliation(s)
- Carl C.
L. Schuurmans
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O.
Box 80082, 3508 TB Utrecht, The Netherlands
| | - Arwin J. Brouwer
- Division
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Jacobus A. W. Jong
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Geert-Jan P. H. Boons
- Division
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, The University
of Georgia, 315 Riverbend
Road, Athens, Georgia 3062, United States
| | - Wim E. Hennink
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
23
|
Balamurugan K, Pisabarro MT. Stabilizing Role of Water Solvation on Anion-π Interactions in Proteins. ACS OMEGA 2021; 6:25350-25360. [PMID: 34632193 PMCID: PMC8495695 DOI: 10.1021/acsomega.1c03264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 05/31/2023]
Abstract
In this work, anion-π interactions between sulfate groups (SO4 2-) and protein aromatic amino acids (AAs) (histidine protonated (HisP), histidine neutral (HisN), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) in an aqueous environment have been analyzed using quantum chemical (QC) calculations and molecular dynamics (MD) simulations. Sulfates can occur naturally in solution and can be contained in biomolecules playing relevant roles in their biological function. In particular, the presence of sulfate groups in glycosaminoglycans such as heparin and heparan sulfate has been shown to be relevant for protein and cellular communication and, consequently, for tissue regeneration. Therefore, anion-π interactions between sulfate groups and aromatic residues represent a relevant aspect to investigate. QC results show that such an anion-π mode of interaction between SO4 2- and aromatic AAs is only possible in the presence of water molecules, in the absence of any other cooperative non-covalent interactions. Protonated histidine stands out in terms of its enhancement in the magnitude of interaction strength on solvation. Other AAs such as non-protonated histidine, tyrosine, and phenylalanine can stabilize anion-π interactions on solvation, albeit with weak interaction energy. Tryptophan does not exhibit any anion-π mode of interaction with SO4 2-. The order of magnitude of the interaction of aromatic AAs with SO4 2- on microsolvation is HisP > HisN > Tyr > Trp > Phe. Atoms in molecules (AIM) analysis illustrates the significance of water molecules in stabilizing the divalent SO4 2- anion over the π surface of the aromatic AAs. MD simulation analysis shows that the order of magnitude of the interaction of SO4 2- with aromatic AAs in macroscopic solvation is HisP > HisN, Tyr, Trp > Phe, which is very much in line with the QC results. Spatial distribution function analysis illustrates that protonated histidine alone is capable of establishing the anion-π interaction with SO4 2- in the solution phase. This study sheds light on the understanding of anion-π interactions between SO4 2- and aromatic AAs such as His and Tyr observed in protein crystal structures and the significance of water molecules in stabilizing such interactions, which is not feasible otherwise.
Collapse
|
24
|
Marcisz M, Zacharias M, Samsonov SA. Modeling Protein-Glycosaminoglycan Complexes: Does the Size Matter? J Chem Inf Model 2021; 61:4475-4485. [PMID: 34494837 PMCID: PMC8479808 DOI: 10.1021/acs.jcim.1c00664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Docking glycosaminoglycans (GAGs) has been challenging because
of the complex nature of these long periodic linear and negatively
charged polysaccharides. Although standard docking tools like Autodock3
are successful when docking GAGs up to hexameric length, they experience
challenges to properly dock longer GAGs. Similar limitations concern
other docking approaches typically developed for docking ligands of
limited size to proteins. At the same time, most of more advanced
docking approaches are challenging for a user who is inexperienced
with complex in silico methodologies. In this work,
we evaluate the binding energies of complexes with different lengths
of GAGs using all-atom molecular dynamics simulations. Based on this
analysis, we propose a new docking protocol for long GAGs that consists
of conventional docking of short GAGs and further elongation with
the use of a coarse-grained representation of the GAG parts not being
in direct contact with its protein receptor. This method automated
by a simple script is straightforward to use within the Autodock3
framework but also useful in combination with other standard docking
tools. We believe that this method with some minor case-specific modifications
could also be used for docking other linear charged polymers.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Martin Zacharias
- Center of Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
25
|
Marcisz M, Maszota-Zieleniak M, Huard B, Samsonov SA. Advanced Molecular Dynamics Approaches to Model a Tertiary Complex APRIL/TACI with Long Glycosaminoglycans. Biomolecules 2021; 11:biom11091349. [PMID: 34572563 PMCID: PMC8465899 DOI: 10.3390/biom11091349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
Glycosaminoglycans (GAGs) are linear anionic periodic polysaccharides participating in a number of biologically relevant processes in the extracellular matrix via interactions with their protein targets. Due to their periodicity, conformational flexibility, pseudo-symmetry of the sulfation pattern, and the key role of electrostatics, these molecules are challenging for both experimental and theoretical approaches. In particular, conventional molecular docking applied for GAGs longer than 10-mer experiences severe difficulties. In this work, for the first time, 24- and 48-meric GAGs were docked using all-atomic repulsive-scaling Hamiltonian replica exchange molecular dynamics (RS-REMD), a novel methodology based on replicas with van der Waals radii of interacting molecules being scaled. This approach performed well for proteins complexed with oligomeric GAGs and is independent of their length, which distinguishes it from other molecular docking approaches. We built a model of long GAGs in complex with a proliferation-inducing ligand (APRIL) prebound to its receptors, the B cell maturation antigen and the transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI). Furthermore, the prediction power of the RS-REMD for this tertiary complex was evaluated. We conclude that the TACI–GAG interaction could be potentially amplified by TACI’s binding to APRIL. RS-REMD outperformed Autodock3, the docking program previously proven the best for short GAGs.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.M.); (M.M.-Z.)
- Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Martyna Maszota-Zieleniak
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.M.); (M.M.-Z.)
| | - Bertrand Huard
- Laboratory TIMC-IMAG, University Grenoble-Alpes, CNRS UMR 5525, 38700 La Tronche, France;
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.M.); (M.M.-Z.)
- Correspondence: ; Tel.: +48-58-523-51-66
| |
Collapse
|
26
|
Zhang B, Chi L. Chondroitin Sulfate/Dermatan Sulfate-Protein Interactions and Their Biological Functions in Human Diseases: Implications and Analytical Tools. Front Cell Dev Biol 2021; 9:693563. [PMID: 34422817 PMCID: PMC8377502 DOI: 10.3389/fcell.2021.693563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
27
|
Kaul A, Short WD, Keswani SG, Wang X. Immunologic Roles of Hyaluronan in Dermal Wound Healing. Biomolecules 2021; 11:1234. [PMID: 34439900 PMCID: PMC8394879 DOI: 10.3390/biom11081234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA), a glycosaminoglycan ubiquitous in the skin, has come into the limelight in recent years for its role in facilitating dermal wound healing. Specifically, HA's length of linearly repeating disaccharides-in other words, its molecular weight (MW)-determines its effects. High molecular weight (HMW)-HA serves an immunosuppressive and anti-inflammatory role, whereas low molecular weight (LMW)-HA contributes to immunostimulation and thus inflammation. During the inflammatory stage of tissue repair, direct and indirect interactions between HA and the innate and adaptive immune systems are of particular interest for their long-lasting impact on wound repair. This review seeks to synthesize the literature on wound healing with a focus on HA's involvement in the immune subsystems.
Collapse
Affiliation(s)
| | | | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital/Baylor College of Medicine, Houston, TX 77030, USA; (A.K.); (W.D.S.)
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital/Baylor College of Medicine, Houston, TX 77030, USA; (A.K.); (W.D.S.)
| |
Collapse
|
28
|
Maszota-Zieleniak M, Danielsson A, Samsonov SA. The potential role of glycosaminoglycans in serum amyloid A fibril formation by in silico approaches. Matrix Biol Plus 2021; 12:100080. [PMID: 34401710 PMCID: PMC8350538 DOI: 10.1016/j.mbplus.2021.100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
SAA dimer binds GAGs stronger than its monomer. Due to its net negative charge SAA prefers to bind short GAG sequences. GAG binding by SAA is electrostatics-driven and rather unspecific. GAG binding site is constituted predominantly by the N-terminal helix residues. GAG binding could potenitally attenuate unfolding of the N-terminal helix.
Serum amyloid A (SAA) is actively involved in such pathological processes as atherosclerosis, rheumatoid arthritis, cancer and Alzheimer's disease by its aggregation. One of the factors that can attenuate its aggregation and so affects its physiological role is its interactions with glycosminoglycans (GAGs), linear anionic periodic polysaccharides. These molecules located in the extracellular matrix of the cell are highly variable in their chemical composition and sulfation patterns. Despite the available experimental evidence of SAA-GAG interactions, no mechanistic details at atomic level have been reported for these systems so far. In our work we aimed to apply diverse computational tools to characterize SAA-GAG complexes formation and to answer questions about their potential specificity, energetic patterns, particular SAA residues involved in these interactions, favourable oligomeric state of the protein and the potential influence of GAGs on SAA aggregation. Molecular docking, conventional and replica exchange molecular dynamics approaches were applied to corroborate the experimental knowledge and to propose the corresponding molecular models. SAA-GAG complex formation was found to be electrostatics-driven and rather unspecific of a GAG sulfation pattern, more favorable for the dimer than for the monomer when binding to a short GAG oligosaccharide through its N-terminal helix, potentially contributing to the unfolding of this helix, which could lead to the promotion of the protein aggregation. The data obtained add to the specific knowledge on SAA-GAG systems and deepen the general understanding of protein-GAG interactions that is of a considerable value for the development of GAG-based approaches in a broad theurapeutic context.
Collapse
Affiliation(s)
| | - Annemarie Danielsson
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
29
|
Han CY, Kang I, Harten IA, Gebe JA, Chan CK, Omer M, Alonge KM, den Hartigh LJ, Gomes Kjerulf D, Goodspeed L, Subramanian S, Wang S, Kim F, Birk DE, Wight TN, Chait A. Adipocyte-Derived Versican and Macrophage-Derived Biglycan Control Adipose Tissue Inflammation in Obesity. Cell Rep 2021; 31:107818. [PMID: 32610121 DOI: 10.1016/j.celrep.2020.107818] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is characterized by adipose tissue inflammation. Because proteoglycans regulate inflammation, here we investigate their role in adipose tissue inflammation in obesity. We find that adipose tissue versican and biglycan increase in obesity. Versican is produced mainly by adipocytes and biglycan by adipose tissue macrophages. Both proteoglycans are also present in adipose tissue from obese human subjects undergoing gastric bypass surgery. Deletion of adipocyte-specific versican or macrophage-specific biglycan in mice reduces macrophage accumulation and chemokine and cytokine expression, although only adipocyte-specific versican deletion leads to sustained improvement in glucose tolerance. Macrophage-derived biglycan activates inflammatory genes in adipocytes. Versican expression increases in cultured adipocytes exposed to excess glucose, and adipocyte-conditioned medium stimulates inflammation in resident peritoneal macrophages, in part because of a versican breakdown product, versikine. These findings provide insights into the role of adipocyte- and macrophage-derived proteoglycans in adipose tissue inflammation in obesity.
Collapse
Affiliation(s)
- Chang Yeop Han
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - John A Gebe
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Kimberly M Alonge
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Diego Gomes Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Francis Kim
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Künze G, Huster D, Samsonov SA. Investigation of the structure of regulatory proteins interacting with glycosaminoglycans by combining NMR spectroscopy and molecular modeling - the beginning of a wonderful friendship. Biol Chem 2021; 402:1337-1355. [PMID: 33882203 DOI: 10.1515/hsz-2021-0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022]
Abstract
The interaction of regulatory proteins with extracellular matrix or cell surface-anchored glycosaminoglycans (GAGs) plays important roles in molecular recognition, wound healing, growth, inflammation and many other processes. In spite of their high biological relevance, protein-GAG complexes are significantly underrepresented in structural databases because standard tools for structure determination experience difficulties in studying these complexes. Co-crystallization with subsequent X-ray analysis is hampered by the high flexibility of GAGs. NMR spectroscopy experiences difficulties related to the periodic nature of the GAGs and the sparse proton network between protein and GAG with distances that typically exceed the detection limit of nuclear Overhauser enhancement spectroscopy. In contrast, computer modeling tools have advanced over the last years delivering specific protein-GAG docking approaches successfully complemented with molecular dynamics (MD)-based analysis. Especially the combination of NMR spectroscopy in solution providing sparse structural constraints with molecular docking and MD simulations represents a useful synergy of forces to describe the structure of protein-GAG complexes. Here we review recent methodological progress in this field and bring up examples where the combination of new NMR methods along with cutting-edge modeling has yielded detailed structural information on complexes of highly relevant cytokines with GAGs.
Collapse
Affiliation(s)
- Georg Künze
- Center for Structural Biology, Vanderbilt University, 465 21st Ave S, 5140 MRB3, Nashville, TN37240, USA.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN37235, USA.,Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, D-04103Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107Leipzig, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308Gdańsk, Poland
| |
Collapse
|
31
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
32
|
Marcisz M, Huard B, Lipska AG, Samsonov SA. Further analyses of APRIL/APRIL-Receptor/Glycosaminoglycan interactions by biochemical assays linked to computational studies. Glycobiology 2021; 31:772-786. [PMID: 33682874 DOI: 10.1093/glycob/cwab016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor superfamily. APRIL is quite unique in this superfamily for at least for two reasons: i) it binds to glycosaminoglycans (GAGs) via its positively charged N-terminus; ii) one of its signaling receptor, the transmembrane activator CAML interactor (TACI) was also reported to bind GAGs. Here, as provided by biochemical evidences with the use of an APRIL deletion mutant linked to computational studies, APRIL-GAG interaction involved other regions than the APRIL N-terminus. Preferential interaction of APRIL with heparin followed by chondroitin sulfate E were confirmed by in silico analysis. Both computational and experimental approaches did not reveal heparan sulfate binding to TACI. Together, computational results corroborated experiments contributing with atomistic details to the knowledge on this biologically relevant trimolecular system. Additionally, a high-throughput rigorous analysis of the free energy calculations data was performed to critically evaluate the applied computational methodologies.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Bertrand Huard
- TIMC-IMAG, university Grenoble-Alpes, CNRS UMR 5525, La Tronche, France
| | - Agnieszka G Lipska
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
33
|
Lemmnitzer K, Köhling S, Freyse J, Rademann J, Schiller J. Characterization of defined sulfated heparin-like oligosaccharides by electrospray ionization ion trap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4692. [PMID: 33415813 DOI: 10.1002/jms.4692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Glycosaminoglycans (GAG) as long, unbranched polysaccharides are major components of the extracellular matrix. Many studies provided additional evidence of a specific binding between mediators and sulfated GAG, at which the sulfation code-which means the number and positions of sulfate groups along the polysaccharide chain-plays an important role. GAG from natural sources are very inhomogeneous regarding their sulfation patterns and molecular weight. Additionally, there is a high risk of contamination. This results in a growing interest in the careful characterization of native GAG and the synthesis of artificial GAG. Additionally, chemically oversulfated GAG analogues show many favorable properties. However, the structural characterization of these carbohydrates by mass spectrometry remains challenging. One significant problem is the sulfate loss during the ionization, which increases with the number of sulfate residues. We used the sulfated pentasaccharide fondaparinux as model substance to optimize sample preparation and measurement conditions, compared different established desalination methods and already existing protocols for sulfated oligosaccharides, and investigated their impact on the quality of the mass spectra. After optimization of the measurement conditions, we could establish a gentle and fast protocol for the mass spectrometry characterization of (fully) sulfated, artificial GAG-like oligosaccharides with minimized sulfate loss in the positive and negative ion mode. Here, the negative ion mode was more sensitive in comparison with the positive one, and fondaparinux species with sulfate loss were not detectable under the optimized conditions in the positive ion mode.
Collapse
Affiliation(s)
- Katharina Lemmnitzer
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Sebastian Köhling
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Joanna Freyse
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
Kogut MM, Maszota-Zieleniak M, Marcisz M, Samsonov SA. Computational insights into the role of calcium ions in protein–glycosaminoglycan systems. Phys Chem Chem Phys 2021; 23:3519-3530. [DOI: 10.1039/d0cp05438k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prediction power of computational methodologies for studying the role of ions in protein–glycosaminoglycan interactions was critically assessed.
Collapse
|
35
|
Bojarski KK, Samsonov SA. Role of Oligosaccharide Chain Polarity in Protein-Glycosaminoglycan Interactions. J Chem Inf Model 2020; 61:455-466. [PMID: 33375794 DOI: 10.1021/acs.jcim.0c01402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycosaminoglycans (GAGs) are long unbranched anionic polysaccharides made up of repetitive disaccharide units involved in biologically relevant processes in the extracellular matrix such as cell proliferation and communication. A GAG can be bound in antiparallel energetically comparable orientations on the protein surface, and these orientations are, therefore, difficult to distinguish both experimentally and computationally. In this study, for the first time we analyzed the impact of the GAG chain polarity on the interactions with Fibroblast Growth Factors-1 and -2 (FGF-1 and FGF-2). We performed a series of 1 μs molecular dynamics simulations of the FGF-1 and FGF-2 complexes with heparin (HP), a GAG representative, of different length. We analyzed the relationship between the HP orientation, energetic, and conformational space characteristics of FGF-1-HP and FGF-2-HP complexes. We concluded that HP can be bound by these proteins in the same binding sites but in different orientations, while the orientation present in the experimental structure might be favorable. Our data presented in this study provide a novel view on the impact of GAG polarity on the specificity of protein-GAG complex formation, which is an essential aspect for the proper understanding of the intermolecular interactions in these systems.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
36
|
Salminen AT, Allahyari Z, Gholizadeh S, McCloskey MC, Ajalik R, Cottle RN, Gaborski TR, McGrath JL. In vitro Studies of Transendothelial Migration for Biological and Drug Discovery. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:600616. [PMID: 35047883 PMCID: PMC8757899 DOI: 10.3389/fmedt.2020.600616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases and cancer metastases lack concrete pharmaceuticals for their effective treatment despite great strides in advancing our understanding of disease progression. One feature of these disease pathogeneses that remains to be fully explored, both biologically and pharmaceutically, is the passage of cancer and immune cells from the blood to the underlying tissue in the process of extravasation. Regardless of migratory cell type, all steps in extravasation involve molecular interactions that serve as a rich landscape of targets for pharmaceutical inhibition or promotion. Transendothelial migration (TEM), or the migration of the cell through the vascular endothelium, is a particularly promising area of interest as it constitutes the final and most involved step in the extravasation cascade. While in vivo models of cancer metastasis and inflammatory diseases have contributed to our current understanding of TEM, the knowledge surrounding this phenomenon would be significantly lacking without the use of in vitro platforms. In addition to the ease of use, low cost, and high controllability, in vitro platforms permit the use of human cell lines to represent certain features of disease pathology better, as seen in the clinic. These benefits over traditional pre-clinical models for efficacy and toxicity testing are especially important in the modern pursuit of novel drug candidates. Here, we review the cellular and molecular events involved in leukocyte and cancer cell extravasation, with a keen focus on TEM, as discovered by seminal and progressive in vitro platforms. In vitro studies of TEM, specifically, showcase the great experimental progress at the lab bench and highlight the historical success of in vitro platforms for biological discovery. This success shows the potential for applying these platforms for pharmaceutical compound screening. In addition to immune and cancer cell TEM, we discuss the promise of hepatocyte transplantation, a process in which systemically delivered hepatocytes must transmigrate across the liver sinusoidal endothelium to successfully engraft and restore liver function. Lastly, we concisely summarize the evolving field of porous membranes for the study of TEM.
Collapse
Affiliation(s)
- Alec T. Salminen
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Zahra Allahyari
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Shayan Gholizadeh
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Molly C. McCloskey
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Raquel Ajalik
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Renee N. Cottle
- Bioengineering, Clemson University, Clemson, SC, United States
| | - Thomas R. Gaborski
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - James L. McGrath
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
37
|
Chazeirat T, Denamur S, Bojarski KK, Andrault PM, Sizaret D, Zhang F, Saidi A, Tardieu M, Linhardt RJ, Labarthe F, Brömme D, Samsonov SA, Lalmanach G, Lecaille F. The abnormal accumulation of heparan sulfate in patients with mucopolysaccharidosis prevents the elastolytic activity of cathepsin V. Carbohydr Polym 2020; 253:117261. [PMID: 33278943 DOI: 10.1016/j.carbpol.2020.117261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis (MPS) are rare inherited diseases characterized by accumulation of lysosomal glycosaminoglycans, including heparan sulfate (HS). Patients exhibit progressive multi-visceral dysfunction and shortened lifespan mainly due to a severe cardiac/respiratory decline. Cathepsin V (CatV) is a potent elastolytic protease implicated in extracellular matrix (ECM) remodeling. Whether CatV is inactivated by HS in lungs from MPS patients remained unknown. Herein, CatV colocalized with HS in MPS bronchial epithelial cells. HS level correlated positively with the severity of respiratory symptoms and negatively to the overall endopeptidase activity of cysteine cathepsins. HS bound tightly to CatV and impaired its activity. Withdrawal of HS by glycosidases preserved exogenous CatV activity, while addition of Surfen, a HS antagonist, restored elastolytic CatV-like activity in MPS samples. Our data suggest that the pathophysiological accumulation of HS may be deleterious for CatV-mediated ECM remodeling and for lung tissue homeostasis, thus contributing to respiratory disorders associated to MPS diseases.
Collapse
Affiliation(s)
- Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| | - Sophie Denamur
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France; Pediatric Department, Reference Center for Inborn Errors of Metabolism ToTeM, CHRU Tours, France.
| | | | - Pierre-Marie Andrault
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Damien Sizaret
- Anatomical Pathology and Cytology Department, Bretonneau Hospital, CHRU Tours, France.
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| | - Marine Tardieu
- Pediatric Department, Reference Center for Inborn Errors of Metabolism ToTeM, CHRU Tours, France.
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | - François Labarthe
- Pediatric Department, Reference Center for Inborn Errors of Metabolism ToTeM, CHRU Tours, France; INSERM, UMR 1069, Nutrition, Croissance et Cancer (N2C), Tours, France.
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| |
Collapse
|
38
|
Rajarathnam K, Desai UR. Structural Insights Into How Proteoglycans Determine Chemokine-CXCR1/CXCR2 Interactions: Progress and Challenges. Front Immunol 2020; 11:660. [PMID: 32391006 PMCID: PMC7193095 DOI: 10.3389/fimmu.2020.00660] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
Proteoglycans (PGs), present in diverse environments, such as the cell membrane surface, extracellular milieu, and intracellular granules, are fundamental to life. Sulfated glycosaminoglycans (GAGs) are covalently attached to the core protein of proteoglycans. PGs are complex structures, and are diverse in terms of amino acid sequence, size, shape, and in the nature and number of attached GAG chains, and this diversity is further compounded by the phenomenal diversity in GAG structures. Chemokines play vital roles in human pathophysiology, from combating infection and cancer to leukocyte trafficking, immune surveillance, and neurobiology. Chemokines mediate their function by activating receptors that belong to the GPCR class, and receptor interactions are regulated by how, when, and where chemokines bind GAGs. GAGs fine-tune chemokine function by regulating monomer/dimer levels and chemotactic/haptotactic gradients, which are also coupled to how they are presented to their receptors. Despite their small size and similar structures, chemokines show a range of GAG-binding geometries, affinities, and specificities, indicating that chemokines have evolved to exploit the repertoire of chemical and structural features of GAGs. In this review, we summarize the current status of research on how GAG interactions regulate ELR-chemokine activation of CXCR1 and CXCR2 receptors, and discuss knowledge gaps that must be overcome to establish causal relationships governing the impact of GAG interactions on chemokine function in human health and disease.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
39
|
Bojarski KK, Karczyńska AS, Samsonov SA. Role of Glycosaminoglycans in Procathepsin B Maturation: Molecular Mechanism Elucidated by a Computational Study. J Chem Inf Model 2020; 60:2247-2256. [PMID: 32155059 PMCID: PMC7588040 DOI: 10.1021/acs.jcim.0c00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Procathepsins
are an inactive, immature form of cathepsins, predominantly
cysteine proteases present in the extracellular matrix (ECM) and in
lysosomes that play a key role in various biological processes such
as bone resorption or intracellular proteolysis. The enzymatic activity
of cathepsins can be mediated by glycosaminoglycans (GAGs), long unbranched
periodic negatively charged polysaccharides found in ECM that take
part in many biological processes such as anticoagulation, angiogenesis,
and tissue regeneration. In addition to the known effects on mature
cathepsins, GAGs can mediate the maturation process of procathepsins,
in particular, procathepsin B. However, the detailed mechanism of
this mediation at the molecular level is still unknown. In this study,
for the first time, we aimed to unravel the role of GAGs in this process
using computational approaches. We rigorously analyzed procathepsin
B–GAG complexes in terms of their dynamics, energetics, and
potential allosteric regulation. We revealed that GAGs can stabilize
the conformation of the procathepsin B structure with the active site
accessible for the substrate and concluded that GAGs most probably
bind to procathepsin B once the zymogen adopts the enzymatically active
conformation. Our data provided a novel mechanistic view of the maturation
process of procathepsin B, while the approaches elaborated here might
be useful to study other procathepsins. Furthermore, our data can
serve as a rational guide for experimental work on procathepsin–GAG
systems that are not characterized in vivo and in vitro yet.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
40
|
Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020; 11:483. [PMID: 32296423 PMCID: PMC7138053 DOI: 10.3389/fimmu.2020.00483] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leukocyte migration into tissues depends on the activity of chemokines that form concentration gradients to guide leukocytes to a specific site. Interaction of chemokines with their specific G protein-coupled receptors (GPCRs) on leukocytes induces leukocyte adhesion to the endothelial cells, followed by extravasation of the leukocytes and subsequent directed migration along the chemotactic gradient. Interaction of chemokines with glycosaminoglycans (GAGs) is crucial for extravasation in vivo. Chemokines need to interact with GAGs on endothelial cells and in the extracellular matrix in tissues in order to be presented on the endothelium of blood vessels and to create a concentration gradient. Local chemokine retention establishes a chemokine gradient and prevents diffusion and degradation. During the last two decades, research aiming at reducing chemokine activity mainly focused on the identification of inhibitors of the interaction between chemokines and their cognate GPCRs. This approach only resulted in limited success. However, an alternative strategy, targeting chemokine-GAG interactions, may be a promising approach to inhibit chemokine activity and inflammation. On this line, proteins derived from viruses and parasites that bind chemokines or GAGs may have the potential to interfere with chemokine-GAG interactions. Alternatively, chemokine mimetics, including truncated chemokines and mutant chemokines, can compete with chemokines for binding to GAGs. Such truncated or mutated chemokines are characterized by a strong binding affinity for GAGs and abrogated binding to their chemokine receptors. Finally, Spiegelmers that mask the GAG-binding site on chemokines, thereby preventing chemokine-GAG interactions, were developed. In this review, the importance of GAGs for chemokine activity in vivo and strategies that could be employed to target chemokine-GAG interactions will be discussed in the context of inflammation.
Collapse
Affiliation(s)
- Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Bojarski KK, Becher J, Riemer T, Lemmnitzer K, Möller S, Schiller J, Schnabelrauch M, Samsonov SA. Synthesis and in silico characterization of artificially phosphorylated glycosaminoglycans. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Rat cathepsin K: Enzymatic specificity and regulation of its collagenolytic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140318. [PMID: 31740411 DOI: 10.1016/j.bbapap.2019.140318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022]
Abstract
Human cathepsin K (hCatK), which is highly expressed in osteoclasts, has the noteworthy ability to cleave type I and II collagens in their helical domain. Its collagenase potency depends strictly on the formation of an oligomeric complex with chondroitin 4-sulfate (C4-S). Accordingly, hCatK is a pivotal protease involved in bone resorption and is an attractive target for the treatment of osteoporosis. As rat is a common animal model for the evaluation of hCatK inhibitors, we conducted a comparative analysis of rat CatK (rCatK) and hCatK, which share a high degree of identity (88%) and similarity (93%). The pH activity profile of both enzymes displayed a similar bell-shaped curve (optimal pH: 6.4). Presence of Ser134 and Val160 in the S2 pocket of rCatK instead of Ala and Leu residues, respectively, in hCatK, led to a weaker peptidase activity, as observed for mouse CatK. Also, regardless of the presence of C4-S, rCatK cleaved in the nonhelical telopeptide regions of both type I (tail) and type II (articular joint) rat collagens. Structure-based computational analyses (electrostatic potential, molecular docking, molecular dynamics, free energy calculations) sustained that the C4-S mediated collagenolytic activity of rCatK obeys distinct molecular interactions from those of hCatK. Additionally, T-kininogen (a.k.a. thiostatin), a unique rat serum acute phase molecule, acted as a tight-binding inhibitor of hCatK (Ki = 0.11 ± 0.05 nM). Taken into account the increase of T-Kininogen level in inflamed rat sera, this may raise the question of the appropriateness to evaluate pharmacological hCatK inhibitors in this peculiar animal model.
Collapse
|
43
|
Analysis of Procollagen C-Proteinase Enhancer-1/Glycosaminoglycan Binding Sites and of the Potential Role of Calcium Ions in the Interaction. Int J Mol Sci 2019; 20:ijms20205021. [PMID: 31658765 PMCID: PMC6829435 DOI: 10.3390/ijms20205021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we characterize the interactions between the extracellular matrix protein, procollagen C-proteinase enhancer-1 (PCPE-1), and glycosaminoglycans (GAGs), which are linear anionic periodic polysaccharides. We applied molecular modeling approaches to build a structural model of full-length PCPE-1, which is not experimentally available, to predict GAG binding poses for various GAG lengths, types and sulfation patterns, and to determine the effect of calcium ions on the binding. The computational data are analyzed and discussed in the context of the experimental results previously obtained using surface plasmon resonance binding assays. We also provide experimental data on PCPE-1/GAG interactions obtained using inhibition assays with GAG oligosaccharides ranging from disaccharides to octadecasaccharides. Our results predict the localization of GAG-binding sites at the amino acid residue level onto PCPE-1 and is the first attempt to describe the effects of ions on protein-GAG binding using modeling approaches. In addition, this study allows us to get deeper insights into the in silico methodology challenges and limitations when applied to GAG-protein interactions.
Collapse
|
44
|
Sepuru KM, Rajarathnam K. Structural basis of chemokine interactions with heparan sulfate, chondroitin sulfate, and dermatan sulfate. J Biol Chem 2019; 294:15650-15661. [PMID: 31455633 DOI: 10.1074/jbc.ra119.009879] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Indexed: 11/06/2022] Open
Abstract
Chemokines play diverse roles in human pathophysiology, ranging from trafficking leukocytes and immunosurveillance to the regulation of metabolism and neural function. Chemokine function is intimately coupled to binding tissue glycosaminoglycans (GAGs), heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS). Currently, very little is known about how the structural features and sequences of a given chemokine, the structure and sulfation pattern of a given GAG, and structural differences among GAGs and among chemokines impact binding interactions. In this study, we used solution NMR spectroscopy to characterize the binding interactions of two related neutrophil-activating chemokines, CXCL1 and CXCL5, with HS, CS, and DS. For both chemokines, the dimer bound all three GAGs with higher affinity than did the monomer, and affinities of the chemokines for CS and DS were lower than for HS. NMR-based structural models reveal diverse binding geometries and show that the binding surfaces for each of the three GAGs were different between the two chemokines. However, a given chemokine had similar binding interactions with CS and DS that were different from HS. Considering the fact that CXCL1 and CXCL5 activate the same CXCR2 receptor, we conclude that GAG interactions play a role in determining the nature of chemokine gradients, levels of free chemokine available for receptor activation, how chemokines bind their receptors, and that differences in these interactions determine chemokine-specific function.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1055.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1055 .,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1055
| |
Collapse
|
45
|
Samsonov SA, Freza S, Zsila F. In silico analysis of heparin and chondroitin sulfate binding mechanisms of the antiprotozoal drug berenil and pentamidine. Carbohydr Res 2019; 482:107742. [DOI: 10.1016/j.carres.2019.107742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
|
46
|
Alshanski I, Blaszkiewicz J, Mervinetsky E, Rademann J, Yitzchaik S, Hurevich M. Sulfation Patterns of Saccharides and Heavy Metal Ion Binding. Chemistry 2019; 25:12083-12090. [DOI: 10.1002/chem.201901538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Joanna Blaszkiewicz
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Evgeniy Mervinetsky
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Jörg Rademann
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Mattan Hurevich
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| |
Collapse
|
47
|
Penk A, Baumann L, Huster D, Samsonov SA. NMR and molecular modeling reveal specificity of the interactions between CXCL14 and glycosaminoglycans. Glycobiology 2019; 29:715-725. [DOI: 10.1093/glycob/cwz047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
CXCL14, chemokine (C-X-C motif) ligand 14, is a novel highly conserved chemokine with unique features. Despite exhibiting the typical chemokine fold, it has a very short N-terminus of just two amino acid residues responsible for chemokine receptor activation. CXCL14 actively participates in homeostatic immune surveillance of skin and mucosae, is linked to metabolic disorders and fibrotic lung diseases and possesses strong anti-angiogenic properties in early tumor development. In this work, we investigated the interaction of CXCL14 with various glycosaminoglycans (GAGs) by nuclear magnetic resonance spectroscopy, microscale thermophoresis, analytical heparin (HE) affinity chromatography and in silico approaches to understand the molecular basis of GAG-binding. We observed different GAG-binding modes specific for the GAG type used in the study. In particular, the CXCL14 epitope for HE suggests a binding pose distinguishable from the ones of the other GAGs investigated (hyaluronic acid, chondroitin sulfate-A/C, −D, dermatan sulfate). This observation is also supported by computational methods that included molecular docking, molecular dynamics and free energy calculations. Based on our results, we suggest that distinct GAG sulfation patterns confer specificity beyond simple electrostatic interactions usually considered to represent the driving forces in protein–GAG interactions. The CXCL14–GAG system represents a promising approach to investigate the specificity of GAG–protein interactions, which represents an important topic for developing the rational approaches to novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Anja Penk
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. Leipzig, Germany
| | - Lars Baumann
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. Leipzig, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, Poland
| |
Collapse
|
48
|
Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019; 294:12370-12379. [PMID: 31235521 PMCID: PMC6699855 DOI: 10.1074/jbc.ra119.008902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus. Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8–Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17–56 and cyclic tcEv3 16–56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17–56 and tcEv3 16–56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany; German Center for Cardiovascular Research, 13316, Berlin, Germany; Partner Site Munich Heart Alliance, 80802 Munich, Germany; Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tilman M Hackeng
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
49
|
Samsonov SA, Lubecka EA, Bojarski KK, Ganzynkowicz R, Liwo A. Local and long range potentials for heparin‐protein systems for coarse‐grained simulations. Biopolymers 2019; 110:e23269. [DOI: 10.1002/bip.23269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
| | - Emilia A. Lubecka
- Faculty of ChemistryUniversity of Gdańsk Gdańsk Poland
- Faculty of Mathematics, Physics and Informatics, Institute of InformaticsUniversity of Gdańsk Gdańsk Poland
| | | | | | - Adam Liwo
- Faculty of ChemistryUniversity of Gdańsk Gdańsk Poland
| |
Collapse
|
50
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|