1
|
Tawab A, Akbar N, Hasssan M, Habib F, Ali A, Rahman M, Jabbar A, Rauf W, Iqbal M. Mass spectrometric analysis of lipid A obtained from the lipopolysaccharide ofPasteurella multocida. RSC Adv 2020; 10:30917-30933. [PMID: 35516050 PMCID: PMC9056370 DOI: 10.1039/d0ra05463a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023] Open
Abstract
LC/MS-based variant profiling of lipid A component of endotoxic lipopolysaccharides ofPasteurella multocidatype B:2, a causative agent of haemorrhagic septicaemia in water buffalo and cattle.
Collapse
Affiliation(s)
- Abdul Tawab
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology NIBGE
| | - Noor Akbar
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Mujtaba Hasssan
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Fazale Habib
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Aamir Ali
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Moazur Rahman
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- School of Biological Sciences
| | - Abdul Jabbar
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology
| | - Waqar Rauf
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology NIBGE
| |
Collapse
|
2
|
Abstract
Pasteurella multocida is a highly versatile pathogen capable of causing infections in a wide range of domestic and wild animals as well as in humans and nonhuman primates. Despite over 135 years of research, the molecular basis for the myriad manifestations of P. multocida pathogenesis and the determinants of P. multocida phylogeny remain poorly defined. The current availability of multiple P. multocida genome sequences now makes it possible to delve into the underlying genetic mechanisms of P. multocida fitness and virulence. Using whole-genome sequences, the genotypes, including the capsular genotypes, lipopolysaccharide (LPS) genotypes, and multilocus sequence types, as well as virulence factor-encoding genes of P. multocida isolates from different clinical presentations can be characterized rapidly and accurately. Putative genetic factors that contribute to virulence, fitness, host specificity, and disease predilection can also be identified through comparative genome analysis of different P. multocida isolates. However, although some knowledge about genotypes, fitness, and pathogenesis has been gained from the recent whole-genome sequencing and comparative analysis studies of P. multocida, there is still a long way to go before we fully understand the pathogenic mechanisms of this important zoonotic pathogen. The quality of several available genome sequences is low, as they are assemblies with relatively low coverage, and genomes of P. multocida isolates from some uncommon host species are still limited or lacking. Here, we review recent advances, as well as continuing knowledge gaps, in our understanding of determinants contributing to virulence, fitness, host specificity, disease predilection, and phylogeny of P. multocida.
Collapse
|
3
|
Harper M, Boyce JD. The Myriad Properties of Pasteurella multocida Lipopolysaccharide. Toxins (Basel) 2017; 9:toxins9080254. [PMID: 28825691 PMCID: PMC5577588 DOI: 10.3390/toxins9080254] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Pasteurella multocida is a heterogeneous species that is a primary pathogen of many different vertebrates. This Gram-negative bacterium can cause a range of diseases, including fowl cholera in birds, haemorrhagic septicaemia in ungulates, atrophic rhinitis in swine, and lower respiratory tract infections in cattle and pigs. One of the primary virulence factors of P. multocida is lipopolysaccharide (LPS). Recent work has shown that this crucial surface molecule shows significant structural variability across different P. multocida strains, with many producing LPS structures that are highly similar to the carbohydrate component of host glycoproteins. It is likely that this LPS mimicry of host molecules plays a major role in the survival of P. multocida in certain host niches. P. multocida LPS also plays a significant role in resisting the action of chicken cathelicidins, and is a strong stimulator of host immune responses. The inflammatory response to the endotoxic lipid A component is a major contributor to the pathogenesis of certain infections. Recent work has shown that vaccines containing killed bacteria give protection only against other strains with identical, or nearly identical, surface LPS structures. Conversely, live attenuated vaccines give protection that is broadly protective, and their efficacy is independent of LPS structure.
Collapse
Affiliation(s)
- Marina Harper
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - John Dallas Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Harper M, John M, Edmunds M, Wright A, Ford M, Turni C, Blackall PJ, Cox A, Adler B, Boyce JD. Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure. Vaccine 2016; 34:1696-703. [PMID: 26892738 DOI: 10.1016/j.vaccine.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
Abstract
Pasteurella multocida is a major animal pathogen that causes a range of diseases including fowl cholera. P. multocida infections result in considerable losses to layer and breeder flocks in poultry industries worldwide. Both killed whole-cell and live-attenuated vaccines are available; these vaccines vary in their protective efficacy, particularly against heterologous strains. Moreover, until recently there was no knowledge of P. multocida LPS genetics and structure to determine precisely how LPS structure affects the protective capacity of these vaccines. In this study we show that defined lipopolysaccharide (LPS) mutants presented as killed whole-cell vaccines elicited solid protective immunity only against P. multocida challenge strains expressing highly similar or identical LPS structures. This finding indicates that vaccination of commercial flocks with P. multocida killed cell formulations will not protect against strains producing an LPS structure different to that produced by strains included in the vaccine formulation. Conversely, protective immunity conferred by vaccination with live P. multocida strains was found to be largely independent of LPS structure. Birds vaccinated with a range of live mutants belonging to the L1 and L3 LPS genotypes, each expressing a specific truncated LPS structure, were protected against challenge with the parent strain. Moreover, birds vaccinated with any of the five LPS mutants belonging to the L1 LPS genotype were also protected against challenge with an unrelated strain and two of the five groups vaccinated with live LPS mutants belonging to the L3 genotype were protected against challenge with an unrelated strain. In summary, vaccination with live P. multocida aroA mutants producing full-length L1 or L3 LPS or vaccination with live strains producing shortened L1 LPS elicited strong protective immunity against both homologous and heterologous challenge.
Collapse
Affiliation(s)
- Marina Harper
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, VIC, Australia.
| | - Marietta John
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, VIC, Australia
| | - Mark Edmunds
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, VIC, Australia; Poultry CRC, University of New England, Armidale 2351, NSW, Australia
| | - Amy Wright
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, VIC, Australia
| | - Mark Ford
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, VIC, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, QLD, Australia
| | - P J Blackall
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, QLD, Australia
| | - Andrew Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Ben Adler
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, VIC, Australia
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, VIC, Australia
| |
Collapse
|
5
|
Development of a rapid multiplex PCR assay to genotype Pasteurella multocida strains by use of the lipopolysaccharide outer core biosynthesis locus. J Clin Microbiol 2014; 53:477-85. [PMID: 25428149 DOI: 10.1128/jcm.02824-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with classical Heddleston serotyping using LPS compositional data as the "gold standard." The LPS-mPCR correctly typed 57 of 58 isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classification of P. multocida strains.
Collapse
|
6
|
Harper M, St Michael F, Steen JA, John M, Wright A, van Dorsten L, Vinogradov E, Adler B, Cox AD, Boyce JD. Characterization of the lipopolysaccharide produced by Pasteurella multocida serovars 6, 7 and 16: Identification of lipopolysaccharide genotypes L4 and L8. Glycobiology 2014; 25:294-302. [DOI: 10.1093/glycob/cwu110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Harper M, St Michael F, John M, Steen J, van Dorsten L, Parnas H, Vinogradov E, Adler B, Cox AD, Boyce JD. Structural analysis of lipopolysaccharide produced by Heddleston serovars 10, 11, 12 and 15 and the identification of a new Pasteurella multocida lipopolysaccharide outer core biosynthesis locus, L6. Glycobiology 2014; 24:649-59. [PMID: 24740556 DOI: 10.1093/glycob/cwu030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pasteurella multocida is a Gram-negative bacterial pathogen classified into 16 serovars based on lipopolysaccharide (LPS) antigens. Previously, we have characterized the LPS outer core biosynthesis loci L1, L2, L3, L5 and L7, and have elucidated the full range of LPS structures associated with each. In this study, we have determined the LPS structures produced by the type strains representing the serovars 10, 11, 12 and 15 and characterized a new LPS outer core biosynthesis locus, L6, common to all. The L6 outer core biosynthesis locus shares significant synteny with the L3 locus but due to nucleotide divergence, gene duplication and gene redundancy, the L6 and L3 LPS outer cores are structurally distinct. Using LPS structural and genetic differences identified in each L6 strain, we have predicted a role for most of the L6 glycosyltransferases in LPS assembly. Importantly, we have identified two glycosyltransferases, GctD and GatB, that differ by one amino acid, A162T, but use different donor sugars [uridine diphosphate (UDP)-Glc and UDP-Gal, respectively]. The longest outer core oligosaccharide, produced by the serovar 12 type strain, contained a terminal region consisting of β-Gal-(1,4)-β-GlcNAc-(1,3)-β-Gal-(1,4)-β-Glc that was identical in structure to the vertebrate glycosphingolipid, paragloboside. Mimicry of host glycosphingolipids has been observed previously in P. multocida strains belonging to L3 LPS genotype, which produce LPS similar in structure to the globo-series of glycosphingolipids. The expression of a paragloboside-like oligosaccharide on the LPS produced by the serovar 12 type strain indicates that strains belonging to the L6 LPS genotype may also engage in molecular mimicry.
Collapse
Affiliation(s)
- Marina Harper
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, VIC 3800, Australia
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Marietta John
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, VIC 3800, Australia
| | - Jason Steen
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, VIC 3800, Australia
| | - Lieke van Dorsten
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Henrietta Parnas
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, VIC 3800, Australia
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - John D Boyce
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, VIC 3800, Australia Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Chantigian DP, Thoden JB, Holden HM. Structural and biochemical characterization of a bifunctional ketoisomerase/N-acetyltransferase from Shewanella denitrificans. Biochemistry 2013; 52:8374-85. [PMID: 24128043 DOI: 10.1021/bi401170t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here, we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely, a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to the inversion of configuration about the hexose C-4' carbon.
Collapse
Affiliation(s)
- Daniel P Chantigian
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
9
|
Harper M, St. Michael F, John M, Vinogradov E, Steen JA, van Dorsten L, Steen JA, Turni C, Blackall PJ, Adler B, Cox AD, Boyce JD. Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity. J Bacteriol 2013; 195:4854-64. [PMID: 23974032 PMCID: PMC3807493 DOI: 10.1128/jb.00779-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/16/2013] [Indexed: 11/20/2022] Open
Abstract
Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strains and revealed that a number of strains belonging to different serovars contain the same LPS biosynthesis locus but express different LPS structures due to mutations within glycosyltransferase genes. In this study, we report the full LPS structure of the serovar 4 type strain, P1662, and reveal that it shares the same LPS outer core biosynthesis locus, L3, with the serovar 3 strains P1059 and Pm70. Using directed mutagenesis, the role of each glycosyltransferase gene in LPS outer core assembly was determined. LPS structural analysis of 23 Australian field isolates that contain the L3 locus revealed that at least six different LPS outer core structures can be produced as a result of mutations within the LPS glycosyltransferase genes. Moreover, some field isolates produce multiple but related LPS glycoforms simultaneously, and three LPS outer core structures are remarkably similar to the globo series of vertebrate glycosphingolipids. Our in-depth analysis showing the genetics and full range of P. multocida lipopolysaccharide structures will facilitate the improvement of typing systems and the prediction of the protective efficacy of vaccines.
Collapse
Affiliation(s)
- Marina Harper
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
| | - Frank St. Michael
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Marietta John
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Jennifer A. Steen
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
| | - Lieke van Dorsten
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Jason A. Steen
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Dutton Park, Brisbane, Australia
| | - Patrick J. Blackall
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Dutton Park, Brisbane, Australia
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
| | - Andrew D. Cox
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - John D. Boyce
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Abstract
In a world where most emerging and reemerging infectious diseases are zoonotic in nature and our contacts with both domestic and wild animals abound, there is growing awareness of the potential for human acquisition of animal diseases. Like other Pasteurellaceae, Pasteurella species are highly prevalent among animal populations, where they are often found as part of the normal microbiota of the oral, nasopharyngeal, and upper respiratory tracts. Many Pasteurella species are opportunistic pathogens that can cause endemic disease and are associated increasingly with epizootic outbreaks. Zoonotic transmission to humans usually occurs through animal bites or contact with nasal secretions, with P. multocida being the most prevalent isolate observed in human infections. Here we review recent comparative genomics and molecular pathogenesis studies that have advanced our understanding of the multiple virulence mechanisms employed by Pasteurella species to establish acute and chronic infections. We also summarize efforts being explored to enhance our ability to rapidly and accurately identify and distinguish among clinical isolates and to control pasteurellosis by improved development of new vaccines and treatment regimens.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Host-Microbe Systems Theme of the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | |
Collapse
|
11
|
Johnson TJ, Abrahante JE, Hunter SS, Hauglund M, Tatum FM, Maheswaran SK, Briggs RE. Comparative genome analysis of an avirulent and two virulent strains of avian Pasteurella multocida reveals candidate genes involved in fitness and pathogenicity. BMC Microbiol 2013; 13:106. [PMID: 23672515 PMCID: PMC3660278 DOI: 10.1186/1471-2180-13-106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pasteurella multocida is the etiologic agent of fowl cholera, a highly contagious and severe disease of poultry causing significant mortality and morbidity throughout the world. All types of poultry are susceptible to fowl cholera. Turkeys are most susceptible to the peracute/acute forms of the disease while chickens are most susceptible to the acute and chronic forms of the disease. The whole genome of the Pm70 strain of P. multocida was sequenced and annotated in 2001. The Pm70 strain is not virulent to chickens and turkeys. In contrast, strains X73 and P1059 are highly virulent to turkeys, chickens, and other poultry species. In this study, we sequenced the genomes of P. multocida strains X73 and P1059 and undertook a detailed comparative genome analysis with the avirulent Pm70 strain. The goal of this study was to identify candidate genes in the virulent strains that may be involved in pathogenicity of fowl cholera disease. RESULTS Comparison of virulent versus avirulent avian P. multocida genomes revealed 336 unique genes among the P1059 and/or X73 genomes compared to strain Pm70. Genes of interest within this subset included those encoding an L-fucose transport and utilization system, several novel sugar transport systems, and several novel hemagglutinins including one designated PfhB4. Additionally, substantial amino acid variation was observed in many core outer membrane proteins and single nucleotide polymorphism analysis confirmed a higher dN/dS ratio within proteins localized to the outer membrane. CONCLUSIONS Comparative analyses of highly virulent versus avirulent avian P. multocida identified a number of genomic differences that may shed light on the ability of highly virulent strains to cause disease in the avian host, including those that could be associated with enhanced virulence or fitness.
Collapse
Affiliation(s)
- Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St, Paul, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Harper M, Boyce JD, Adler B. The key surface components of Pasteurella multocida: capsule and lipopolysaccharide. Curr Top Microbiol Immunol 2012; 361:39-51. [PMID: 22373812 DOI: 10.1007/82_2012_202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capsule and lipopolysaccharide (LPS) of Pasteurella multocida constitute the major components of the bacterial cell surface. As well as forming the basis for the most widely used classification systems, they play key roles in a range of interactions between the bacteria and the hosts they colonize or infect. Both polysaccharides are involved in the avoidance of host innate immune mechanisms, such as resistance to phagocytosis, complement-mediated killing, and the bactericidal activity of antimicrobial peptides; they are therefore essential for virulence. In addition, LPS is a major antigen in the stimulation of adaptive immune responses to infection.
Collapse
Affiliation(s)
- Marina Harper
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|