1
|
Mueller JW, Thomas P, Dalgaard LT, da Silva Xavier G. Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes. Essays Biochem 2024; 68:509-522. [PMID: 39290144 PMCID: PMC11625869 DOI: 10.1042/ebc20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans. Thus, modulating the physicochemical propensities of the different sulfate acceptors, resulting in enhanced solubility, expedited circulatory transit, or enhanced macromolecular interaction. This review lists evidence for the involvement of sulfation pathways in the maintenance of functional pancreatic beta-cell mass and the implications for diabetes, grouped into various classes of sulfated biomolecule. Complex heparan sulfates might play a role in the development and maintenance of beta-cells. The sulfolipids sulfatide and sulfo-cholesterol might contribute to beta-cell health. In beta-cells, there are only very few proteins with confirmed sulfation on some tyrosine residues, with the IRS4 molecule being one of them. Sulfated steroid hormones, such as estradiol-sulfate and vitamin-D-sulfate, may facilitate downstream steroid signaling in beta-cells, following de-sulfation. Indoxyl sulfate is a metabolite from the intestine, that causes kidney damage, contributing to diabetic kidney disease. Finally, from a technological perspective, there is heparan sulfate, heparin, and chondroitin sulfate, that all might be involved in next-generation beta-cell transplantation. Sulfation pathways may play a role in pancreatic beta-cells through multiple mechanisms. A more coherent understanding of sulfation pathways in diabetes will facilitate discussion and guide future research.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | - Patricia Thomas
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | | | | |
Collapse
|
2
|
Nagai N, Shioiri T, Hatano S, Sugiura N, Watanabe H. Regulatory role of Heparan sulfate in leptin signaling. Cell Signal 2024; 124:111456. [PMID: 39384005 DOI: 10.1016/j.cellsig.2024.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Leptin, a hormone mainly secreted by adipocytes, has attracted significant attention since its discovery in 1994. Initially known for its role in appetite suppression and energy regulation, leptin is now recognized for its influence on various physiological processes, including immune response, bone formation, and reproduction. It exerts its effects by binding to receptors and initiating an intracellular signaling cascade. Heparan sulfate (HS) is known to regulate the intracellular signaling of various ligands. HS is present as the glycan portion of HSPGs on cell surfaces and in intercellular spaces, with diverse structures due to extensive sulfation and epimerization. Although HS chains on HSPGs are involved in many physiological processes, the detailed effects of HS chains on leptin signaling are not well understood. This study examined the role of HS chains on HSPGs in leptin signaling using Neuro2A cells expressing the full-length leptin receptor (LepR). We showed that cell surface HS was essential for efficient leptin signaling. Enzymatic degradation of HS significantly reduced leptin-induced phosphorylation of downstream molecules, such as signal transducer and activator of transcription 3 and p44/p42 Mitogen-activated protein kinase. In addition, HS regulated LepR expression and internalization, as treatment with HS-degrading enzymes decreased cell surface LepR. HS was also found to exhibit a weak interaction with LepR. Enzymatic removal of HS enhanced the interaction between LepR and low-density lipoprotein receptor-related protein 1, suggesting that HS negatively regulates this interaction. In conclusion, HS plays a significant role in modulating LepR availability on the cell surface, thereby influencing leptin signaling. These findings provide new insights into the complex regulation of leptin signaling and highlight potential therapeutic targets for metabolic disorders and obesity.
Collapse
Affiliation(s)
- Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| |
Collapse
|
3
|
Moon S, Lee HH, Archer-Hartmann S, Nagai N, Mubasher Z, Parappurath M, Ahmed L, Ramos RL, Kimata K, Azadi P, Cai W, Zhao JY. Knockout of the intellectual disability-linked gene Hs6st2 in mice decreases heparan sulfate 6-O-sulfation, impairs dendritic spines of hippocampal neurons, and affects memory. Glycobiology 2024; 34:cwad095. [PMID: 38015989 PMCID: PMC10969535 DOI: 10.1093/glycob/cwad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Zainab Mubasher
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Mahima Parappurath
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Laiba Ahmed
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| |
Collapse
|
4
|
Sanchez MP, Escouflaire C, Baur A, Bottin F, Hozé C, Boussaha M, Fritz S, Capitan A, Boichard D. X-linked genes influence various complex traits in dairy cattle. BMC Genomics 2023; 24:338. [PMID: 37337145 DOI: 10.1186/s12864-023-09438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The search for quantitative trait loci (QTL) affecting traits of interest in mammals is frequently limited to autosomes, with the X chromosome excluded because of its hemizygosity in males. This study aimed to assess the importance of the X chromosome in the genetic determinism of 11 complex traits related to milk production, milk composition, mastitis resistance, fertility, and stature in 236,496 cows from three major French dairy breeds (Holstein, Montbéliarde, and Normande) and three breeds of regional importance (Abondance, Tarentaise, and Vosgienne). RESULTS Estimates of the proportions of heritability due to autosomes and X chromosome (h²X) were consistent among breeds. On average over the 11 traits, h²X=0.008 and the X chromosome explained ~ 3.5% of total genetic variance. GWAS was performed within-breed at the sequence level (~ 200,000 genetic variants) and then combined in a meta-analysis. QTL were identified for most breeds and traits analyzed, with the exception of Tarentaise and Vosgienne and two fertility traits. Overall, 3, 74, 59, and 71 QTL were identified in Abondance, Montbéliarde, Normande, and Holstein, respectively, and most were associated with the most-heritable traits (milk traits and stature). The meta-analyses, which assessed a total of 157 QTL for the different traits, highlighted new QTL and refined the positions of some QTL found in the within-breed analyses. Altogether, our analyses identified a number of functional candidate genes, with the most notable being GPC3, MBNL3, HS6ST2, and DMD for dairy traits; TMEM164, ACSL4, ENOX2, HTR2C, AMOT, and IRAK1 for udder health; MAMLD1 and COL4A6 for fertility; and NRK, ESX1, GPR50, GPC3, and GPC4 for stature. CONCLUSIONS This study demonstrates the importance of the X chromosome in the genetic determinism of complex traits in dairy cattle and highlights new functional candidate genes and variants for these traits. These results could potentially be extended to other species as many X-linked genes are shared among mammals.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | | | | | - Fiona Bottin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| |
Collapse
|
5
|
Coral DE, Fernandez-Tajes J, Tsereteli N, Pomares-Millan H, Fitipaldi H, Mutie PM, Atabaki-Pasdar N, Kalamajski S, Poveda A, Miller-Fleming TW, Zhong X, Giordano GN, Pearson ER, Cox NJ, Franks PW. A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes. Nat Metab 2023; 5:237-247. [PMID: 36703017 PMCID: PMC9970876 DOI: 10.1038/s42255-022-00731-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/20/2022] [Indexed: 01/27/2023]
Abstract
Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.
Collapse
Affiliation(s)
- Daniel E Coral
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden.
| | - Juan Fernandez-Tajes
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Neli Tsereteli
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Hugo Pomares-Millan
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Hugo Fitipaldi
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Pascal M Mutie
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Naeimeh Atabaki-Pasdar
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Sebastian Kalamajski
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Alaitz Poveda
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tyne W Miller-Fleming
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ewan R Pearson
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
- Population Health and Genomics, University of Dundee, Dundee, UK
| | - Nancy J Cox
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
7
|
Disease-specific glycosaminoglycan patterns in the extracellular matrix of human lung and brain. Carbohydr Res 2021; 511:108480. [PMID: 34837849 DOI: 10.1016/j.carres.2021.108480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
A wide variety of diseases throughout the mammalian organism is characterized by abnormal deposition of various components of the extracellular matrix (ECM), including the heterogeneous family of glycosaminoglycans (GAGs), which contribute considerably to the ECM architecture as part of the so-called proteoglycans. The GAG's unique sulfation pattern, derived from highly dynamic and specific modification processes, has a massive impact on critical mediators such as cytokines and growth factors. Due to the strong connection between the specific sulfation pattern and GAG function, slight alterations of this pattern are often associated with enormous changes at the cell as well as at the organ level. This review aims to investigate the connection between modifications of GAG sulfation patterns and the wide range of pathological conditions, mainly focusing on a range of chronic diseases of the central nervous system (CNS) as well as the respiratory tract.
Collapse
|
8
|
The influence of X chromosome variants on trait neuroticism. Mol Psychiatry 2021; 26:483-491. [PMID: 30842574 PMCID: PMC7850965 DOI: 10.1038/s41380-019-0388-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Autosomal variants have successfully been associated with trait neuroticism in genome-wide analysis of adequately powered samples. But such studies have so far excluded the X chromosome from analysis. Here, we report genetic association analyses of X chromosome and XY pseudoautosomal single nucleotide polymorphisms (SNPs) and trait neuroticism using UK Biobank samples (N = 405,274). Significant association was found with neuroticism on the X chromosome for 204 markers found within three independent loci (a further 783 were suggestive). Most of the lead neuroticism-related X chromosome variants were located in intergenic regions (n = 397). Involvement of HS6ST2, which has been previously associated with sociability behaviour in the dog, was supported by single SNP and gene-based tests. We found that the amino acid and nucleotide sequences are highly conserved between dogs and humans. From the suggestive X chromosome variants, there were 19 nearby genes which could be linked to gene ontology information. Molecular function was primarily related to binding and catalytic activity; notable biological processes were cellular and metabolic, and nucleic acid binding and transcription factor protein classes were most commonly involved. X-variant heritability of neuroticism was estimated at 0.22% (SE = 0.05) from a full dosage compensation model. A polygenic X-variant score created in an independent sample (maximum N ≈ 7,300) did not predict significant variance in neuroticism, psychological distress, or depressive disorder. We conclude that the X chromosome harbours significant variants influencing neuroticism, and might prove important for other quantitative traits and complex disorders.
Collapse
|
9
|
Mencucci MV, Flores LE, Gagliardino JJ, Abba MC, Maiztegui B. Integrative transcriptomic analysis of pancreatic islets from patients with prediabetes/type 2 diabetes. Diabetes Metab Res Rev 2021; 37:e3359. [PMID: 32500584 DOI: 10.1002/dmrr.3359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
Abstract
AIM To identify new transcriptomic alterations in pancreatic islets associated with metabolic dysfunctions in people with prediabetes (PD)/type 2 diabetes (T2D). MATERIALS AND METHODS We collected information from public data repositories T2D related microarray datasets from pancreatic islets. We identified Differential Expressed Genes (DEGs) in non-diabetic (ND) vs people with T2D in each study. To identify relevant DEGs in T2D, we selected those that varied consistently in the different studies for further meta-analysis and functional enrichment analysis. DEGs were also evaluated at the PD stage. RESULTS A total of seven microarray datasets were collected and analysed to find the DEGs in each study and meta-analysis was performed with 245 ND and 96 T2D cases. We identified 55 transcriptional alterations potentially associated with specific metabolic dysfunctions in T2D. Meta-analysis showed that 87% of transcripts identified as DEGs (48 out of 55) were confirmed as having statistically significant up- or down-modulation in T2D compared to ND. Notably, nine of these DEGs have not been previously reported as dysregulated in pancreatic islets from people with T2D. Consistently, the most significantly enriched pathways were related to the metabolism and/or development/maintenance of β-cells. Eighteen of the 48 selected DEGs (38%) showed an altered expression in islets from people with PD. CONCLUSIONS These results provide new evidence to interpret the pathogenesis of T2D and the transition from PD to T2D. Further studies are necessary to validate its potential use for the development/implementation of efficient new strategies for the prevention, diagnosis/prognosis and treatment of T2D.
Collapse
Affiliation(s)
- María V Mencucci
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CEAS CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Luis E Flores
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CEAS CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Juan J Gagliardino
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CEAS CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Martín C Abba
- CINIBA. Centro de Investigaciones Inmunológicas Básicas y Aplicadas (UNLP-CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Bárbara Maiztegui
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CEAS CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| |
Collapse
|
10
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
A mutant-cell library for systematic analysis of heparan sulfate structure-function relationships. Nat Methods 2018; 15:889-899. [PMID: 30377379 PMCID: PMC6214364 DOI: 10.1038/s41592-018-0189-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS) is a complex linear polysaccharide that modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Here we report the generation of an HS-mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell. We used this library to (1) determine that the strictly defined fine structure of HS, not its overall degree of sulfation, is more important for FGF2-FGFR1 signaling; (2) define the epitope features of commonly used anti-HS phage display antibodies; and (3) delineate the fine inter-regulation networks by which HS genes modify HS and chain length in mammalian cells at a cell-type-specific level. Our mutant-cell library will allow robust and systematic interrogation of the roles and related structures of HS in a cellular context.
Collapse
|
12
|
Shrikanth CB, Sanjana J, Chilkunda ND. One-pot analysis of sulfated glycosaminoglycans. Glycoconj J 2017; 35:129-137. [PMID: 29209879 DOI: 10.1007/s10719-017-9809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022]
Abstract
Routine isolation, estimation, and characterization of glycosaminoglycans (GAGs) is quite challenging. This is compounded by the fact that the analysis is technique-intensive and more often there will be a limitation on the quantity of GAGs available for various structural, functional and biological studies. In such a scenario, the sample which can be made available for estimation and elucidation of disaccharide composition and species composition as well remains a challenge. In the present study, we have determined the feasibility where isolated sulfated GAGs (sGAG) that is estimated by metachromasia is recovered for further analysis. sGAG-DMMB complex formed after estimation of sGAG by DMMB dye-binding assay was decomplexed and sGAGs were recovered. Recovered sGAGs were analysed by cellulose acetate membrane electrophoresis and taken up for disaccharide composition analysis by HPLC after fluorescent labelling. Good recovery of sGAGs after metachromasia was observed in all samples of varying levels of purity by this protocol. Further analysis using cellulose acetate membrane electrophoresis showed good separation between species of sGAGs namely chondroitin/dermatan sulfate and heparan sulfate, with comparatively lesser interference from hyaluronic acid, a non-sulfated GAG. Analysis of recovered sGAGs, specifically heparan sulfate by HPLC showed characteristic disaccharide composition akin to that of GAG obtained by the conventional protocol. Thus, in the present paper, we show that sGAG can be recovered in comparatively purer form after routine estimation and can be used for further analysis thus saving up on the precious sample.
Collapse
Affiliation(s)
- C B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570 020, India
| | - J Sanjana
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570 020, India
| | - Nandini D Chilkunda
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570 020, India.
| |
Collapse
|
13
|
Stanley P. What Have We Learned from Glycosyltransferase Knockouts in Mice? J Mol Biol 2016; 428:3166-3182. [PMID: 27040397 DOI: 10.1016/j.jmb.2016.03.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
There are five major classes of glycan including N- and O-glycans, glycosaminoglycans, glycosphingolipids, and glycophosphatidylinositol anchors, all expressed at the molecular frontier of each mammalian cell. Numerous biological consequences of altering the expression of mammalian glycans are understood at a mechanistic level, but many more remain to be characterized. Mouse mutants with deleted, defective, or misexpressed genes that encode activities necessary for glycosylation have led the way to identifying key functions of glycans in biology. However, with the advent of exome sequencing, humans with mutations in genes involved in glycosylation are also revealing specific requirements for glycans in mammalian development. The aim of this review is to summarize glycosylation genes that are necessary for mouse embryonic development, pathway-specific glycosylation genes whose deletion leads to postnatal morbidity, and glycosylation genes for which effects are mild, but perturbation of the organism may reveal functional consequences. General strategies for generating and interpreting the phenotype of mice with glycosylation defects are discussed in relation to human congenital disorders of glycosylation (CDG).
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
14
|
Wang W, Ju X, Sun Z, Hou W, Yang L, Zhang R. Overexpression of heparan sulfate 6-O-sulfotransferase-2 enhances fibroblast growth factor-mediated chondrocyte growth and differentiation. Int J Mol Med 2015; 36:825-32. [PMID: 26133911 DOI: 10.3892/ijmm.2015.2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/19/2015] [Indexed: 11/05/2022] Open
Abstract
In our previous study, we reported that heparan sulfate 6-O-sulfotransferase‑2 (HS6ST2) plays an important role in the cartilage of patients with osteoarthritis and Kashin-Beck disease and that it regulates aggrecan (Acan) metabolism and the viability of chondrocytes. However, its role in chondrocyte differentiation remains poorly understood. In the present study, we aimed to investigate the role of HS6ST2 in chondrocyte differentiation in vitro using mouse prechondrocytic cells. We found that the overexpression or silencing of HS6ST2 significantly enhanced or abrogated the effects of fibroblast growth factor (FGF)‑2 on chondrocyte growth, respectively. We found that the overexpression of HS6ST2 significantly induced the expression of Acan as well as the amount of total proteoglycans in the prechondrocytic cells in the presence of FGF‑2, whereas the silencing of HS6ST2 caused the opposite effect. Furthermore, the expresssion of FGF‑2‑induced sex‑determining region Y‑type high mobility group box protein 9 (SOX9), a major transcription factor for chondrocyte proliferation and differentiation, was also enhanced or blocked by HS6ST2 overexpression or HS6ST2 knockdown, respectively. Additionally, Wnt/β‑catenin signaling, which inhibited chondrocyte proliferation and differentiation, was suppressed by HS6ST2. Taken together, these data suggest that HS6ST2 plays an important role in regulating chondrocyte growth and differentiation by modulating FGF‑2 signaling, thus indicating that it may be a potential and valuable molecular target for the treatment of skeletal dysplasias, such as dwarfism.
Collapse
Affiliation(s)
- Wei Wang
- Department of Prevention and Health Care, The Third Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xichi Ju
- Department of Neurology, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhengming Sun
- Department of Orthopaedics, The Third Affiliated Hospital of The Medical College of Xi'an Jiaotong University, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Weikun Hou
- Department of Joint Surgery, Xi'an Honghui Hospital, The Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Lifang Yang
- Department of Prevention and Health Care, The Third Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Rui Zhang
- Laboratory of Orthopedics, Xi'an Honghui Hospital, The Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
15
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|