1
|
Huang J, Bu Z, Liu W, Zhou Z, Hu J, Yu J, Wang H, Xu S, Wu P. Cartilage decellularized matrix hydrogel loaded with protocatechualdehyde for targeted epiphycan treatment of osteoarthritis. Mater Today Bio 2024; 27:101124. [PMID: 38994469 PMCID: PMC11237976 DOI: 10.1016/j.mtbio.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic disease, characterized by chronic inflammation and cartilage degradation. This study aims to deepen the understanding of OA's pathophysiology and to develop novel therapeutic strategies. Our study underscores the pivotal role of Epiphycan (EPYC) and the IL-17 signaling pathway in OA. EPYC, an essential extracellular matrix constituent, has been found to exhibit a positive correlation with the severity of OA. We have discovered that EPYC modulates the activation of the IL-17 signaling pathway within chondrocytes by regulating the interaction between IL-17A and its receptor, IL-17RA. This regulatory mechanism underscores the intricate interplay between the extracellular matrix and immune signaling in the pathogenesis of OA Another finding of our study is the therapeutic effectiveness of protocatechualdehyde (PAH) in OA. PAH significantly reduces chondrocyte hypertrophy and supports cartilage tissue recovery.by targets EPYC. To reduce the side effects of orally administered PAH and maintain its effective drug concentration, we have developed a decellularized matrix hydrogel loaded with PAH for intra-articular injection. This novel drug delivery system is advantageous in minimizing drug-related side effects and ensuring sustained release PAH within the joint cavity.
Collapse
Affiliation(s)
- Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ziheng Bu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wei Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zheng Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianhai Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianing Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, Guangzhou 510630, China
| | - Sudan Xu
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
2
|
Yang Z, Li H, Hao J, Mei H, Qiu M, Wang H, Gao M. EPYC functions as a novel prognostic biomarker for pancreatic cancer. Sci Rep 2024; 14:719. [PMID: 38184732 PMCID: PMC10771449 DOI: 10.1038/s41598-024-51478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024] Open
Abstract
Pancreatic cancer (PC) has become a worldwide challenge attributed to its difficult early diagnosis and rapid progression. Treatments continue to be limited besides surgical resection. Hence, we aimed to discover novel biological signatures as clinically effective therapeutic targets for PC via the mining of public tumor databases. We found that epiphycan (EPYC) could function as an independent risk factor to predict the poor prognosis in PC based on integrated bioinformatics analysis. We downloaded associated PC data profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) online websites, then applied the software Rstudio to filter out genes under the strict criteria. After the batch survival analysis using Log-rank test and univariate cox regression, we obtained 39 candidate genes. Subsequently, we narrowed the scope to 8 genes by establishing a Lasso regression model. Eventually, we focused on 2 genes (EPYC and MET) by further building a multivariate cox regression model. Given that the role of EPYC in PC remains obscure, we then performed a series of molecular functional experiments, including RT-qPCR, CCK8, EdU, colony formation, Transwell, western blot, cell live-dead staining, subcutaneous tumor formation, to enhance our insight into its underlying molecular mechanisms. The above results demonstrated that EPYC was highly expressed in PC cell lines and could promote the proliferation of PCs via PI3K-AKT signaling pathway in vivo and in vitro. We arrived at a conclusion that EPYC was expected to be a biological neo-biomarker for PC followed by being a potential therapeutic target.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| | - Honglin Li
- Department of Clinical Laboratory, Dachuan District People's Hospital, Sichuan, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Hanwei Mei
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Minghan Qiu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Huaqing Wang
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China.
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Lall SP, Alsafwani ZW, Batra SK, Seshacharyulu P. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer 2024; 1879:189029. [PMID: 38008263 PMCID: PMC10872503 DOI: 10.1016/j.bbcan.2023.189029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFβ, Wnt/β-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.
Collapse
Affiliation(s)
- Shobhit P Lall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
4
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
5
|
Berdiaki A, Giatagana EM, Tzanakakis G, Nikitovic D. The Landscape of Small Leucine-Rich Proteoglycan Impact on Cancer Pathogenesis with a Focus on Biglycan and Lumican. Cancers (Basel) 2023; 15:3549. [PMID: 37509212 PMCID: PMC10377491 DOI: 10.3390/cancers15143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer development is a multifactorial procedure that involves changes in the cell microenvironment and specific modulations in cell functions. A tumor microenvironment contains tumor cells, non-malignant cells, blood vessels, cells of the immune system, stromal cells, and the extracellular matrix (ECM). The small leucine-rich proteoglycans (SLRPs) are a family of nineteen proteoglycans, which are ubiquitously expressed among mammalian tissues and especially abundant in the ECM. SLRPs are divided into five canonical classes (classes I-III, containing fourteen members) and non-canonical classes (classes IV-V, including five members) based on their amino-acid structural sequence, chromosomal organization, and functional properties. Variations in both the protein core structure and glycosylation status lead to SLRP-specific interactions with cell membrane receptors, cytokines, growth factors, and structural ECM molecules. SLRPs have been implicated in the regulation of cancer growth, motility, and invasion, as well as in cancer-associated inflammation and autophagy, highlighting their crucial role in the processes of carcinogenesis. Except for the class I SLRP decorin, to which an anti-tumorigenic role has been attributed, other SLPRs' roles have not been fully clarified. This review will focus on the functions of the class I and II SLRP members biglycan and lumican, which are correlated to various aspects of cancer development.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
7
|
Sahu B, Shrama DD, Jayakumar GC, Madhan B, Zameer F. A review on an imperative by-product: Glycosaminoglycans- A Holistic approach. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Metschl S, Bruder L, Paloschi V, Jakob K, Reutersberg B, Reeps C, Maegdefessel L, Gee M, Eckstein HH, Pelisek J. Changes in endocan and dermatan sulfate are associated with biomechanical properties of abdominal aortic wall during aneurysm expansion and rupture. Thromb Haemost 2022; 122:1513-1523. [PMID: 35170008 DOI: 10.1055/a-1772-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS The study aimed to assess the potential of proteoglycans (PG) and collagens as serological biomarkers in the abdominal aortic aneurysm (AAA). Furthermore, we investigated the underlying mechano-biological interactions and signaling pathways. METHODS Tissue and serum samples from patients with ruptured AAA (rAAA, n=29), elective AAA (eAAA, n=78), and healthy individuals (n=8) were evaluated by histology, immunohistochemistry and Enzyme-linked Immunosorbent Assay (ELISA), mechanical properties were assessed by tensile tests. Regulatory pathways were determined by membrane-based sandwich immunoassay. RESULTS In AAA samples, collagen type I and III (Col1, Col3), chondroitin sulfate (CS), and dermatan sulfate (DS) were significantly increased compared to controls (3.0-, 3.2-, 1.3-, and 53-fold; p<0.01). Col1 and endocan were also elevated in the serum of AAA patients (3.6- and 6.0-fold; p<0.01), while DS was significantly decreased (2.5-fold; p<0.01). Histological scoring showed increased total PGs and focal accumulation in rAAA compared to eAAA. Tissue β-stiffness was higher in rAAA compared to eAAA (2.0-fold, p=0.02). Serum Col1 correlated with maximum tensile force and failure tension (r=0.448 and 0.333; p<0.01 and =0.02), tissue endocan correlated with α-stiffness (r=0.340; p<0.01). Signaling pathways in AAA were associated with ECM synthesis and VSMC proliferation. In particular, Src family kinases, PDGF- and EGF-related proteins seem to be involved. CONCLUSIONS Our findings reveal a structural association between collagen and PGs and their response to changes in mechanical loads in AAA. Particularly Col1 and endocan reflect the mechano-biological conditions of the aortic wall also in the patient's serum and might serve for AAA risk stratification.
Collapse
Affiliation(s)
- Susanne Metschl
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Lukas Bruder
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Valentina Paloschi
- Vascular and Endovascular surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Katharina Jakob
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | | | - Christian Reeps
- Visceral, Thoracic, and Vascular Surgery, Medizinische Fakultät an der TU-Dresden, Dresden, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Michael Gee
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Hans-Henning Eckstein
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Jaroslav Pelisek
- Experimental Vascular Surgery, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Deng L, Wang D, Chen S, Hu W, Zhang R. Epiphycan Predicts Poor Outcomes and Promotes Metastasis in Ovarian Cancer. Front Oncol 2021; 11:653782. [PMID: 34888227 PMCID: PMC8650094 DOI: 10.3389/fonc.2021.653782] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family is widely expressed in extracellular matrix and aggravates tumor progression. However, epiphycan (EPYC), as a member of the SLRPs family, its biological function in cancer has not been confirmed. Thus, we aimed to clarify the role of EPYC in progression of ovarian cancer (OC), and further analyze the molecular mechanisms implicated in tumorigenesis. Here, we analyzed the differential expression genes of GSE38734, including 4 matched primary OC and metastatic tissues. We obtained OC RNAseqs data from the Cancer Genome Atlas (TCGA) and analyzed the correlation between EPYC expression and OC staging, pathological grading, etc. The expression of EPYC in OC and normal ovarian tissues was compared in Oncomine website. We used siRNAs to interfere the expression of EPYC in ovarian cancer cell line SKOV3. Scratch test, transwell-matrigel chamber, CCK8 assay were used to detect the changes of SKOV3 migration, invasion and proliferation ability after EPYC was interfered. We used R software to make GO and KEGG analysis of related genes of EPYC. We used the Hitpredict website to predict interacting proteins. The results showed that the expression of EPYC in metastatic ovarian cancer was higher than primary ovarian cancer, and that in primary cancer was higher than normal ovaries. After siRNA interferes with EPYC expression, the migration, invasion and proliferation of SKOV3 cells were weakened. EPYC mainly played a role in ECM organization, and involved in PI3K/Akt, focal adhesion signaling pathways. EPYC might interact with PLCG2 and CRK, and be involved in signal transduction.
Collapse
Affiliation(s)
- Lu Deng
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dandan Wang
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Shouzhen Chen
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Weiguo Hu
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
11
|
Kram V, Shainer R, Jani P, Meester JAN, Loeys B, Young MF. Biglycan in the Skeleton. J Histochem Cytochem 2020; 68:747-762. [PMID: 32623936 DOI: 10.1369/0022155420937371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small leucine rich proteoglycans (SLRPs), including Biglycan, have key roles in many organ and tissue systems. The goal of this article is to review the function of Biglycan and other related SLRPs in mineralizing tissues of the skeleton. The review is divided into sections that include Biglycan's role in structural biology, signaling, craniofacial and long bone homeostasis, remodeled skeletal tissues, and in human genetics. While many cell types in the skeleton are now known to be affected by Biglycan, there are still unanswered questions about its mechanism of action(s).
Collapse
Affiliation(s)
- Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Josephina A N Meester
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| |
Collapse
|
12
|
Naka Y, Kitano S, Irie S, Matsusaki M. Wholly vascularized millimeter-sized engineered tissues by cell-sized microscaffolds. Mater Today Bio 2020; 6:100054. [PMID: 32478317 PMCID: PMC7248423 DOI: 10.1016/j.mtbio.2020.100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022] Open
Abstract
The in vitro fabrication of wholly vascularized millimeter-sized engineered tissues is still a key challenge in the tissue engineering field. Recently we reported a unique approach 'sedimentary culture' using a collagen microfiber (CMF) to fabricate large-scale engineered tissues. The millimeter-sized tissues with high extracellular matrix (ECM) density were easily obtained by centrifugation of cells and CMFs and subsequent cultivation because the CMFs acted as a micrometer-sized scaffold. However, cell distribution in the obtained tissues was not homogeneous because of the different sedimentation velocity of the cells and CMFs because of their size difference. Here we report the fabrication of wholly vascularized millimeter-sized engineered tissues using cell-sized CMFs. To avoid dissolving, vacuum drying was performed at 200 °C for 24 h for thermal crosslinking of primary amine groups of type I collagen. The 200- and 20-μm-sized CMFs (CMF-200 and CMF-20) were obtained by homogenization and subsequent sonication of the crosslinked collagen. Interestingly, the CMF-20 indicated a similar sedimentation velocity with cells because of their same size range, thus uniform millimeter-sized tissue with homogeneous cell distribution was fabricated by the sedimentary culture method. To form a whole blood capillary structure in the tissues, fibronectin (FN) was adsorbed on the surface of CMF-20 to stimulate endothelial cell migration. The distribution of the blood capillary network in 1.6-mm-sized tissues was markedly improved by FN-adsorbed CMF-20 (FN-CMF-20). Sedimentary culture using FN-CMF-20 will create new opportunities in tissue engineering for the in vitro fabrication of wholly vascularized millimeter-sized engineered tissues.
Collapse
Affiliation(s)
- Y. Naka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - S. Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - S. Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - M. Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
14
|
Andreev EA, Komkova MA, Nikitina VN, Karyakin AA. Reagentless Impedimetric Sensors Based on Aminophenylboronic Acids. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Maksimenko AV, Beabealashvili RS. Effect of the hyaluronidase microe nvironment on the enzyme structure–function relationship and computational study of the in silico molecular docking of chondroitin sulfate and heparin short fragments to hyaluronidase. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Hanada Y, Nakamura Y, Ishida Y, Takimoto Y, Taniguchi M, Ozono Y, Koyama Y, Morihana T, Imai T, Ota Y, Sato T, Inohara H, Shimada S. Epiphycan is specifically expressed in cochlear supporting cells and is necessary for normal hearing. Biochem Biophys Res Commun 2017; 492:379-385. [DOI: 10.1016/j.bbrc.2017.08.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
|
17
|
Zhang M, Yang H, Lu L, Wan X, Zhang J, Zhang H, Liu X, Huang X, Xiao G, Wang M. Matrix replenishing by BMSCs is beneficial for osteoarthritic temporomandibular joint cartilage. Osteoarthritis Cartilage 2017; 25:1551-1562. [PMID: 28532603 DOI: 10.1016/j.joca.2017.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The present goal was to explore whether matrix replenishment is the primary requirement for osteoarthritic (OA) cartilage. METHODS Cells isolated from the superficial and deep zone cartilage of a pig temporomandibular joint (TMJ) were exposed to fluid flow shear stress (FFSS). Differences in matrix production and cellular differentiation were detected. Unilateral anterior crossbite (UAC) was applied to C57BL/6J female mice. Green fluorescent protein-labeled exogenous bone marrow stromal cells (GFP-BMSCs) were injected weekly into TMJs, starting from 3 weeks of UAC stimulation and continuing for 4-, 8- and 12-weeks. Another GFP-BMSCs injection UAC group stopped receiving injections for 4-weeks after 8-weeks of injections. Assessments were focused on morphological alterations in UAC mouse TMJ cartilage, the expression levels of DAP3, an anoikis marker, CD163, a scavenger receptor family member, and ki67, a proliferation indicator. RESULTS FFSS down-regulated type-II collagen expression but stimulated terminal differentiation in cells isolated from deep zone cartilage. It down-regulated aggrecan expression but up-regulated type I collagen in cells isolated from both superficial and deep zones. UAC caused matrix loss and anoikis and enhanced scavenging activity in deep zone chondrocytes without affecting cell proliferation. Superficial fibrillation was obvious in the late stage. Weekly injections of BMSCs largely restored these changes. The implanted BMSCs expressed a high level of CD163 protein but did not show remarkable cell proliferation. Terminating the supply of exogenous BMSCs reversed the restorative effects. CONCLUSIONS Scavenging the degraded matrix and replenishing the fibrosis-developmental matrix are the primary requirements for the repair of OA cartilage.
Collapse
Affiliation(s)
- M Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - H Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - L Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Wan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - J Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - H Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Huang
- Department of Biology, The Fourth Military Medical University, 17 Changle West Road, Xi'an, China
| | - G Xiao
- Department of Biology, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China; Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - M Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China.
| |
Collapse
|
18
|
Tatara Y, Suto S, Sasaki Y, Endo M. Preparation of proteoglycan from salmon nasal cartilage under nondenaturing conditions. Biosci Biotechnol Biochem 2015; 79:1615-8. [PMID: 25988837 DOI: 10.1080/09168451.2015.1044933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Salmon nasal cartilage was micronized in ethanol using a rotor-stator homogenizer for the high yield of proteoglycan extraction. This procedure also brought about depressing the degradation of proteoglycan and the contamination of collagens. Proteoglycan was extracted by 4 M magnesium chloride and isolated by anion-exchange chromatography. The gel filtration HPLC and the antibody reactivity showed that the core protein was intact.
Collapse
Affiliation(s)
- Yota Tatara
- a Department of Glycotechnology, Center for Advanced Medical Research , Hirosaki University Graduate School of Medicine , Hirosaki , Japan
| | | | | | | |
Collapse
|