1
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
2
|
Olek AT, Rushton PS, Kihara D, Ciesielski P, Aryal UK, Zhang Z, Stauffacher CV, McCann MC, Carpita NC. Essential amino acids in the Plant-Conserved and Class-Specific Regions of cellulose synthases. PLANT PHYSIOLOGY 2023; 191:142-160. [PMID: 36250895 PMCID: PMC9806608 DOI: 10.1093/plphys/kiac479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/24/2022] [Indexed: 05/05/2023]
Abstract
The Plant-Conserved Region (P-CR) and the Class-Specific Region (CSR) are two plant-unique sequences in the catalytic core of cellulose synthases (CESAs) for which specific functions have not been established. Here, we used site-directed mutagenesis to replace amino acids and motifs within these sequences predicted to be essential for assembly and function of CESAs. We developed an in vivo method to determine the ability of mutated CesA1 transgenes to complement an Arabidopsis (Arabidopsis thaliana) temperature-sensitive root-swelling1 (rsw1) mutant. Replacement of a Cys residue in the CSR, which blocks dimerization in vitro, rendered the AtCesA1 transgene unable to complement the rsw1 mutation. Examination of the CSR sequences from 33 diverse angiosperm species showed domains of high-sequence conservation in a class-specific manner but with variation in the degrees of disorder, indicating a nonredundant role of the CSR structures in different CESA isoform classes. The Cys residue essential for dimerization was not always located in domains of intrinsic disorder. Expression of AtCesA1 transgene constructs, in which Pro417 and Arg453 were substituted for Ala or Lys in the coiled-coil of the P-CR, were also unable to complement the rsw1 mutation. Despite an expected role for Arg457 in trimerization of CESA proteins, AtCesA1 transgenes with Arg457Ala mutations were able to fully restore the wild-type phenotype in rsw1. Our data support that Cys662 within the CSR and Pro417 and Arg453 within the P-CR of Arabidopsis CESA1 are essential residues for functional synthase complex formation, but our data do not support a specific role for Arg457 in trimerization in native CESA complexes.
Collapse
Affiliation(s)
- Anna T Olek
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Phillip S Rushton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Peter Ciesielski
- Renewable Resources & Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Uma K Aryal
- Bindley Biosciences Center, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| |
Collapse
|
3
|
Nayeri S, Baghban Kohnehrouz B, Ahmadikhah A, Mahna N. CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1197-1212. [PMID: 35266285 PMCID: PMC9129088 DOI: 10.1111/pbi.13803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 05/21/2023]
Abstract
Cellulose is the most abundant unique biopolymer in nature with widespread applications in bioenergy and high-value bioproducts. The large transmembrane-localized cellulose synthase (CESA) complexes (CSCs) play a pivotal role in the biosynthesis and orientation of the para-crystalline cellulose microfibrils during secondary cell wall (SCW) deposition. However, the hub CESA subunit with high potential homo/heterodimerization capacity and its functional effects on cell wall architecture, cellulose crystallinity, and saccharification efficiency remains unclear. Here, we reported the highly potent binding site containing four residues of Pro435, Trp436, Pro437, and Gly438 in the plant-conserved region (P-CR) of PalCESA4 subunit, which are involved in the CESA4-CESA8 heterodimerization. The CRISPR/Cas9-knockout mutagenesis in the predicted binding site results in physiological abnormalities, stunt growth, and deficient roots. The homozygous double substitution of W436Q and P437S and heterozygous double deletions of W436 and P437 residues potentially reduced CESA4-binding affinity resulting in normal roots, 1.5-2-fold higher plant growth and cell wall regeneration rates, 1.7-fold thinner cell wall, high hemicellulose content, 37%-67% decrease in cellulose content, high cellulose DP, 25%-37% decrease in cellulose crystallinity, and 50% increase in saccharification efficiency. The heterozygous deletion of W436 increases about 2-fold CESA4 homo/heterodimerization capacity led to the 50% decrease in plant growth and increase in cell walls thickness, cellulose content (33%), cellulose DP (20%), and CrI (8%). Our findings provide a strategy for introducing commercial CRISPR/Cas9-mediated bioengineered poplars with promising cellulose applications. We anticipate our results could create an engineering revolution in bioenergy and cellulose-based nanomaterial technologies.
Collapse
Affiliation(s)
- Shahnoush Nayeri
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Asadollah Ahmadikhah
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Nasser Mahna
- Department of Horticultural SciencesFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
4
|
Burris JN, Makarem M, Slabaugh E, Chaves A, Pierce ET, Lee J, Kiemle SN, Kwansa AL, Singh A, Yingling YG, Roberts AW, Kim SH, Haigler CH. Phenotypic effects of changes in the FTVTxK region of an Arabidopsis secondary wall cellulose synthase compared with results from analogous mutations in other isoforms. PLANT DIRECT 2021; 5:e335. [PMID: 34386691 PMCID: PMC8341023 DOI: 10.1002/pld3.335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 05/21/2023]
Abstract
Understanding protein structure and function relationships in cellulose synthase (CesA), including divergent isomers, is an important goal. Here, we report results from mutant complementation assays that tested the ability of sequence variants of AtCesA7, a secondary wall CesA of Arabidopsis thaliana, to rescue the collapsed vessels, short stems, and low cellulose content of the irx3-1 AtCesA7 null mutant. We tested a catalytic null mutation and seven missense or small domain changes in and near the AtCesA7 FTVTSK motif, which lies near the catalytic domain and may, analogously to bacterial CesA, exist within a substrate "gating loop." A low-to-high gradient of rescue occurred, and even inactive AtCesA7 had a small positive effect on stem cellulose content but not stem elongation. Overall, secondary wall cellulose content and stem length were moderately correlated, but the results were consistent with threshold amounts of cellulose supporting particular developmental processes. Vibrational sum frequency generation microscopy allowed tissue-specific analysis of cellulose content in stem xylem and interfascicular fibers, revealing subtle differences between selected genotypes that correlated with the extent of rescue of the collapsing xylem phenotype. Similar tests on PpCesA5 from the moss Physcomitrium (formerly Physcomitrella) patens helped us to synergize the AtCesA7 results with prior results on AtCesA1 and PpCesA5. The cumulative results show that the FTVTxK region is important for the function of an angiosperm secondary wall CesA as well as widely divergent primary wall CesAs, while differences in complementation results between isomers may reflect functional differences that can be explored in further work.
Collapse
Affiliation(s)
- Jason N. Burris
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Mohamadamin Makarem
- Department of Chemical Engineering and Materials Research InstitutePennsylvania State University, University ParkState CollegePAUSA
| | - Erin Slabaugh
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Arielle Chaves
- Department of Biological SciencesUniversity of Rhode IslandKingstonRIUSA
| | - Ethan T. Pierce
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jongcheol Lee
- Department of Chemical Engineering and Materials Research InstitutePennsylvania State University, University ParkState CollegePAUSA
| | - Sarah N. Kiemle
- Department of BiologyPennsylvania State University, University ParkState CollegePAUSA
| | - Albert L. Kwansa
- Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighNCUSA
| | - Abhishek Singh
- Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighNCUSA
| | - Yaroslava G. Yingling
- Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighNCUSA
| | - Alison W. Roberts
- Department of Biological SciencesUniversity of Rhode IslandKingstonRIUSA
| | - Seong H. Kim
- Department of Chemical Engineering and Materials Research InstitutePennsylvania State University, University ParkState CollegePAUSA
| | - Candace H. Haigler
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
5
|
Daras G, Templalexis D, Avgeri F, Tsitsekian D, Karamanou K, Rigas S. Updating Insights into the Catalytic Domain Properties of Plant Cellulose synthase ( CesA) and Cellulose synthase-like ( Csl) Proteins. Molecules 2021; 26:molecules26144335. [PMID: 34299608 PMCID: PMC8306620 DOI: 10.3390/molecules26144335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
The wall is the last frontier of a plant cell involved in modulating growth, development and defense against biotic stresses. Cellulose and additional polysaccharides of plant cell walls are the most abundant biopolymers on earth, having increased in economic value and thereby attracted significant interest in biotechnology. Cellulose biosynthesis constitutes a highly complicated process relying on the formation of cellulose synthase complexes. Cellulose synthase (CesA) and Cellulose synthase-like (Csl) genes encode enzymes that synthesize cellulose and most hemicellulosic polysaccharides. Arabidopsis and rice are invaluable genetic models and reliable representatives of land plants to comprehend cell wall synthesis. During the past two decades, enormous research progress has been made to understand the mechanisms of cellulose synthesis and construction of the plant cell wall. A plethora of cesa and csl mutants have been characterized, providing functional insights into individual protein isoforms. Recent structural studies have uncovered the mode of CesA assembly and the dynamics of cellulose production. Genetics and structural biology have generated new knowledge and have accelerated the pace of discovery in this field, ultimately opening perspectives towards cellulose synthesis manipulation. This review provides an overview of the major breakthroughs gathering previous and recent genetic and structural advancements, focusing on the function of CesA and Csl catalytic domain in plants.
Collapse
|
6
|
Allen H, Wei D, Gu Y, Li S. A historical perspective on the regulation of cellulose biosynthesis. Carbohydr Polym 2021; 252:117022. [DOI: 10.1016/j.carbpol.2020.117022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/19/2023]
|
7
|
Barnes WJ, Anderson CT. Cytosolic invertases contribute to cellulose biosynthesis and influence carbon partitioning in seedlings of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:956-974. [PMID: 29569779 DOI: 10.1111/tpj.13909] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 05/07/2023]
Abstract
In plants, UDP-glucose is the direct precursor for cellulose biosynthesis, and can be converted into other NDP-sugars required for the biosynthesis of wall matrix polysaccharides. UDP-glucose is generated from sucrose by two distinct metabolic pathways. The first pathway is the direct conversion of sucrose to UDP-glucose and fructose by sucrose synthase. The second pathway involves sucrose hydrolysis by cytosolic invertase (CINV), conversion of glucose to glucose-6-phosphate and glucose-1-phosphate, and UDP-glucose generation by UDP-glucose pyrophosphorylase (UGP). Previously, Barratt et al. (Proc. Natl Acad. Sci. USA, 106, 2009 and 13124) have found that an Arabidopsis double mutant lacking CINV1 and CINV2 displayed drastically reduced growth. Whether this reduced growth is due to deficient cell wall production caused by limited UDP-glucose supply, pleiotropic effects, or both, remained unresolved. Here, we present results indicating that the CINV/UGP pathway contributes to anisotropic growth and cellulose biosynthesis in Arabidopsis. Biochemical and imaging data demonstrate that cinv1 cinv2 seedlings are deficient in UDP-glucose production, exhibit abnormal cellulose biosynthesis and microtubule properties, and have altered cellulose organization without substantial changes to matrix polysaccharide composition, suggesting that the CINV/UGP pathway is a key metabolic route to UDP-glucose synthesis in Arabidopsis. Furthermore, differential responses of cinv1 cinv2 seedlings to exogenous sugar supplementation support a function of CINVs in influencing carbon partitioning in Arabidopsis. From these data and those of previous studies, we conclude that CINVs serve central roles in cellulose biosynthesis and carbon allocation in Arabidopsis.
Collapse
Affiliation(s)
- William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Xiao C, Anderson CT. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences. PLANT SIGNALING & BEHAVIOR 2016; 11:e1215396. [PMID: 27611066 PMCID: PMC5155451 DOI: 10.1080/15592324.2016.1215396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 05/18/2023]
Abstract
In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.
Collapse
Affiliation(s)
- Chaowen Xiao
- Department of Biology, The Pennsylvania State
University, University Park, PA, USA
- Center for Lignocellulose Structure and
Formation, The Pennsylvania State University, University Park, PA,
USA
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State
University, University Park, PA, USA
- Center for Lignocellulose Structure and
Formation, The Pennsylvania State University, University Park, PA,
USA
- CONTACT Charles T. Anderson
| |
Collapse
|