1
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Bergonzo C, Hoopes JT, Kelman Z, Gallagher DT. Effects of glycans and hinge on dynamics in the IgG1 Fc. J Biomol Struct Dyn 2023:1-9. [PMID: 37897185 PMCID: PMC11055941 DOI: 10.1080/07391102.2023.2270749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
The crystallizable fragment (Fc) domain of immunoglobulin subclass IgG1 antibodies is engineered for a wide variety of pharmaceutical applications. Two important structural variables in Fc constructs are the hinge region connecting the Fc to the antigen binding fragments (Fab) and the glycans present in various glycoforms. These components affect receptor binding interactions that mediate immune activation. To design new antibody drugs, a robust in silico method for linking stability to structural changes is necessary. In this work, all-atom simulations were used to compare the dynamic behavior of the four structural variants arising from presence or absence of the hinge and glycans. We expressed the simplest of these constructs, the 'minimal Fc' with no hinge and no glycans, in Escherichia coli and report its crystal structure. The 'maximal Fc' that includes full hinge and G0F/G1F glycans is based on a previously reported structure, Protein Data Bank (PDB) ID: 5VGP. These, along with two intermediate structures (with only the glycans or with only the hinge) were used to independently measure the stability effects of the two structural variables using umbrella sampling simulations. Principal component analysis (PCA) was used to determine free energy effects along the Fc's dominant mode of motion. This work provides a comprehensive picture of the effects of hinge and glycans on Fc dynamics and stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Christina Bergonzo
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - J. Todd Hoopes
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - Zvi Kelman
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - D. Travis Gallagher
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| |
Collapse
|
3
|
Zhang Y, Lai Z, Yuan Z, Qu B, Li Y, Yan W, Li B, Yu W, Cai S, Zhang H. Serum disease-specific IgG Fc glycosylation as potential biomarkers for nonproliferative diabetic retinopathy using mass spectrometry. Exp Eye Res 2023:109555. [PMID: 37364630 DOI: 10.1016/j.exer.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE To explore the potential of serum disease-specific immunoglobulin G (DSIgG) glycosylation as a biomarker for the diagnosis of nonproliferative diabetic retinopathy (NPDR). METHODS A total of 387 consecutive diabetic patients presenting in an eye clinic without proliferative diabetic retinopathy (DR) were included and divided into those with nondiabetic retinopathy (NDR) (n = 181) and NPDR (n = 206) groups. Serum was collected from all patients for DSIgG separation. The enriched glycopeptides of the tryptic digests of DSIgG were detected using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Patients were randomly divided into discovery and validation sets (1:1). The differences in glycopeptide ratios between the groups were compared by using Student's t-test or the Mann-Whitney U test. The predictive ability of the model was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS DSIgG1 G1FN/G0FN, G2N/G2, G2FN/G2N and DSIgG2 G1F/G0F, G1FN/G0FN, G2N/G1N, G2S/G2 were significantly different between NDR and NPDR patients (p < 0.05) in both the discovery and validation sets. The prediction model that was built comprising the seven glycopeptide ratios showed good NPDR prediction performance with an AUC of 0.85 in the discovery set and 0.87 in the validation set. CONCLUSION DSIgG Fc N-glycosylation ratios were associated with NPDR and can be used as potential biomarkers for the early diagnosis of DR.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Ophthalmology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhizhen Lai
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhonghao Yuan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Qu
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, Shandong, China
| | - Yan Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, Shandong, China
| | - Wenyu Yan
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Shanjun Cai
- Department of Ophthalmology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hua Zhang
- Continuous Education College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Rollins Z, Harris B, George S, Faller R. A molecular dynamics investigation of N-glycosylation effects on T-cell receptor kinetics. J Biomol Struct Dyn 2022:1-10. [PMID: 35763488 DOI: 10.1080/07391102.2022.2091660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The binding interaction between the T-cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) is modulated by several factors (known and unknown), however, investigations into effects of glycosylation are limited. A fully glycosylated computational model of the TCR bound to the pMHC is developed to investigate the effects of glycosylation on dissociation kinetics from the pMHC. Here, we examine the effects of N-glycosylation on TCR-pMHC bond strength using steered molecular dynamic simulations. N-glycosylation is a post-translational modification that adds sugar moieties to molecules and can modulate the activity of several immune molecules. Using a TCR-pMHC pair found in melanoma as a case study, our study demonstrates that N-glycosylation of the TCR-pMHC alters the proteins' conformation; increases the bond lifetime; and increases the number of hydrogen bonds and Lennard-Jones Contacts involved in the TCR-pMHC bond. We find that weak glycan-protein or glycan-glycan interactions impact the equilibrated structure of the TCR and pMHC leading to an increase in the overall bond strength of the TCR-pMHC complex including the duration and energetic strength under constant load. These results indicate that N-glycosylation plays an important role in the TCR-pMHC bond and should be considered in future computational and experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zachary Rollins
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| | - Bradley Harris
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Fadda E. Molecular simulations of complex carbohydrates and glycoconjugates. Curr Opin Chem Biol 2022; 69:102175. [PMID: 35728307 DOI: 10.1016/j.cbpa.2022.102175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Complex carbohydrates (glycans) are the most abundant and versatile biopolymers in nature. The broad diversity of biochemical functions that carbohydrates cover is a direct consequence of the variety of 3D architectures they can adopt, displaying branched or linear arrangements, widely ranging in sizes, and with the highest diversity of building blocks of any other natural biopolymer. Despite this unparalleled complexity, a common denominator can be found in the glycans' inherent flexibility, which hinders experimental characterization, but that can be addressed by high-performance computing (HPC)-based molecular simulations. In this short review, I present and discuss the state-of-the-art of molecular simulations of complex carbohydrates and glycoconjugates, highlighting methodological strengths and weaknesses, important insights through emblematic case studies, and suggesting perspectives for future developments.
Collapse
Affiliation(s)
- Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Ireland.
| |
Collapse
|
6
|
Spencer DA, Goldberg BS, Pandey S, Ordonez T, Dufloo J, Barnette P, Sutton WF, Henderson H, Agnor R, Gao L, Bruel T, Schwartz O, Haigwood NL, Ackerman ME, Hessell AJ. Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nat Commun 2022; 13:662. [PMID: 35115533 PMCID: PMC8814042 DOI: 10.1038/s41467-022-28250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C’) activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78–88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C’ functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C’ functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy. While antibodies neutralize HIV via Fab recognition of viral surface antigens, antibody Fc domains mediate effector functions, including antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC), and complement (C') activity. Here, Spencer et al. modify bNAb 10E8v4 to enhance C'-mediated potency in SHIV challenged rhesus macaques to probe its function in protection, showing that in the absence of neutralization, enhancing C' activities in vitro adds no value toward reducing viremia in either blood or tissue.
Collapse
Affiliation(s)
- David A Spencer
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Absci Corp, 1810 SE Mill Plain Blvd., Vancouver, WA, 98683, USA
| | | | - Shilpi Pandey
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Institute for Integrative Systems Biology, University of Valencia-CSIC, Calle Catedràtic Agustín Escardino Benlloch 9, 46980, Paterna, Valencia, Spain
| | - Philip Barnette
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - William F Sutton
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Heidi Henderson
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rebecca Agnor
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lina Gao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
7
|
Insights into substrate recognition and specificity for IgG by Endoglycosidase S2. PLoS Comput Biol 2021; 17:e1009103. [PMID: 34310592 PMCID: PMC8354483 DOI: 10.1371/journal.pcbi.1009103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 06/30/2021] [Indexed: 01/15/2023] Open
Abstract
Antibodies bind foreign antigens with high affinity and specificity leading to their neutralization and/or clearance by the immune system. The conserved N-glycan on IgG has significant impact on antibody effector function, with the endoglycosidases of Streptococcus pyogenes deglycosylating the IgG to evade the immune system, a process catalyzed by the endoglycosidase EndoS2. Studies have shown that two of the four domains of EndoS2, the carbohydrate binding module (CBM) and the glycoside hydrolase (GH) domain are critical for catalytic activity. To yield structural insights into contributions of the CBM and the GH domains as well as the overall flexibility of EndoS2 to the proteins’ catalytic activity, models of EndoS2-Fc complexes were generated through enhanced-sampling molecular-dynamics (MD) simulations and site-identification by ligand competitive saturation (SILCS) docking followed by reconstruction and multi-microsecond MD simulations. Modeling results predict that EndoS2 initially interacts with the IgG through its CBM followed by interactions with the GH yielding catalytically competent states. These may involve the CBM and GH of EndoS2 simultaneously interacting with either the same Fc CH2/CH3 domain or individually with the two Fc CH2/CH3 domains, with EndoS2 predicted to assume closed conformations in the former case and open conformations in the latter. Apo EndoS2 is predicted to sample both the open and closed states, suggesting that either complex can directly form following initial IgG-EndoS2 encounter. Interactions of the CBM and GH domains with the IgG are predicted to occur through both its glycan and protein regions. Simulations also predict that the Fc glycan can directly transfer from the CBM to the GH, facilitating formation of catalytically competent complexes and how the 734 to 751 loop on the CBM can facilitate extraction of the glycan away from the Fc CH2/CH3 domain. The predicted models are compared and consistent with Hydrogen/Deuterium Exchange data. In addition, the complex models are consistent with the high specificity of EndoS2 for the glycans on IgG supporting the validity of the predicted models. The pathogen Streptococcus pyogenes uses the endoglycosidases S and S2 to cleave the glycans on the Fc portion of IgG antibodies, leading to a decreased cytotoxicity of the antibodies, thereby evading the host immune response. To identify potential structures of the complex of EndoS2 with IgG that could lead to the catalytic hydrolysis of the IgG glycan, molecular modeling and molecular dynamics simulations were applied. The resulting structural models predict that EndoS2 initially interacts through its carbohydrate binding module (CBM) with the IgG with subsequent interactions with the catalytic glycoside hydrolase (GH) domain yielding stable complexes. In the modeled complexes the CBM and the GH interact either simultaneously with the same Fc CH2/CH3 domain or with the two individual Fc CH2/CH3 domains separately to yield potentially catalytically competent species. In addition, apo EndoS2 is shown to assume both open and closed conformations allowing it to directly form either type of complex from which deglycosylation of either mono- or diglycosylated IgG species may occur.
Collapse
|
8
|
Verkhivker GM, Di Paola L. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. J Phys Chem B 2021; 125:850-873. [PMID: 33448856 PMCID: PMC7839160 DOI: 10.1021/acs.jpcb.0c10637] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Indexed: 12/13/2022]
Abstract
The rapidly growing body of structural and biochemical studies of the SARS-CoV-2 spike glycoprotein has revealed a variety of distinct functional states with radically different arrangements of the receptor-binding domain, highlighting a remarkable function-driven conformational plasticity and adaptability of the spike proteins. In this study, we examined molecular mechanisms underlying conformational and dynamic changes in the SARS-CoV-2 spike mutant trimers through the lens of dynamic analysis of allosteric interaction networks and atomistic modeling of signal transmission. Using an integrated approach that combined coarse-grained molecular simulations, protein stability analysis, and perturbation-based modeling of residue interaction networks, we examined how mutations in the regulatory regions of the SARS-CoV-2 spike protein can differentially affect dynamics and allosteric signaling in distinct functional states. The results of this study revealed key functional regions and regulatory centers that govern collective dynamics, allosteric interactions, and control signal transmission in the SARS-CoV-2 spike proteins. We found that the experimentally confirmed regulatory hotspots that dictate dynamic switching between conformational states of the SARS-CoV-2 spike protein correspond to the key hinge sites and global mediating centers of the allosteric interaction networks. The results of this study provide a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 spike proteins showing that mutations at the key regulatory positions can differentially modulate distribution of states and determine topography of signal communication pathways operating through state-specific cascades of control switch points. This analysis provides a plausible strategy for allosteric probing of the conformational equilibrium and therapeutic intervention by targeting specific hotspots of allosteric interactions and communications in the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
9
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Verkhivker GM. Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins. J Proteome Res 2020; 19:4587-4608. [PMID: 33006900 PMCID: PMC7640983 DOI: 10.1021/acs.jproteome.0c00654] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 12/13/2022]
Abstract
The development of computational strategies for the quantitative characterization of the functional mechanisms of SARS-CoV-2 spike proteins is of paramount importance in efforts to accelerate the discovery of novel therapeutic agents and vaccines combating the COVID-19 pandemic. Structural and biophysical studies have recently characterized the conformational landscapes of the SARS-CoV-2 spike glycoproteins in the prefusion form, revealing a spectrum of stable and more dynamic states. By employing molecular simulations and network modeling approaches, this study systematically examined functional dynamics and identified the regulatory centers of allosteric interactions for distinct functional states of the wild-type and mutant variants of the SARS-CoV-2 prefusion spike trimer. This study presents evidence that the SARS-CoV-2 spike protein can function as an allosteric regulatory engine that fluctuates between dynamically distinct functional states. Perturbation-based modeling of the interaction networks revealed a key role of the cross-talk between the effector hotspots in the receptor binding domain and the fusion peptide proximal region of the SARS-CoV-2 spike protein. The results have shown that the allosteric hotspots of the interaction networks in the SARS-CoV-2 spike protein can control the dynamic switching between functional conformational states that are associated with virus entry to the host receptor. This study offers a useful and novel perspective on the underlying mechanisms of the SARS-CoV-2 spike protein through the lens of allosteric signaling as a regulatory apparatus of virus transmission that could open up opportunities for targeted allosteric drug discovery against SARS-CoV-2 proteins and contribute to the rapid response to the current and potential future pandemic scenarios.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate
Program in Computational and Data Sciences, Keck Center for Science
and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
11
|
Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci Rep 2020; 10:14991. [PMID: 32929138 PMCID: PMC7490396 DOI: 10.1038/s41598-020-71748-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface.
Collapse
Affiliation(s)
- Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - David Montgomery
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Keigo Ito
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Bernardi A, Huang Y, Harris B, Xiong Y, Nandi S, McDonald KA, Faller R. Development and simulation of fully glycosylated molecular models of ACE2-Fc fusion proteins and their interaction with the SARS-CoV-2 spike protein binding domain. PLoS One 2020; 15:e0237295. [PMID: 32756606 PMCID: PMC7406073 DOI: 10.1371/journal.pone.0237295] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/23/2020] [Indexed: 01/12/2023] Open
Abstract
We develop fully glycosylated computational models of ACE2-Fc fusion proteins which are promising targets for a COVID-19 therapeutic. These models are tested in their interaction with a fragment of the receptor-binding domain (RBD) of the Spike Protein S of the SARS-CoV-2 virus, via atomistic molecular dynamics simulations. We see that some ACE2 glycans interact with the S fragments, and glycans are influencing the conformation of the ACE2 receptor. Additionally, we optimize algorithms for protein glycosylation modelling in order to expedite future model development. All models and algorithms are openly available.
Collapse
Affiliation(s)
- Austen Bernardi
- Chemical Engineering, UC Davis, Davis, CA, United States of America
| | - Yihan Huang
- Materials Science and Engineering, UC Davis, Davis, CA, United States of America
| | - Bradley Harris
- Chemical Engineering, UC Davis, Davis, CA, United States of America
| | - Yongao Xiong
- Chemical Engineering, UC Davis, Davis, CA, United States of America
| | - Somen Nandi
- Chemical Engineering, UC Davis, Davis, CA, United States of America
- Global HealthShare Initiative, UC Davis, Davis, CA, United States of America
| | - Karen A. McDonald
- Chemical Engineering, UC Davis, Davis, CA, United States of America
- Global HealthShare Initiative, UC Davis, Davis, CA, United States of America
| | - Roland Faller
- Chemical Engineering, UC Davis, Davis, CA, United States of America
| |
Collapse
|
13
|
Achilli S, Monteiro JT, Serna S, Mayer-Lambertz S, Thépaut M, Le Roy A, Ebel C, Reichardt NC, Lepenies B, Fieschi F, Vivès C. TETRALEC, Artificial Tetrameric Lectins: A Tool to Screen Ligand and Pathogen Interactions. Int J Mol Sci 2020; 21:E5290. [PMID: 32722514 PMCID: PMC7432041 DOI: 10.3390/ijms21155290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions. Here, we present a strategy to create a generic construct with a tetrameric presentation of the CRD for any CLR, termed TETRALEC. We applied our strategy to a naturally occurring tetrameric CRD, DC-SIGNR, and compared the TETRALEC ligand binding capacity by synthetic N- and O-glycans microarray using three different DC-SIGNR constructs i) its natural tetrameric counterpart, ii) the monomeric CRD and iii) a dimeric Fc-CRD fusion. DC-SIGNR TETRALEC construct showed a similar binding profile to that of its natural tetrameric counterpart. However, differences observed in recognition of low affinity ligands underlined the importance of the CRD spatial arrangement. Moreover, we further extended the applications of DC-SIGNR TETRALEC to evaluate CLR/pathogens interactions. This construct was able to recognize heat-killed Candida albicans by flow cytometry and confocal microscopy, a so far unreported specificity of DC-SIGNR. In summary, the newly developed DC-SIGNR TETRALEC tool proved to be useful to unravel novel CLR/glycan interactions, an approach which could be applied to other CLRs.
Collapse
Affiliation(s)
- Silvia Achilli
- Institut de Biologie Structurale, CEA, CNRS, University of Grenoble Alpes, F-38000 Grenoble, France; (S.A.); (M.T.); (A.L.R.); (C.E.); (F.F.)
| | - João T. Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.T.M.); (S.M.-L.); (B.L.)
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), CIBER-BBN, Paseo Miramón 182, 20014 San Sebastian, Spain; (S.S.); (N.-C.R.)
| | - Sabine Mayer-Lambertz
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.T.M.); (S.M.-L.); (B.L.)
| | - Michel Thépaut
- Institut de Biologie Structurale, CEA, CNRS, University of Grenoble Alpes, F-38000 Grenoble, France; (S.A.); (M.T.); (A.L.R.); (C.E.); (F.F.)
| | - Aline Le Roy
- Institut de Biologie Structurale, CEA, CNRS, University of Grenoble Alpes, F-38000 Grenoble, France; (S.A.); (M.T.); (A.L.R.); (C.E.); (F.F.)
| | - Christine Ebel
- Institut de Biologie Structurale, CEA, CNRS, University of Grenoble Alpes, F-38000 Grenoble, France; (S.A.); (M.T.); (A.L.R.); (C.E.); (F.F.)
| | - Niels-Christian Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), CIBER-BBN, Paseo Miramón 182, 20014 San Sebastian, Spain; (S.S.); (N.-C.R.)
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.T.M.); (S.M.-L.); (B.L.)
| | - Franck Fieschi
- Institut de Biologie Structurale, CEA, CNRS, University of Grenoble Alpes, F-38000 Grenoble, France; (S.A.); (M.T.); (A.L.R.); (C.E.); (F.F.)
| | - Corinne Vivès
- Institut de Biologie Structurale, CEA, CNRS, University of Grenoble Alpes, F-38000 Grenoble, France; (S.A.); (M.T.); (A.L.R.); (C.E.); (F.F.)
| |
Collapse
|
14
|
Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 spike protein glycan shield: implications for immune recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.07.030445. [PMID: 32511307 PMCID: PMC7217288 DOI: 10.1101/2020.04.07.030445] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight (17% for the HEK293 glycoform) the level of surface shielding is disproportionately high at 42%.
Collapse
Affiliation(s)
- Oliver C. Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602
| | - David Montgomery
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602
| | - Keigo Ito
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602
| |
Collapse
|
15
|
Marqvorsen MHS, Araman C, van Kasteren SI. Going Native: Synthesis of Glycoproteins and Glycopeptides via Native Linkages To Study Glycan-Specific Roles in the Immune System. Bioconjug Chem 2019; 30:2715-2726. [PMID: 31580646 PMCID: PMC6873266 DOI: 10.1021/acs.bioconjchem.9b00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Glycosylation plays a myriad of roles in the immune system: Certain glycans can interact with specific immune receptors to kickstart a pro-inflammatory response, whereas other glycans can do precisely the opposite and ameliorate the immune response. Specific glycans and glycoforms can themselves become the targets of the adaptive immune system, leading to potent antiglycan responses that can lead to the killing of altered self- or pathogenic species. This hydra-like set of roles glycans play is of particular importance in cancer immunity, where it influences the anticancer immune response, likely playing pivotal roles in tumor survival or clearance. The complexity of carbohydrate biology requires synthetic access to glycoproteins and glycopeptides that harbor homogeneous glycans allowing the probing of these systems with high precision. One particular complicating factor in this is that these synthetic structures are required to be as close to the native structures as possible, as non-native linkages can themselves elicit immune responses. In this Review, we discuss examples and current strategies for the synthesis of natively linked single glycoforms of peptides and proteins that have enabled researchers to gain new insights into glycoimmunology, with a particular focus on the application of these reagents in cancer immunology.
Collapse
Affiliation(s)
- Mikkel H. S. Marqvorsen
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Can Araman
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|