1
|
Zhao C, Miao D, Tan D, Shi J, Lv Q, Xiong Z, Zhang X. The PLCG2 Inhibits Tumor Progression and Mediates Angiogenesis by VEGF Signaling Pathway in Clear Cell Renal Cell Carcinoma. FRONT BIOSCI-LANDMRK 2024; 29:390. [PMID: 39614428 DOI: 10.31083/j.fbl2911390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) represents the most prevalent form of renal cell carcinoma. The management of early-stage ccRCC has a better prognosis, while patients with metastatic ccRCC have a lower five-year survival rate. Angiogenesis serves as the fundamental process underlying tumor metastasis. Therefore, it is crucial to discover new targets for angiogenesis to improve patient survival rates. METHODS The Cancer Genome Atlas database, International Cancer Genome Consortium database, Clinical Proteomic Tumor Analysis Consortium database, and a gene set of the vascular endothelial growth factor (VEGF) signaling pathway were utilized to identify differentially expressed genes. Western blot (WB), quantitative real-time polymerase chain reaction, and immunohistochemistry were employed to validate the downregulation of phospholipase C gamma 2 (PLCG2) in ccRCC tissues and cells. Cell Counting Kit-8 (CCK-8) assays, transwell assays, tube formation assays, and oil-red staining were performed to elucidate the biological functions of PLCG2 in tumor cells. Gene set enrichment analysis was applied to explore the downstream pathway. Subcutaneous tumor models and live small animal fluorescent imaging assay were utilized for in vivo investigation of the roles played by PLCG2. RESULTS Our study has identified a novel biomarker, PLCG2, for ccRCC. PLCG2 is a central gene in regulating angiogenesis in ccRCC, as validated by bioinformatics analysis. The findings revealed a diminished expression of PLCG2 in both ccRCC tissues and cells. Further experiments in vivo and in vitro have demonstrated the significant roles of PLCG2 in tumor proliferation, invasion, migration, and lipid accumulation. Results of tube formation assays and WB support the role of PLCG2 in regulating VEGFA expression and angiogenesis. CONCLUSIONS Our results show that PLCG2 functions as a potential biomarker and an independent prognostic indicator for ccRCC. PLCG2 may modulate angiogenesis by influencing the expression of VEGFA. Therefore, targeting PLCG2 could potentially lead to drug discovery and improved cancer treatment strategies.
Collapse
Affiliation(s)
- Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| |
Collapse
|
2
|
Yazdian Anari P, Zahergivar A, Gopal N, Chaurasia A, Lay N, Ball MW, Turkbey B, Turkbey E, Jones EC, Linehan WM, Malayeri AA. Kidney scoring surveillance: predictive machine learning models for clear cell renal cell carcinoma growth using MRI. Abdom Radiol (NY) 2024; 49:1202-1209. [PMID: 38347265 DOI: 10.1007/s00261-023-04162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Classification of clear cell renal cell carcinoma (ccRCC) growth rates in patients with Von Hippel-Lindau (VHL) syndrome has several ramifications for tumor monitoring and surgical planning. Using two separate machine-learning algorithms, we sought to produce models to predict ccRCC growth rate classes based on qualitative MRI-derived characteristics. MATERIAL AND METHODS We used a prospectively maintained database of patients with VHL who underwent surgical resection for ccRCC between January 2015 and June 2022. We employed a threshold growth rate of 0.5 cm per year to categorize ccRCC tumors into two distinct groups-'slow-growing' and 'fast-growing'. Utilizing a questionnaire of qualitative imaging features, two radiologists assessed each lesion on different MRI sequences. Two machine-learning models, a stacked ensemble technique and a decision tree algorithm, were used to predict the tumor growth rate classes. Positive predictive value (PPV), sensitivity, and F1-score were used to evaluate the performance of the models. RESULTS This study comprises 55 patients with VHL with 128 ccRCC tumors. Patients' median age was 48 years, and 28 patients were males. Each patient had an average of two tumors, with a median size of 2.1 cm and a median growth rate of 0.35 cm/year. The overall performance of the stacked and DT model had 0.77 ± 0.05 and 0.71 ± 0.06 accuracies, respectively. The best stacked model achieved a PPV of 0.92, a sensitivity of 0.91, and an F1-score of 0.90. CONCLUSION This study provides valuable insight into the potential of machine-learning analysis for the determination of renal tumor growth rate in patients with VHL. This finding could be utilized as an assistive tool for the individualized screening and follow-up of this population.
Collapse
Affiliation(s)
- Pouria Yazdian Anari
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - Aryan Zahergivar
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - Nikhil Gopal
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - Aditi Chaurasia
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - Nathan Lay
- Artificial Intelligence Resource, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Mark W Ball
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - Baris Turkbey
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - Evrim Turkbey
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA
| | - W Marston Linehan
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA.
| | - Ashkan A Malayeri
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1109, USA.
| |
Collapse
|
3
|
Wang Z, Yan M, Ye L, Zhou Q, Duan Y, Jiang H, Wang L, Ouyang Y, Zhang H, Shen Y, Ji G, Chen X, Tian Q, Xiao L, Wu Q, Meng Y, Liu G, Ma L, Lei B, Lu Z, Xu D. VHL suppresses autophagy and tumor growth through PHD1-dependent Beclin1 hydroxylation. EMBO J 2024; 43:931-955. [PMID: 38360997 PMCID: PMC10943020 DOI: 10.1038/s44318-024-00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.
Collapse
Affiliation(s)
- Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Leiguang Ye
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yuran Duan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Hongfei Jiang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, 266061, Qingdao, Shandong, China
| | - Lei Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huahe Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang Province, China
| | - Yuli Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Guimei Ji
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Xiaohan Chen
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150001, Harbin, Heilongjiang Province, China
| | - Qi Tian
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Qingang Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Guijun Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, 266061, Qingdao, Shandong, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang Province, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Alchoueiry M, Cornejo K, Henske EP. Kidney cancer: Links between hereditary syndromes and sporadic tumorigenesis. Semin Diagn Pathol 2024; 41:1-7. [PMID: 38008653 DOI: 10.1053/j.semdp.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Collapse
Affiliation(s)
- Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristine Cornejo
- Pathology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Vellama H, Eskla KL, Eichelmann H, Hüva A, Tennant DA, Thakker A, Roberts J, Jagomäe T, Porosk R, Laisk A, Oja V, Rämma H, Volke V, Vasar E, Luuk H. VHL-deficiency leads to reductive stress in renal cells. Free Radic Biol Med 2023; 208:1-12. [PMID: 37506952 PMCID: PMC10602395 DOI: 10.1016/j.freeradbiomed.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.
Collapse
Affiliation(s)
- Hans Vellama
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kattri-Liis Eskla
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Hillar Eichelmann
- Institute of Biomedicine and Translational Medicine, Department of Pathophysiology, University of Tartu, Tartu, Estonia; Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andria Hüva
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rando Porosk
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Vello Oja
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Heikko Rämma
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Vallo Volke
- Institute of Biomedicine and Translational Medicine, Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hendrik Luuk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Naas S, Schiffer M, Schödel J. Hypoxia and renal fibrosis. Am J Physiol Cell Physiol 2023; 325:C999-C1016. [PMID: 37661918 DOI: 10.1152/ajpcell.00201.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Renal fibrosis is the final stage of most progressive kidney diseases. Chronic kidney disease (CKD) is associated with high comorbidity and mortality. Thus, preventing fibrosis and thereby preserving kidney function increases the quality of life and prolongs the survival of patients with CKD. Many processes such as inflammation or metabolic stress modulate the progression of kidney fibrosis. Hypoxia has also been implicated in the pathogenesis of renal fibrosis, and oxygen sensing in the kidney is of outstanding importance for the body. The dysregulation of oxygen sensing in the diseased kidney is best exemplified by the loss of stimulation of erythropoietin production from interstitial cells in the fibrotic kidney despite anemia. Furthermore, hypoxia is present in acute or chronic kidney diseases and may affect all cell types present in the kidney including tubular and glomerular cells as well as resident immune cells. Pro- and antifibrotic effects of the transcription factors hypoxia-inducible factors 1 and 2 have been described in a plethora of animal models of acute and chronic kidney diseases, but recent advances in sequencing technologies now allow for novel and deeper insights into the role of hypoxia and its cell type-specific effects on the progression of renal fibrosis, especially in humans. Here, we review existing literature on how hypoxia impacts the development and progression of renal fibrosis.
Collapse
Affiliation(s)
- Stephanie Naas
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Hu J, Tan P, Ishihara M, Bayley NA, Schokrpur S, Reynoso JG, Zhang Y, Lim RJ, Dumitras C, Yang L, Dubinett SM, Jat PS, Van Snick J, Huang J, Chin AI, Prins RM, Graeber TG, Xu H, Wu L. Tumor heterogeneity in VHL drives metastasis in clear cell renal cell carcinoma. Signal Transduct Target Ther 2023; 8:155. [PMID: 37069149 PMCID: PMC10110583 DOI: 10.1038/s41392-023-01362-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 04/19/2023] Open
Abstract
Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ping Tan
- Department of Urology, West China Hospital, Chengdu, China
| | - Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiruyeh Schokrpur
- Department of Hematology and Oncology, University of California San Diego, San Diego, CA, 92103, USA
| | - Jeremy G Reynoso
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yangjun Zhang
- Department of Biological Repositories, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Raymond J Lim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Camelia Dumitras
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lu Yang
- Department of Urology, West China Hospital, Chengdu, China
| | - Steven M Dubinett
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | | | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Arnold I Chin
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert M Prins
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hua Xu
- Department of Biological Repositories, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China.
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Narayan V, Jonasch E. Systemic Therapy Development in Von Hippel-Lindau Disease: An Outsized Contribution from an Orphan Disease. Cancers (Basel) 2022; 14:5313. [PMID: 36358730 PMCID: PMC9658616 DOI: 10.3390/cancers14215313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023] Open
Abstract
Over the last several decades, an improved understanding of von Hippel-Lindau disease and its underlying biology has informed the successful development of numerous anti-cancer agents, particularly for the treatment of advanced renal cell carcinoma. Most recently, this has culminated in the first regulatory approval for a systemic therapy for VHL disease-associated neoplasms. This review will trace the clinical development of systemic therapies for VHL disease and additionally highlight anticipated challenges and opportunities for future VHL systemic therapy.
Collapse
Affiliation(s)
- Vivek Narayan
- Division of Hematology/Medical Oncology, University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Eric Jonasch
- Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Andreou A, Yngvadottir B, Bassaganyas L, Clark G, Martin E, Whitworth J, Cornish AJ, Houlston RS, Rich P, Egan C, Hodgson SV, Warren AY, Snape K, Maher ER. Elongin C (ELOC/TCEB1)-associated von Hippel-Lindau disease. Hum Mol Genet 2022; 31:2728-2737. [PMID: 35323939 PMCID: PMC9402235 DOI: 10.1093/hmg/ddac066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Around 95% of patients with clinical features that meet the diagnostic criteria for von Hippel-Lindau disease (VHL) have a detectable inactivating germline variant in VHL. The VHL protein (pVHL) functions as part of the E3 ubiquitin ligase complex comprising pVHL, elongin C, elongin B, cullin 2 and ring box 1 (VCB-CR complex), which plays a key role in oxygen sensing and degradation of hypoxia-inducible factors. To date, only variants in VHL have been shown to cause VHL disease. We undertook trio analysis by whole-exome sequencing in a proband with VHL disease but without a detectable VHL mutation. Molecular studies were also performed on paired DNA extracted from the proband's kidney tumour and blood and bioinformatics analysis of sporadic renal cell carcinoma (RCC) dataset was undertaken. A de novo pathogenic variant in ELOC NM_005648.4(ELOC):c.236A>G (p.Tyr79Cys) gene was identified in the proband. ELOC encodes elongin C, a key component [C] of the VCB-CR complex. The p.Tyr79Cys substitution is a mutational hotspot in sporadic VHL-competent RCC and has previously been shown to mimic the effects of pVHL deficiency on hypoxic signalling. Analysis of an RCC from the proband showed similar findings to that in somatically ELOC-mutated RCC (expression of hypoxia-responsive proteins, no somatic VHL variants and chromosome 8 loss). These findings are consistent with pathogenic ELOC variants being a novel cause for VHL disease and suggest that genetic testing for ELOC variants should be performed in individuals with suspected VHL disease with no detectable VHL variant.
Collapse
Affiliation(s)
- Avgi Andreou
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Bryndis Yngvadottir
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Laia Bassaganyas
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Graeme Clark
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - James Whitworth
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Philip Rich
- Department of Neuroradiology, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Catherine Egan
- NIHR Biomedical Research Center at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Shirley V Hodgson
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University NHS Foundation Trust, Cambridge CB2 OQQ, UK
| | - Katie Snape
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK,St George's University of London, UK
| | - Eamonn R Maher
- To whom correspondence should be addressed at: Department of Medical Genetics, University of Cambridge, Box 238, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK. Tel: +44 01223746715; Fax: +44 01223746777;
| |
Collapse
|
10
|
Yoshikawa Y, Yamada Y, Emi M, Atanesyan L, Smout J, de Groot K, Savola S, Nakanishi-Shinkai Y, Kanematsu A, Nojima M, Ohmuraya M, Hashimoto-Tamaoki T, Yamamoto S. Risk prediction for metastasis of clear cell renal cell carcinoma using digital multiplex ligation-dependent probe amplification. Cancer Sci 2021; 113:297-307. [PMID: 34687579 PMCID: PMC8748218 DOI: 10.1111/cas.15170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Precise quantification of copy‐number alterations (CNAs) in a tumor genome is difficult. We have applied a comprehensive copy‐number analysis method, digital multiplex ligation‐dependent probe amplification (digitalMLPA), for targeted gene copy‐number analysis in clear cell renal cell carcinoma (ccRCC). Copy‐number status of all chromosomal arms and 11 genes was determined in 60 ccRCC samples. Chromosome 3p loss and 5q gain, known as early changes in ccRCC development, as well as losses at 9p and 14q were detected in 56/60 (93.3%), 31/60 (51.7%), 11/60 (18.3%), and 33/60 (55%), respectively. Through gene expression analysis, a significant positive correlation was detected in terms of 14q loss determined using digitalMLPA and downregulation of mRNA expression ratios with HIF1A and L2HGDH (P = .0253 and .0117, respectively). Patients with early metastasis (<1 y) (n = 18) showed CNAs in 6 arms (in median), whereas metastasis‐free patients (n = 34) showed those in significantly less arms (3 arms in median) (P = .0289). In particular, biallelic deletion of CDKN2A/2B was associated with multiple CNAs (≥7 arms) in 3 tumors. Together with sequence‐level mutations in genes VHL, PBRM1, SETD2, and BAP1, we performed multiple correspondence analysis, which identified the association of 9p loss and 4q loss with early metastasis (both P < .05). This analysis indicated the association of 4p loss and 1p loss with poor survival (both, P < .05). These findings suggest that CNAs have essential roles in aggressiveness of ccRCC. We showed that our approach of measuring CNA through digitalMLPA will facilitate the selection of patients who may develop metastasis.
Collapse
Affiliation(s)
- Yoshie Yoshikawa
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yusuke Yamada
- Department of Urology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mitsuru Emi
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Lilit Atanesyan
- Oncogenetics Department, MRC Holland, Amsterdam, The Netherlands
| | - Jan Smout
- Oncogenetics Department, MRC Holland, Amsterdam, The Netherlands
| | - Karel de Groot
- Bioinformatics Department, MRC Holland, Amsterdam, The Netherlands
| | - Suvi Savola
- Oncogenetics Department, MRC Holland, Amsterdam, The Netherlands
| | | | - Akihiro Kanematsu
- Department of Urology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Michio Nojima
- Department of Urology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Shingo Yamamoto
- Department of Urology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
11
|
Morphological and hemodynamic analysis of the patient-specific renal cell carcinoma models. J Biomech 2021; 126:110636. [PMID: 34298292 DOI: 10.1016/j.jbiomech.2021.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/24/2022]
Abstract
Although the morbidity of renal cell carcinoma (RCC) has been increasing as the seventh most common tumours, to our knowledge, there is few studies foucsing on the hemodynamics of the renal artery (RA) with RCC. The objective of this study is to perform morphological and hemodynamic analysis of the RA and abdominal aorta artery (AAA) in the control healthy and RCC patient groups. Three-dimensional (3D) geometries are reconstructed from 18 control healthy subjects and 15 RCC patients based on Computed Tomography Angiography (CTA) images. There is higer in the lumen diameter of the RA (6.21 ± 0.89 mm) and curvature of the RA (1.2 ± 0.07) in the RCC patient group compared with the control healthy group (4.29 ± 1.08 mm, 1.1 ± 0.1), respectively. In the hemodynamic analysis, the surface area ratio (%) of low time-averaged wall shear stress (SAR-TAWSS) at the RA (10.65 ± 11.65) and AAA (48.49 ± 12.79) in the RCC patient group is significantly higher than that in the control healthy group (0.23 ± 0.22, 21.57 ± 20.5), respectively. It is found that RCC altered the morphology of the RA in the RCC patient group, which could deteriorate the hemodynamic environment of the RA and AAA. The finding in this study could enhance us to understand the progression of vascular disease caused by RCC.
Collapse
|
12
|
Meng F, Zhang L, Zhang M, Ye K, Guo W, Liu Y, Yang W, Zhai Z, Wang H, Xiao J, Dai H. Down-regulation of BCL2L13 renders poor prognosis in clear cell and papillary renal cell carcinoma. Cancer Cell Int 2021; 21:332. [PMID: 34193180 PMCID: PMC8247248 DOI: 10.1186/s12935-021-02039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Abstract
Background BCL2L13 belongs to the BCL2 super family, with its protein product exhibits capacity of apoptosis-mediating in diversified cell lines. Previous studies have shown that BCL2L13 has functional consequence in several tumor types, including ALL and GBM, however, its function in kidney cancer remains as yet unclearly. Methods Multiple web-based portals were employed to analyze the effect of BCL2L13 in kidney cancer using the data from TCGA database. Functional enrichment analysis and hubs of BCL2L13 co-expressed genes in clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) were carried out on Cytoscape. Evaluation of BCL2L13 protein level was accomplished through immunohistochemistry on paraffin embedded renal cancer tissue sections. Western blotting and flow cytometry were implemented to further analyze the pro-apoptotic function of BCL2L13 in ccRCC cell line 786-0. Results BCL2L13 expression is significantly decreased in ccRCC and pRCC patients, however, mutations and copy number alterations are rarely observed. The poor prognosis of ccRCC that derived from down-regulated BCL2L13 is independent of patients’ gender or tumor grade. Furthermore, BCL2L13 only weakly correlates with the genes that mutated in kidney cancer or the genes that associated with inherited kidney cancer predisposing syndrome, while actively correlates with SLC25A4. As a downstream effector of BCL2L13 in its pro-apoptotic pathway, SLC25A4 is found as one of the hub genes that involved in the physiological function of BCL2L13 in kidney cancer tissues. Conclusions Down-regulation of BCL2L13 renders poor prognosis in ccRCC and pRCC. This disadvantageous factor is independent of any well-known kidney cancer related genes, so BCL2L13 can be used as an effective indicator for prognostic evaluation of renal cell carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02039-y.
Collapse
Affiliation(s)
- Fei Meng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, Hefei, 230026, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Luojin Zhang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei Guo
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Yu Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, Hefei, 230026, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
13
|
Cai L, Wu H, Zhou K. Improved cancer biomarkers identification using network-constrained infinite latent feature selection. PLoS One 2021; 16:e0246668. [PMID: 33571282 PMCID: PMC7877636 DOI: 10.1371/journal.pone.0246668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Identifying biomarkers that are associated with different types of cancer is an important goal in the field of bioinformatics. Different researcher groups have analyzed the expression profiles of many genes and found some certain genetic patterns that can promote the improvement of targeted therapies, but the significance of some genes is still ambiguous. More reliable and effective biomarkers identification methods are then needed to detect candidate cancer-related genes. In this paper, we proposed a novel method that combines the infinite latent feature selection (ILFS) method with the functional interaction (FIs) network to rank the biomarkers. We applied the proposed method to the expression data of five cancer types. The experiments indicated that our network-constrained ILFS (NCILFS) provides an improved prediction of the diagnosis of the samples and locates many more known oncogenes than the original ILFS and some other existing methods. We also performed functional enrichment analysis by inspecting the over-represented gene ontology (GO) biological process (BP) terms and applying the gene set enrichment analysis (GSEA) method on selected biomarkers for each feature selection method. The enrichments analysis reports show that our network-constraint ILFS can produce more biologically significant gene sets than other methods. The results suggest that network-constrained ILFS can identify cancer-related genes with a higher discriminative power and biological significance.
Collapse
Affiliation(s)
- Lihua Cai
- Wuhan National Laboratory for Optoelectronics, School of Computer Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
- School of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Honglong Wu
- Wuhan National Laboratory for Optoelectronics, School of Computer Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
- Shenzhen Genomics Institute, BGI-Shenzhen, Shenzhen, China
| | - Ke Zhou
- Wuhan National Laboratory for Optoelectronics, School of Computer Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Faiyaz-Ul-Haque M, Jamil M, Aslam M, Abalkhail H, Al-Dayel F, Basit S, Nawaz Z, Zaidi SHE. Novel and recurrent germline mutations in the VHL gene in 5 Arab patients with Von Hippel-Lindau disease. Cancer Genet 2020; 243:1-6. [PMID: 32179488 DOI: 10.1016/j.cancergen.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/01/2020] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
Inherited germline mutations in the VHL gene cause predisposition to Von Hippel-Lindau (VHL) disease. Patients exhibit benign and cancerous lesions in multiple tissues, including hemangioblastomas, clear cell renal cell carcinoma, cysts in kidneys and pancreas, and pheochromocytomas. Although pathogenic germline mutations in the VHL gene have been widely described in different populations, only a single mutation was previously reported in a family from mixed Arab-Persian ethnicity. Here, we present five Arab patients with two new and two recurrent germline mutations in the VHL gene. These mutations include three in-frame deletions and a missense mutation. Infrequent in-frame deletions in previously described patients from other populations, as well as the presence of new mutations, suggests a distinct spectrum of VHL gene mutations in Arab patients. While pulmonary manifestation has been described rarely in VHL disease, we have identified two patients with a recurrent p.Phe76del in-frame deletion exhibiting multiple nodules in lungs. We also describe a first-ever in-frame deletion in the VHL gene in a patient with VHL type 2C disease, exhibiting bilateral pheochromocytoma. Overall, the study provides an insight into the genotype-phenotype relationship of VHL disease in Arab patients and provides a comparison with previously described patients from other ethnicities.
Collapse
Affiliation(s)
- Muhammad Faiyaz-Ul-Haque
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar; Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Masood Jamil
- Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muhammad Aslam
- Department of Urology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Halah Abalkhail
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sulman Basit
- Centre for Genetics and Inherited Diseases, Taibah University, Almadinah, Saudi Arabia
| | - Zafar Nawaz
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Syed H E Zaidi
- Genomics, Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
15
|
Ishihara M, Hu J, Zhang X, Choi Y, Wong A, Cano-Ruiz C, Zhao R, Tan P, Tso JL, Wu L. Comparing Metastatic Clear Cell Renal Cell Carcinoma Model Established in Mouse Kidney and on Chicken Chorioallantoic Membrane. J Vis Exp 2020. [PMID: 32091005 DOI: 10.3791/60314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metastatic clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer. Localized ccRCC has a favorable surgical outcome. However, one third of ccRCC patients will develop metastases to the lung, which is related to a very poor outcome for patients. Unfortunately, no therapy is available for this deadly stage, because the molecular mechanism of metastasis remains unknown. It has been known for 25 years that the loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is pathognomonic of ccRCC. However, no clinically relevant transgenic mouse model of ccRCC has been generated. The purpose of this protocol is to introduce and compare two newly established animal models for metastatic ccRCC. The first is renal implantation in the mouse model. In our laboratory, the CRISPR gene editing system was utilized to knock out the VHL gene in several RCC cell lines. Orthotopic implantation of heterogeneous ccRCC populations to the renal capsule created novel ccRCC models that develop robust lung metastases in immunocompetent mice. The second model is the chicken chorioallantoic membrane (CAM) system. In comparison to the mouse model, this model is more time, labor, and cost-efficient. This model also supported robust tumor formation and intravasation. Due to the short 10 day period of tumor growth in CAM, no overt metastasis was observed by immunohistochemistry (IHC) in the collected embryo tissues. However, when tumor growth was extended by two weeks in the hatched chicken, micrometastatic ccRCC lesions were observed by IHC in the lungs. These two novel preclinical models will be useful to further study the molecular mechanism behind metastasis, as well as to establish new, patient-derived xenografts (PDXs) toward the development of novel treatments for metastatic ccRCC.
Collapse
Affiliation(s)
- Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles
| | - Xiaoyu Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles
| | | | - Anthony Wong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Celine Cano-Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles
| | - Rongwei Zhao
- School of Life Sciences, Beijing Normal University
| | - Ping Tan
- Department of Urology, West China Hospital, Sichuan University
| | - Jonathan L Tso
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles;
| |
Collapse
|
16
|
Smith PS, Whitworth J, West H, Cook J, Gardiner C, Lim DHK, Morrison PJ, Hislop RG, Murray E, Tischkowitz M, Warren AY, Woodward ER, Maher ER. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing. Genes Chromosomes Cancer 2020; 59:333-347. [PMID: 31943436 PMCID: PMC7187337 DOI: 10.1002/gcc.22833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Constitutional translocations, typically involving chromosome 3, have been recognized as a rare cause of inherited predisposition to renal cell carcinoma (RCC) for four decades. However, knowledge of the molecular basis of this association is limited. We have characterized the breakpoints by genome sequencing (GS) of constitutional chromosome abnormalities in five individuals who presented with RCC. In one individual with constitutional t(10;17)(q11.21;p11.2), the translocation breakpoint disrupted two genes: the known renal tumor suppressor gene (TSG) FLCN (and clinical features of Birt‐Hogg‐Dubé syndrome were detected) and RASGEF1A. In four cases, the rearrangement breakpoints did not disrupt known inherited RCC genes. In the second case without chromosome 3 involvement, the translocation breakpoint in an individual with a constitutional t(2;17)(q21.1;q11.2) mapped 12 Kb upstream of NLK. Interestingly, NLK has been reported to interact indirectly with FBXW7 and a previously reported RCC‐associated translocation breakpoint disrupted FBXW7. In two cases of constitutional chromosome 3 translocations, no candidate TSGs were identified in the vicinity of the breakpoints. However, in an individual with a constitutional chromosome 3 inversion, the 3p breakpoint disrupted the FHIT TSG (which has been reported previously to be disrupted in two apparently unrelated families with an RCC‐associated t(3;8)(p14.2;q24.1). These findings (a) expand the range of constitutional chromosome rearrangements that may be associated with predisposition to RCC, (b) confirm that chromosome rearrangements not involving chromosome 3 can predispose to RCC, (c) suggest that a variety of molecular mechanisms are involved the pathogenesis of translocation‐associated RCC, and (d) demonstrate the utility of GS for investigating such cases.
Collapse
Affiliation(s)
- Philip S Smith
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - James Whitworth
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah West
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jacqueline Cook
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Carol Gardiner
- West of Scotland Genetics Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Derek H K Lim
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - R Gordon Hislop
- East of Scotland Regional Genetics Service, Ninewells Hospital, Dundee, UK
| | - Emily Murray
- East of Scotland Regional Genetics Service, Ninewells Hospital, Dundee, UK
| | -
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University NHS Foundation Trust and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine and NW Laboratory Genetics Hub, Manchester University Hospitals NHS Foundation Trust, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Health Innovation Manchester, Manchester, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
17
|
Büscheck F, Fraune C, Simon R, Kluth M, Hube-Magg C, Möller-Koop C, Sarper I, Ketterer K, Henke T, Eichelberg C, Dahlem R, Wilczak W, Sauter G, Fisch M, Eichenauer T, Rink M. Prevalence and clinical significance of VHL mutations and 3p25 deletions in renal tumor subtypes. Oncotarget 2020; 11:237-249. [PMID: 32076485 PMCID: PMC6980626 DOI: 10.18632/oncotarget.27428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/29/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose: To evaluate prevalence and clinical impact of VHL mutations and deletions (3p), a cohort of consecutive kidney tumors was analyzed by DNA sequencing and fluorescence in-situ hybridization (FISH). Patients and Methods: The study includes 1,805 patients with renal tumors who were surgically treated at the Department of Urology at the University Medical Center Hamburg-Eppendorf between 1994 and 2015. The cohort included 1,176 clear cell, 270 papillary, 101 chromophobe, and 28 clear cell (tubulo) papillary cancers, as well as 149 oncocytomas and 81 less common subtypes. Results: Among 431 successfully analyzed tumors, VHL mutations were found in 59.3% of clear cell, 5.2% of papillary, 3.1% of chromophobe carcinomas and in 7.3% of oncocytomas as well as in the rare kidney tumor types (25%–60%). FISH analysis was successful in 1,403 cases. 3p25 deletion was found in 57.2% of clear cell, 17.6% of papillary, 17.7% of chromophobe carcinomas and in 11.9% of oncocytomas as well as in the rare kidney tumor types (16.7%–50%). No statistically significant associations between VHL mutation/deletion and tumor grade, stage, and clinical outcome was found. Only in the subgroup of papillary cancers, 3p deletion was significantly associated with lymph node and distant metastasis as well as with poor patient outcome (p < 0.05 each). Conclusions: The presence of a VHL mutation in virtually all renal tumor subtypes suggests that VHL analysis cannot be used to distinguish between renal tumor subtypes. Consequently, anti-VHL treatment strategies should not be limited to patients with clear cell cancer.
Collapse
Affiliation(s)
- Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Imren Sarper
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kathrin Ketterer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tjark Henke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Abstract
Abstract
Purpose of Review
In this review, we discuss the key molecular and clinical developments in VHL disease that have the potential to impact on the natural history of the disease and improve patient outcomes.
Recent Findings
Identifiable mutations in VHL underlie most cases of VHL and define clear genotype-phenotype correlations. Detailed clinical and molecular characterisation has allowed the implementation of lifelong screening programmes that have improved clinical outcomes. Functional characterisation of the VHL protein complex has revealed its role in oxygen sensing and the mechanisms of tumourigenesis that are now being exploited to develop novel therapies for VHL and renal cancer.
Summary
The molecular and cellular landscape of VHL-associated tumours is revealing new opportunities to modify the natural history of the disease and develop therapies. Drugs are now entering clinical trials and combined with improved clinical and molecular diagnosis, and lifelong surveillance programmes, further progress towards reducing the morbidity and mortality associated with VHL disease is anticipated.
Collapse
|
19
|
Ishihara M, Hu J, Wong A, Cano-Ruiz C, Wu L. Mouse- and patient-derived CAM xenografts for studying metastatic renal cell carcinoma. Enzymes 2019; 46:59-80. [PMID: 31727277 DOI: 10.1016/bs.enz.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Renal cell carcinoma is the seventh most common cancer in the United States, and its metastatic form has a very poor prognosis due to a lack of effective treatment and thorough understanding on metastatic mechanism. This chapter will demonstrate a novel concept that intratumoral heterogeneity is essential for metastasis in renal cell carcinoma. We will first introduce the in vitro system and the mouse model that led to the finding of the cooperative mechanism for metastasis. Then, the results from the CAM model illustrate the cooperative interactions that lead to metastasis also occur in this model. We believe that the CAM model, as a unique and sustainable system, can open up new opportunities to study the metastatic disease.
Collapse
Affiliation(s)
- Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Anthony Wong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
| | - Celine Cano-Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Tian K, Rubadue CA, Lin DI, Veta M, Pyle ME, Irshad H, Heng YJ. Automated clear cell renal carcinoma grade classification with prognostic significance. PLoS One 2019; 14:e0222641. [PMID: 31581201 PMCID: PMC6776313 DOI: 10.1371/journal.pone.0222641] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/04/2019] [Indexed: 01/31/2023] Open
Abstract
We developed an automated 2-tiered Fuhrman's grading system for clear cell renal cell carcinoma (ccRCC). Whole slide images (WSI) and clinical data were retrieved for 395 The Cancer Genome Atlas (TCGA) ccRCC cases. Pathologist 1 reviewed and selected regions of interests (ROIs). Nuclear segmentation was performed. Quantitative morphological, intensity, and texture features (n = 72) were extracted. Features associated with grade were identified by constructing a Lasso model using data from cases with concordant 2-tiered Fuhrman's grades between TCGA and Pathologist 1 (training set n = 235; held-out test set n = 42). Discordant cases (n = 118) were additionally reviewed by Pathologist 2. Cox proportional hazard model evaluated the prognostic efficacy of the predicted grades in an extended test set which was created by combining the test set and discordant cases (n = 160). The Lasso model consisted of 26 features and predicted grade with 84.6% sensitivity and 81.3% specificity in the test set. In the extended test set, predicted grade was significantly associated with overall survival after adjusting for age and gender (Hazard Ratio 2.05; 95% CI 1.21-3.47); manual grades were not prognostic. Future work can adapt our computational system to predict WHO/ISUP grades, and validating this system on other ccRCC cohorts.
Collapse
Affiliation(s)
- Katherine Tian
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- The Harker School, San Jose, CA, United States of America
| | - Christopher A. Rubadue
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Douglas I. Lin
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Mitko Veta
- Medical Image Analysis Group, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michael E. Pyle
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Humayun Irshad
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Yujing J. Heng
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, United States of America
| |
Collapse
|
21
|
Alahari S, Garcia J, Post M, Caniggia I. The von Hippel Lindau tumour suppressor gene is a novel target of E2F4-mediated transcriptional repression in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3298-3308. [DOI: 10.1016/j.bbadis.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|
22
|
Renshaw AA, Gould EW. Ancillary studies in fine needle aspiration of the kidney. Cancer Cytopathol 2018; 126 Suppl 8:711-723. [DOI: 10.1002/cncy.22029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | - Edwin W. Gould
- Baptist Hospital of Miami and Miami Cancer Institute Miami Florida
| |
Collapse
|
23
|
Nabi S, Kessler ER, Bernard B, Flaig TW, Lam ET. Renal cell carcinoma: a review of biology and pathophysiology. F1000Res 2018; 7:307. [PMID: 29568504 PMCID: PMC5850086 DOI: 10.12688/f1000research.13179.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 01/13/2023] Open
Abstract
Over the past decade, our understanding of the biology and pathophysiology of renal cell carcinoma (RCC) has improved significantly. Insight into the disease process has helped us in developing newer therapeutic approaches toward RCC. In this article, we review the various genetic and immune-related mechanisms involved in the pathogenesis and development of this cancer and how that knowledge is being used to develop therapeutic targeted drugs for the treatment of RCC. The main emphasis of this review article is on the most common genetic alterations found in clear cell RCC and how various drugs are currently targeting such pathways. This article also looks at the role of the immune system in allowing the growth of RCC and how the immune system can be manipulated to reactivate cytotoxic immunity against RCC.
Collapse
Affiliation(s)
- Shahzaib Nabi
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Elizabeth R Kessler
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Brandon Bernard
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Thomas W Flaig
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Elaine T Lam
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
24
|
VHL Gene Alterations in Italian Patients with Isolated Renal Cell Carcinomas. Int J Biol Markers 2018; 28:208-15. [DOI: 10.5301/jbm.5000011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 11/20/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common malignant neoplasm of the kidney and belongs to the few human tumors known to develop from mutations of the VHL tumor suppressor gene. VHL germline mutations are associated with hereditary ccRCCs in VHL disease. However, somatic VHL gene defects may also occur in sporadic ccRCCs. In this study, we analyzed the frequency and the spectrum of VHL gene alterations in 35 Italian patients with sporadic renal cell carcinoma (RCC). Tumor-specific intragenic VHL pathogenic mutations were detected in 38% (11/29) of the ccRCC patients and 33% (2/6) of the patients with other types of RCC. One novel 18-bp in-tandem duplication and 4 previously unreported nucleotide changes in the VHL gene were described. Microsatellite analysis showed loss of heterozygosity for at least 1 informative marker in 43% (9/21) of the ccRCCs and 50% (3/6) of the non-ccRCCs; 5 of the 13 tumors (38%) harboring VHL gene alterations also had loss of heterozygosity for at least 1 microsatellite marker. Our results confirm that somatic inactivation of the VHL gene may play a pivotal role in the tumorigenesis of sporadic ccRCCs in Italian patients and suggests that mutation analysis of the VHL gene may be helpful for discriminating sporadic, VHL-gene-related ccRCCs from those related to VHL disease.
Collapse
|
25
|
Ji JX, Wang YK, Cochrane DR, Huntsman DG. Clear cell carcinomas of the ovary and kidney: clarity through genomics. J Pathol 2018; 244:550-564. [PMID: 29344971 DOI: 10.1002/path.5037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Abstract
Clear cell ovarian carcinoma (CCOC) and clear cell renal cell carcinoma (ccRCC) both feature clear cytoplasm, owing to the accumulation of cytoplasmic glycogen. Genomic studies have demonstrated several mutational similarities between these two diseases, including frequent alterations in the chromatin remodelling SWI-SNF and cellular proliferation phosphoinositide 3-kinase-mammalian target of rapamycin pathways, as well as a shared hypoxia-like mRNA expression signature. Although many targeted treatment options have been approved for advanced-stage ccRCC, CCOC patients are still treated with conventional platinum and taxane chemotherapy, to which they are resistant. To determine the extent of similarity between these malignancies, we performed unsupervised clustering of mRNA expression data from these cancers. This review highlights the similarities and differences between these two clear cell carcinomas to facilitate knowledge translation within future research efforts. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yi Kan Wang
- Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| |
Collapse
|
26
|
Li Z, Chen Y, Hu S, Zhang J, Wu J, Ren W, Shao N, Ying X. Integrative analysis of protein-coding and non-coding RNAs identifies clinically relevant subtypes of clear cell renal cell carcinoma. Oncotarget 2018; 7:82671-82685. [PMID: 27705920 PMCID: PMC5347723 DOI: 10.18632/oncotarget.12340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Protein-coding genes and non-coding RNAs cooperate mutually in cells. Integrative analysis of protein-coding and non-coding RNAs may facilitate characterizing tumor heterogeneity. We introduced integrated consensus clustering (ICC) method to integrate mRNA, miRNA and lncRNA expression profiles of 431 primary clear cell renal cell carcinomas (ccRCCs). We identified one RCC subgroup easily misdiagnosed as ccRCC in clinic and four robust ccRCC subtypes associated with distinct clinicopathologic and molecular features. In subtype R1, AMPK signaling pathway is significantly upregulated, which may improve the oncologic-metabolic shift and partially account for its best prognosis. Subtype R2 has more chromosomal abnormities, higher expression of cell cycle genes and less expression of genes in various metabolism pathways, which may explain its more aggressive characteristic and the worst prognosis. Moreover, much more miRNAs and lncRNAs are significantly upregulated in R2 and R4 respectively, suggesting more important roles of miRNAs in R2 and lncRNAs in R4. Triple-color co-expression network analysis identified 28 differentially expressed modules, indicating the importance of cooperative regulation of mRNAs, miRNAs and lncRNAs in ccRCC. This study establishes an integrated transcriptomic classification which may contribute to understanding the heterogeneity and implicating the treatment of ccRCC.
Collapse
Affiliation(s)
- Zongcheng Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,Translational Medicine Center of Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yaowen Chen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,Department of Obstetrics and Gynecology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, China
| | - Shuofeng Hu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jian Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jiaqi Wu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wu Ren
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jilin University, Changchun 130021, China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaomin Ying
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
27
|
Chen SC, Chen FW, Hsu YL, Kuo PL. Systematic Analysis of Transcriptomic Profile of Renal Cell Carcinoma under Long-Term Hypoxia Using Next-Generation Sequencing and Bioinformatics. Int J Mol Sci 2017; 18:ijms18122657. [PMID: 29215599 PMCID: PMC5751259 DOI: 10.3390/ijms18122657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 01/28/2023] Open
Abstract
Patients with clear cell renal cell carcinoma (ccRCC) are often diagnosed with both von Hippel-Lindau (VHL) mutations and the constitutive activation of hypoxia-inducible factor-dependent signaling. In this study, we investigated the effects of long-term hypoxia in 786-O, a VHL-defective renal cell carcinoma cell line, to identify potential genes and microRNAs associated with tumor malignancy. The transcriptomic profiles of 786-O under normoxia, short-term hypoxia and long-term hypoxia were analyzed using next-generation sequencing. The results showed that long-term hypoxia promoted the ability of colony formation and transwell migration compared to normoxia. In addition, the differentially expressed genes induced by long-term hypoxia were involved in various biological processes including cell proliferation, the tumor necrosis factor signaling pathway, basal cell carcinoma and cancer pathways. The upregulated (L1CAM and FBN1) and downregulated (AUTS2, MAPT, AGT and USH1C) genes in 786-O under long-term hypoxia were also observed in clinical ccRCC samples along with malignant grade. The expressions of these genes were significantly correlated with survival outcomes in patients with renal cancer. We also found that long-term hypoxia in 786-O resulted in decreased expressions of hsa-mir-100 and hsa-mir-378 and this effect was also observed in samples of metastatic ccRCC compared to samples of non-metastatic ccRCC. These findings may provide a new direction for the study of potential molecular mechanisms associated with the progression of ccRCC.
Collapse
Affiliation(s)
- Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
28
|
The addition of abemaciclib to sunitinib induces regression of renal cell carcinoma xenograft tumors. Oncotarget 2017; 8:95116-95134. [PMID: 29221116 PMCID: PMC5707010 DOI: 10.18632/oncotarget.19618] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
Abstract
Multiple therapies currently exist for renal cell carcinoma, however, most do not result in cure and the development of acquired resistance is the rule rather than the exception. CDK4/6 and PIM1 kinases are potential new therapeutic targets in RCC. Abemaciclib is a potent CDK4/6 and PIM1 kinase inhibitor, thus we evaluated the effects of abemaciclib on renal cell carcinoma. In vitro, abemaciclib causes decreased cellular viability, increased apoptosis, and alterations in autophagy in renal cell carcinoma cell lines. A pre-clinical mouse model of RCC shows abemaciclib in combination with sunitinib to cause dramatic reduction in tumor sizes without overt toxicity. Thus abemaciclib is active in renal cell carcinoma and should be evaluated in a clinical trial in combination with sunitinib. Additionally, CDK4/6 and PIM1 kinase appear to be viable clinical targets in renal cell carcinoma.
Collapse
|
29
|
Damjanovic SS, Ilic BB, Beleslin Cokic BB, Antic JA, Bankovic JZ, Milicevic IT, Rodic GS, Ilic DS, Todorovic VN, Puskas N, Tulic CD. Tuberous sclerosis complex protein 1 expression is affected by VHL Gene alterations and HIF-1α production in sporadic clear-cell renal cell carcinoma. Exp Mol Pathol 2016; 101:323-331. [PMID: 27845047 DOI: 10.1016/j.yexmp.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
Alterations in von Hippel-Lindau gene (VHL) do not determine deregulation of hypoxia-inducible factors (HIFs) in clear-cell renal carcinoma (ccRCC). Their effects on tuberous sclerosis proteins (TSC1/2) and heat shock protein 90 (Hsp90) expressions in sporadic ccRCC are unknown. Therefore, we analyze the impact of VHL alterations and HIF-α production on the expression of TSC proteins and Hsp90 in these tumors. Alterations in VHL gene region exhibited 37/47 (78.7%) tumors. Monoallelic inactivation (intragenic mutation or LOH) was found in 10 (21.3%) and biallelic inactivation (intragenic mutation plus LOH) in 27 (57.4%) ccRCCs. Tumorous expression of HIF-α mRNAs, HIF-α, Hsp90 and TSC2 were VHL independent; TSC2 was underexpressed in all tumors by immunostaining (P<0.001). Immunoblotting revealed that TSC1 production was lower in tumors with monoallelic VHL inactivation than in control (P=0.01) and tissues with biallelic VHL inactivation (P=0.019), while tumors lacking HIF-1α (16/47) concurrently overexpressed HIF-2α and underexpressed TSC1 in comparison to controls (P=0.01 for both) and HIF-1α positive tumors (P=0.015 and P=0.050). Significant portion of variability (56.4%) in tumor diameter was explained by oscillations in nuclear grade, and TSC1 and HIF-2α expression in VHL altered tumors. In conclusion, while TSC2 is broadly downregulated in sporadic ccRCC, TSC1 expression is reduced in two subsets of these tumors, those with monoallelic VHL gene inactivation and those with concurrent low HIF-1α and high HIF-2α expression. Hence, the involvement of nuclear grade, TSC1 and HIF-2α in the progression of VHL altered tumors, implies the interplay between pVHL and TSC1.
Collapse
Affiliation(s)
- Svetozar S Damjanovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia.
| | - Bojana B Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Bojana B Beleslin Cokic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Jadranka A Antic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Jovana Z Bankovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Ivana T Milicevic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Gordana S Rodic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Dusan S Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Vera N Todorovic
- Institute for Histology and Embryology, School of Medicine of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Nela Puskas
- Institute of Histology and Embryology, Medical School, University of Belgrade, Belgrade, Serbia
| | - Cane D Tulic
- Clinic for Urology, Medical School, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A, Bartnik E, Kukwa W, Kieda C, Szczylik C. The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis. Stem Cell Rev Rep 2016. [PMID: 26210994 PMCID: PMC4653234 DOI: 10.1007/s12015-015-9611-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cancer stem cell (CSC) model has recently been approached also in renal cell carcinoma (RCC). A few populations of putative renal tumor-initiating cells (TICs) were identified, but they are indifferently understood; however, the first and most thoroughly investigated are CD105-positive CSCs. The article presents a detailed comparison of all renal CSC-like populations identified by now as well as their presumable origin. Hypoxic activation of hypoxia-inducible factors (HIFs) contributes to tumor aggressiveness by multiple molecular pathways, including the governance of immature stem cell-like phenotype and related epithelial-to-mesenchymal transition (EMT)/de-differentiation, and, as a result, poor prognosis. Due to intrinsic von Hippel-Lindau protein (pVHL) loss of function, clear-cell RCC (ccRCC) develops unique pathological intra-cellular pseudo-hypoxic phenotype with a constant HIF activation, regardless of oxygen level. Despite satisfactory evidence concerning pseudo-hypoxia importance in RCC biology, its influence on putative renal CSC-like largely remains unknown. Thus, the article discusses a current knowledge of HIF-1α/2α signaling pathways in the promotion of undifferentiated tumor phenotype in general, including some experimental findings specific for pseudo-hypoxic ccRCC, mostly dependent from HIF-2α oncogenic functions. Existing gaps in understanding both putative renal CSCs and their potential connection with hypoxia need to be filled in order to propose breakthrough strategies for RCC treatment.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| | - Damian Matak
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Lukasz Szymanski
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Fei Lian
- Emory School of Medicine, Atlanta, GA, USA
| | - Anna Kornakiewicz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of General Surgery and Transplantology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Czerniakowski Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| |
Collapse
|
31
|
Shenoy N, Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann Oncol 2016; 27:1685-95. [PMID: 27329246 DOI: 10.1093/annonc/mdw241] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for ∼80% of all RCC, and biallelic Von Hippel-Lindau (VHL) gene defects occur in ∼75% of sporadic ccRCC. The etiopathogenesis of VHL mutant metastatic RCC, based on our understanding to date of molecular mechanisms involved, is a sequence of events which can be grouped under the following: (i) loss of VHL activity (germline/somatic mutation + inactivation of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway due to loss of VHL activity and transcription of genes involved in angiogenesis, epithelial-mesenchymal transition, invasion, metastasis, survival, anaerobic glycolysis and pentose phosphate pathway; (iii) interactions of the HIF pathway with other oncogenic pathways; (iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and the influence of epigenetics on various oncogenic, apoptotic, cell cycle regulatory and mismatch repair pathways (inhibition of multiple tumor suppressor genes); (v) immune evasion, at least partially caused by changes in the epigenome. These mechanisms interact throughout the pathogenesis and progression of disease, and also confer chemoresistance and radioresistance, making it one of the most difficult metastatic cancers to treat. This article puts together the sequential pathogenesis of VHL mutant ccRCC by elaborating these mechanisms and the interplay of oncogenic pathways, epigenetics, metabolism and immune evasion, with a perspective on potential therapeutic strategies. We reflect on the huge gap between our understanding of the molecular biology and currently accepted standard of care in metastatic ccRCC, and present ideas for better translational research involving therapeutic strategies with combinatorial drug approach, targeting different aspects of the pathogenesis.
Collapse
Affiliation(s)
- N Shenoy
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - L Pagliaro
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| |
Collapse
|
32
|
Panchenko MV. Structure, function and regulation of jade family PHD finger 1 (JADE1). Gene 2016; 589:1-11. [PMID: 27155521 DOI: 10.1016/j.gene.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
Abstract
The family of JADE proteins includes three paralogues encoded by individual genes and designated PHF17 (JADE1), PHF16 (JADE2), and PHF15 (JADE3). All three JADE proteins bear in tandem two Plant Homeo-domains (PHD) which are zinc finger domains. This review focuses on one member of the JADE family, JADE1. Studies addressing the biochemical, cellular and biological role of JADE1 are discussed. Recent discoveries of JADE1 function in the regulation of the epithelial cell cycle with potential relevance to disease are presented. Unresolved questions and future directions are formulated.
Collapse
Affiliation(s)
- Maria V Panchenko
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, United States.
| |
Collapse
|
33
|
Hart SN, Moore RM, Zimmermann MT, Oliver GR, Egan JB, Bryce AH, Kocher JPA. PANDA: pathway and annotation explorer for visualizing and interpreting gene-centric data. PeerJ 2015; 3:e970. [PMID: 26038725 PMCID: PMC4451017 DOI: 10.7717/peerj.970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/02/2015] [Indexed: 12/23/2022] Open
Abstract
Objective. Bringing together genomics, transcriptomics, proteomics, and other -omics technologies is an important step towards developing highly personalized medicine. However, instrumentation has advances far beyond expectations and now we are able to generate data faster than it can be interpreted. Materials and Methods. We have developed PANDA (Pathway AND Annotation) Explorer, a visualization tool that integrates gene-level annotation in the context of biological pathways to help interpret complex data from disparate sources. PANDA is a web-based application that displays data in the context of well-studied pathways like KEGG, BioCarta, and PharmGKB. PANDA represents data/annotations as icons in the graph while maintaining the other data elements (i.e., other columns for the table of annotations). Custom pathways from underrepresented diseases can be imported when existing data sources are inadequate. PANDA also allows sharing annotations among collaborators. Results. In our first use case, we show how easy it is to view supplemental data from a manuscript in the context of a user’s own data. Another use-case is provided describing how PANDA was leveraged to design a treatment strategy from the somatic variants found in the tumor of a patient with metastatic sarcomatoid renal cell carcinoma. Conclusion. PANDA facilitates the interpretation of gene-centric annotations by visually integrating this information with context of biological pathways. The application can be downloaded or used directly from our website: http://bioinformaticstools.mayo.edu/research/panda-viewer/.
Collapse
Affiliation(s)
- Steven N Hart
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Raymond M Moore
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Gavin R Oliver
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jan B Egan
- Division of Hematology/Oncology Mayo Clinic, Mayo Clinic Cancer Center, Scottsdale, AZ, USA
| | - Alan H Bryce
- Division of Hematology/Oncology Mayo Clinic, Mayo Clinic Cancer Center, Scottsdale, AZ, USA
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Abstract
Since the Von Hippel-Lindau (VHL) disease tumour suppressor gene VHL was identified in 1993 as the genetic basis for a rare disorder, it has proved to be of wide medical and scientific interest. VHL tumour suppressor protein (pVHL) plays a key part in cellular oxygen sensing by targeting hypoxia-inducible factors for ubiquitylation and proteasomal degradation. Early inactivation of VHL is commonly seen in clear-cell renal cell carcinoma (ccRCC), and insights gained from the functional analysis of pVHL have provided the foundation for the routine treatment of advanced-stage ccRCC with novel targeted therapies. However, recent sequencing studies have identified additional driver genes that are involved in the pathogenesis of ccRCC. As our understanding of the importance of VHL matures, it is timely to review progress from its initial description to current knowledge of VHL biology, as well as future prospects for novel medical treatments for VHL disease and ccRCC.
Collapse
Affiliation(s)
- Lucy Gossage
- 1] Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Department of Oncology, University of Cambridge, Box 193, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [3] Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Tim Eisen
- 1] Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Department of Oncology, University of Cambridge, Box 193, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Eamonn R Maher
- 1] Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Box 238, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
35
|
Gossage L, Pires DEV, Olivera-Nappa Á, Asenjo J, Bycroft M, Blundell TL, Eisen T. An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma. Hum Mol Genet 2014; 23:5976-88. [PMID: 24969085 PMCID: PMC4204774 DOI: 10.1093/hmg/ddu321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 05/25/2014] [Accepted: 06/17/2014] [Indexed: 12/26/2022] Open
Abstract
Mutations in the von Hippel-Lindau (VHL) gene are pathogenic in VHL disease, congenital polycythaemia and clear cell renal carcinoma (ccRCC). pVHL forms a ternary complex with elongin C and elongin B, critical for pVHL stability and function, which interacts with Cullin-2 and RING-box protein 1 to target hypoxia-inducible factor for polyubiquitination and proteasomal degradation. We describe a comprehensive database of missense VHL mutations linked to experimental and clinical data. We use predictions from in silico tools to link the functional effects of missense VHL mutations to phenotype. The risk of ccRCC in VHL disease is linked to the degree of destabilization resulting from missense mutations. An optimized binary classification system (symphony), which integrates predictions from five in silico methods, can predict the risk of ccRCC associated with VHL missense mutations with high sensitivity and specificity. We use symphony to generate predictions for risk of ccRCC for all possible VHL missense mutations and present these predictions, in association with clinical and experimental data, in a publically available, searchable web server.
Collapse
Affiliation(s)
- Lucy Gossage
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Douglas E V Pires
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Álvaro Olivera-Nappa
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Centre for Biochemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - Juan Asenjo
- Centre for Biochemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - Mark Bycroft
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Research Centre, Cambridge CB2 0QH, UK and
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tim Eisen
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Box 193 (R4) Addenbrooke's Hospital, Cambridge Biomedical Campus, Hill's Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
36
|
Wang WC, Tsou MH, Chen HJ, Hsu WF, Lai YC. Two single nucleotide polymorphisms in the von Hippel-Lindau tumor suppressor gene in Taiwanese with renal cell carcinoma. BMC Res Notes 2014; 7:638. [PMID: 25217002 PMCID: PMC4168206 DOI: 10.1186/1756-0500-7-638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background Renal cell carcinoma, a common malignant tumor arising from the kidney, occurs in 3.62 and 1.95 cases per one hundred thousand people among men and women, respectively, in Taiwan each year. Approximately 80% of cases are classified as clear-cell renal cell carcinoma. Inactivation of the von Hippel-Lindau tumor suppressor gene has been implicated in the tumorigenic pathway of renal cell carcinoma. Two single nucleotide polymorphisms, rs779805 and rs1642742, located in the promoter and 3′ untranslated regions of the von Hippel-Lindau gene are informative and implicated in the occurrence of renal cell carcinoma worldwide. The aim of this study is to clarify whether these polymorphisms are associated with renal cell carcinoma in Taiwanese. Genomic DNA was isolated from normal and tumor tissues of 19 renal cell carcinoma patients. The samples were screened for allelic polymorphisms by restriction fragment length polymorphism with BsaJ I and Acc I digestion. Reconfirmation was carried out by direct sequencing. Results Consistent with Knudson’s two-hit theory, AA to AG somatic mutations were observed in rs779805. In addition, loss of heterozygosity in both rs779805 and rs1642742 was demonstrated in 10 out of 15 RCC patients aged 50 or over. The G allele or AG heterozygote frequencies at these two loci were much higher in patient germline DNA when compared with the control group. After adjusting for age, the frequency of the G allele in both loci was much higher for late onset renal cell carcinoma in the Taiwanese population. Conclusions Our current results confirmed that the existence of G allele in both rs779805 and rs1642742 in the von Hippel-Lindau tumor suppressor gene is of importance in renal cell carcinoma tumorigenesis. However, more comprehensive and detailed research is needed to address the clinical relevance. Larger sample size is required to determine the exact power of correlation between these two genetic polymorphisms and renal cell carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-638) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Yen-Chein Lai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, No,110, Sec, 1, Chien Kuo N, Road, Taichung 402, Taiwan, Republic of China.
| |
Collapse
|
37
|
Abstract
Sunitinib is an oral multikinase inhibitor that blocks the vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) alpha and beta, c-kit, and other receptors. These attributes have proven to be efficacious in the treatment of metastatic renal cell carcinoma (RCC), unresectable gastrointestinal stromal tumors (GIST), and well-differentiated advanced pancreatic neuroendocrine tumors (PNET). Though activity has been reported in other tumor types, phase III trials have not yet demonstrated improved survival outcomes in these cancers. Most side effects including hypertension, hand-foot syndrome, and diarrhea are generally well manageable. This review will detail the preclinical data leading up to the results of the pivotal phase III clinical trials that have led to the widespread use of sunitinib in advanced RCC, GIST, and PNET.
Collapse
|
38
|
Matriptase and MET are prominently expressed at the site of bone metastasis in renal cell carcinoma: immunohistochemical analysis. Hum Cell 2014; 28:44-50. [PMID: 25186085 PMCID: PMC4286132 DOI: 10.1007/s13577-014-0101-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022]
Abstract
High MET expression in renal cell carcinoma (RCC) and MET activation in bone metastases are reportedly important in progression of several cancers. To find new treatment targets in bone metastasis, we immunohistochemically analyzed expression levels of MET and matriptase (specific cellular activator of hepatocyte growth factor). We obtained nephrectomy specimens from 17 RCC patients with metastasis, and bone metastases specimens from 7 RCC patients who underwent metastasectomies, and who were treated at our hospital between 2008 and 2012. We tested the samples with anti-human MET polyclonal antibody and anti-human matriptase polyclonal antibody, and compared postoperative overall survival (OS) rates between positive and negative groups. High MET expression was seen at primary sites in 8/17 (47 %) nephrectomy specimens, and 6/7 (86 %) bone specimens. Matriptase was expressed in 6/17 (35 %) nephrectomy specimens, and all 7 (100 %) bone specimens. Interestingly, matriptase was strongly expressed in osteoclasts of 5/7 bone specimens. Postoperative OS rate was significantly higher in the MET− group than the MET+ group. The high MET and matriptase expression seen in RCC cells in bone metastasis accompanied by matriptase expression in osteoclasts indicates their importance in bone metastasis.
Collapse
|
39
|
King S, Bray S, Galbraith S, Christie L, Fleming S. Evidence for aldosterone-dependent growth of renal cell carcinoma. Int J Exp Pathol 2014; 95:244-50. [PMID: 24802662 DOI: 10.1111/iep.12074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/29/2014] [Indexed: 12/12/2022] Open
Abstract
The aim if this study was to investigate the hypothesis that K-RAS 4A is upregulated in a mineralocorticoid-dependent manner in renal cell carcinoma and that this supports the proliferation and survival of some renal cancers. Expression of the K-RAS in renal tumour tissues and cell lines was examined by real-time PCR and Western blot and mineralocorticoid receptor, and its gatekeeper enzyme 11β-hydroxysteroid dehydrogenase-2 was examined by immunocytochemistry on a tissue microarray of 27 cases of renal cell carcinoma. Renal cancer cells lines 04A018 (RCC4 plus VHL) and 04A019 (RCC4 plus vector alone) were examined for the expression of K-RAS4A and for the effect on K-RAS expression of spironolactone blockade of the mineralocorticoid receptor. K-RAS4A was suppressed by siRNA, and the effect on cell survival, proliferation and activation of the Akt and Raf signalling pathways was investigated in vitro. K-RAS4A was expressed in RCC tissue and in the renal cancer cell lines but K-RAS was downregulated by spironolactone and upregulated by aldosterone. Spironolactone treatment and K-RAS suppression both led to a reduction in cell number in vitro. Both Akt and Raf pathways showed activation which was dependent on K-RAS expression. K-RAS expression in renal cell carcinoma is at least partially induced by aldosterone. Aldosterone supports the survival and proliferation of RCC cells by upregulation of K-RAS acting through the Akt and Raf pathways.
Collapse
Affiliation(s)
- Sharon King
- Division of Cancer Research, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | |
Collapse
|
40
|
Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews N, Santos CR, Martinez P, Phillimore B, Begum S, Rabinowitz A, Spencer-Dene B, Gulati S, Bates PA, Stamp G, Pickering L, Gore M, Nicol DL, Hazell S, Futreal PA, Stewart A, Swanton C. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 2014; 46:225-233. [PMID: 24487277 PMCID: PMC4636053 DOI: 10.1038/ng.2891] [Citation(s) in RCA: 958] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/13/2014] [Indexed: 02/08/2023]
Abstract
Clear cell renal carcinomas (ccRCCs) can display intratumor heterogeneity (ITH). We applied multiregion exome sequencing (M-seq) to resolve the genetic architecture and evolutionary histories of ten ccRCCs. Ultra-deep sequencing identified ITH in all cases. We found that 73-75% of identified ccRCC driver aberrations were subclonal, confounding estimates of driver mutation prevalence. ITH increased with the number of biopsies analyzed, without evidence of saturation in most tumors. Chromosome 3p loss and VHL aberrations were the only ubiquitous events. The proportion of C>T transitions at CpG sites increased during tumor progression. M-seq permits the temporal resolution of ccRCC evolution and refines mutational signatures occurring during tumor development.
Collapse
Affiliation(s)
- Marco Gerlinger
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Stuart Horswell
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, UK
| | - James Larkin
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Andrew J Rowan
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Max P Salm
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, UK
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Rosalie Fisher
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Nicholas McGranahan
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Nicholas Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Claudio R Santos
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Pierre Martinez
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Benjamin Phillimore
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Sharmin Begum
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Adam Rabinowitz
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology, Cancer Research UK London Research Institute, London, UK
| | - Sakshi Gulati
- Biomolecular Modelling, Cancer Research UK London Research Institute, London, UK
| | - Paul A Bates
- Biomolecular Modelling, Cancer Research UK London Research Institute, London, UK
| | - Gordon Stamp
- Experimental Histopathology, Cancer Research UK London Research Institute, London, UK
| | - Lisa Pickering
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Martin Gore
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - David L Nicol
- Department of Urology, Royal Marsden Hospital, London, UK
| | - Steven Hazell
- Department of Pathology, Royal Marsden Hospital, London, UK
| | - P Andrew Futreal
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Aengus Stewart
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
- University College London Cancer Institute, University College London, London, UK
| |
Collapse
|
41
|
Ricketts CJ, Hill VK, Linehan WM. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) project. PLoS One 2014; 9:e85621. [PMID: 24454902 PMCID: PMC3893219 DOI: 10.1371/journal.pone.0085621] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/05/2013] [Indexed: 01/08/2023] Open
Abstract
The recent publication of the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) project has provided an immense wealth and breadth of data providing an invaluable tool for confirmation and expansion upon previous observations in a large data set containing multiple data types including DNA methylation, somatic mutation, and clinical information. In clear cell renal cell carcinoma (CCRCC) many genes have been demonstrated to be epigenetically inactivated by promoter hypermethylated and in a small number of cases to be associated with clinical outcome. This study created two cohorts based on the Illumina BeadChip array used to confirm the frequency of tumor-specific hypermethylation of these published hypermethylated genes, assess the impact of somatic mutation or chromosomal loss and provide the most comprehensive assessment to date of the association of this hypermethylation with patient survival. Hypermethylation of the Fibrillin 2 (FBN2) gene was the most consistent epigenetic biomarker for CCRCC across both cohorts in 40.2% or 52.5% of tumors respectively. Hypermethylation of the secreted frizzled-related protein 1 (SFRP1) gene and the basonuclin 1 (BNC1) gene were both statistically associated with poorer survival in both cohorts (SFRP1 - p = <0.0001 or 0.0010 and BNC1 - p = <0.0001 or 0.0380) and represented better independent markers of survival than tumor stage, grade or dimension in one cohort and tumor stage or dimension in the other cohort. Loss of the SFRP1 protein can potentially activate the WNT pathway and this analysis highlighted hypermethylation of several other WNT pathway regulating genes and demonstrated a poorer survival outcome for patients with somatic mutation of these genes. The success of demethylating drugs in hematological malignances and the current trials in solid tumors suggest that the identification of clinically relevant hypermethylated genes combined with therapeutic advances may improve the effectiveness and usefulness of such drugs in clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Victoria K. Hill
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Wake NC, Ricketts CJ, Morris MR, Prigmore E, Gribble SM, Skytte AB, Brown M, Clarke N, Banks RE, Hodgson S, Turnell AS, Maher ER, Woodward ER. UBE2QL1 is disrupted by a constitutional translocation associated with renal tumor predisposition and is a novel candidate renal tumor suppressor gene. Hum Mutat 2013; 34:1650-61. [PMID: 24000165 PMCID: PMC4028990 DOI: 10.1002/humu.22433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 11/08/2022]
Abstract
Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gene.
Collapse
MESH Headings
- Adult
- Base Sequence
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakpoints
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 5
- DNA Methylation
- Epigenesis, Genetic
- F-Box Proteins/metabolism
- F-Box-WD Repeat-Containing Protein 7
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Molecular Sequence Data
- Protein Binding
- Protein Transport
- Translocation, Genetic
- Ubiquitin-Conjugating Enzymes/chemistry
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Naomi C Wake
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - Christopher J Ricketts
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - Mark R Morris
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
- University of Wolverhampton, Wulfruna StreetWolverhampton, UK
| | - Elena Prigmore
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, UK
| | - Susan M Gribble
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, UK
| | | | - Michael Brown
- Genito Urinary Cancer Research Group, School of Cancer and Enabling Sciences, Paterson Institute for Cancer Research, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation TrustManchester, UK
| | - Noel Clarke
- Genito Urinary Cancer Research Group, School of Cancer and Enabling Sciences, Paterson Institute for Cancer Research, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation TrustManchester, UK
| | - Rosamonde E Banks
- Cancer Research UK Clinical Centre, St. James's University HospitalLeeds, UK
| | - Shirley Hodgson
- South West Thames Regional Genetics Service, St. George's Medical School, University of LondonLondon, UK
| | - Andrew S Turnell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - Eamonn R Maher
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
- West Midlands Regional Genetics Service, Birmingham Women's HospitalEdgbaston, Birmingham, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Hills RoadCambridge, UK
| | - Emma R Woodward
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
- West Midlands Regional Genetics Service, Birmingham Women's HospitalEdgbaston, Birmingham, UK
| |
Collapse
|
43
|
Ricketts CJ, Morris MR, Gentle D, Shuib S, Brown M, Clarke N, Wei W, Nathan P, Latif F, Maher ER. Methylation profiling and evaluation of demethylating therapy in renal cell carcinoma. Clin Epigenetics 2013; 5:16. [PMID: 24034811 PMCID: PMC3848591 DOI: 10.1186/1868-7083-5-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/21/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite therapeutic advances in targeted therapy, metastatic renal cell carcinoma (RCC) remains incurable for the vast majority of patients. Key molecular events in the pathogenesis of RCC include inactivation of the VHL tumour suppressor gene (TSG), inactivation of chromosome 3p TSGs implicated in chromatin modification and remodelling and de novo tumour-specific promoter methylation of renal TSGs. In the light of these observations it can be proposed that, as in some haematological malignancies, demethylating agents such as azacitidine might be beneficial for the treatment of advanced RCC. RESULTS Here we report that the treatment of RCC cell lines with azacitidine suppressed cell proliferation in all 15 lines tested. A marked response to azacitidine therapy (>50% reduction in colony formation assay) was detected in the three cell lines with VHL promoter methylation but some RCC cell lines without VHL TSG methylation also demonstrated a similar response suggesting that multiple methylated TSGs might determine the response to demethylating therapies. To identify novel candidate methylated TSGs implicated in RCC we undertook a combined analysis of copy number and CpG methylation array data. Candidate novel epigenetically inactivated TSGs were further prioritised by expression analysis of RCC cell lines pre and post-azacitidine therapy and comparative expression analysis of tumour/normal pairs. Thus, with subsequent investigation two candidate genes were found to be methylated in more than 25% of our series and in the TCGA methylation dataset for 199 RCC samples: RGS7 (25.6% and 35.2% of tumours respectively) and NEFM in (25.6% and 30.2%). In addition three candidate genes were methylated in >10% of both datasets (TMEM74 (15.4% and 14.6%), GCM2 (41.0% and 14.6%) and AEBP1 (30.8% and 13.1%)). Methylation of GCM2 (P = 0.0324), NEFM (P = 0.0024) and RGS7 (P = 0.0067) was associated with prognosis. CONCLUSIONS These findings provide preclinical evidence that treatment with demethylating agents such as azacitidine might be useful for the treatment of advanced RCC and further insights into the role of epigenetic changes in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Christopher J Ricketts
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark R Morris
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Applied Sciences University of Wolverhampton, Wolverhampton WV1 1SV, UK
| | - Dean Gentle
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Salwati Shuib
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Pathology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Michael Brown
- Institute for Cancer Sciences, Cancer Research UK Paterson Institute for Cancer Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX, UK
| | - Noel Clarke
- Institute for Cancer Sciences, Cancer Research UK Paterson Institute for Cancer Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX, UK
- The Christie Hospital, Wilmslow Road, Manchester M20 4BX, UK
| | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Paul Nathan
- Mount Vernon Cancer Centre - Medical Oncology, Rickmansworth Road, Northwood, Middlesex HA6 2RN, UK
| | - Farida Latif
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eamonn R Maher
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- West Midlands Region Genetics Service, Birmingham Women’s Hospital, Edgbaston, Birmingham B15 2TG, UK
- Department of Medical Genetics, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
44
|
Goyal R, Gersbach E, Yang XJ, Rohan SM. Differential diagnosis of renal tumors with clear cytoplasm: clinical relevance of renal tumor subclassification in the era of targeted therapies and personalized medicine. Arch Pathol Lab Med 2013; 137:467-80. [PMID: 23544936 DOI: 10.5858/arpa.2012-0085-ra] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The World Health Organization classification of renal tumors synthesizes morphologic, immunohistochemical, and molecular findings to define more than 40 tumor types. Of these, clear cell (conventional) renal cell carcinoma is the most common malignant tumor in adults and-with the exception of some rare tumors-the most deadly. The diagnosis of clear cell renal cell carcinoma on morphologic grounds alone is generally straightforward, but challenging cases are not infrequent. A misdiagnosis of clear cell renal cell carcinoma has clinical consequences, particularly in the current era of targeted therapies. OBJECTIVE To highlight morphologic mimics of clear cell renal cell carcinoma and provide strategies to help differentiate clear cell renal cell carcinoma from other renal tumors and lesions. The role of the pathologist in guiding treatment for renal malignancies will be emphasized to stress the importance of proper tumor classification in patient management. DATA SOURCES Published literature and personal experience. CONCLUSIONS In challenging cases, submission of additional tissue is often an inexpensive and effective way to facilitate a correct diagnosis. If immunohistochemical stains are to be used, it is best to use a panel of markers, as no one marker is specific for a given renal tumor subtype. Selection of limited markers, based on a specific differential diagnosis, can be as useful as a large panel in reaching a definitive diagnosis. For renal tumors, both the presence and absence of immunoreactivity and the pattern of labeling (membranous, cytoplasmic, diffuse, focal) are important when interpreting the results of immunohistochemical stains.
Collapse
Affiliation(s)
- Rajen Goyal
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
45
|
Laird A, O'Mahony FC, Nanda J, Riddick ACP, O'Donnell M, Harrison DJ, Stewart GD. Differential expression of prognostic proteomic markers in primary tumour, venous tumour thrombus and metastatic renal cell cancer tissue and correlation with patient outcome. PLoS One 2013; 8:e60483. [PMID: 23577117 PMCID: PMC3618228 DOI: 10.1371/journal.pone.0060483] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/26/2013] [Indexed: 01/16/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most deadly of urological malignancies. Metastatic disease affects one third of patients at diagnosis with a further third developing metastatic disease after extirpative surgery. Heterogeneity in the clinical course ensures predicting metastasis is notoriously difficult, despite the routine use of prognostic clinico-pathological parameters in risk stratification. With greater understanding of pathways involved in disease pathogenesis, a number of biomarkers have been shown to have prognostic significance, including Ki67, p53, vascular endothelial growth factor receptor 1 (VEGFR1) and ligand D (VEGFD), SNAIL and SLUG. Previous pathway analysis has been from study of the primary tumour, with little attention to the metastatic tumours which are the focus of targeted molecular therapies. As such, in this study a tissue microarray from 177 patients with primary renal tumour, renal vein tumour thrombus and/or RCC metastasis has been created and used with Automated Quantitative Analysis (AQUA) of immunofluorescence to study the prognostic significance of these markers in locally advanced and metastatic disease. Furthermore, this has allowed assessment of differential protein expression between the primary tumours, renal vein tumour thrombi and metastases. The results demonstrate that clinico-pathological parameters remain the most significant predictors of cancer specific survival; however, high VEGFR1 or VEGFD can predict poor cancer specific survival on univariate analysis for locally advanced and metastatic disease. There was significantly greater expression of Ki67, p53, VEGFR1, SLUG and SNAIL in the metastases compared with the primary tumours and renal vein tumour thrombi. With the exception of p53, these differences in protein expression have not been shown previously in RCC. This confirms the importance of proliferation, angiogenesis and epithelial to mesenchymal transition in the pathogenesis and metastasis of RCC. Importantly, this work highlights the need for further pathway analysis of metastatic tumours for overcoming drug resistance and developing new therapies.
Collapse
Affiliation(s)
- Alexander Laird
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
46
|
Polimeno M, Napolitano M, Costantini S, Portella L, Esposito A, Capone F, Guerriero E, Trotta A, Zanotta S, Pucci L, Longo N, Perdonà S, Pignata S, Castello G, Scala S. Regulatory T cells, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), CXCL10, CXCL11, epidermal growth factor (EGF) and hepatocyte growth factor (HGF) as surrogate markers of host immunity in patients with renal cell carcinoma. BJU Int 2013; 112:686-96. [PMID: 23495770 DOI: 10.1111/bju.12068] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To identify a phenotype that could be informative and prognostic in patients with renal cell carcinoma (RCC) peripheral blood was evaluated for TH1, TH2, regulatory T cells (Tregs), natural killer (NK) and NKT cells and for cytokines/chemokines. PATIENTS AND METHODS Peripheral blood from 77 patients with RCC and 40 healthy controls was evaluated by flow cytometry using monoclonal antibodies against CD4, CD25, FoxP3, CD45RA, CD45RO, CD152, CD184, CD279, CD3, CD16, CD56, CD161, CD158a, CD4, CD26, CD30, CD183 and CD184. A concomitant evaluation of 38 molecules was conducted in patients' serum using a multiplex biometric ELISA-based immunoassay. RESULTS The number of NK cells CD3⁻/CD16⁺, CD3⁻/CD16⁺/CD161⁺ (NK) and CD3⁻/CD16⁺/CD161⁺/CD158a⁺ (NK- Kir 2+) was greater in the patients with RCC (P < 0.05); and the number of Treg cells CD4⁺/CD25(high+)/FOXP3⁺ and the subset CD4⁺/CD25(high+)/FOXP3⁺/CD45RA⁺ (naïve) and CD45R0⁺(memory) cells, were greater in the patients with RCC (P < 0.001). An increase in the following was observed in the serum of patients with RCC compared with healthy controls: interleukin (IL)-4, IL-6, IL-8, IL-10, G-CSF, CXCL10, CXCL11, hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF). According to Ingenuity Pathway Analysis (IPA), CXCL10, IL-6, IL-8, epidermal growth factor (EGF), HGF and VEGF were associated with a network that controls cellular movement, tissue development and cellular growth. Kaplan-Meier analysis for disease-free survival showed that high numbers of CD4⁺/CD25(high+)/FOXP3⁺/CD45RA⁺ (Treg naïve) and low numbers of CD3⁻/CD16⁺/CD161⁺/CD158a⁺ (NK-Kir+) cells predict short disease-free survival in patients with RCC. CONCLUSION Concomitant evaluation of Treg (CD4⁺/CD25(high+)/FOXP3⁺ and CD4⁺/CD25(high+)/FOXP3⁺/CD45RA⁺) and of six soluble factors (IL-6, IL-8 ,VEGF, CXCL10, CXCL11, EGF, HGF) might be a surrogate marker of host immunity in patients with RCC.
Collapse
Affiliation(s)
- Marianeve Polimeno
- Oncological Immunology, National Cancer Institute 'G. Pascale', Mercogliano, Avellino
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
López JI. Renal tumors with clear cells. A review. Pathol Res Pract 2013; 209:137-46. [PMID: 23433880 DOI: 10.1016/j.prp.2013.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/15/2012] [Accepted: 01/18/2013] [Indexed: 01/30/2023]
Abstract
The spectrum of primary renal tumors in which clear cells may appear is revisited in this review. The pathologist's viewpoint of this topic is pertinent because not all the tumors with clear cells are carcinomas and not all renal cell carcinomas with clear cells are clear cell renal cell carcinomas. In fact, some of them are distinct entities according to the new WHO classification. The morphological approach is combined with genetics. Renal cell carcinoma related to von Hippel-Lindau disease is reviewed first because many of the genetic disorders underlying this disease are also present in sporadic, conventional renal cell clear cell carcinomas. Subsequently, conventional renal cell clear cell carcinomas, familial, non von Hippel-Lindau-associated renal cell carcinomas, translocation carcinomas, hereditary papillary renal cell carcinomas, carcinomas associated to tuberous sclerosis and to Birt-Hogg-Dubé syndrome, chromophobe renal cell carcinomas, carcinomas associated with end-stage renal disease, and clear cell tubulopapillary carcinomas are reviewed. Finally, epithelioid angiomyolipoma is also considered in this review.
Collapse
Affiliation(s)
- José I López
- Department of Pathology, Cruces University Hospital, BioCruces Research Institute, University of the Basque Country (EHU/UPV), Barakaldo, Bizkaia, Spain.
| |
Collapse
|
48
|
Knockdown of Slingshot 2 (SSH2) serine phosphatase induces Caspase3 activation in human carcinoma cell lines with the loss of the Birt-Hogg-Dubé tumour suppressor gene (FLCN). Oncogene 2013; 33:956-65. [PMID: 23416984 DOI: 10.1038/onc.2013.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/14/2012] [Accepted: 01/02/2013] [Indexed: 01/01/2023]
Abstract
Birt-Hogg-Dubé (BHD) syndrome, is a dominantly inherited familial cancer syndrome associated with susceptibility to renal cell carcinoma (RCC) caused by inactivating mutations in the folliculin (FLCN) gene. The precise functions of the FLCN gene product are still under investigation but RCC from BHD patients show loss of the wild-type allele consistent with a tumor suppressor gene function. In a search for potential synthetic-lethal targets for FLCN using a phosphatase siRNA library screening approach, we found that knockdown of SSH2 serine phosphatase (one of the three members of Slingshot family and previously implicated in actin reorganization) specifically induced Caspase3/7 activity in a dose-dependent manner (up to six-fold increase, 10 nM, 72 h) in two human FLCN-deficient cell lines (BHD-origin renal cell carcinoma UOK257 and thyroid carcinoma FTC133) but not in their folliculin expressing isogenic cell lines. SSH2 siRNA-induced knockdown was accompanied by increased expression of SSH1 and SSH3 (suggesting a compensatory regulatory mechanism among members of SSH family). FLCN-null cells exhibited evidence of dysregulated cofilin de/phosphorylation pathways. Knockdown of SSH2 in FLCN-null cells was associated with an alteration in cell cycle kinetics (20% increase in G1, 30% and 40% decrease in S and G2M, respectively). Combination treatment of multiple SSH family (SSH2 plus SSH1 and/or SSH3) siRNAs potentiated induction of Caspase3/7 activity and changes in the cell cycle kinetics. These data indicate that: (a) apoptotic cell death in FLCN-null cells can be triggered by SSH2 knockdown through cell cycle arrest; (b) SSH2 represents a potential therapeutic target for the development of agents for the treatment of BHD syndrome and, possibly, related tumors.
Collapse
|
49
|
Genomics and epigenomics of renal cell carcinoma. Semin Cancer Biol 2013; 23:10-7. [DOI: 10.1016/j.semcancer.2012.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/05/2012] [Indexed: 12/12/2022]
|
50
|
Ha YS, Chihara Y, Yoon HY, Kim YJ, Kim TH, Woo SH, Yun SJ, Kim IY, Hirao Y, Kim WJ. Downregulation of fumarate hydratase is related to tumorigenesis in sporadic renal cell cancer. Urol Int 2012; 90:233-9. [PMID: 23295344 DOI: 10.1159/000345608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Although germline mutations of fumarate hydratase (FH) are a useful molecular marker of hereditary leiomyomatosis and renal cell cancer (RCC) syndrome, their clinical significance in sporadic RCC has not been studied in detail. The aim of the present study was to investigate possible correlations between the expression of FH and the clinical implications of sporadic RCC. MATERIALS AND METHODS FH mRNA levels were evaluated in 140 tumor specimens from patients with primary RCC and in 62 specimens of corresponding normal-appearing kidney tissue using real-time quantitative polymerase chain reaction. Immunohistochemical staining was performed on 6 normal surrounding tissues and 71 RCC tissues. RESULTS FH mRNA levels were significantly lower in tumor tissues than in matched normal-appearing kidney tissues (p = 0.031). In all normal tissues, FH staining intensity was strong. However, the expression of FH showed no significant correlation with the pathological and clinical characteristics of patients with sporadic RCC. CONCLUSIONS Our results showed that FH mRNA expression decreased significantly in correlation with the transition from normal renal parenchyma to RCC. FH may be an indicator or tumorigenesis in sporadic RCC and could be a potential target for therapies against RCC in the future.
Collapse
Affiliation(s)
- Yun-Sok Ha
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|