1
|
Sengupta S, Yaeger JD, Schultz MM, Francis KR. Dishevelled localization and function are differentially regulated by structurally distinct sterols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593701. [PMID: 38798572 PMCID: PMC11118412 DOI: 10.1101/2024.05.14.593701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Dishevelled (DVL) family of proteins form supramolecular protein and lipid complexes at the cytoplasmic interface of the plasma membrane to regulate tissue patterning, proliferation, cell polarity, and oncogenic processes through DVL-dependent signaling, such as Wnt/β-catenin. While DVL binding to cholesterol is required for its membrane association, the specific structural requirements and cellular impacts of DVL-sterol association are unclear. We report that intracellular sterols which accumulate within normal and pathological conditions cause aberrant DVL activity. In silico and molecular analyses suggested orientation of the β- and α-sterol face within the DVL-PDZ domain regulates DVL-sterol binding. Intracellular accumulation of naturally occurring sterols impaired DVL2 plasma membrane association, inducing DVL2 nuclear localization via Foxk2. Changes to intracellular sterols also selectively impaired DVL2 protein-protein interactions This work identifies sterol specificity as a regulator of DVL signaling, suggests intracellular sterols cause distinct impacts on DVL activity, and supports a role for intracellular sterol homeostasis in cell signaling.
Collapse
Affiliation(s)
- Sonali Sengupta
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jazmine D.W. Yaeger
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Maycie M. Schultz
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Kevin R. Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, 57105, USA
| |
Collapse
|
2
|
Alshahrani SH, Rakhimov N, Rana A, Alsaab HO, Hjazi A, Adile M, Abosaooda M, Abdulhussien Alazbjee AA, Alsalamy A, Mahmoudi R. Dishevelled: An emerging therapeutic oncogene in human cancers. Pathol Res Pract 2023; 250:154793. [PMID: 37683388 DOI: 10.1016/j.prp.2023.154793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Cancer is a multifaceted and complex disorder characterized by uncontrolled rates of cell proliferation and its ability to spread and attack other organs. Emerging data indicated several pathways and molecular targets are engaged in cancer progression. Among them, the Wnt signaling pathway was shown to have a crucial role in cancer onset and progression. Dishevelled (DVL) acts in a branch point of canonical and non-canonical Wnt pathway. DVL not only acts in the cytoplasm to inactivate the destruction complex of β-catenin but is also transported into the nucleus to affect the transcription of target genes. Available data revealed that the expression levels of DVL increased in cell and clinical specimens of various cancers, proposing that it may have an oncogenic role. DVL promoted cell invasion, migration, cell cycle, survival, proliferation, 3D-spheroid formation, stemness, and epithelial mesenchymal transition (EMT) and it suppressed cell apoptosis. The higher levels of DVL is associated with the clinicopathological characteristic of cancer-affected patients, including lymph node metastasis, tumor grade, histological type, and age. In addition, the higher levels of DVL could be a promising diagnostic and prognostic biomarker in cancer as well as it could be a mediator in cancer chemoresistance to Methotrexate, paclitaxel, and 5-fluorouracil. This study aimed to investigate the underlying molecular mechanism of DVL in cancer pathogenesis as well as to explore its importance in cancer diagnosis and prognosis as well as its role as a mediator in cancer chemotherapy.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan; Department of Scientific Affairs,Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Arti Rana
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohaned Adile
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals (Basel) 2021; 11:ani11030835. [PMID: 33809500 PMCID: PMC7999090 DOI: 10.3390/ani11030835] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of increasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Abstract Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.
Collapse
|
4
|
Fan R, Cui W, Chen J, Ma Y, Yang Z, Payne TJ, Ma JZ, Li MD. Gene-based association analysis reveals involvement of LAMA5 and cell adhesion pathways in nicotine dependence in African- and European-American samples. Addict Biol 2021; 26:e12898. [PMID: 32281736 DOI: 10.1111/adb.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Nicotine dependence (ND) is a chronic brain disorder that causes heavy social and economic burdens. Although many susceptibility genetic loci have been reported, they can explain only approximately 5%-10% of the genetic variance for the disease. To further explore the genetic etiology of ND, we genotyped 242 764 SNPs using an exome chip from both European-American (N = 1572) and African-American (N = 3371) samples. Gene-based association analysis revealed 29 genes associated significantly with ND. Of the genes in the AA sample, six (i.e., PKD1L2, LAMA5, MUC16, MROH5, ATP8B1, and FREM1) were replicated in the EA sample with p values ranging from 0.0031 to 0.0346. Subsequently, gene enrichment analysis revealed that cell adhesion-related pathways were significantly associated with ND in both the AA and EA samples. Considering that LAMA5 is the most significant gene in cell adhesion-related pathways, we did in vitro functional analysis of this gene, which showed that nicotine significantly suppressed its mRNA expression in HEK293T cells (p < 0.001). Further, our cell migration experiment showed that the migration rate was significantly different in wild-type and LAMA5-knockout (LAMA5-KO)-HEK293T cells. Importantly, nicotine-induced cell migration was abolished in LAMA5-KO cells. Taken together, these findings indicate that LAMA5, as well as cell adhesion-related pathways, play an important role in the etiology of smoking addiction, which warrants further investigation.
Collapse
Affiliation(s)
- Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Thomas J. Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences University of Mississippi Medical Center Jackson Mississippi USA
| | - Jennie Z. Ma
- Department of Public Health Sciences University of Virginia Charlottesville Virginia USA
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Research Center for Air Pollution and Health Zhejiang University Hangzhou China
| |
Collapse
|
5
|
Goto J, Otaki Y, Watanabe T, Kobayashi Y, Aono T, Watanabe K, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Shishido T, Watanabe M. HECT (Homologous to the E6-AP Carboxyl Terminus)-Type Ubiquitin E3 Ligase ITCH Attenuates Cardiac Hypertrophy by Suppressing the Wnt/β-Catenin Signaling Pathway. Hypertension 2020; 76:1868-1878. [PMID: 33131309 DOI: 10.1161/hypertensionaha.120.15487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The HECT (homologous to the E6-AP carboxyl terminus)-type ubiquitin E3 ligase ITCH is an enzyme that plays an important role in ubiquitin-proteasomal protein degradation. Disheveled proteins (Dvl1 [disheveled protein 1], Dvl2, and Dvl3) are the main components of the Wnt/β-catenin signaling pathway, which is involved in cardiac hypertrophy. The aim of this study was to examine the role of ITCH during development of cardiac hypertrophy. Thoracic transverse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type mice. Cardiac hypertrophy after TAC was attenuated in ITCH-Tg mice, and the survival rate was higher for ITCH-Tg mice than for wild-type mice. Protein interaction between ITCH and Dvls was confirmed with immunoprecipitation in vivo and in vitro. Expression of key molecules of the Wnt/β-catenin signaling pathway (Dvl1, Dvl2, GSK3β [glycogen synthase kinase 3β], and β-catenin) was inhibited in ITCH-Tg mice compared with wild-type mice. Notably, the ubiquitination level of Dvl proteins increased in ITCH-Tg mice. Protein and mRNA expression levels of ITCH increased in response to Wnt3a stimulation in neonatal rat cardiomyocytes. Knockdown of ITCH using small-interfering RNA increased cardiomyocyte size and augmented protein expression levels of Dvl proteins, phospho-GSK3β, and β-catenin after Wnt3a stimulation in cardiomyocytes. Conversely, overexpression of ITCH attenuated cardiomyocyte hypertrophy and decreased protein expression levels of Dvl proteins, phospho-GSK3β and β-catenin. In conclusion, ITCH targets Dvl proteins for ubiquitin-proteasome degradation in cardiomyocytes and attenuates cardiac hypertrophy by suppressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jun Goto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoichiro Otaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsu Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yuta Kobayashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tomonori Aono
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Ken Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masahiro Wanezaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Daisuke Kutsuzawa
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shigehiko Kato
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Harutoshi Tamura
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Satoshi Nishiyama
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takanori Arimoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Hiroki Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsuro Shishido
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masafumi Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| |
Collapse
|
6
|
Mizutani K, Miyamoto S, Nagahata T, Konishi N, Emi M, Onda M. Upregulation and Overexpression of DVL1, the Human Counterpart of the Drosophila Dishevelled Gene, in Prostate Cancer. TUMORI JOURNAL 2019; 91:546-51. [PMID: 16457155 DOI: 10.1177/030089160509100616] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and Background The Wnt/beta-catenin signaling pathway is one of the main carcinogenic mechanisms in human malignancies including prostate cancer. Recently, the DVL1 gene was identified as a middle molecule of the Wnt/beta-catenin signaling pathway. In addition, alterations of the DVL1 gene have been reported in breast and cervical cancer. The abnormality of beta-catenin in prostate cancer has been well studied, so the examination of the DVL1 gene in prostate cancer is appealing. Methods We investigated DVL1 messenger RNA alterations by semiquantitative PCR (SQ-PCR) in 20 primary prostate cancers and assessed the protein expression by immunohistochemical analysis in the same samples. In addition, DVL1 and beta-catenin protein expression was evaluated with a new validated set of 20 prostate cancers. Results SQ-PCR revealed significant overexpression of DVL1 in prostate cancer (65%). Upregulation of the DVL1 gene product in prostate cancer was confirmed by immunostaining. With SQ-PCR and immunostaining, none of the cases showed underexpression or downregulation of DVL1. In addition, the data showed correlations between DVL1 mRNA and protein expression. Interestingly, the expression level of DVL1 increased with worsening histological grade. In addition, a correlation between DVL1 expression and beta-catenin expression was confirmed. Conclusions DVL1 was overexpressed in prostate cancer and its overexpression might be related to prostate cancer progression through the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Kazunori Mizutani
- Department of Molecular Biology, Institute of Gerontology, Nippon Medical School, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
8
|
Zhou G, Ye J, Sun L, Zhang Z, Feng J. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma. J Mol Histol 2016; 47:287-95. [DOI: 10.1007/s10735-016-9674-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/29/2016] [Indexed: 12/11/2022]
|
9
|
White J, Mazzeu J, Hoischen A, Bayram Y, Withers M, Gezdirici A, Kimonis V, Steehouwer M, Jhangiani S, Muzny D, Gibbs R, van Bon B, Sutton V, Lupski J, Brunner H, Carvalho C, Carvalho CMB. DVL3 Alleles Resulting in a -1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow Syndrome. Am J Hum Genet 2016; 98:553-561. [PMID: 26924530 DOI: 10.1016/j.ajhg.2016.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
Robinow syndrome is a rare congenital disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features. Recent reports have identified, in individuals with dominant Robinow syndrome, a specific type of variant characterized by being uniformly located in the penultimate exon of DVL1 and resulting in a -1 frameshift allele with a premature termination codon that escapes nonsense-mediated decay. Here, we studied a cohort of individuals who had been clinically diagnosed with Robinow syndrome but who had not received a molecular diagnosis from variant studies of DVL1, WNT5A, and ROR2. Because of the uniform location of frameshift variants in DVL1-mediated Robinow syndrome and the functional redundancy of DVL1, DVL2, and DVL3, we elected to pursue direct Sanger sequencing of the penultimate exon of DVL1 and its paralogs DVL2 and DVL3 to search for potential disease-associated variants. Remarkably, targeted sequencing identified five unrelated individuals harboring heterozygous, de novo frameshift variants in DVL3, including two splice acceptor mutations and three 1 bp deletions. Similar to the variants observed in DVL1-mediated Robinow syndrome, all variants in DVL3 result in a -1 frameshift, indicating that these highly specific alterations might be a common cause of dominant Robinow syndrome. Here, we review the current knowledge of these peculiar variant alleles in DVL1- and DVL3-mediated Robinow syndrome and further elucidate the phenotypic features present in subjects with DVL1 and DVL3 frameshift mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Abstract
Dishevelled (DVL) proteins, three of which have been identified in humans, are highly conserved components of canonical and noncanonical Wnt signaling pathways. These multifunctional proteins, originally discovered in the fruit fly, through their different domains mediate complex signal transduction: DIX (dishevelled, axin) and PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains serve for canonical beta-catenin signaling, while PDZ and DEP (dishevelled, Egl-10, pleckstrin) domains serve for non-canonical signaling. In canonical or beta-catenin signaling, DVL forms large molecular supercomplexes at the plasma membrane consisting of Wnt-Fz-LRP5/6-DVL-AXIN. This promotes the disassembly of the beta-catenin destruction machinery, beta-catenin accumulation, and consequent activation of Wnt signaling. Therefore, DVLs are considered to be key regulators that rescue cytoplasmic beta-catenin from degradation. The potential medical importance of DVLs is in both human degenerative disease and cancer. The overexpression of DVL has been shown to potentiate the activation of Wnt signaling and it is now apparent that up-regulation of DVLs is involved in several types of cancer.
Collapse
Affiliation(s)
| | | | - Nives Pećina-Šlaus
- Nives Pećina-Šlaus, Laboratory of Neuro-oncology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, HR-10000 Zagreb, Croatia,
| |
Collapse
|
11
|
Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A, Rapinesi C, Brugnoli C, Serata D, Caccia F, Cuomo I, Ambrosi E, Simonetti A, Savoja V, De Chiara L, Danese E, Manfredi G, Janiri D, Motolese M, Nicoletti F, Girardi P, Sani G. Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 2013; 11:535-58. [PMID: 24403877 PMCID: PMC3763761 DOI: 10.2174/1570159x113119990037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/28/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To review the role of Wnt pathways in the neurodevelopment of schizophrenia. METHODS SYSTEMATIC PUBMED SEARCH, USING AS KEYWORDS ALL THE TERMS RELATED TO THE WNT PATHWAYS AND CROSSING THEM WITH EACH OF THE FOLLOWING AREAS: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. RESULTS Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. CONCLUSIONS The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data.
Collapse
Affiliation(s)
- Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alberto Maria Forte
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giorgio D. Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Brugnoli
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Federica Caccia
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Ilaria Cuomo
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Elisa Ambrosi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Valeria Savoja
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Lavinia De Chiara
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Emanuela Danese
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Delfina Janiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | | | - Ferdinando Nicoletti
- NEUROMED, Pozzilli, Isernia, Italy
- Department of Neuropharmacology, Sapienza University, School of Medicine and Pharmacy, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, Rome, Italy
| |
Collapse
|
12
|
IQGAP1 functions as a modulator of dishevelled nuclear localization in Wnt signaling. PLoS One 2013; 8:e60865. [PMID: 23577172 PMCID: PMC3618174 DOI: 10.1371/journal.pone.0060865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Dishevelled (DVL) is a central factor in the Wnt signaling pathway, which is highly conserved among various organisms. DVL plays important roles in transcriptional activation in the nucleus, but the molecular mechanisms underlying their nuclear localization remain unclear. In the present study, we identified IQGAP1 as a regulator of DVL function. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of DVL, and expression of Wnt target genes during early embryogenesis. The domains in DVL and IQGAP1 that mediated their interaction are also required for their nuclear localization. Endogenous expression of Wnt target genes was reduced by depletion of IQGAP1 during early embryogenesis, but notably not by depletion of other IQGAP family genes. Moreover, expression of Wnt target genes caused by depletion of endogenous IQGAP1 could be rescued by expression of wild-type IQGAP1, but not IQGAP1 deleting DVL binding region. These results provide the first evidence that IQGAP1 functions as a modulator in the canonical Wnt signaling pathway.
Collapse
|
13
|
Mandrile G, Dubois A, Hoffman JD, Uliana V, Di Maria E, Malacarne M, Coviello D, Faravelli F, Zwolinski S, Hellens S, Wright M, Forzano F. 3q26.33–3q27.2 microdeletion: A new microdeletion syndrome? Eur J Med Genet 2013; 56:216-21. [DOI: 10.1016/j.ejmg.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/12/2013] [Indexed: 11/28/2022]
|
14
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
15
|
Abstract
The dopamine D2 receptor (D2DR) regulates Akt and may also target the Wnt pathway, two signalling cascades that inhibit glycogen synthase kinase-3 (GSK-3). This study examined whether the Wnt pathway is regulated by D2DR and the role of Akt and dishevelled-3 (Dvl-3) in regulating GSK-3 and the transcription factor β-catenin in the rat brain. Western blotting showed that subchronic treatment of raclopride (D2DR antagonist) increase phosphorylated Akt, Dvl-3, GSK-3, phosphorylated GSK-3 and β-catenin, whereas subchronic treatment of quinpirole (D2DR agonist) induced the opposite response. Co-immunopreciptations revealed an association between GSK-3 and the D2DR complex that was altered following raclopride and quinpirole, albeit in opposite directions. SCH23390 (D1DR antagonist) and nafadotride (D3DR antagonist) were also used to determine if the response was specific to the D2DR. Neither subchronic treatment affected Dvl-3, GSK-3, Akt nor β-catenin protein levels, although nafadotride altered the phosphorylation state of Akt and GSK-3. In addition, in-vitro experiments were conducted to manipulate Akt and Dvl-3 activity in SH-SY5Y cells to elucidate how the pattern of change observed following manipulation of D2DR developed. Results indicate that Akt affects the phosphorylation state of GSK-3 but has no effect on β-catenin levels. However, altering Dvl-3 levels resulted in changes in Akt and the Wnt pathway similar to what was observed following raclopride or quinpirole treatment. Collectively, the data suggests that the D2DR very specifically regulates Wnt and Akt signalling via Dvl-3.
Collapse
|
16
|
Descartes M, Mikhail FM, Franklin JC, McGrath TM, Bebin M. Monosomy1p36.3 and trisomy 19p13.3 in a child with periventricular nodular heterotopia. Pediatr Neurol 2011; 45:274-8. [PMID: 21907895 DOI: 10.1016/j.pediatrneurol.2011.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/01/2011] [Indexed: 11/20/2022]
Abstract
Monosomy 1p36 is a clinically recognizable syndrome that is considered to be the most common terminal deletion syndrome. It has characteristic clinical features that include craniofacial dysmorphism, congenital anomalies, hearing deficits, developmental delay, mental retardation, hypotonia, seizures, and brain anomalies. Brain anomalies in patients with 1p36 deletion are frequent but inconsistent. To date, 2 cases with monosomy 1p36 associated with periventricular nodular heterotopia (PNH) have been reported. We report a 2-month-old boy with multiple congenital anomalies; brain magnetic resonance imaging revealed PNH. The first 2 described cases were pure terminal deletions, whereas our patient carried unbalanced translocation due to an adjacent 1 segregation of a balanced maternal translocation, resulting in monosomy 1p36.3 and trisomy 19p13.3 identified by whole-genome array comparative genomic hybridization analysis. Our patient, with a smaller deletion that the 2 previously reported cases, can help narrow the critical region for PNH in association with the 1p36 deletion. Several potential candidate genes are discussed.
Collapse
Affiliation(s)
- Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | | | | | | | | |
Collapse
|
17
|
Sutton LP, Rushlow WJ. Regulation of Akt and Wnt signaling by the group II metabotropic glutamate receptor antagonist LY341495 and agonist LY379268. J Neurochem 2011; 117:973-83. [PMID: 21477044 DOI: 10.1111/j.1471-4159.2011.07268.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metabotropic glutamate receptors 2/3 (mGlu(2/3)) have been implicated in schizophrenia and as a novel treatment target for schizophrenia. The current study examined whether mGlu(2/3) regulates Akt (protein kinase B) and Wnt (Wingless/Int-1) signaling, two cascades associated with schizophrenia and modified by antipsychotics. Western blotting revealed increases in phosphorylated Akt (pAkt) and phosphorylated glycogen synthase kinase-3 (pGSK-3) following acute and repeated treatment of LY379268 (mGlu(2/3) agonist), whereas increases in dishevelled-2 (Dvl-2), dishevelled-3 (Dvl-3), GSK-3 and β-catenin were only observed following repeated treatment. LY341495 (mGlu(2/3) antagonist) induced the opposite response compared with LY379268. Co-immunoprecipitation experiments showed an association between the mGlu(2/3) complex and Dvl-2 providing a possible mechanism to explain how the mGlu(2/3) can mediate changes in Wnt signaling. However, there was no association between the mGlu(2/3) complex and Akt suggesting that changes in Akt signaling following LY341495 and LY379268 treatments may not be directly mediated by the mGlu(2/3) . Finally, an increase in locomotor activity induced by LY341495 treatment correlated with increased pAkt and pGSK-3 levels and was attenuated by the administration of the GSK-3 inhibitor, SB216763. Overall, the results suggest that mGlu(2/3) regulates Akt and Wnt signaling and LY379268 treatment has overlapping effects with D(2) dopamine receptor antagonists (antipsychotic drugs).
Collapse
Affiliation(s)
- Laurie P Sutton
- Department of Anatomy & Cell Biology, University of Western Ontario and the London Health Sciences Centre, London, Ontario, Canada
| | | |
Collapse
|
18
|
Liu YT, Dan QJ, Wang J, Feng Y, Chen L, Liang J, Li Q, Lin SC, Wang ZX, Wu JW. Molecular basis of Wnt activation via the DIX domain protein Ccd1. J Biol Chem 2011; 286:8597-8608. [PMID: 21189423 PMCID: PMC3048742 DOI: 10.1074/jbc.m110.186742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Indexed: 01/22/2023] Open
Abstract
The Wnt signaling plays pivotal roles in embryogenesis and cancer, and the three DIX domain-containing proteins, Dvl, Axin, and Ccd1, play distinct roles in the initiation and regulation of canonical Wnt signaling. Overexpressed Dvl has a tendency to form large polymers in a cytoplasmic punctate pattern, whereas the biologically active Dvl in fact forms low molecular weight oligomers. The molecular basis for how the polymeric sizes of Dvl proteins are controlled upon Wnt signaling remains unclear. Here we show that Ccd1 up-regulates canonical Wnt signaling via acting synergistically with Dvl. We determined the crystal structures of wild type Ccd1-DIX and mutant Dvl1-DIX(Y17D), which pack into "head-to-tail" helical filaments. Structural analyses reveal two sites crucial for intra-filament homo- and hetero-interaction and a third site for inter-filament homo-assembly. Systematic mutagenesis studies identified critical residues from all three sites required for Dvl homo-oligomerization, puncta formation, and stimulation of Wnt signaling. Remarkably, Ccd1 forms a hetero-complex with Dvl through the "head" of Dvl-DIX and the "tail" of Ccd1-DIX, depolymerizes Dvl homo-assembly, and thereby controls the size of Dvl polymer. These data together suggest a molecular mechanism for Ccd1-mediated Wnt activation in that Ccd1 converts latent polymeric Dvl to a biologically active oligomer(s).
Collapse
Affiliation(s)
- Yi-Tong Liu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong-Jie Dan
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jiawei Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingang Feng
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Lei Chen
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Liang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinxi Li
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng-Cai Lin
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhi-Xin Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,; the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jia-Wei Wu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,.
| |
Collapse
|
19
|
Kim Y, Ryu J, Woo J, Kim JB, Kim CY, Lee C. Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Anim Genet 2011; 42:361-5. [DOI: 10.1111/j.1365-2052.2010.02156.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Abstract
Numerous studies indicate that reactive oxygen species (ROS) are not merely cellular by-products of respiration, but are able to modulate various signalling pathways and play certain physiological roles. Recent studies have revealed the importance of translating ROS-generation to activation/suppression of specific signalling pathways. The Wnt signalling pathway, which is essential for early development and stem cell maintenance, is also regulated by ROS. A thioredoxin-related protein, nucleoredoxin (NRX), governs ROS-stimulated Wnt signalling in a temporal manner. NRX usually interacts with Dishevelled (Dvl), an essential adaptor protein for Wnt signalling, and blocks the activation of the Wnt pathway. Oxidative stress causes dissociation of NRX from Dvl, which enables Dvl to activate the downstream Wnt signalling pathway. This study also presents the latest research findings on NRX and its related molecules.
Collapse
Affiliation(s)
- Yosuke Funato
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
21
|
Turm H, Maoz M, Katz V, Yin YJ, Offermanns S, Bar-Shavit R. Protease-activated receptor-1 (PAR1) acts via a novel Galpha13-dishevelled axis to stabilize beta-catenin levels. J Biol Chem 2010; 285:15137-15148. [PMID: 20223821 DOI: 10.1074/jbc.m109.072843] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown a novel link between hPar-1 (human protease-activated receptor-1) and beta-catenin stabilization. Although it is well recognized that Wnt signaling leads to beta-catenin accumulation, the role of PAR1 in the process is unknown. We provide here evidence that PAR1 induces beta-catenin stabilization independent of Wnt, Fz (Frizzled), and the co-receptor LRP5/6 (low density lipoprotein-related protein 5/6) and identify selective mediators of the PAR1-beta-catenin axis. Immunohistological analyses of hPar1-transgenic (TG) mouse mammary tissues show the expression of both Galpha(12) and Galpha(13) compared with age-matched control counterparts. However, only Galpha(13) was found to be actively involved in PAR1-induced beta-catenin stabilization. Indeed, a dominant negative form of Galpha(13) inhibited both PAR1-induced Matrigel invasion and Lef/Tcf (lymphoid enhancer factor/T cell factor) transcription activity. PAR1-Galpha(13) association is followed by the recruitment of DVL (Dishevelled), an upstream Wnt signaling protein via the DIX domain. Small interfering RNA-Dvl silencing leads to a reduction in PAR1-induced Matrigel invasion, inhibition of Lef/Tcf transcription activity, and decreased beta-catenin accumulation. It is of note that PAR1 also promotes the binding of beta-arrestin-2 to DVL, suggesting a role for beta-arrestin-2 in PAR1-induced DVL phosphorylation dynamics. Although infection of small interfering RNA-LRP5/6 or the use of the Wnt antagonists, SFRP2 (soluble Frizzled-related protein 2) or SFRP5 potently reduced Wnt3A-mediated beta-catenin accumulation, no effect was observed on PAR1-induced beta-catenin stabilization. Collectively, our data show that PAR1 mediates beta-catenin stabilization independent of Wnt. We propose here a novel cascade of PAR1-induced Galpha(13)-DVL axis in cancer and beta-catenin stabilization.
Collapse
Affiliation(s)
- Hagit Turm
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Myriam Maoz
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Vered Katz
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Yong-Jun Yin
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Steffan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Rachel Bar-Shavit
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
22
|
Wei Q, Zhao Y, Yang ZQ, Dong QZ, Dong XJ, Han Y, Zhao C, Wang EH. Dishevelled family proteins are expressed in non-small cell lung cancer and function differentially on tumor progression. Lung Cancer 2008; 62:181-92. [PMID: 18692936 DOI: 10.1016/j.lungcan.2008.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/07/2008] [Accepted: 06/23/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dishevelled (Dvl) family proteins are cytoplasmic mediators of the Wnt/beta-catenin signaling pathway and have recently been linked to cancers. However, the roles of individual Dvls and their expression in human cancers are poorly defined. This work aimed to characterize the expression of Dvls and their correlation to clinicopathological factors and beta-catenin expression in non-small cell lung cancer (NSCLC). METHODS We used immunohistochemistry to assess the presence of the three Dvl family proteins in 113 individual NSCLC specimens. Thirty-nine of the 113 cases were examined further for Dvl and beta-catenin protein expression in matched primary growths and autologous nodal metastases. We also examined the effect of Dvl-1 and Dvl-3 overexpression on beta-catenin expression and the invasive ability of A549 and QG56 lung cancer cells. RESULTS The positive expression rate in primary tumors was 53.1% (60/113) for total Dvl, 36.3% (41/113) for Dvl-1, 36.3% (41/113) for Dvl-2 and 41.6% (47/113) for Dvl-3, while normal adult bronchial and alveolar epithelia showed negative expression of all these proteins. The expression levels of all three Dvl proteins were significantly higher in adenocarcinomas than in squamous carcinomas, and were associated with poor tumor differentiation. The positive expression of Dvl-1 and Dvl-2 proteins was correlated to advanced pTNM stages (III-IV vs. I-II). In addition, the expression levels of Dvl-1 and Dvl-3 were significantly higher in nodal metastases than in primary growths, with the Dvl-1 expression correlating to beta-catenin expression in the metastases. Exogenous expression of Dvl-1 and Dvl-3 both enhanced the invasive ability of A549 and QG56 cells, but had differential effects on beta-catenin protein expression in either cell line, without influencing beta-catenin mRNA levels. CONCLUSIONS Expression of Dvl family proteins, Dvl-1, Dvl-2 and Dvl-3, is common in NSCLCs. They may contribute to the progression of NSCLCs, but Dvl-1 and Dvl-3 may function on this process through different signaling pathways.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Pathology, China Medical University, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wnt signaling pathway and lung disease. Transl Res 2008; 151:175-80. [PMID: 18355764 DOI: 10.1016/j.trsl.2007.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/27/2007] [Accepted: 12/31/2007] [Indexed: 02/08/2023]
Abstract
The Wnt pathway plays an important role in development and in regulating adult stem cell systems. A variety of cellular processes is mediated by Wnt signaling, which includes cellular proliferation, differentiation, survival, apoptosis, and cell motility. Loss of regulation of these pathways can lead to tumorigenesis, and the Wnt pathway has been implicated in the development of several types of cancers, including colon, lung, leukemia, breast, thyroid, and prostate. The Wnt pathway has also been associated with other lung diseases such as interstitial lung disease (ILD) and asthma. Our increasing understanding of the Wnt pathway offers great hope that new molecular-based screening tests and pharmaceutical agents that selectively target this pathway will be developed to diagnose and treat these diseases in the future.
Collapse
|
24
|
Differential mediation of the Wnt canonical pathway by mammalian Dishevelleds-1, -2, and -3. Cell Signal 2007; 20:443-52. [PMID: 18093802 DOI: 10.1016/j.cellsig.2007.11.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 11/24/2022]
Abstract
In the Drosophila, a single copy of the phosphoprotein Dishevelled (Dsh) is found. In the genomes of higher organism (including mammals), three genes encoding isoforms of Dishevelled (Dvl1, Dvl2, and Dvl3) are present. In the fly, Dsh functions in the Wnt-sensitive stabilization of intracellular beta-catenin and activation of the Lef/Tcf-sensitive transcriptional response known as the Wnt "canonical" pathway. In the current work we explore the expression of Dishevelleds in mammalian cells and provide an estimate of the relative cellular abundance of each Dvl. In mouse F9 cells, all three Dvls are expressed. Dvl2 constitutes more than 95% of the total pool, the sum of Dvl1 and Dvl3 constituting the remainder. Similarly, Dvl2 constitutes more than 80% of the Dvl1-3 pool in mouse P19 and human HEK 293 cells. siRNA-induced knock-down of individual Dvls was performed using Wnt3a-sensitive canonical pathway in F9 cells as the read-out. Activation of the canonical signaling pathway by Wnt3a was dependent upon the presence of Dvl1, Dvl2, and Dvl3, but to a variable extent. Wnt3a-sensitive canonical transcription was suppressible, by knock-down of Dvl1, Dvl2, or Dvl3. Conversely, the overexpression of any one of the three Dvls individually was found to be capable of promoting Lef/Tcf-sensitive transcriptional activation, in the absence of Wnt3a, i.e., overexpression of Dvl1, Dvl2, or Dvl3 is Wnt3a-mimetic. Graded suppression of individual Dvl isoforms by siRNA was employed to test if the three Dvls could be distinguished from one another with regard to mediation of the canonical pathway. Canonical signaling was most sensitive to changes in the abundance of either Dvl3 or Dvl1. Changes in expression of Dvl2, the most abundant of the three isoforms, resulted in the least effect on canonical signaling. Dvl-based complexes were isolated by pull-downs from whole-cell extracts with isoform-specific antibodies and found to include all three Dvl isoforms. Rescue experiments were conducted in which depletion of either Dvl3 or Dvl1 suppresses Wnt3a activation of the canonical pathway and the ability of a Dvl isoform to rescue the response evaluated. Rescue of Wnt3a-stimulated transcriptional activation in these siRNA-treated cells occurred only by the expression of the very same Dvl isoform depleted by the siRNA. Thus, Dvls appear to function cooperatively as well as uniquely with respect to mediation of Wnt3a-stimulated canonical signaling. The least abundant (Dvl1, 3) plays the most obvious role, whereas the most abundant (Dvl2) plays the least obvious role, suggesting that individual Dvl isoforms in mammals may operate as a network with some features in common and others rather unique.
Collapse
|
25
|
Okuda H, Miyata S, Mori Y, Tohyama M. Mouse Prickle1 and Prickle2 are expressed in postmitotic neurons and promote neurite outgrowth. FEBS Lett 2007; 581:4754-60. [PMID: 17868671 DOI: 10.1016/j.febslet.2007.08.075] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/08/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
The Drosophila planar cell polarity (PCP) gene prickle has been previously indicated as one of the regulators of gastrulation in the early embryonic stage. However, the functional role of prickle in the brain in particular is not known. We first indicated that mouse Prickle1 and Prickle2 are continually expressed in the brain throughout the embryonic stages and are observed to be specifically expressed in the postmitotic neurons. Furthermore, Prickle1 or Prickle2 depletion effectively decreases the neurite outgrowth levels of mouse neuroblastoma Neuro2a cells. These results indicate that mouse Prickle1 and Prickle2 possibly regulate positive neurite formation during brain development.
Collapse
Affiliation(s)
- Hiroaki Okuda
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
26
|
Funato Y, Miki H. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal 2007; 9:1035-57. [PMID: 17567240 DOI: 10.1089/ars.2007.1550] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thioredoxin (TRX) family proteins are involved in various biologic processes by regulating the response to oxidative stress. Nucleoredoxin (NRX), a relatively uncharacterized member of the TRX family protein, has recently been reported to regulate the Wnt/beta-catenin pathway, which itself regulates cell fate and early development, in a redox-dependent manner. In this review, we describe the TRX family proteins and discuss in detail the similarities and differences between NRX and other TRX family proteins. Although NRX possesses a conserved TRX domain and a catalytic motif for oxidoreductase activity, its sequence homology to TRX is not as high as that of the close relatives of TRX. The sequence of NRX is more similar to that of tryparedoxin (TryX), a TRX family member originally identified in parasite trypanosomes. We also discuss the reported properties and potential physiologic roles of NRX.
Collapse
Affiliation(s)
- Yosuke Funato
- Division of Cancer Genomics, Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
27
|
Leonard JD, Ettensohn CA. Analysis of dishevelled localization and function in the early sea urchin embryo. Dev Biol 2007; 306:50-65. [PMID: 17433285 PMCID: PMC2697034 DOI: 10.1016/j.ydbio.2007.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/17/2007] [Accepted: 02/26/2007] [Indexed: 11/29/2022]
Abstract
Dishevelled (Dsh) is a key signaling molecule in the canonical Wnt pathway. Although the mechanism by which Dsh transduces a Wnt signal remains elusive, the subcellular localization of Dsh may be critical for its function. In the early sea urchin embryo, Dsh is concentrated in punctate structures within the cytoplasm of vegetal blastomeres. In these cells, Dsh stabilizes beta-catenin and causes it to accumulate in nuclei, resulting in the activation of transcriptional gene regulatory networks that drive mesoderm and endoderm formation. Here, we present a systematic mutational analysis of Lytechinus variegatus Dsh (LvDsh) that identifies motifs required for its vegetal cortical localization (VCL). In addition to a previously identified lipid-binding motif near the N-terminus of Dsh (Weitzel, H.E., Illies, M.R., Byrum, C.A., Xu, R., Wikramanayake, A.H., Ettensohn, C.A., 2004. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131, 2947-56), we identify a short (21 amino acid) motif between the PDZ and DEP domains that is required for VCL. Phosphorylation of threonine residues in this region regulates both the targeting and stability of LvDsh. We also identify functional nuclear import and export signals within LvDsh. We provide additional evidence that LvDsh is active locally in the vegetal region of the embryo but is inactive in animal blastomeres and show that the inability of LvDsh to function in animal cells is not a consequence of impaired nuclear import. The DIX domain of LvDsh functions as a potent dominant negative when overexpressed (Weitzel, H.E., Illies, M.R., Byrum, C.A., Xu, R., Wikramanayake, A.H., Ettensohn, C.A., 2004. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131, 2947-56). Here, we show that the dominant negative effect of DIX is dependent on a highly conserved, lipid-binding motif that includes residues K57 and E58. The dominant negative effect of DIX is not a consequence of blocking VCL or the nuclear import of LvDsh. We provide evidence that isolated DIX domains interact with full-length LvDsh in vivo. In addition, we show that the K57/E58 lipid-binding motif of DIX is essential for this interaction. We propose that binding of the isolated DIX domain to full-length Dsh may be facilitated by interactions with lipids, and that this interaction may inhibit signaling by a) preventing endogenous Dsh from interacting with Axin, or b) blocking the ability of Dsh to recruit other proteins, such as GBP/Frat1, to the beta-catenin degradation complex.
Collapse
Affiliation(s)
- Jennifer D. Leonard
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213
| | - Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213
| |
Collapse
|
28
|
Pongracz JE, Stockley RA. Wnt signalling in lung development and diseases. Respir Res 2006; 7:15. [PMID: 16438732 PMCID: PMC1397816 DOI: 10.1186/1465-9921-7-15] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 01/26/2006] [Indexed: 12/12/2022] Open
Abstract
There are several signalling pathways involved in lung organogenesis including Notch, TGFbeta/BMP, Sonic hedgehog (Shh), FGF, EGF, and Wnt. Despite the widely acknowledged significance of Wnt signalling in embryonic lung development, the role of different Wnt pathways in lung pathologies has been slow to emerge. In this review, we will present a synopsis of current Wnt research with particular attention paid to the role of Wnt signals in lung development and in pulmonary diseases.
Collapse
Affiliation(s)
- Judit E Pongracz
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Institute for Biomedical Research, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
29
|
Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 2005; 132:4421-36. [PMID: 16192308 DOI: 10.1242/dev.02068] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Dishevelled protein regulates many developmental processes in animals ranging from Hydra to humans. Here, we discuss the various known signaling activities of this enigmatic protein and focus on the biological processes that Dishevelled controls. Through its many signaling activities, Dishevelled plays important roles in the embryo and the adult, ranging from cell-fate specification and cell polarity to social behavior. Dishevelled also has important roles in the governance of polarized cell divisions, in the directed migration of individual cells, and in cardiac development and neuronal structure and function.
Collapse
Affiliation(s)
- John B Wallingford
- Section of Molecular Cell and Developmental Biology, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
30
|
Armstrong DD, Esser KA. Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2005; 289:C853-9. [PMID: 15888552 DOI: 10.1152/ajpcell.00093.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-catenin is a transcriptional activator shown to regulate the embryonic, postnatal, and oncogenic growth of many tissues. In most research to date, beta-catenin activation has been the unique downstream function of the Wnt signaling pathway. However, in the heart, a Wnt-independent mechanism involving Akt-mediated phosphorylation of glycogen synthase kinase (GSK)-3beta was recently shown to activate beta-catenin and regulate cardiomyocyte growth. In this study, results have identified the activation of the Wnt/beta-catenin pathway during hypertrophy of mechanically overloaded skeletal muscle. Significant increases in beta-catenin were determined during skeletal muscle hypertrophy. In addition, the Wnt receptor, mFrizzled (mFzd)-1, the signaling mediator disheveled-1, and the transcriptional co-activator, lymphocyte enhancement factor (Lef)-1, are all increased during hypertrophy of the overloaded mouse plantaris muscle. Experiments also determined an increased association between GSK-3beta and the inhibitory frequently rearranged in advanced T cell-1 protein with no increase in GSK-3beta phosphorylation (Ser9). Finally, skeletal muscle overload resulted in increased nuclear beta-catenin/Lef-1 expression and induction of the transcriptional targets c-Myc, cyclin D1, and paired-like homeodomain transcription factor 2. Thus this study provides the first evidence that the Wnt signaling pathway induces beta-catenin/Lef-1 activation of growth-control genes during overload induced skeletal muscle hypertrophy.
Collapse
|
31
|
Larizza L, Mortini P, Riva P. Update on the cytogenetics and molecular genetics of chordoma. Hered Cancer Clin Pract 2005; 3:29-41. [PMID: 20223027 PMCID: PMC2837065 DOI: 10.1186/1897-4287-3-1-29] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 02/07/2005] [Indexed: 11/16/2022] Open
Abstract
Chordoma is a rare mesenchymal tumour of complex biology for which only histologic and immunohistochemical criteria have been defined, but no biomarkers predicting the clinical outcome and response to treatment have yet been recognised. We herein review the interdisciplinary information achieved by epidemiologists, neurosurgeons and basic scientists on chordoma, usually a sporadic tumour, which also includes a small fraction of familial cases. Main focus is on the current knowledge of the genetic alterations which might pinpoint candidate genes and molecular mechanisms shared by sporadic and familiar chordomas. Due to the scarcity of the investigated tumour specimens and the multiple chromosome abnormalities found in tumours with aberrant karyotypes, conventional cytogenetics and Fluorescence In Situ Hybridization failed to detect recurrent chordoma-specific chromosomal rearrangements. Genome-wide approaches such as Comparative Genomic Hybridization (CGH) are yet at an initial stage of application and should be implemented using BAC arrays either genome-wide or targeting selected genomic regions, disclosed by Loss of Heterozygosity (LOH) studies. An LOH region was shown by a systematic study on a consistent number of chordomas to encompass 1p36, a genomic interval where a candidate gene was suggested to reside. Despite the rarity of multiplex families with chordoma impaired linkage studies, a chordoma locus could be mapped to chromosome 7q33 by positive lod score in three independent families. The role in chordomagenesis of the Tuberous Sclerosis Complex (TSC) genes has been proved, but the extent of involvement of TSC1 and TSC2 oncosuppressors in chordoma remains to be assessed. In spite of the scarce knowledge on the genetics and molecular biology of chordoma, recent initiation of clinical trials using molecular-targeted therapy, should validate new molecular targets and predict the efficacy of a given therapy. Comparative genetic and biomolecular studies should enhance the molecular taxonomy of chordoma which might have a prognostic significance and better orient the therapeutic options.
Collapse
Affiliation(s)
- Lidia Larizza
- Department of Biology and Genetics for Medical Sciences, University of Milan, Italy.
| | | | | |
Collapse
|
32
|
Riva P, Crosti F, Orzan F, Dalprà L, Mortini P, Parafioriti A, Pollo B, Fuhrman Conti AM, Miozzo M, Larizza L. Mapping of candidate region for chordoma development to 1p36.13 by LOH analysis. Int J Cancer 2003; 107:493-7. [PMID: 14506752 DOI: 10.1002/ijc.11421] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Various cytogenetic and molecular findings indicate 1p36 loss as a consistent change in sporadic and inherited chordoma, a rare embryogenetic neoplasm arising from notochord remnants. We studied 27 sporadic chordomas by means of loss of heterozygosity (LOH) of 31 microsatellites localized to the 1p36.32-36.11 region, and restricted the minimal LOH interval shared by 85% of the tumours to 1p36.13. We also used RT-PCR analysis to investigate the role of the candidate genes CASP9, EPH2A, PAX7, DAN and DVL1, which were selected on the basis of the physical mapping of the LOH region and their plausible oncosuppressor function. RT-PCR analysis showed the presence of DAN and PAX7 transcript fragments of the expected size in all of 8 chordoma samples, whereas the CASP9-specific fragment was observed in only 3 and EPH2A was absent in one. Smaller than expected DVL1 transcripts were found in 4 tumours as well as in their normal counterpart (nucleus pulposus), which also showed a typically sized transcript. Sequencing revealed the skipping of 3 exons in the smallest DVL1 fragment, thus leading to a frameshift and predicting a truncated DVL1 gene product. Our study of the largest cohort of chordoma patients recruited so far indicates a common molecular lesion at 1p36.13, and suggests that the CASP9, EPH2A and DVL1 genes may play an onco-suppressing role and be involved in the development of chordoma.
Collapse
Affiliation(s)
- Paola Riva
- Department of Biology and Genetics, Medical Faculty, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nagahata T, Shimada T, Harada A, Nagai H, Onda M, Yokoyama S, Shiba T, Jin E, Kawanami O, Emi M. Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci 2003; 94:515-8. [PMID: 12824876 PMCID: PMC11160156 DOI: 10.1111/j.1349-7006.2003.tb01475.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 03/22/2003] [Accepted: 03/31/2003] [Indexed: 12/11/2022] Open
Abstract
Wnt proteins form a family of highly conserved, secreted signaling molecules that regulate cell-to-cell interactions during embryogenesis. Wnt genes and Wnt signaling are also implicated in cancer. It has been shown that Wnt proteins bind to receptors of the frizzled family on the cell surface. Through several cytoplasmic relay components including DVL-1, the human counterpart of the Drosophila disheveled gene, the signal is transduced to beta-catenin, which then enters the nucleus and forms a complex with T-cell factor (TCF) to activate transcription of Wnt target genes. We describe here the amplification of DVL-1 in 13 of 24 primary breast cancers examined, and increased expression of this gene in 11 of those tumors in comparison to corresponding non-cancerous breast tissues. Immunohistochemical staining demonstrated that DVL-1 protein was prominent in the cytoplasm of cancer cells, but not in normal epithelial cells of the mammary duct or in myoepithelial cells. These data indicate that amplification and increased expression of the DVL-1 gene may play some role in human breast carcinogenesis through derangement of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Takemitsu Nagahata
- Department of Molecular Biology and Department of Pathology, Institute of Gerontology, Nippon Medical School, Nakahara-ku, Kawasaki 211-8533, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 2002; 35:489-505. [PMID: 12165471 DOI: 10.1016/s0896-6273(02)00783-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An important aspect of synapse development is the clustering of neurotransmitter receptors in the postsynaptic membrane. Although MuSK is required for acetylcholine receptor (AChR) clustering at the neuromuscular junction (NMJ), the underlying molecular mechanisms remain unclear. We report here that in muscle cells, MuSK interacts with Dishevelled (Dvl), a signaling molecule important for planar cell polarity. Disruption of the MuSK-Dvl interaction inhibits Agrin- and neuron-induced AChR clustering. Expression of dominant-negative Dvl1 in postsynaptic muscle cells reduces the amplitude of spontaneous synaptic currents at the NMJ. Moreover, Dvl1 interacts with downstream kinase PAK1. Agrin activates PAK, and this activation requires Dvl. Inhibition of PAK1 activity attenuates AChR clustering. These results demonstrate important roles of Dvl and PAK in Agrin/MuSK-induced AChR clustering and reveal a novel function of Dvl in synapse development.
Collapse
Affiliation(s)
- Zhen G Luo
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, 1530 Third Avenue South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Adams L, Davey S, Scott K. The DING protein: an autocrine growth-stimulatory protein related to the human synovial stimulatory protein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1586:254-64. [PMID: 11997077 DOI: 10.1016/s0925-4439(01)00104-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A synovial stimulating protein (SSP) has previously been isolated from rheumatoid arthritis synovial fluid and from the culture fluid of rheumatoid arthritis synovial fibroblasts. We have previously isolated, from skin fibroblast cultures, a 40 kDa hirudin-binding protein, which had amino acid sequence homology with the SSP. We sought to clarify the relationship, if any, between the SSP and the hirudin-binding protein. We show that the hirudin-binding protein is immunologically cross-reactive with a protein identical with, or very similar to, the SSP. This hirudin-binding protein is produced by normal and rheumatoid arthritis fibroblasts in culture, and also by cervical carcinoma cells. Traces of an SSP-like protein, and of proteins intermediate in size between the SSP and the hirudin-binding protein, suggest that the hirudin-binding protein may be proteolytically derived from the SSP. An SSP-like protein of about 200 kDa is present in all synovial fluid samples, arthritic and normal, indicating that its presence is not a primary cause of rheumatoid arthritis. There is no evidence for the existence of smaller fragments of the SSP-like protein in synovial fluid. A cDNA sequence, coding for part of the 40 kDa protein, has been obtained. The derived amino acid sequence indicates that a domain, previously identified in the dishevelled gene from Drosophila melanogaster, is present in this protein. Peptides predicted from the cDNA sequence were used to raise antisera, which recognise both the 40 kDa protein and the SSP-like protein. One of the antibody preparations is a good inhibitor of fibroblast proliferation, which confirms the autocrine growth-stimulatory role originally proposed for these proteins.
Collapse
Affiliation(s)
- Linda Adams
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | |
Collapse
|
36
|
Russ C, Lovestone S, Powell JF. Identification of genomic organisation, sequence variants and analysis of the role of the human dishevelled 1 gene in late onset Alzheimer's disease. Mol Psychiatry 2002; 7:104-9. [PMID: 11803455 DOI: 10.1038/sj.mp.4000941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2001] [Revised: 04/02/2001] [Accepted: 04/05/2001] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a disorder characterised by a progressive deterioration in memory and other cognitive functions. Neurofibrillary tangles (NFT) are a major pathological hallmark of AD, these are aggregations of paired helical filaments (PHF) comprised of the hyperphosphorylated microtubule associated protein tau. Several kinases, such as glycogen synthase kinase 3 beta (GSK3beta) and c-Jun N-terminal kinase (JNK), phosphorylate tau at sites that are phosphorylated in PHF. Dishevelled 1 (DVL1) is thought to act as a positive regulator of the wnt signalling pathway, and inhibits GSK3beta activity preventing beta-catenin degradation and thus allowing wnt target gene expression. JNK activation is also regulated by DVL1, however it is unclear if this is via the wnt signalling pathway. These observations suggest a central role for DVL1 in tau phosphorylation and AD and led us to investigate DVL1 as a candidate gene for this disorder. We determined the genomic structure of the DVL1 gene by sequencing and data mining and searched for sequence variations in the coding sequences and flanking introns. The DVL1 gene spans a region of approximately 13.8 kb (not including the 5' untranslated region) and is encoded by 15 exons. Analysis of over 4.3 kb of sequence, including 98% of exonic sequences and introns 2, 3, 6, 7, 9, 10, 11 and 12, revealed there to be six rare (< or =6%) sequence variations. None of these had any association with late onset AD. This would suggest that polymorphic variations in the coding sequences of DVL1 are not important in AD. However further analysis of regulatory regions may lead to the identification of other sequence variations which may be implicated in AD.
Collapse
Affiliation(s)
- C Russ
- Department of Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | | | | |
Collapse
|
37
|
Kishida M, Michiue T, Yamamoto H, Kishida S, Fukui A, Asashima M, Kikuchi A. Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iepsilon. J Biol Chem 2001; 276:33147-55. [PMID: 11425858 DOI: 10.1074/jbc.m103555200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although casein kinase Iepsilon (CKIepsilon) has been shown to regulate the Wnt signaling pathway positively, its mode of action is not clear. In this study we show that CKIepsilon activates the Wnt signaling pathway in co-operation with Dvl. CKIepsilon and Axin associated with different sites of Dvl, and CKIepsilon and Dvl interacted with distinct regions on Axin. Therefore, these three proteins formed a ternary complex. Either low expression of Dvl or CKIepsilon alone did not accumulate beta-catenin, but their co-expression accumulated greatly. Dvl and CKIepsilon activated the transcriptional activity of T cell factor (Tcf) synergistically. Although the Dvl mutant that binds to Axin but not to CKIepsilon activated Tcf, it did not synergize with CKIepsilon. Another Dvl mutant that does not bind to Axin did not activate Tcf irrespective of the presence of CKIepsilon. Furthermore, Dvl and CKIepsilon co-operatively induced axis duplication of Xenopus embryos. These results indicate that Dvl and CKIepsilon synergistically activated the Wnt signaling pathway and that the binding of the complex of Dvl and CKIepsilon to Axin is necessary for their synergistic action.
Collapse
Affiliation(s)
- M Kishida
- Department of Biochemistry, Faculty of Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Uthoff SM, Eichenberger MR, McAuliffe TL, Hamilton CJ, Galandiuk S. Wingless-type frizzled protein receptor signaling and its putative role in human colon cancer. Mol Carcinog 2001; 31:56-62. [PMID: 11398198 DOI: 10.1002/mc.1039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We wish to identify new candidate genes involved in the pathogenesis of human colon cancer to better understand the diversity of phenotype presentation that varies from individual to individual. Our working hypothesis is that genetic polymorphism of genes in the Wingless-type (Wnt) frizzled protein receptor pathway is associated with the susceptibility to develop colon cancer. The putative role of the Wnt pathway in sporadic human malignancy of the colon suggests involvement in inherited cancer as well. beta-catenin is the crucial messenger in frizzled receptor signaling, transmitting Wnt-ligand signals such as signals from secreted apoptosis-related proteins to the nucleus. It functions as a genome denunciator by initiating amplification of oncogenes. The net effect of beta-catenin depends on the magnitude of its accumulation in the cytoplasm and, therefore, upon expression profiles of genes in the Wnt pathway. We propose that variations in allelic frequencies of genes involved in the beta-catenin cascade may either promote or impede malignant transformation of the colon. If certain polymorphisms in Wnt signaling through beta-catenin predispose to colon cancer, this might manifest as decreased binding affinity of proteins such as axin or the adenomatous polyposis coli protein to beta-catenin. Association studies are proposed to test the hypothesis, which could serve as an initial step toward understanding the complexity of tumor biology. The clinical rationale in unraveling the genetic susceptibility to cancer lies in identification of a subgroup of individuals who may benefit from beta-catenin targeting agents, which could potentially overcome this genetic instability.
Collapse
Affiliation(s)
- S M Uthoff
- Digestive Surgery Research Laboratory, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | |
Collapse
|
39
|
DYT13, a novel primary torsion dystonia locus, maps to chromosome 1p36.13-36.32 in an Italian family with cranial-cervical or upper limb onset. Ann Neurol 2001. [DOI: 10.1002/ana.73] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Hino S, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S, Asashima M, Kikuchi A. Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol Cell Biol 2001; 21:330-42. [PMID: 11113207 PMCID: PMC88806 DOI: 10.1128/mcb.21.1.330-342.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In attempting to clarify the roles of Dvl in the Wnt signaling pathway, we identified a novel protein which binds to the PDZ domain of Dvl and named it Idax (for inhibition of the Dvl and Axin complex). Idax and Axin competed with each other for the binding to Dvl. Immunocytochemical analyses showed that Idax was localized to the same place as Dvl in cells and that expression of Axin inhibited the colocalization of Dvl and Idax. Further, Wnt-induced accumulation of beta-catenin and activation of T-cell factor in mammalian cells were suppressed by expression of Idax. Expression of Idax in Xenopus embryos induced ventralization with a reduction in the expression of siamois, a Wnt-inducible gene. Idax inhibited Wnt- and Dvl- but not beta-catenin-induced axis duplication. It is known that Dvl is a positive regulator in the Wnt signaling pathway and that the PDZ domain is important for this activity. Therefore, these results suggest that Idax functions as a negative regulator of the Wnt signaling pathway by directly binding to the PDZ domain of Dvl.
Collapse
Affiliation(s)
- S Hino
- Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sakamoto I, Kishida S, Fukui A, Kishida M, Yamamoto H, Hino S, Michiue T, Takada S, Asashima M, Kikuchi A. A novel beta-catenin-binding protein inhibits beta-catenin-dependent Tcf activation and axis formation. J Biol Chem 2000; 275:32871-8. [PMID: 10921920 DOI: 10.1074/jbc.m004089200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Catenin is efficiently phosphorylated by glycogen synthase kinase-3beta in the Axin complex in the cytoplasm, resulting in the down-regulation. In response to Wnt, beta-catenin is stabilized and translocated into the nucleus where it stimulates gene expression through Tcf/Lef. Here we report a novel protein, designated Duplin (for axis duplication inhibitor), which negatively regulates the function of beta-catenin in the nucleus. Duplin was located in the nucleus. Duplin bound directly to the Armadillo repeats of beta-catenin, thereby inhibiting the binding of Tcf to beta-catenin. It did not affect the stability of beta-catenin but inhibited Wnt- or beta-catenin-dependent Tcf activation. Furthermore, expression of Duplin in Xenopus embryos inhibited the axis formation and beta-catenin-dependent axis duplication, and prevented the beta-catenin's ability to rescue ventralizing phenotypes induced by ultraviolet light irradiation. Thus, Duplin is a nuclear protein that inhibits beta-catenin signaling.
Collapse
Affiliation(s)
- I Sakamoto
- Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, PRESTO, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
beta-Catenin not only regulates cell to cell adhesion as a protein interacting with cadherin, but also functions as a component of the Wnt signaling pathway. The Wnt signaling pathway is conserved in various organisms from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. Wnt stabilizes cytoplasmic beta-catenin and then beta-catenin is translocated into the nucleus where it stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. The amounts and functions of beta-catenin are regulated in both the cytoplasm and nucleus. Its molecular mechanisms are becoming increasingly well understood.
Collapse
Affiliation(s)
- A Kikuchi
- Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
43
|
Abstract
The Wnt signaling pathway is conserved in various species from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. The molecular mechanisms by which the Wnt signal regulates cellular functions are becoming increasingly well understood. Wnt stabilizes cytoplasmic beta-catenin, which stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. Axin and its homolog Axil, newly recognized as components of the Wnt signaling pathway, negatively regulate this pathway. Other components of the Wnt signaling pathway, including Dvl, glycogen synthase kinase-3beta (GSK-3beta), beta-catenin, and adenomatous polyposis coli (APC), interact with Axin, and the phosphorylation and stability of beta-catenin are regulated in the Axin complex. Axil has similar functions to Axin. Thus, Axin and Axil act as scaffold proteins in the Wnt signaling pathway, thereby modulating the Wnt-dependent cellular functions.
Collapse
Affiliation(s)
- A Kikuchi
- Department of Biochemistry, Hiroshima University School of Medicine, Japan.
| |
Collapse
|
44
|
Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 1999; 19:4414-22. [PMID: 10330181 PMCID: PMC104400 DOI: 10.1128/mcb.19.6.4414] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The N-terminal region of Dvl-1 (a mammalian Dishevelled homolog) shares 37% identity with the C-terminal region of Axin, and this related region is named the DIX domain. The functions of the DIX domains of Dvl-1 and Axin were investigated. By yeast two-hybrid screening, the DIX domain of Dvl-1 was found to interact with Dvl-3, a second mammalian Dishevelled relative. The DIX domains of Dvl-1 and Dvl-3 directly bound one another. Furthermore, Dvl-1 formed a homo-oligomer. Axin also formed a homo-oligomer, and its DIX domain was necessary. The N-terminal region of Dvl-1, including its DIX domain, bound to Axin directly. Dvl-1 inhibited Axin-promoted glycogen synthase kinase 3beta-dependent phosphorylation of beta-catenin, and the DIX domain of Dvl-1 was required for this inhibitory activity. Expression of Dvl-1 in L cells induced the nuclear accumulation of beta-catenin, and deletion of the DIX domain abolished this activity. Although expression of Axin in SW480 cells caused the degradation of beta-catenin and reduced the cell growth rate, expression of an Axin mutant that lacks the DIX domain did not affect the level of beta-catenin or the growth rate. These results indicate that the DIX domains of Dvl-1 and Axin are important for protein-protein interactions and that they are necessary for the ability of Dvl-1 and Axin to regulate the stability of beta-catenin.
Collapse
Affiliation(s)
- S Kishida
- Department of Biochemistry, Hiroshima University School of Medicine, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 1999; 274:10681-4. [PMID: 10196136 DOI: 10.1074/jbc.274.16.10681] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin forms a complex with glycogen synthase kinase-3beta (GSK-3beta) and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin, thereby stimulating the degradation of beta-catenin. Because GSK-3beta also phosphorylates Axin in the complex, the physiological significance of the phosphorylation of Axin was examined. Treatment of COS cells with LiCl, a GSK-3beta inhibitor, and okadaic acid, a protein phosphatase inhibitor, decreased and increased, respectively, the cellular protein level of Axin. Pulse-chase analyses showed that the phosphorylated form of Axin was more stable than the unphosphorylated form and that an Axin mutant, in which the possible phosphorylation sites for GSK-3beta were mutated, exhibited a shorter half-life than wild type Axin. Dvl-1, which was genetically shown to function upstream of GSK-3beta, inhibited the phosphorylation of Axin by GSK-3beta in vitro. Furthermore, Wnt-3a-containing conditioned medium down-regulated Axin and accumulated beta-catenin in L cells and expression of Dvl-1(DeltaPDZ), in which the PDZ domain was deleted, suppressed this action of Wnt-3a. These results suggest that the phosphorylation of Axin is important for the regulation of its stability and that Wnt down-regulates Axin through Dvl.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Biochemistry, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Stahl B, Diehlmann A, Südhof TC. Direct interaction of Alzheimer's disease-related presenilin 1 with armadillo protein p0071. J Biol Chem 1999; 274:9141-8. [PMID: 10092585 DOI: 10.1074/jbc.274.14.9141] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease-related presenilins are thought to be involved in Notch signaling during embryonic development and/or cellular differentiation. Proteins mediating the cellular functions of the presenilins are still unknown. We utilized the yeast two-hybrid system to identify an interacting armadillo protein, termed p0071, that binds specifically to the hydrophilic loop of presenilin 1. In vivo, the presenilins constitutively undergo proteolytic processing, forming two stable fragments. Here, we show that the C-terminal fragment of presenilin 1 directly binds to p0071. Nine out of 10 armadillo repeats in p0071 are essential for mediating this interaction. Since armadillo proteins, like beta-catenin and APC, are known to participate in cellular signaling, p0071 may function as a mediator of presenilin 1 in signaling events.
Collapse
Affiliation(s)
- B Stahl
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| | | | | |
Collapse
|
47
|
van Bokhoven H, Jung M, Smits AP, van Beersum S, Rüschendorf F, van Steensel M, Veenstra M, Tuerlings JH, Mariman EC, Brunner HG, Wienker TF, Reis A, Ropers HH, Hamel BC. Limb mammary syndrome: a new genetic disorder with mammary hypoplasia, ectrodactyly, and other Hand/Foot anomalies maps to human chromosome 3q27. Am J Hum Genet 1999; 64:538-46. [PMID: 9973291 PMCID: PMC1377763 DOI: 10.1086/302246] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We report on a large Dutch family with a syndrome characterized by severe hand and/or foot anomalies, and hypoplasia/aplasia of the mammary gland and nipple. Less frequent findings include lacrimal-duct atresia, nail dysplasia, hypohydrosis, hypodontia, and cleft palate with or without bifid uvula. This combination of symptoms has not been reported previously, although there is overlap with the ulnar mammary syndrome (UMS) and with ectrodactyly, ectodermal dysplasia, and clefting syndrome. Allelism with UMS and other related syndromes was excluded by linkage studies with markers from the relevant chromosomal regions. A genomewide screening with polymorphic markers allowed the localization of the genetic defect to the subtelomeric region of chromosome 3q. Haplotype analysis reduced the critical region to a 3-cM interval of chromosome 3q27. This chromosomal segment has not been implicated previously in disorders with defective development of limbs and/or mammary tissue. Therefore, we propose to call this apparently new disorder "limb mammary syndrome" (LMS). The SOX2 gene at 3q27 might be considered an excellent candidate gene for LMS because the corresponding protein stimulates expression of FGF4, an important signaling molecule during limb outgrowth and development. However, no mutations were found in the SOX2 open reading frame, thus excluding its involvement in LMS.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnostic imaging
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/physiopathology
- Animals
- Chromosome Mapping
- Chromosomes, Human, Pair 3
- DNA-Binding Proteins/genetics
- Female
- Foot Deformities, Congenital/diagnostic imaging
- Foot Deformities, Congenital/genetics
- Foot Deformities, Congenital/physiopathology
- Genetic Linkage
- HMGB Proteins
- Hand Deformities, Congenital/diagnostic imaging
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/physiopathology
- Humans
- Male
- Mammary Neoplasms, Animal/diagnostic imaging
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/physiopathology
- Mutation
- Nuclear Proteins/genetics
- Pedigree
- Radiography
- SOXB1 Transcription Factors
- Syndrome
- Transcription Factors
Collapse
Affiliation(s)
- H van Bokhoven
- Department of Human Genetics 417, University Hospital Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dallapiccola B, Torrente I, Mingarelli R, Novelli G. From genetic research into clinical practice. ACTA GENETICAE MEDICAE ET GEMELLOLOGIAE 1998; 46:139-46. [PMID: 9645231 DOI: 10.1017/s0001566000000556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present genome era is characterized by speedy progress and prompt transfer of results into clinical practice. This creates the need for rapid disclosure of results and renewal of laboratory's protocols. Molecular cytogenetics has provided and increased ability to identify chromosomes, correlate chromosome structure with gene location, find out cryptic aberrations, and detect specific DNA sequences. These advances have allowed the confident discovery of a number of contiguous gene syndromes. The positional cloning and positional candidate strategies have greatly expedited the search process of disease genes, and become relevant methods for genes' discovery. Understanding the molecular basis of diseases has shown an unpredicted wide genetic heterogeneity, which has splitted single disorders into many clinically similar conditions, and added complexity to the nosology of human diseases. The opposite process, allelism, where clinical diversity results from allelic mutations, has lumped together many distinct disorders, by showing that different clinical entities are not necessarily due to mutations in different genes. Dynamic mutations have provided the molecular understanding of interindividual and intrafamilial variability including anticipation, in a number of diseases. The discovery of distinct correlations between the molecular pattern and disease severity is providing a unique opportunity for using molecular results to assess the clinical outcome. Diagnostic, presymptomatic and predictive molecular testing are becoming widely used and provide enormous opportunities for improving the lot of our patients.
Collapse
Affiliation(s)
- B Dallapiccola
- Cattedra di Genetica Medica e Umana, Università Tor Vergata, Rome, Italy
| | | | | | | |
Collapse
|
49
|
Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun 1998; 243:622-7. [PMID: 9480858 DOI: 10.1006/bbrc.1998.8143] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Frizzled genes encode receptors for WNTs, secreted glycoproteins implicated in development as well as in carcinogenesis. In this paper, we report molecular cloning of Hfz6, the human homologue of Mfz6. Nucleotide sequence analysis showed that the Hfz6 gene encodes the 706 amino-acid protein with seven transmembrane domains, a cystein-rich domain in the N-terminal extracellular region, two N-linked glycosylation sites, and two cystein residues in the second and third extracellular loops. Hfz6 mRNA 4.4-kb in size was detected in various normal adult and fetal tissues, and a larger amount of Hfz6 mRNA was detected in both fetal lung and fetal kidney. The Hfz6 gene has been mapped to human chromosome 8q22.3-q23.1. In conclusion, we have cloned Hfz6, which encodes a seven-transmembrane receptor with the cystein-rich domain in the N-terminal extracellular region, but without the Ser/Thr-X-Val motif in the C-terminus.
Collapse
Affiliation(s)
- M Tokuhara
- Genetics Division, National Cancer Center Research Institute Tsukiji 5-chome, Tokyo, Japan
| | | | | | | | | |
Collapse
|
50
|
Abstract
The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach.
Collapse
Affiliation(s)
- T C Dale
- Developmental Biology Team, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, U.K
| |
Collapse
|