1
|
Gaitán-Peñas H, Pérez-Rius C, Muhaisen A, Castellanos A, Errasti-Murugarren E, Barrallo-Gimeno A, Alcaraz-Pérez F, Estévez R. Characterization of ClC-1 chloride channels in zebrafish: a new model to study myotonia. J Physiol 2024; 602:3975-3994. [PMID: 39031529 DOI: 10.1113/jp286530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024] Open
Abstract
The function of the chloride channel ClC-1 is crucial for the control of muscle excitability. Thus, reduction of ClC-1 functions by CLCN1 mutations leads to myotonia congenita. Many different animal models have contributed to understanding the myotonia pathophysiology. However, these models do not allow in vivo screening of potentially therapeutic drugs, as the zebrafish model does. In this work, we identified and characterized the two zebrafish orthologues (clc-1a and clc-1b) of the ClC-1 channel. Both channels are mostly expressed in the skeletal muscle as revealed by RT-PCR, western blot, and electrophysiological recordings of myotubes, and clc-1a is predominantly expressed in adult stages. Characterization in Xenopus oocytes shows that the zebrafish channels display similar anion selectivity and voltage dependence to their human counterparts. However, they show reduced sensitivity to the inhibitor 9-anthracenecarboxylic acid (9-AC), and acidic pH inverts the voltage dependence of activation. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement, which could be reverted by expression of human ClC-1 but not by some ClC-1 containing myotonia mutations. Treatment of clc-1-depleted zebrafish with mexiletine, a typical drug used in human myotonia, improves the motor behaviour. Our work extends the repertoire of ClC channels to evolutionary structure-function studies and proposes the zebrafish clcn1 crispant model as a simple tool to find novel therapies for myotonia. KEY POINTS: We have identified two orthologues of ClC-1 in zebrafish (clc-1a and clc-1b) which are mostly expressed in skeletal muscle at different developmental stages. Functional characterization of the activity of these channels reveals many similitudes with their mammalian counterparts, although they are less sensitive to 9-AC and acidic pH inverts their voltage dependence of gating. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement which could be reverted by expression of human ClC-1. Myotonia-like symptoms caused by clc-1a/b depletion can be reverted by mexiletine, suggesting that this model could be used to find novel therapies for myotonia.
Collapse
Affiliation(s)
- Héctor Gaitán-Peñas
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Carla Pérez-Rius
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
| | - Ashraf Muhaisen
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
| | - Aida Castellanos
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ekaitz Errasti-Murugarren
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
| | - Alejandro Barrallo-Gimeno
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Department of Surgery, Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Raúl Estévez
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Kwon HC, Fairclough RH, Chen TY. Biophysical and Pharmacological Insights to CLC Chloride Channels. Handb Exp Pharmacol 2024; 283:1-34. [PMID: 35768555 DOI: 10.1007/164_2022_594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CLC family encompasses two functional categories of transmembrane proteins: chloride conducting channels and proton-chloride antiporters. All members in this chloride channel/transporter family consist of two identical protein subunits, and each subunit forms an independent ion-transport pathway, a structural architecture known as "double barrel." These CLC proteins serve biological functions ranging from membrane excitability and cell volume regulation to acidification of endosomes. Despite their ubiquitous expression, physiological significance, and resolved molecular structures of some of the family members, the mechanisms governing these molecules' biophysical functions are still not completely settled. However, a series of functional and structural studies have brought insights into interesting questions related to these proteins. This chapter explores the functional peculiarities underlying CLC channels aided by information observed from the chloride-proton antiporters in the CLC family. The overall structural features of these CLC proteins will be presented, and the biophysical functions will be addressed. Finally, the mechanism of pharmacological agents that interact with CLC channels will also be discussed.
Collapse
Affiliation(s)
- Hwoi Chan Kwon
- Center for Neuroscience and Biophysics Graduate Group, University of California, Davis, CA, USA
| | - Robert H Fairclough
- Department of Neurology and the Biophysics Graduate Group, University of California, Davis, CA, USA
| | - Tsung-Yu Chen
- Center for Neuroscience, Department of Neurology, and Biophysics Graduate Group, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Brenes O, Pusch M, Morales F. ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations. Biomedicines 2023; 11:2622. [PMID: 37892996 PMCID: PMC10604815 DOI: 10.3390/biomedicines11102622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023] Open
Abstract
Myotonia congenita is a hereditary muscle disease mainly characterized by muscle hyperexcitability, which leads to a sustained burst of discharges that correlates with the magnitude and duration of involuntary aftercontractions, muscle stiffness, and hypertrophy. Mutations in the chloride voltage-gated channel 1 (CLCN1) gene that encodes the skeletal muscle chloride channel (ClC-1) are responsible for this disease, which is commonly known as myotonic chloride channelopathy. The biophysical properties of the mutated channel have been explored and analyzed through in vitro approaches, providing important clues to the general function/dysfunction of the wild-type and mutated channels. After an exhaustive search for CLCN1 mutations, we report in this review more than 350 different mutations identified in the literature. We start discussing the physiological role of the ClC-1 channel in skeletal muscle functioning. Then, using the reported functional effects of the naturally occurring mutations, we describe the biophysical and structural characteristics of the ClC-1 channel to update the knowledge of the function of each of the ClC-1 helices, and finally, we attempt to point out some patterns regarding the effects of mutations in the different helices and loops of the protein.
Collapse
Affiliation(s)
- Oscar Brenes
- Departamento de Fisiología, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
- Centro de Investigación en Neurociencias (CIN), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
4
|
Vold VA, Glanville S, Klaerke DA, Pedersen PA. pXOOY: A dual-function vector for expression of membrane proteins in Saccharomyces cerevisiae and Xenopus laevis oocytes. PLoS One 2023; 18:e0281868. [PMID: 36809531 PMCID: PMC9942955 DOI: 10.1371/journal.pone.0281868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
On the quest for solving structures of membrane proteins by X-ray crystallography or cryo-EM, large quantities of ultra-pure protein are a paramount prerequisite. Obtaining enough protein of such high standard is not a trivial task, especially for difficult-to-express membrane proteins. Producing membrane protein for structural studies is often performed in Escherichia coli or Saccharomyces cerevisiae and is frequently complemented with functional studies. Ion channels and electrogenic receptors are traditionally studied in terms of their electrophysiological behavior, which cannot be performed in neither E. coli nor yeast. Therefore, they are frequently characterized in mammalian cells or in Xenopus laevis oocytes. To avoid generating two different plasmids, we here describe the construction of a dual-function plasmid, pXOOY, for membrane protein production in yeast and for electrophysiology in oocytes. pXOOY was constructed such that all elements required for oocyte expression were copied from the dual Xenopus-mammalian vector pXOOM and meticulously introduced into the high-yield yeast expression vector pEMBLyex4. pXOOY is thus designed to preserve the high yield of protein from pEMBLyex4 while simultaneously permitting in vitro transcription for expression in oocytes. We evaluated the performance of pXOOY by comparing expression of two yeast codon optimized human potassium channels, ohERG and ohSlick (Slo2.1) from pXOOY to expression of these channels obtained from the reference vectors pEMBLyex4 and pXOOM. Our proof-of-concept study indicates that accumulation in PAP1500 yeast cells was higher when the channels were expressed from pXOOY, which was verified both qualitatively and quantitatively. Two-electrode voltage clamp measurements in oocytes showed that the pXOOY constructs encoding ohERG and ohSlick gave currents with full preservation of electrophysiological characteristics. Our results show that it is possible to design a dual-function Xenopus-yeast vector without compromising expression in yeast and simultaneously maintaining channel activity in oocytes.
Collapse
Affiliation(s)
- Victoria Amstrup Vold
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sebastian Glanville
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dan Arne Klaerke
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail: (PAP); (DAK)
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
- * E-mail: (PAP); (DAK)
| |
Collapse
|
5
|
Pagliarani S, Meola G, Filareti M, Comi GP, Lucchiari S. Case report: Sodium and chloride muscle channelopathy coexistence: A complicated phenotype and a challenging diagnosis. Front Neurol 2022; 13:845383. [PMID: 36081873 PMCID: PMC9447429 DOI: 10.3389/fneur.2022.845383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Non-dystrophic myotonias (NDM) encompass chloride and sodium channelopathy. Mutations in CLCN1 lead to either the autosomal dominant form or the recessive form of myotonia congenita (MC). The main symptom is stiffness worsening after rest and improving by physical exercise. Patients with recessive mutations often show muscle hypertrophy, and transient weakness mostly in their lower limbs. Mutations in SCN4A can lead to Hyper-, Hypo- or Normo-kalemic Periodic Paralysis or to different forms of myotonia (Paramyotonia Congenita-PMC and Sodium Channel Myotonia-SCM and severe neonatal episodic laryngospasm-SNEL). SCM often presents facial muscle stiffness, cold sensitivity, and muscle pain, whereas myotonia worsens in PMC patients with the repetition of the muscle activity and cold. Patients affected by chloride or sodium channelopathies may show similar phenotypes and symptoms, making the diagnosis more difficult to reach. Herein we present a woman in whom sodium and chloride channelopathies coexist yielding a complex phenotype with features typical of both MC and PMC. Disease onset was in the second decade with asthenia, weakness, warm up and limb stiffness, and her symptoms had been worsening through the years leading to frequent heavy retrosternal compression, tachycardia, stiffness, and symmetrical pain in her lower limbs. She presented severe lid lag myotonia, a hypertrophic appearance at four limbs and myotonic discharges at EMG. Her symptoms have been triggered by exposure to cold and her daily life was impaired. All together, clinical signs and instrumental data led to the hypothesis of PMC and to the administration of mexiletine, then replaced by acetazolamide because of gastrointestinal side effects. Analysis of SCN4A revealed a new variant, p.Glu1607del. Nonetheless the severity of myotonia in the lower limbs and her general stiffness led to hypothesize that the impairment of sodium channel, Nav1.4, alone could not satisfactorily explain the phenotype and a second genetic “factor” was hypothesized. CLCN1 was targeted, and p.Met485Val was detected in homozygosity. This case highlights that proper identification of signs and symptoms by an expert neurologist is crucial to target a successful genetic diagnosis and appropriate therapy.
Collapse
Affiliation(s)
- Serena Pagliarani
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
- Department of Neurorehabilitation Sciences Casa di Cura del Policlinico, Milan, Italy
| | - Melania Filareti
- Department of Neurorehabilitation Sciences Casa di Cura del Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabrina Lucchiari
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- *Correspondence: Sabrina Lucchiari
| |
Collapse
|
6
|
Suetterlin K, Matthews E, Sud R, McCall S, Fialho D, Burge J, Jayaseelan D, Haworth A, Sweeney MG, Kullmann DM, Schorge S, Hanna MG, Männikkö R. Translating genetic and functional data into clinical practice: a series of 223 families with myotonia. Brain 2022; 145:607-620. [PMID: 34529042 PMCID: PMC9014745 DOI: 10.1093/brain/awab344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022] Open
Abstract
High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.
Collapse
Affiliation(s)
- Karen Suetterlin
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle-upon-Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle-upon-Tyne, UK
| | - Emma Matthews
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Atkinson Morley Neuromuscular Centre, Department of Neurology, St Georges University Hospitals NHS Foundation Trust, London, UK
| | - Richa Sud
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Samuel McCall
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Doreen Fialho
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
| | - James Burge
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
| | - Dipa Jayaseelan
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Haworth
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Mary G Sweeney
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| | - Michael G Hanna
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Roope Männikkö
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
7
|
Souza LS, Calyjur P, Ribeiro AF, Gurgel-Giannetti J, Pavanello RCM, Zatz M, Vainzof M. Association of Three Different Mutations in the CLCN1 Gene Modulating the Phenotype in a Consanguineous Family with Myotonia Congenita. J Mol Neurosci 2021; 71:2275-2280. [PMID: 33464536 DOI: 10.1007/s12031-020-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
Myotonia congenita is a genetic disease caused by mutations in the CLCN1 gene, which encodes for the major chloride skeletal channel ClC-1, involved in the normal repolarization of muscle action potentials and consequent relaxation of the muscle after contraction. Two allelic forms are recognized, depending on the phenotype and the inheritance pattern: the autosomal dominant Thomsen disease with milder symptoms and the autosomal recessive Becker disorder with a severe phenotype. Before the recent advances of molecular testing, the diagnosis and genetic counseling of families was a challenge due to the large number of mutations in the CLCN1 gene, found both in homozygous or in heterozygous state. Here, we studied a consanguineous family in which three members presented a variable phenotype of myotonia, associated to a combination of three different mutations in the CLCN1 gene. A pathogenic splicing site mutation which causes the skipping of exon 17 was present in homozygosis in one very severely affected son. This mutation was present in compound heterozygosis in the consanguineous parents, but interestingly it was associated to a different second variant in the other allele: c.1453 A > G in the mother and c.1842 G > C in the father. Both displayed variable, but less severe phenotypes than their homozygous son. These results highlight the importance of analyzing the combination of different variants in the same gene in particular in families with patients displaying different phenotypes. This approach may improve the diagnosis, prognosis, and genetic counseling of the involved families.
Collapse
Affiliation(s)
- Lucas Santos Souza
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Priscila Calyjur
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Antonio Fernando Ribeiro
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Pediatrics Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mayana Zatz
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Zhang S, Liu Y, Zhang B, Zhou J, Li T, Liu Z, Li Y, Yang M. Molecular insights into the human CLC-7/Ostm1 transporter. SCIENCE ADVANCES 2020; 6:eabb4747. [PMID: 32851177 PMCID: PMC7423370 DOI: 10.1126/sciadv.abb4747] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 05/14/2023]
Abstract
CLC family proteins translocate chloride ions across cell membranes to maintain the membrane potential, regulate the transepithelial Cl- transport, and control the intravesicular pH among different organelles. CLC-7/Ostm1 is an electrogenic Cl-/H+ antiporter that mainly resides in lysosomes and osteoclast ruffled membranes. Mutations in human CLC-7/Ostm1 lead to lysosomal storage disorders and severe osteopetrosis. Here, we present the cryo-electron microscopy (cryo-EM) structure of the human CLC-7/Ostm1 complex and reveal that the highly glycosylated Ostm1 functions like a lid positioned above CLC-7 and interacts extensively with CLC-7 within the membrane. Our complex structure reveals a functionally crucial domain interface between the amino terminus, TMD, and CBS domains of CLC-7. Structural analyses and electrophysiology studies suggest that the domain interaction interfaces affect the slow gating kinetics of CLC-7/Ostm1. Thus, our study deepens understanding of CLC-7/Ostm1 transporter and provides insights into the molecular basis of the disease-related mutations.
Collapse
Affiliation(s)
- Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhang
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jun Zhou
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
- Corresponding author. (Z.L.); (Y.L.); (M.Y.)
| | - Yang Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding author. (Z.L.); (Y.L.); (M.Y.)
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding author. (Z.L.); (Y.L.); (M.Y.)
| |
Collapse
|
9
|
Chavan TS, Cheng RC, Jiang T, Mathews II, Stein RA, Koehl A, Mchaourab HS, Tajkhorshid E, Maduke M. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl -/H + transport cycle. eLife 2020; 9:53479. [PMID: 32310757 PMCID: PMC7253180 DOI: 10.7554/elife.53479] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl– for H+). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained. One limitation has been that global conformational change – which occurs in all conventional transporter mechanisms – has not been observed in any high-resolution structure. Here, we describe the 2.6 Å structure of a CLC mutant designed to mimic the fully H+-loaded transporter. This structure reveals a global conformational change to improve accessibility for the Cl– substrate from the extracellular side and new conformations for two key glutamate residues. Together with DEER measurements, MD simulations, and functional studies, this new structure provides evidence for a unified model of H+/Cl– transport that reconciles existing data on all CLC-type proteins. Cells are shielded from harmful molecules and other threats by a thin, flexible layer called the membrane. However, this barrier also prevents chloride, sodium, protons and other ions from moving in or out of the cell. Channels and transporters are two types of membrane proteins that form passageways for these charged particles. Channels let ions flow freely from one side of the membrane to the other. To do so, these proteins change their three-dimensional shape to open or close as needed. On the other hand, transporters actively pump ions across the membrane to allow the charged particles to accumulate on one side. The shape changes needed for that type of movement are different: the transporters have to open a passageway on one side of the membrane while closing it on the other side, alternating openings to one side or the other. In general, channels and transporters are not related to each other, but one exception is a group called CLCs proteins. Present in many organisms, this family contains a mixture of channels and transporters. For example, humans have nine CLC proteins: four are channels that allow chloride ions in and out, and five are ‘exchange transporters’ that make protons and chloride ions cross the membrane in opposite directions. These proteins let one type of charged particle move freely across the membrane, which generates energy that the transporter then uses to actively pump the other ion in the direction needed by the cell. Yet, the exact three-dimensional changes required for CLC transporters and channels to perform their roles are still unknown. To investigate this question, Chavan, Cheng et al. harnessed a technique called X-ray crystallography, which allows scientists to look at biological molecules at the level of the atom. This was paired with other methods to examine a CLC mutant that adopts the shape of a normal CLC transporter when it is loaded with a proton. The experiments revealed how various elements in the transporter move relative to each other to adopt a structure that allows protons and chloride ions to enter the protein from opposite sides of the membrane, using separate pathways. While obtained on a bacterial CLC, these results can be applied to other CLC channels and transporters (including those in humans), shedding light on how this family transports charged particles across membranes. From bone diseases to certain types of seizures, many human conditions are associated with poorly functioning CLCs. Understanding the way these structures change their shapes to perform their roles could help to design new therapies for these health problems.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Antoine Koehl
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
10
|
Jeng CJ, Fu SJ, You CY, Peng YJ, Hsiao CT, Chen TY, Tang CY. Defective Gating and Proteostasis of Human ClC-1 Chloride Channel: Molecular Pathophysiology of Myotonia Congenita. Front Neurol 2020; 11:76. [PMID: 32117034 PMCID: PMC7026490 DOI: 10.3389/fneur.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
The voltage-dependent ClC-1 chloride channel, whose open probability increases with membrane potential depolarization, belongs to the superfamily of CLC channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular structures of human ClC-1 and several CLC homologs provides important insight to the gating and ion permeation mechanisms of this chloride channel. Mutations in the human CLCN1 gene, which encodes the ClC-1 channel, are associated with a hereditary skeletal muscle disease, myotonia congenita. Most disease-causing CLCN1 mutations lead to loss-of-function phenotypes in the ClC-1 channel and thus increase membrane excitability in skeletal muscles, consequently manifesting as delayed relaxations following voluntary muscle contractions in myotonic subjects. The inheritance pattern of myotonia congenita can be autosomal dominant (Thomsen type) or recessive (Becker type). To date over 200 myotonia-associated ClC-1 mutations have been identified, which are scattered throughout the entire protein sequence. The dominant inheritance pattern of some myotonia mutations may be explained by a dominant-negative effect on ClC-1 channel gating. For many other myotonia mutations, however, no clear relationship can be established between the inheritance pattern and the location of the mutation in the ClC-1 protein. Emerging evidence indicates that the effects of some mutations may entail impaired ClC-1 protein homeostasis (proteostasis). Proteostasis of membrane proteins comprises of biogenesis at the endoplasmic reticulum (ER), trafficking to the surface membrane, and protein turn-over at the plasma membrane. Maintenance of proteostasis requires the coordination of a wide variety of different molecular chaperones and protein quality control factors. A number of regulatory molecules have recently been shown to contribute to post-translational modifications of ClC-1 and play critical roles in the ER quality control, membrane trafficking, and peripheral quality control of this chloride channel. Further illumination of the mechanisms of ClC-1 proteostasis network will enhance our understanding of the molecular pathophysiology of myotonia congenita, and may also bring to light novel therapeutic targets for skeletal muscle dysfunction caused by myotonia and other pathological conditions.
Collapse
Affiliation(s)
- Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying You
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jheng Peng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Morales F, Pusch M. An Up-to-Date Overview of the Complexity of Genotype-Phenotype Relationships in Myotonic Channelopathies. Front Neurol 2020; 10:1404. [PMID: 32010054 PMCID: PMC6978732 DOI: 10.3389/fneur.2019.01404] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Myotonic disorders are inherited neuromuscular diseases divided into dystrophic myotonias and non-dystrophic myotonias (NDM). The latter is a group of dominant or recessive diseases caused by mutations in genes encoding ion channels that participate in the generation and control of the skeletal muscle action potential. Their altered function causes hyperexcitability of the muscle membrane, thereby triggering myotonia, the main sign in NDM. Mutations in the genes encoding voltage-gated Cl− and Na+ channels (respectively, CLCN1 and SCN4A) produce a wide spectrum of phenotypes, which differ in age of onset, affected muscles, severity of myotonia, degree of hypertrophy, and muscle weakness, disease progression, among others. More than 200 CLCN1 and 65 SCN4A mutations have been identified and described, but just about half of them have been functionally characterized, an approach that is likely extremely helpful to contribute to improving the so-far rather poor clinical correlations present in NDM. The observed poor correlations may be due to: (1) the wide spectrum of symptoms and overlapping phenotypes present in both groups (Cl− and Na+ myotonic channelopathies) and (2) both genes present high genotypic variability. On the one hand, several mutations cause a unique and reproducible phenotype in most patients. On the other hand, some mutations can have different inheritance pattern and clinical phenotypes in different families. Conversely, different mutations can be translated into very similar phenotypes. For these reasons, the genotype-phenotype relationships in myotonic channelopathies are considered complex. Although the molecular bases for the clinical variability present in myotonic channelopathies remain obscure, several hypotheses have been put forward to explain the variability, which include: (a) differential allelic expression; (b) trans-acting genetic modifiers; (c) epigenetic, hormonal, or environmental factors; and (d) dominance with low penetrance. Improvements in clinical tests, the recognition of the different phenotypes that result from particular mutations and the understanding of how a mutation affects the structure and function of the ion channel, together with genetic screening, is expected to improve clinical correlation in NDMs.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud, Universidad de Costa, San José, Costa Rica
| | | |
Collapse
|
12
|
Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Grønberg C, Gotfryd K, Lindahl E, Andersson M, Calloe K, Egea PF, Klaerke DA, Pusch M, Pedersen PA, Zhou ZH, Gourdon P. Structure of the human ClC-1 chloride channel. PLoS Biol 2019; 17:e3000218. [PMID: 31022181 PMCID: PMC6483157 DOI: 10.1371/journal.pbio.3000218] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway exhibits distinct features, including a central glutamate residue ("fast gate") known to confer voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat rearranged central tyrosine and a narrower aperture of the pore toward the extracellular vestibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClC-K and enable us to propose a model for chloride passage in voltage-dependent CLC channels. Comparison of structures derived from protein studied in different experimental conditions supports the notion that pH and adenine nucleotides regulate ClC-1 through interactions between the so-called cystathionine-β-synthase (CBS) domains and the intracellular vestibule ("slow gating"). The structure also provides a framework for analysis of mutations causing myotonia congenita and reveals a striking correlation between mutated residues and the phenotypic effect on voltage gating, opening avenues for rational design of therapies against ClC-1-related diseases.
Collapse
Affiliation(s)
- Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, California
| | | | - Liying Zhang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yanxiang Cui
- Department of Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, California
| | - Julie Winkel Missel
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Grønberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kamil Gotfryd
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Lindahl
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pascal F. Egea
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California
| | - Dan Arne Klaerke
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Michael Pusch
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | | | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, California
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
14
|
Park E, MacKinnon R. Structure of the CLC-1 chloride channel from Homo sapiens. eLife 2018; 7:36629. [PMID: 29809153 PMCID: PMC6019066 DOI: 10.7554/elife.36629] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022] Open
Abstract
CLC channels mediate passive Cl− conduction, while CLC transporters mediate active Cl− transport coupled to H+ transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its ‘glutamate gate’ residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl− conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl− at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl− affinity distinguish CLC channels and transporters. Channels and transporters are two classes of proteins that transport molecules and ions – collectively referred to as “substrates” – across cell membranes. Channels form a pore in the membrane and the substrates diffuse through passively. Transporters, on the other hand, actively pump substrates across a membrane, consuming energy in the process. Thus, channels and transporters work in distinct ways. Channels and transporters most often have unrelated structures, but there are rare examples of both existing within the same family of structurally similar proteins. CLC proteins, for example, include both chloride ion channels and transporters that pump chloride ions in one direction by harnessing the energy from hydrogen ions flowing in the other direction. It remains unclear why some CLC proteins work as channels while others are transporters, especially since the two seem indistinguishable on the basis of the order of their amino acids – the building blocks of all proteins. The conservation of the amino acid sequences implies they are structurally very similar. How then can different members perform such energetically distinct processes? Park and MacKinnon now show that the answer to this question serves as a reminder of how subtle nature can be. Indeed, while the structure of a human CLC channel (called CLC-1) is indeed similar to those of CLC transporters, one amino acid adopts a unique shape that explains why the protein cannot act as a transporter. This specific amino acid, a glutamate, is central to the exchange of chloride and hydrogen ions in CLC transporters. Park and MacKinnon show that its conformation in the CLC-1 channel stops this exchange, while leaving the pore open for the passive transport of chloride ions. Also, two other amino acids along the ion diffusion pathway in the CLC channel are smaller than their counterparts in CLC transporters, and so allow chloride ions to diffuse through more quickly. Lastly, Park and MacKinnon also note that channels do not require a wide pore: instead ions can still flow rapidly through a narrow pore if the chemical environment inside permits it. CLC proteins perform a number of important roles in humans, and mutations in CLC-encoding genes underlie numerous heritable diseases. It remains too early to know how this mechanistic study may or may not impact treatments, yet the findings will likely interest scientists working on ion conduction mechanisms and the evolution of molecular function.
Collapse
Affiliation(s)
- Eunyong Park
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
15
|
Vindas-Smith R, Fiore M, Vásquez M, Cuenca P, del Valle G, Lagostena L, Gaitán-Peñas H, Estevez R, Pusch M, Morales F. Identification and Functional Characterization ofCLCN1Mutations Found in Nondystrophic Myotonia Patients. Hum Mutat 2015; 37:74-83. [DOI: 10.1002/humu.22916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/25/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Rebeca Vindas-Smith
- Instituto de Investigaciones en Salud (INISA); Universidad de Costa Rica; San José Costa Rica
| | - Michele Fiore
- Istituto di Biofisica; CNR; Via De Marini 6 Genova Italy
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA); Universidad de Costa Rica; San José Costa Rica
- Centro de Investigación en Neurociencias (CIN); Universidad de Costa Rica; San José Costa Rica
| | - Patricia Cuenca
- Instituto de Investigaciones en Salud (INISA); Universidad de Costa Rica; San José Costa Rica
- Centro de Investigación en Neurociencias (CIN); Universidad de Costa Rica; San José Costa Rica
- Escuela de Medicina; Universidad de Costa Rica; Curridabat San José Costa Rica
| | - Gerardo del Valle
- Laboratorio de Neurofisiología (Neurolab); Curridabat San José Costa Rica
| | | | - Héctor Gaitán-Peñas
- Departament de Ciències Fisiològiques II; Unitat de Fisiologia; Universitat de Barcelona; Carrer Feixa Llarga s/n, L'Hospitalet de Llobregat Barcelona Spain
- U-750, Centro de Investigación en red de enfermedades raras (CIBERER); ISCIII; Barcelona Spain
| | - Raúl Estevez
- Departament de Ciències Fisiològiques II; Unitat de Fisiologia; Universitat de Barcelona; Carrer Feixa Llarga s/n, L'Hospitalet de Llobregat Barcelona Spain
- U-750, Centro de Investigación en red de enfermedades raras (CIBERER); ISCIII; Barcelona Spain
| | - Michael Pusch
- Istituto di Biofisica; CNR; Via De Marini 6 Genova Italy
| | - Fernando Morales
- Instituto de Investigaciones en Salud (INISA); Universidad de Costa Rica; San José Costa Rica
- Centro de Investigación en Neurociencias (CIN); Universidad de Costa Rica; San José Costa Rica
- Escuela de Medicina; Universidad de Costa Rica; Curridabat San José Costa Rica
| |
Collapse
|
16
|
Liu XL, Huang XJ, Shen JY, Zhou HY, Luan XH, Wang T, Chen SD, Wang Y, Tang HD, Cao L. Myotonia congenita: novel mutations in CLCN1 gene. Channels (Austin) 2015; 9:292-8. [PMID: 26260254 DOI: 10.1080/19336950.2015.1075676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Myotonia congenita belongs to the group of non-dystrophic myotonia caused by mutations of CLCN1gene, which encodes human skeletal muscle chloride channel 1. It can be inherited either in autosomal dominant (Thomsen disease) or recessive (Becker disease) forms. Here we have sequenced all 23 exons and exon-intron boundaries of the CLCN1 gene, in a panel of 5 unrelated Chinese patients with myotonia congenita (2 with dominant and 3 with recessive form). In addition, detailed clinical analysis was performed in these patients to summarize their clinical characteristics in relation to their genotypes. Mutational analyses revealed 7 different point mutations. Of these, we have found 3 novel mutations including 2 missense (R47W, V229M), one splicing (IVS19+2T>C), and 4 known mutations (Y261C,G523D, M560T, G859D). Our data expand the spectrum of CLCN1 mutations and provide insights for genotype-phenotype correlations of myotonia congenita in the Chinese population.
Collapse
Affiliation(s)
- Xiao-Li Liu
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Xiao-Jun Huang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Jun-Yi Shen
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Hai-Yan Zhou
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Xing-Hua Luan
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Tian Wang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Sheng-Di Chen
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Ying Wang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Hui-Dong Tang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Li Cao
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| |
Collapse
|
17
|
Stölting G, Fischer M, Fahlke C. CLC channel function and dysfunction in health and disease. Front Physiol 2014; 5:378. [PMID: 25339907 PMCID: PMC4188032 DOI: 10.3389/fphys.2014.00378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels impairs NaCl resorption in the limb of Henle and causes hyponatriaemia, hypovolemia and hypotension in patients suffering from Bartter syndrome. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological, and genetic studies.
Collapse
Affiliation(s)
- Gabriel Stölting
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| | - Martin Fischer
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| |
Collapse
|
18
|
Heterozygous CLCN1 mutations can modulate phenotype in sodium channel myotonia. Neuromuscul Disord 2014; 24:953-9. [PMID: 25088311 DOI: 10.1016/j.nmd.2014.06.439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 11/23/2022]
Abstract
Nondystrophic myotonias are characterized by muscle stiffness triggered by voluntary movement. They are caused by mutations in either the CLCN1 gene in myotonia congenita or in the SCN4A gene in paramyotonia congenita and sodium channel myotonias. Clinical and electrophysiological phenotypes of these disorders have been well described. No concomitant mutations in both genes have been reported yet. We report five patients from three families showing myotonia with both chloride and sodium channel mutations. Their clinical and electrophysiological phenotypes did not fit with the phenotype known to be associated with the mutation initially found in SCN4A gene, which led us to screen and find an additional mutation in CLCN1 gene. Our electrophysiological and clinical observations suggest that heterozygous CLCN1 mutations can modify the clinical and electrophysiological expression of SCN4A mutation.
Collapse
|
19
|
Conformational changes required for H(+)/Cl(-) exchange mediated by a CLC transporter. Nat Struct Mol Biol 2014; 21:456-63. [PMID: 24747941 PMCID: PMC4040230 DOI: 10.1038/nsmb.2814] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 03/26/2014] [Indexed: 11/08/2022]
Abstract
CLC-type exchangers mediate transmembrane Cl(-) transport. Mutations altering their gating properties cause numerous genetic disorders. However, their transport mechanism remains poorly understood. In conventional models, two gates alternatively expose substrates to the intra- or extracellular solutions. A glutamate was identified as the only gate in the CLCs, suggesting that CLCs function by a nonconventional mechanism. Here we show that transport in CLC-ec1, a prokaryotic homolog, is inhibited by cross-links constraining movement of helix O far from the transport pathway. Cross-linked CLC-ec1 adopts a wild-type-like structure, indicating stabilization of a native conformation. Movements of helix O are transduced to the ion pathway via a direct contact between its C terminus and a tyrosine that is a constitutive element of the second gate of CLC transporters. Therefore, the CLC exchangers have two gates that are coupled through conformational rearrangements outside the ion pathway.
Collapse
|
20
|
Skálová D, Zídková J, Voháňka S, Mazanec R, Mušová Z, Vondráček P, Mrázová L, Kraus J, Réblová K, Fajkusová L. CLCN1 mutations in Czech patients with myotonia congenita, in silico analysis of novel and known mutations in the human dimeric skeletal muscle chloride channel. PLoS One 2013; 8:e82549. [PMID: 24349310 PMCID: PMC3859631 DOI: 10.1371/journal.pone.0082549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/26/2013] [Indexed: 11/18/2022] Open
Abstract
Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl(-) ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations.
Collapse
Affiliation(s)
- Daniela Skálová
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jana Zídková
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Stanislav Voháňka
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Radim Mazanec
- Department of Neurology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Mušová
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Petr Vondráček
- Department of Child Neurology, University Hospital Brno, Brno, Czech Republic
| | - Lenka Mrázová
- Department of Child Neurology, University Hospital Brno, Brno, Czech Republic
| | - Josef Kraus
- Department of Child Neurology, Second School of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (KR); (LF)
| | - Lenka Fajkusová
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (KR); (LF)
| |
Collapse
|
21
|
Molecular determinants of common gating of a ClC chloride channel. Nat Commun 2013; 4:2507. [DOI: 10.1038/ncomms3507] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/27/2013] [Indexed: 11/08/2022] Open
|
22
|
Keck M, Andrini O, Lahuna O, Burgos J, Cid LP, Sepúlveda FV, L‘Hoste S, Blanchard A, Vargas-Poussou R, Lourdel S, Teulon J. NovelCLCNKBMutations Causing Bartter Syndrome Affect Channel Surface Expression. Hum Mutat 2013; 34:1269-78. [DOI: 10.1002/humu.22361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/15/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Mathilde Keck
- UPMC Université Paris 06, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
- INSERM, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
| | - Olga Andrini
- UPMC Université Paris 06, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
- INSERM, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
| | - Olivier Lahuna
- UPMC Université Paris 06, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
- INSERM, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
| | - Johanna Burgos
- Centro de Estudios Científicos; Avenida Arturo Prat 514; Valdivia Chile
| | - L. Pablo Cid
- Centro de Estudios Científicos; Avenida Arturo Prat 514; Valdivia Chile
| | | | - Sébastien L‘Hoste
- UPMC Université Paris 06, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
- INSERM, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris; Hôpital Européen Georges Pompidou; Centre d'Investigation Clinique; Paris France
- Université Paris-Descartes; Faculté de Médecine; Paris France
| | - Rosa Vargas-Poussou
- Université Paris-Descartes; Faculté de Médecine; Paris France
- Assistance Publique-Hôpitaux de Paris; Hôpital Européen Georges Pompidou; département de génétique; Paris France
| | - Stéphane Lourdel
- UPMC Université Paris 06, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
- INSERM, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
| | - Jacques Teulon
- UPMC Université Paris 06, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
- INSERM, UMR_S 872; Laboratoire de génomique, physiologie et physiopathologie rénales; Paris France
| |
Collapse
|
23
|
Bennetts B, Yu Y, Chen TY, Parker MW. Intracellular β-nicotinamide adenine dinucleotide inhibits the skeletal muscle ClC-1 chloride channel. J Biol Chem 2012; 287:25808-20. [PMID: 22689570 DOI: 10.1074/jbc.m111.327551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ClC-1 is the dominant sarcolemmal chloride channel and plays an important role in regulating membrane excitability that is underscored by ClC-1 mutations in congenital myotonia. Here we show that the coenzyme β-nicotinamide adenine dinucleotide (NAD), an important metabolic regulator, robustly inhibits ClC-1 when included in the pipette solution in whole cell patch clamp experiments and when transiently applied to inside-out patches. The oxidized (NAD(+)) form of the coenzyme was more efficacious than the reduced (NADH) form, and inhibition by both was greatly enhanced by acidification. Molecular modeling, based on the structural coordinates of the homologous ClC-5 and CmClC proteins and in silico docking, suggest that NAD(+) binds with the adenine base deep in a cleft formed by ClC-1 intracellular cystathionine β-synthase domains, and the nicotinamide base interacts with the membrane-embedded channel domain. Consistent with predictions from the models, mutation of residues in cystathionine β-synthase and channel domains either attenuated (G200R, T636A, H847A) or abrogated (L848A) the effect of NAD(+). In addition, the myotonic mutations G200R and Y261C abolished potentiation of NAD(+) inhibition at low pH. Our results identify a new biological role for NAD and suggest that the main physiological relevance may be the exquisite sensitivity to intracellular pH that NAD(+) inhibition imparts to ClC-1 gating. These findings are consistent with the reduction of sarcolemmal chloride conductance that occurs upon acidification of skeletal muscle and suggest a previously unexplored mechanism in the pathophysiology of myotonia.
Collapse
Affiliation(s)
- Brett Bennetts
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.
| | | | | | | |
Collapse
|
24
|
Weinberger S, Wojciechowski D, Sternberg D, Lehmann-Horn F, Jurkat-Rott K, Becher T, Begemann B, Fahlke C, Fischer M. Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita. J Physiol 2012; 590:3449-64. [PMID: 22641783 DOI: 10.1113/jphysiol.2012.232785] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myotonia congenita is a genetic condition that is caused by mutations in the muscle chloride channel gene CLCN1 and characterized by delayed muscle relaxation and muscle stiffness. We here investigate the functional consequences of two novel disease-causing missense mutations, C277R and C277Y, using heterologous expression in HEK293T cells and patch clamp recording. Both mutations reduce macroscopic anion currents in transfected cells. Since hClC-1 is a double-barrelled anion channel, this reduction in current amplitude might be caused by altered gating of individual protopores or of joint openings and closing of both protopores. We used non-stationary noise analysis and single channel recordings to separate the mutants' effects on individual and common gating processes. We found that C277Y inverts the voltage dependence and reduces the open probabilities of protopore and common gates resulting in decreases of absolute open probabilities of homodimeric channels to values below 3%. In heterodimeric channels, C277R and C277Y also reduce open probabilities and shift the common gate activation curve towards positive potentials. Moreover, C277Y modifies pore properties of hClC-1. It reduces single protopore current amplitudes to about two-thirds of wild-type values, and inverts the anion permeability sequence to I(-) = NO(3)(-) >Br(-)>Cl(-). Our findings predict a dramatic reduction of the muscle fibre resting chloride conductance and thus fully explain the disease-causing effects of mutations C277R and C277Y. Moreover, they provide additional insights into the function of C277, a residue recently implicated in common gating of ClC channels.
Collapse
Affiliation(s)
- Sebastian Weinberger
- Institut fur Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Myotonia congenita: novel mutations in CLCN1 gene and functional characterizations in Italian patients. J Neurol Sci 2012; 318:65-71. [PMID: 22521272 DOI: 10.1016/j.jns.2012.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 11/21/2022]
Abstract
Myotonia congenita is an autosomal dominantly or recessively inherited muscle disorder causing impaired muscle relaxation and variable degrees of permanent muscle weakness, abnormal currents linked to the chloride channel gene (CLCN1) encoding the chloride channel on skeletal muscle membrane. We describe 12 novel mutations: c.1606G>C (p.Val536Leu), c.2533G>A (p.Gly845Ser), c.2434C>T (p.Gln812X), c.1499T>G (p.E500X), c.1012C>T (p.Arg338X), c.2403+1G>A, c.2840T>A (p.Val947Glu), c.1598C>T (p.Thr533Ile), c.1110delC, c.590T>A (p.Ile197Arg), c.2276insA Fs800X, c.490T>C (p.Trp164Arg) in 22 unrelated Italian patients. To further understand the functional outcome of selected missense mutations (p.Trp164Arg, p.Ile197Arg and p.Gly845Ser, and the previously reported p.Gly190Ser) we characterized the biophysical properties of mutant ion channels in tsA cell model. In the physiological range of muscle membrane potential, all the tested mutations, except p.Gly845Ser, reduced the open probability, increased the fast and slow components of deactivation and affected pore properties. This suggests a decrease in macroscopic chloride currents impairing membrane potential repolarization and causing hyperexcitability in muscle membranes. Detailed clinical features are given of the 8 patients characterized by cell electrophysiology. These data expand the spectrum of CLCN1 mutations and may contribute to genotype-phenotype correlations. Furthermore, we provide insights into the fine protein structure of ClC-1 and its physiological role in the maintenance of membrane resting potential.
Collapse
|
26
|
Mazón MJ, Barros F, De la Peña P, Quesada JF, Escudero A, Cobo AM, Pascual-Pascual SI, Gutiérrez-Rivas E, Guillén E, Arpa J, Eraso P, Portillo F, Molano J. Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscul Disord 2012; 22:231-43. [DOI: 10.1016/j.nmd.2011.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/09/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022]
|
27
|
Physiology and pathophysiology of CLC-1: mechanisms of a chloride channel disease, myotonia. J Biomed Biotechnol 2011; 2011:685328. [PMID: 22187529 PMCID: PMC3237021 DOI: 10.1155/2011/685328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/18/2011] [Accepted: 09/10/2011] [Indexed: 12/22/2022] Open
Abstract
The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Thomsen type) or an autosomal recessive (Becker type) pattern. These mutations are scattered throughout the entire protein sequence, and no clear relationship exists between the inheritance pattern of the mutation and the location of the mutation in the channel protein. The inheritance pattern of some but not all myotonia mutants can be explained by a working hypothesis that these mutations may exert a “dominant negative” effect on the gating function of the channel. However, other mutations may be due to different pathophysiological mechanisms, such as the defect of protein trafficking to membranes. Thus, the underlying mechanisms of myotonia are likely to be quite diverse, and elucidating the pathophysiology of myotonia mutations will require the understanding of multiple molecular/cellular mechanisms of CLC-1 channels in skeletal muscles, including molecular operation, protein synthesis, and membrane trafficking mechanisms.
Collapse
|
28
|
ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5. Pflugers Arch 2010; 460:543-57. [PMID: 20049483 DOI: 10.1007/s00424-009-0769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 02/03/2023]
Abstract
The involvement of several members of the chloride channel (ClC) family of membrane proteins in human disease highlights the need to define the mechanisms underlying their function and the consequences of disease-causing mutations. Despite the utility of high-resolution structural models, our understanding of the molecular basis for function of the chloride channels and transporters in the family remains incomplete. In this review, we focus on recent discoveries regarding molecular mechanisms underlying the regulated chloride:proton antiporter activity of ClC-5, the protein mutated in the Dent's disease-a kidney disease presenting with proteinuria and renal failure in severe cases. We discuss the putative role of ClC-5 in receptor-mediated endocytosis and protein uptake by the proximal renal tubule and the possible molecular and cellular consequences of disease-causing mutations. However, validation of these models will require future study of the intrinsic function of this transporter, in situ, in the membranes of recycling endosomes in proximal tubule epithelial cells.
Collapse
|
29
|
Ma L, Rychkov GY, Bretag AH. Functional study of cytoplasmic loops of human skeletal muscle chloride channel, hClC-1. Int J Biochem Cell Biol 2009; 41:1402-9. [DOI: 10.1016/j.biocel.2008.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/10/2008] [Accepted: 12/10/2008] [Indexed: 11/24/2022]
|
30
|
|
31
|
Papponen H, Nissinen M, Kaisto T, Myllylä VV, Myllylä R, Metsikkö K. F413C and A531V but not R894X myotonia congenita mutations cause defective endoplasmic reticulum export of the muscle-specific chloride channel CLC-1. Muscle Nerve 2008; 37:317-25. [PMID: 17990293 DOI: 10.1002/mus.20922] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In northern Finland myotonia congenita is caused by three main mutations in the ClC-1 chloride channel. We studied the molecular basis of these mutations (1238T>G/F413C, 1592C>T/A531V, and 2680C>T/R894X). The mutated cDNAs were expressed either in L6 myotubes or in isolated rat myofibers using recombinant Semliki Forest virus. Experiments in L6 cells indicated that A531V and R894X proteins suffered from stability problems in these cells. Analysis in myofibers indicated that the A531V protein was totally retained in the endoplasmic reticulum (ER), whereas the export of the F413C protein was severely reduced. The C-terminal nonsense mutant (R894X), however, was normally transported to the Golgi elements in the myofibers. Defective export or reduced stability of the mutated proteins may thus be reasons for the myotonic symptoms.
Collapse
Affiliation(s)
- Hinni Papponen
- Department of Anatomy and Cell Biology, University of Oulu, PO Box 5000, Oulu FI-90014, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Cleland JC, Logigian EL. Clinical evaluation of membrane excitability in muscle channel disorders: potential applications in clinical trials. Neurotherapeutics 2007; 4:205-15. [PMID: 17395130 DOI: 10.1016/j.nurt.2007.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Muscle channelopathies are inherited disorders that cause paralysis and myotonia. Molecular technology has contributed immeasurably to diagnostic testing, to correlation of genotype with phenotype, and to insight into the pathophysiology of these disorders. In most cases, the diagnosis of muscle channelopathy is still made on clinical grounds, but is supported by ancillary laboratory and electrodiagnostic testing such as serum potassium measurement, exercise testing, repetitive nerve stimulation, needle electromyography, calculation of muscle fiber conduction velocity, or electromyography power spectra. Although provocative glucose or potassium challenges are now infrequently performed, they have contributed greatly to our understanding of the pathophysiology of these disorders, and to our ability to differentiate between periodic paralysis types. Despite considerable progress, ample opportunity remains for future clinical research, particularly in expanding genotype-phenotype correlations and in optimizing electrodiagnostic methods. With respect to diagnostic testing, there is a need for accurate, efficient, and cost-effective bedside testing, given the substantial proportion (as high as 20%) of genetically undefined cases. Even in genetically defined cases, minimal clinical expressivity due to incomplete penetrance poses a significant challenge to currently available nonmolecular testing.
Collapse
Affiliation(s)
- James C Cleland
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | |
Collapse
|
33
|
Zifarelli G, Pusch M. CLC chloride channels and transporters: a biophysical and physiological perspective. Rev Physiol Biochem Pharmacol 2007; 158:23-76. [PMID: 17729441 DOI: 10.1007/112_2006_0605] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chloride-transporting proteins play fundamental roles in many tissues in the plasma membrane as well as in intracellular membranes. They have received increasing attention in the last years because crucial, and often unexpected and novel, physiological functions have been disclosed with gene-targeting approaches, X-ray crystallography, and biophysical analysis. CLC proteins form a gene family that comprises nine members in mammals, at least four of which are involved in human genetic diseases. The X-ray structure of the bacterial CLC homolog, ClC-ec1, revealed a complex fold and confirmed the anticipated homodimeric double-barreled architecture of CLC-proteins with two separate Cl-ion transport pathways, one in each subunit. Four of the mammalian CLC proteins, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, are chloride ion channels that fulfill their functional roles-stabilization of the membrane potential, transepithelial salt transport, and ion homeostasisin the plasma membrane. The other five CLC proteins are predominantly expressed in intracellular organelles like endosomes and lysosomes, where they are probably important for a proper luminal acidification, in concert with the V-type H+-ATPase. Surprisingly, ClC-4, ClC-5, and probably also ClC-3, are not Cl- ion channels but exhibit significant Cl-/H+ antiporter activity, as does the bacterial homolog ClC-ec1 and the plant homolog AtCLCa. The physiological significance of the Cl-/H+ antiport activity remains to be established.
Collapse
Affiliation(s)
- G Zifarelli
- CNR, Istituto di Biofisica, Via De Marini 6, 16149 Genova, Italy
| | | |
Collapse
|
34
|
Aromataris EC, Rychkov GY. ClC-1 CHLORIDE CHANNEL: MATCHING ITS PROPERTIES TO A ROLE IN SKELETAL MUSCLE. Clin Exp Pharmacol Physiol 2006; 33:1118-23. [PMID: 17042925 DOI: 10.1111/j.1440-1681.2006.04502.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. ClC-1 is a Cl- channel in mammalian skeletal muscle that plays an important role in membrane repolarization following muscular contraction. Reduction of ClC-1 conductance results in myotonia, a state characterized by muscle hyperexcitability. 2. As is the case for other members of the ClC family, ClC-1 exists as a dimer that forms a double-barrelled channel. Each barrel, or pore, of ClC-1 is gated by its own gate ('fast' or 'single pore' gate), whereas both pores are gated simultaneously by another mechanism ('slow' or 'common' gate). 3. Comparison of the biophysical and pharmacological properties of heterologously expressed ClC-1 with the properties of the Cl- conductance measured in skeletal muscle strongly suggests that ClC-1 is the major Cl- channel responsible for muscle repolarization. However, not all results obtained in experiments on whole muscle or muscle fibres support this notion. 4. In the present review we attempt to bring together the current knowledge of ClC-1 with the physiology of skeletal muscle.
Collapse
Affiliation(s)
- Edoardo C Aromataris
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
35
|
Jentsch TJ, Poët M, Fuhrmann JC, Zdebik AA. Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 2005; 67:779-807. [PMID: 15709978 DOI: 10.1146/annurev.physiol.67.032003.153245] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CLC gene family encodes nine different Cl() channels in mammals. These channels perform their functions in the plasma membrane or in intracellular organelles such as vesicles of the endosomal/lysosomal pathway or in synaptic vesicles. The elucidation of their cellular roles and their importance for the organism were greatly facilitated by mouse models and by human diseases caused by mutations in their respective genes. Human mutations in CLC channels are known to cause diseases as diverse as myotonia (muscle stiffness), Bartter syndrome (renal salt loss) with or without deafness, Dent's disease (proteinuria and kidney stones), osteopetrosis and neurodegeneration, and possibly epilepsy. Mouse models revealed blindness and infertility as further consequences of CLC gene disruptions. These phenotypes firmly established the roles CLC channels play in stabilizing the plasma membrane voltage in muscle and possibly in neurons, in the transport of salt and fluid across epithelia, in the acidification of endosomes and synaptic vesicles, and in the degradation of bone by osteoclasts.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany.
| | | | | | | |
Collapse
|
36
|
Abstract
Myotonia congenita is a hereditary chloride channel disorder characterized by delayed relaxation of skeletal muscle (myotonia). It is caused by mutations in the skeletal muscle chloride channel gene CLCN1 on chromosome 7. The phenotypic spectrum of myotonia congenita ranges from mild myotonia disclosed only by clinical examination to severe and disabling myotonia with transient weakness and myopathy. The most severe phenotypes are seen in patients with two mutated alleles. Heterozygotes are often asymptomatic but for some mutations heterozygosity is sufficient to cause pronounced myotonia, although without weakness and myopathy. Thus, the phenotype depends on the mutation type to some extent, but this does not explain the fact that severity varies greatly between heterozygous family members and may even vary with time in the individual patient. In this review, existing knowledge about phenotypic variability is summarized, and the possible contributing factors are discussed.
Collapse
Affiliation(s)
- Eskild Colding-Jørgensen
- Department of Clinical Neurophysiology 19, Glostrup Hospital, University of Copenhagen DK-2600 Glostrup, Denmark.
| |
Collapse
|
37
|
Miloshevsky GV, Jordan PC. Anion pathway and potential energy profiles along curvilinear bacterial ClC Cl- pores: electrostatic effects of charged residues. Biophys J 2004; 86:825-35. [PMID: 14747318 PMCID: PMC1303930 DOI: 10.1016/s0006-3495(04)74158-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray structures permit theoretical study of Cl(-) permeation along bacterial ClC Cl(-) pores. We determined the lowest energy curvilinear pathway, identified anion-coordinating amino acids, and calculated the electrostatic potential energy profiles. We find that all four bacterial ClC Cl(-) crystal structures correspond to closed states. E148 and S107 side chains form steric barriers on both sides of the crystal binding site in the StClC wild-type and EcClC wild-type crystals; both the EcClC(E148A) and EcClC(E148Q) mutants are blocked at the S107 site. We studied the effect that mutating the charge of some strongly conserved pore-lining amino acids has on the electrostatic potential energy profiles. When E148 is neutralized, it creates an electrostatic trap, binding the ion near midmembrane. This suggests a possible electrostatic mechanism for controlling anion flow: neutralize E148, displace the side chain of E148 from the pore pathway to relieve the steric barrier, then trap the anion at midmembrane, and finally either deprotonate E148 and block the pore (pore closure) or bring a second Cl(-) into the pore to promote anion flow (pore conductance). Side-chain displacement may arise by competition for the binding site between the oxygens of E148 and the anion moving down the electrostatic energy gradient. We also find that the charge state of E111 and E113 may electrostatically control anion conductance and occupancy of the binding site within the cytoplasmic pore.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
38
|
Chen L, Schaerer M, Lu ZH, Lang D, Joncourt F, Weis J, Fritschi J, Kappeler L, Gallati S, Sigel E, Burgunder JM. Exon 17 skipping in CLCN1 leads to recessive myotonia congenita. Muscle Nerve 2004; 29:670-6. [PMID: 15116370 DOI: 10.1002/mus.20005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in CLCN1, the gene encoding the ClC-1 chloride channel in skeletal muscle, lead to myotonia congenita. The effects on the intramembranous channel forming domains have been investigated more than that at the intracellular C-terminus. We have performed a mutation screen involving the whole CLCN1 gene of patients with myotonia congenita by polymerase chain reaction (PCR), single-strand conformation polymorphism studies, and sequencing. Two unrelated patients harbored the same homozygous G-to-T mutation on the donor splice site of intron 17. This led to the skipping of exon 17, as evidenced by the reverse transcriptase PCR. When the exon 17-deleted CLCN1 was expressed in Xenopus oocytes, no chloride current was measurable. This function could be restored by coexpression with the wild-type channel. Our data suggest an important role of this C-terminal region and that exon 17 skipping resulting from a homozygous point mutation in CLCN1 can lead to recessive myotonia congenita.
Collapse
Affiliation(s)
- Lie Chen
- Departments of Neurology and Clinical Research, Laboratory of Neuromorphology, University of Berne, Berne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cellular functions of Cl- channels are poorly understood, in contrast to well-established roles of cation channels. Recently, important achievements in Cl- channel research have been sequentially reported, including cloning of many Cl- channel cDNAs, linkage of gene abnormalities to human inherited disorders, analysis of knock-out mouse phenotype, analysis of crystal structure, and regulation by protein-protein interaction. Intracellular membrane Cl- channels are important for acidification of intracellular vesicles: ClC-5 functions for re-absorption of low-molecular-weight proteins in renal proximal tubule, and ClC-7 for absorption of bone matrix by osteoclasts. Abnormal functions of these channels result in Dent's disease characterized by proteinuria and kidney stones and by osteopetrosis, respectively. Plasma membrane Cl- channels, ClC-K1, ClC-K2, and ClC-3B, are expressed predominantly in epithelial cells and are important for uni-directional Cl- transport across the epithelia. Abnormalities of these channels are also related to human diseases: abnormal ClC-K1 to diabetes insipidus and abnormal ClC-K2 to Bartter's syndrome.
Collapse
Affiliation(s)
- Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| |
Collapse
|
40
|
Estévez R, Schroeder BC, Accardi A, Jentsch TJ, Pusch M. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron 2003; 38:47-59. [PMID: 12691663 DOI: 10.1016/s0896-6273(03)00168-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Crystal structures of bacterial CLC proteins were solved recently, but it is unclear to which level of detail they can be extrapolated to mammalian chloride channels. Exploiting the difference in inhibition by 9-anthracene carboxylic acid (9-AC) between ClC-0, -1, and -2, we identified a serine between helices O and P as crucial for 9-AC binding. Mutagenesis based on the crystal structure identified further residues affecting inhibitor binding. They surround a partially hydrophobic pocket close to the chloride binding site that is accessible from the cytoplasm, consistent with the observed intracellular block by 9-AC. Mutations in presumably Cl--coordinating residues yield additional insights into the structure and function of ClC-1. Our work shows that the structure of bacterial CLCs can be extrapolated with fidelity to mammalian Cl- channels.
Collapse
Affiliation(s)
- Raúl Estévez
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
41
|
Colding-Jørgensen E, DunØ M, Schwartz M, Vissing J. Decrement of compound muscle action potential is related to mutation type in myotonia congenita. Muscle Nerve 2003; 27:449-55. [PMID: 12661046 DOI: 10.1002/mus.10347] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Decrement of the compound muscle action potential (CMAP) during 10-HZ repetitive nerve stimulation is thought to be an unusual finding in dominant myotonia congenita, and has not previously been reported in patients with the genetically verified disorder. It was the purpose of the present study to elucidate the relation between decrement and CLCN1 mutation type in myotonia congenita. Decrement and genotypes were studied in eight Danish families with myotonia congenita. Six patients with the known dominant mutation P480L had decrements of 30-84%. Patients heterozygous for the R894X mutation had decrements of 20-47%. Three novel CLCN1 mutations (two dominant and one recessive) were found segregating with the Thomsen/Becker phenotypes. In families with the novel dominant mutations M128V and E193K, decrement was absent in all family members tested. In conclusion, CMAP decrement may be pronounced in dominant myotonia congenita, and the presence of decrement is related to mutation type.
Collapse
Affiliation(s)
- Eskild Colding-Jørgensen
- Department of Clinical Neurophysiology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
42
|
Duffield M, Rychkov G, Bretag A, Roberts M. Involvement of helices at the dimer interface in ClC-1 common gating. J Gen Physiol 2003; 121:149-61. [PMID: 12566541 PMCID: PMC2217322 DOI: 10.1085/jgp.20028741] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
ClC-1 is a dimeric, double-pored chloride channel that is present in skeletal muscle. Mutations of this channel can result in the condition myotonia, a muscle disorder involving increased muscle stiffness. It has been shown that the dominant form of myotonia often results from mutations that affect the so-called slow, or common, gating process of the ClC-1 channel. Mutations causing dominant myotonia are seen to cluster at the interface of the ClC-1 channel monomers. This study has investigated the role of the H, I, P, and Q helices, which lie on this interface, as well as the G helix, which is situated immediately behind the H and I helices, on ClC-1 gating. 11 mutant ClC-1 channels (T268M, C277S, C278S, S289A, T310M, S312A, V321S, T539A, S541A, M559T, and S572V) were produced using site-directed mutagenesis, and gating properties of these channels were investigated using electrophysiological techniques. Six of the seven mutations in G, H, and I, and two of the four mutations in P and Q, caused shifts of the ClC-1 open probability. In the majority of cases this was due to alterations in the common gating process, with only three of the mutants displaying any change in fast gating. Many of the mutant channels also showed alterations in the kinetics of the common gating process, particularly at positive potentials. The changes observed in common gating were caused by changes in the opening rate (e.g. T310M), the closing rate (e.g. C277S), or both rates. These results indicate that mutations in the helices forming the dimer interface are able to alter the ClC-1 common gating process by changing the energy of the open and/or closed channel states, and hence altering transition rates between these states.
Collapse
Affiliation(s)
- Michael Duffield
- Department of Physiology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
43
|
The myotonia congenita mutation A331T confers a novel hyperpolarization-activated gate to the muscle chloride channel ClC-1. J Neurosci 2002. [PMID: 12196568 DOI: 10.1523/jneurosci.22-17-07462.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the muscle chloride channel gene CLCN1 cause myotonia congenita, an inherited disorder of skeletal muscle excitability leading to a delayed relaxation after muscle contraction. Here, we examine the functional consequences of a novel disease-causing mutation that predicts the substitution of alanine by threonine at position 331 (A331T) by whole-cell patch-clamp recording of recombinant mutant channels. A331T hClC-1 channels exhibit a novel slow gate that activates during membrane hyperpolarization and closes at positive potentials. This novel gate acts in series with fast opening and closing transitions that are common to wild-type (WT) and mutant channels. Under conditions at which this novel gate is not activated, i.e., a holding potential of 0 mV, the typical depolarization-induced activation gating of WT hClC-1 was only slightly affected by the mutation. In contrast, A331T hClC-1 channels with an open slow gate display an altered voltage dependence of open probability. These novel gating features of mutant channels produce a decreased open probability at -85 mV, the normal muscle resting potential, leading to a reduced resting chloride conductance of affected muscle fibers. The A331T mutation causes an unprecedented alteration of ClC-1 gating and reveals novel processes defining transitions between open and closed states in ClC chloride channels.
Collapse
|
44
|
Abstract
Ion channels are complex proteins that span the lipid bilayer of the cell membrane, where they orchestrate the electrical signals necessary for normal function of the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. The role of ion channel defects in the pathogenesis of numerous disorders, many of them neuromuscular, has become increasingly apparent over the last decade. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the study of expressed proteins at the level of single channel molecules possible. Understanding the molecular basis of ion channel function and dysfunction will facilitate both the accurate classification of these disorders and the rational development of specific therapeutic interventions. This review encompasses clinical, genetic, and pathophysiological aspects of ion channels disorders, focusing mainly on those with neuromuscular manifestations.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Department of Neurology, University of Pennsylvania School of Medicine, 122 College Hall, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Abstract
CLC chloride channels form a large gene family that is found in bacteria, archae and eukaryotes. Previous mutagenesis studies on CLC chloride channels, combined with electrophysiology, strongly supported the theory that these channels form a homodimeric structure with one pore per subunit (a'double-barrelled' channel), and also provided clues about gating and permeation. Recently, the crystal structures of two bacterial CLC proteins have been obtained by X-ray diffraction analysis. They confirm the double-barrelled architecture, and reveal a surprisingly complex and unprecedented channel structure. At its binding site in the pore, chloride interacts with the ends of four helices that come from both sides of the membrane. A glutamate residue that protrudes into the pore is proposed to participate in gating. The structure confirms several previous conclusions from mutagenesis studies and provides an excellent framework for their interpretation.
Collapse
Affiliation(s)
- Raúl Estévez
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Falkenried 94, Germany
| | | |
Collapse
|
46
|
Abstract
Pure non-syndromic, non-dystrophic myotonia in humans is caused by mutations in the genes coding for the skeletal muscle sodium channel (SCN5A) or the skeletal muscle chloride channel (CLCN1) with similar phenotypes. Chloride-channel myotonia can be dominant (Thomsen-type myotonia) or recessive (Becker-type myotonia). More than 60 myotonia-causing mutations in the CLCN1 gene have been identified, with only a few of them being dominant. A common phenotype of dominant mutations is a dominant negative effect of mutant subunits in mutant-WT heterodimers, causing a large shift of the steady-state open probability voltage-dependence towards more positive, unphysiological voltages. The study of the properties of disease causing mutations has helped in understanding the functional properties of the CLC-1 channel that is part of a nine-member gene family of chloride channels. The large body of knowledge obtained for CLC-1 may also help to better understand the other CLC channels, three of which are also involved in genetic diseases.
Collapse
Affiliation(s)
- Michael Pusch
- Istituto di Cibernetica e Biofisica, CNR, Genova, Italy.
| |
Collapse
|
47
|
Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82:503-68. [PMID: 11917096 DOI: 10.1152/physrev.00029.2001] [Citation(s) in RCA: 941] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl- channels reside both in the plasma membrane and in intracellular organelles. Their functions range from ion homeostasis to cell volume regulation, transepithelial transport, and regulation of electrical excitability. Their physiological roles are impressively illustrated by various inherited diseases and knock-out mouse models. Thus the loss of distinct Cl- channels leads to an impairment of transepithelial transport in cystic fibrosis and Bartter's syndrome, to increased muscle excitability in myotonia congenita, to reduced endosomal acidification and impaired endocytosis in Dent's disease, and to impaired extracellular acidification by osteoclasts and osteopetrosis. The disruption of several Cl- channels in mice results in blindness. Several classes of Cl- channels have not yet been identified at the molecular level. Three molecularly distinct Cl- channel families (CLC, CFTR, and ligand-gated GABA and glycine receptors) are well established. Mutagenesis and functional studies have yielded considerable insights into their structure and function. Recently, the detailed structure of bacterial CLC proteins was determined by X-ray analysis of three-dimensional crystals. Nonetheless, they are less well understood than cation channels and show remarkably different biophysical and structural properties. Other gene families (CLIC or CLCA) were also reported to encode Cl- channels but are less well characterized. This review focuses on molecularly identified Cl- channels and their physiological roles.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
48
|
Accardi A, Ferrera L, Pusch M. Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S. J Physiol 2001; 534:745-52. [PMID: 11483705 PMCID: PMC2278749 DOI: 10.1111/j.1469-7793.2001.00745.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Single channel measurements suggest that the human muscle chloride channel ClC-1 presumably has a double barrelled structure, with a fast single protopore gate and a slow common pore gate similar to that of ClC-0, the chloride channel from Torpedo. The single point mutation C212S has been shown to abolish the slow gating of ClC-0 locking the slow gate in the open state. In order to test the hypothesis that the slow gating process found in ClC-1 corresponds to the well characterised slow gate found in ClC-0 we investigated the gating effects in ClC-1 of the homologous mutation corresponding to C212S, C277S. 2. We found that the mutation C277S strongly reduced the slow component of macroscopic gating relaxations at negative and at positive voltages. 3. Time constants of the fast gating relaxations were not affected by the mutation but the minimal open probability of the fast gate at negative voltages was slightly reduced to 0.08 compared with the WT value of 0.22. 4. Additionally, we characterised the block of WT ClC-1 and mutant C277S by the S(-) enantiomer of CPB (2-(p-chlorophenoxy) butyric acid), and found that the block is practically unaffected by the mutation suggesting that CPB does not interact with the slow gate of ClC-1. 5. We conclude that the slow and fast gating processes of ClC-1, respectively, reflect the slow common pore gate and the single protopore gate of the double-barrelled ClC-1 channel.
Collapse
Affiliation(s)
- A Accardi
- Istituto di Cibernetica e Biofisica, CNR, Via de Marini 6, I-16149 Genoa, Italy
| | | | | |
Collapse
|
49
|
Aromataris EC, Rychkov GY, Bennetts B, Hughes BP, Bretag AH, Roberts ML. Fast and slow gating of CLC-1: differential effects of 2-(4-chlorophenoxy) propionic acid and dominant negative mutations. Mol Pharmacol 2001; 60:200-8. [PMID: 11408615 DOI: 10.1124/mol.60.1.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our knowledge about ClC-1 muscle chloride channel gating, previously gained from single-channel recording and noise analysis, provides a theoretical basis for further analysis of macroscopic currents. In the present study, we propose a simple method of calculation of open probabilities (P(o)) of fast and slow gates from the relative amplitudes of ClC-1 inward current components. With this method, we investigated the effects of 2-(4-chlorophenoxy) propionic acid (CPP), a drug known to produce myotonia in animals, and dominant negative myotonic mutations, F307S and A313T, on fast and slow gating of ClC-1. We have shown that these mutations affected the P(o) of the slow gate, as expected from their mode of inheritance, and that CPP predominantly affected the fast gating process. CPP's action on the fast gating of mutant channels was similar to its effect in wild-type channels. Comparison of the effects of CPP and the mutations on fast and slow gating with the effects produced by reduction of external Cl(-) concentration suggested that CPP and mutations exert their action by affecting the transition of the channel from its closed to open state after Cl(-) binding to the gating site.
Collapse
Affiliation(s)
- E C Aromataris
- Department of Physiology, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Pusch M, Accardi A, Liantonio A, Ferrera L, De Luca A, Camerino DC, Conti F. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB). J Gen Physiol 2001; 118:45-62. [PMID: 11432801 PMCID: PMC2233749 DOI: 10.1085/jgp.118.1.45] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.
Collapse
Affiliation(s)
- M Pusch
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, I-6149 Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|