1
|
Lee AJ, Nam DE, Choi YJ, Noh SW, Nam SH, Lee HJ, Kim SJ, Song GJ, Choi BO, Chung KW. Paternal gender specificity and mild phenotypes in Charcot-Marie-Tooth type 1A patients with de novo 17p12 rearrangements. Mol Genet Genomic Med 2020; 8:e1380. [PMID: 32648354 PMCID: PMC7507087 DOI: 10.1002/mgg3.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023] Open
Abstract
Background Charcot–Marie–Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are developed by duplication and deletion of the 17p12 (PMP22) region, respectively. Methods De novo rates were determined in 211 CMT1A or HNPP trio families, and then, analyzed gender‐specific genetic features and clinical phenotypes of the de novo cases. Results This study identified 40 de novo cases (19.0%). Paternal origin was highly frequent compared to maternal origin (p = .005). Most de novo CMT1A rearrangements occurred between non‐sister chromatids (p = .003), but it was interesting that three of the four sister chromatids exchange cases were observed in the less frequent maternal origin. Paternal ages at the affected child births were slightly higher in the de novo CMT1A group than in the non‐de novo CMT1A control group (p = .0004). For the disability score of CMTNS, the de novo CMT1A group had a slightly lower value compared to the control group (p = .005). Electrophysiological studies showed no significant differences between the two groups. Conclusion This study suggests that de novo CMT1A patients tend to have milder symptoms and that the paternal ages at child births in the de novo group are higher than those of the non‐de novo group.
Collapse
Affiliation(s)
- Ah J Lee
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Yu J Choi
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Seung W Noh
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Soo H Nam
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Hye J Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung J Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyun J Song
- Department of Medical Science, Institute for Bio-Medical Convergence, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
2
|
Extreme clustering of type-1 NF1 deletion breakpoints co-locating with G-quadruplex forming sequences. Hum Genet 2018; 137:511-520. [PMID: 29992513 DOI: 10.1007/s00439-018-1904-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023]
Abstract
The breakpoints of type-1 NF1 deletions encompassing 1.4-Mb are located within NF1-REPa and NF1-REPc, which exhibit a complex structure comprising different segmental duplications in direct and inverted orientation. Here, we systematically assessed the proportion of type-1 NF1 deletions caused by nonallelic homologous recombination (NAHR) and those mediated by other mutational mechanisms. To this end, we analyzed 236 unselected type-1 deletions and observed that 179 of them (75.8%) had breakpoints located within the NAHR hotspot PRS2, whereas 39 deletions (16.5%) had breakpoints located within PRS1. Sixteen deletions exhibited breakpoints located outside of these NAHR hotspots but were also mediated by NAHR. Taken together, the breakpoints of 234 (99.2%) of the 236 type-1 NF1 deletions were mediated by NAHR. Thus, NF1-REPa and NF1-REPc are strongly predisposed to recurrent NAHR, the main mechanism underlying type-1 NF1 deletions. We also observed a non-random overlap between type-1 NF1-deletion breakpoints and G-quadruplex forming sequences (GQs) as well as regions flanking PRDM9A binding-sites. These findings imply that GQs and PRDM9A binding-sites contribute to the clustering of type-1 deletion breakpoints. The co-location of both types of sequence was at its highest within PRS2, indicative of their synergistic contribution to the greatly increased NAHR activity within this hotspot.
Collapse
|
3
|
Pronounced maternal parent-of-origin bias for type-1 NF1 microdeletions. Hum Genet 2018; 137:365-373. [PMID: 29730711 DOI: 10.1007/s00439-018-1888-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
Abstract
Neurofibromatosis type 1 (NF1) is caused, in 4.7-11% of cases, by large deletions encompassing the NF1 gene and its flanking regions within 17q11.2. Different types of large NF1 deletion occur which are distinguishable by their breakpoint location and underlying mutational mechanism. Most common are the type-1 NF1 deletions of 1.4 Mb which exhibit recurrent breakpoints caused by nonallelic homologous recombination (NAHR), also termed unequal crossover. Here, we analyzed 37 unrelated families of patients with de novo type-1 NF1 deletions by means of short tandem repeat (STR) profiling to determine the parental origin of the deletions. We observed that 33 of the 37 type-1 deletions were of maternal origin (89.2% of cases; p < 0.0001). Analysis of the patients' siblings indicated that, in 14 informative cases, ten (71.4%) deletions resulted from interchromosomal unequal crossover during meiosis I. Our findings indicate a strong maternal parent-of-origin bias for type-1 NF1 deletions. A similarly pronounced maternal transmission bias has been reported for recurrent copy number variants (CNVs) within 16p11.2 associated with autism, but not so far for any other NAHR-mediated pathogenic CNVs. Region-specific genomic features are likely to be responsible for the maternal bias in the origin of both the 16p11.2 CNVs and type-1 NF1 deletions.
Collapse
|
4
|
Gagic M, Markovic MK, Kecmanovic M, Keckarevic D, Mladenovic J, Dackovic J, Milic-Rasic V, Romac S. Analysis of PMP22 duplication and deletion using a panel of six dinucleotide tandem repeats. Clin Chem Lab Med 2017; 54:773-80. [PMID: 26479344 DOI: 10.1515/cclm-2015-0602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/10/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth type 1A (CMT1A) is the most common type of hereditary motor and sensory neuropathies (HMSN), caused by the duplication of the 17p11.2 region that includes the PMP22 gene. Reciprocal deletion of the same region is the main cause of hereditary neuropathy with liability to pressure palsies (HNPP). CMT1A accounts for approximately 50% of HMSN patients. Diagnostics of CMT1A and HNPP are based on quantitative analysis of the affected region or RFLP detection of breakage points. The aim of this study was to improve the sensitivity and efficiency of CMT1A and HNPP genetic diagnostics by introducing analysis of six STR markers (D17S261-D17S122-D17S839-D17S1358-D17S955-D17S921) spanning the duplicated region. METHODS Forty-six CMT1A and seven HNPP patients, all genetically diagnosed by RFLP analysis, were tested for duplication or deletion using six STR markers. RESULTS In all CMT1A and HNPP patients, microsatellite analysis comprising six STR markers confirmed the existence of a duplication or deletion. In 89% (41/46) CMT1A patients the confirmation was based on detecting three alleles on at least one locus. In the remaining 11% (5) CMT1A patients, duplication was also confirmed based on two peaks with clear dosage difference for at least two different markers. All HNPP patients (7/7) displayed only one allele for each analyzed locus. CONCLUSIONS Microsatellite analysis using six selected STR loci showed a high level of sensitivity and specificity for genetic diagnostics of CMT1A and HNPP. The results here strongly suggest STR marker analysis as a method of choice in PMP22 duplication/deletion testing.
Collapse
|
5
|
Severe phenotypes in a Charcot-Marie-Tooth 1A patient with PMP22 triplication. J Hum Genet 2014; 60:103-6. [PMID: 25500726 DOI: 10.1038/jhg.2014.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/03/2014] [Accepted: 11/11/2014] [Indexed: 11/08/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically and clinically heterogeneous hereditary motor and sensory neuropathy signified by a distal symmetric polyneuropathy. The most frequent subtype is type 1A (CMT1A) caused by duplication in chromosome 17p12 that includes PMP22. This study reports a woman with a family history of CMT1A due to PMP22 duplication. However, she presented with a more severe phenotype than her sibling or ancestors and was found to have a PMP22 triplication instead of the duplication. This was caused by de novo mutation on her affected mother's duplication chromosome. Her lower limb magnetic resonance imaging revealed severe diffused atrophy and fatty replacement. However, her affected sister with typical PMP22 duplication showed almost intact lower limb. Triplication patient's median motor nerve conduction velocity was far lower compared with her sister. Her onset age was faster (8 years) than her sister (42 years). CMT1A triplication might be generated by a female-specific chromosomal rearrangement mechanism that is different from the frequent paternal-originated CMT1A duplication. It also suggests that the wide phenotypic variation of CMT1A might be partly caused by unstable genomic rearrangement, including PMP22 triplication.
Collapse
|
6
|
Charcot–Marie–Tooth diseases. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Inheritance of Charcot-Marie-Tooth disease 1A with rare nonrecurrent genomic rearrangement. Neurogenetics 2010; 12:51-8. [PMID: 21193943 DOI: 10.1007/s10048-010-0272-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/13/2010] [Indexed: 12/21/2022]
Abstract
Rare copy number variations by the nonrecurrent rearrangements involving PMP22 have been recently suggested to be associated with CMT1A peripheral neuropathy. As a mechanism of the nonrecurrent rearrangement, replication-based fork stalling template switching (FoSTeS) by microhomology-mediated break-induced replication (MMBIR) has been proposed. We found three Korean CMT1A families with putative nonrecurrent duplication. The duplications were identified by microsatellite typing and applying a CGH microarray. The breakpoint sequences in two families suggested an Alu-Alu-mediated rearrangement with the FoSTeS by the MMBIR, and a two-step rearrangement of the replication-based FoSTeS/MMBIR and meiosis-based recombination. The two-step mechanism has still not been reported. Segregation analysis of 17p12 microsatellite markers and breakpoint junction analysis suggested that the nonrecurrent rearrangements are stably inherited without alteration of junction sequence; however, they may allow some alteration of the genomic contents in duplication across generations by recombination event. It might be the first study on the pedigree analysis of the large CMT1A families with nonrecurrent rearrangements. It seems that the exact mechanism of the nonrecurrent rearrangements in the CMT1A may have a far more complex process than has been expected.
Collapse
|
8
|
Turner DJ, Miretti M, Rajan D, Fiegler H, Carter NP, Blayney ML, Beck S, Hurles ME. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 2007; 40:90-5. [PMID: 18059269 PMCID: PMC2669897 DOI: 10.1038/ng.2007.40] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 10/03/2007] [Indexed: 01/06/2023]
Abstract
Meiotic recombination between highly similar duplicated sequences (nonallelic homologous recombination, NAHR) generates deletions, duplications, inversions and translocations, and it is responsible for genetic diseases known as 'genomic disorders', most of which are caused by altered copy number of dosage-sensitive genes. NAHR hot spots have been identified within some duplicated sequences. We have developed sperm-based assays to measure the de novo rate of reciprocal deletions and duplications at four NAHR hot spots. We used these assays to dissect the relative rates of NAHR between different pairs of duplicated sequences. We show that (i) these NAHR hot spots are specific to meiosis, (ii) deletions are generated at a higher rate than their reciprocal duplications in the male germline and (iii) some of these genomic disorders are likely to have been underascertained clinically, most notably that resulting from the duplication of 7q11, the reciprocal of the deletion causing Williams-Beuren syndrome.
Collapse
Affiliation(s)
- Daniel J Turner
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Steinmann K, Cooper DN, Kluwe L, Chuzhanova NA, Senger C, Serra E, Lazaro C, Gilaberte M, Wimmer K, Mautner VF, Kehrer-Sawatzki H. Type 2 NF1 deletions are highly unusual by virtue of the absence of nonallelic homologous recombination hotspots and an apparent preference for female mitotic recombination. Am J Hum Genet 2007; 81:1201-20. [PMID: 17999360 PMCID: PMC2276354 DOI: 10.1086/522089] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/03/2007] [Indexed: 11/03/2022] Open
Abstract
Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats (NF1-REPs) and cluster within a 3.4-kb hotspot of nonallelic homologous recombination (NAHR). Here, we present the first comprehensive breakpoint analysis of type 2 deletions, which are a second type of recurring NF1 gene deletion. Type 2 deletions span 1.2 Mb and are characterized by breakpoints located within the SUZ12 gene and its pseudogene, which closely flank the NF1-REPs. Breakpoint analysis of 13 independent type 2 deletions did not reveal any obvious hotspots of NAHR. However, an overrepresentation of polypyrimidine/polypurine tracts and triplex-forming sequences was noted in the breakpoint regions that could have facilitated NAHR. Intriguingly, all 13 type 2 deletions identified so far are characterized by somatic mosaicism, which indicates a positional preference for mitotic NAHR within the NF1 gene region. Indeed, whereas interchromosomal meiotic NAHR occurs between the NF1-REPs giving rise to type 1 deletions, NAHR during mitosis appears to occur intrachromosomally between the SUZ12 gene and its pseudogene, thereby generating type 2 deletions. Such a clear distinction between the preferred sites of mitotic versus meiotic NAHR is unprecedented in any other genomic disorder induced by the local genomic architecture. Additionally, 12 of the 13 mosaic type 2 deletions were found in females. The marked female preponderance among mosaic type 2 deletions contrasts with the equal sex distribution noted for type 1 and/or atypical NF1 deletions. Although an influence of chromatin structure was strongly suspected, no sex-specific differences in the methylation pattern exhibited by the SUZ12 gene were apparent that could explain the higher rate of mitotic recombination in females.
Collapse
|
10
|
Lam KWG, Jeffreys AJ. Processes of de novo duplication of human alpha-globin genes. Proc Natl Acad Sci U S A 2007; 104:10950-5. [PMID: 17573529 PMCID: PMC1904127 DOI: 10.1073/pnas.0703856104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Indexed: 12/27/2022] Open
Abstract
Ectopic recombination between repeated but nonallelic DNA sequences plays a major role in genome evolution, creating gene families and generating copy number variation and pathological rearrangements in human chromosomes. Previous studies on the alpha2- and alpha1-globin genes have shown that de novo deletions common in alpha(+)-thalassemics can be directly accessed in human DNA and provide an informative system for studying deletion dynamics and processes. However, nothing is known about the reciprocal products of ectopic recombination, namely gene duplications. We now show that molecules carrying three alpha-globin genes can be detected in human DNA by using physical enrichment plus an inverse PCR strategy. These de novo duplications are common in blood and sperm and appear to arise by two distinct mechanisms: meiotic exchanges between homologous chromosomes that generate a minority of sperm duplications, plus mitotic ectopic exchanges that occur in the soma and germ line and can show erratic fluctuations in frequency most likely caused by mutational mosaicism. The dynamics and processes of duplication are very similar to those of deletion, particularly for meiotic exchanges. This result suggests rearrangement pathways dominated by fully reciprocal ectopic exchange, with nonreciprocal pathways such as intramolecular recombination and single-strand annealing playing at best only a minor role in the generation of deletions. Finally, the high level of instability at the alpha-globin locus contrasts with the rarity in most populations of chromosomes carrying duplications or deletions, pointing to strong selective constraints that maintain alpha-globin gene copy number in human populations.
Collapse
Affiliation(s)
- Kwan-Wood G. Lam
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Alec J. Jeffreys
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
11
|
Chance PF. Inherited focal, episodic neuropathies: hereditary neuropathy with liability to pressure palsies and hereditary neuralgic amyotrophy. Neuromolecular Med 2007; 8:159-74. [PMID: 16775374 DOI: 10.1385/nmm:8:1:159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 12/22/2005] [Accepted: 12/30/2005] [Indexed: 12/16/2022]
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP; also called tomaculous neuropathy) is an autosomal-dominant disorder that produces a painless episodic, recurrent, focal demyelinating neuropathy. HNPP generally develops during adolescence, and may cause attacks of numbness, muscular weakness, and atrophy. Peroneal palsies, carpal tunnel syndrome, and other entrapment neuropathies may be frequent manifestations of HNPP. Motor and sensory nerve conduction velocities may be reduced in clinically affected patients, as well as in asymptomatic gene carriers. The histopathological changes observed in peripheral nerves of HNPP patients include segmental demyelination and tomaculous or "sausage-like" formations. Mild overlap of clinical features with Charcot-Marie-Tooth (CMT) disease type 1 (CMT1) may lead patients with HNPP to be misdiagnosed as having CMT1. HNPP and CMT1 are both demyelinating neuropathies, however, their clinical, pathological, and electrophysiological features are quite distinct. HNPP is most frequently associated with a 1.4-Mb pair deletion on chromosome 17p12. A duplication of the identical region leads to CMT1A. Both HNPP and CMT1A result from a dosage effect of the PMP22 gene, which is contained within the deleted/duplicated region. This is reflected in reduced mRNA and protein levels in sural nerve biopsy samples from HNPP patients. Treatment for HNPP consists of preventative and symptom-easing measures. Hereditary neuralgic amyotrophy (HNA; also called familial brachial plexus neuropathy) is an autosomal-dominant disorder causing episodes of paralysis and muscle weakness initiated by severe pain. Individuals with HNA may suffer repeated episodes of intense pain, paralysis, and sensory disturbances in an affected limb. The onset of HNA is at birth or later in childhood with prognosis for recovery usually favorable; however, persons with HNA may have permanent residual neurological dysfunction following attack(s). Episodes are often triggered by infections, immunizations, the puerperium, and stress. Electrophysiological studies show normal or mildly prolonged motor nerve conduction velocities distal to the affected brachial plexus. Pathological studies have found axonal degeneration in nerves examined distal to the plexus abnormality. In some HNA pedigrees there are characteristic facial features, including hypotelorism. The prognosis for recovery of normal function of affected limbs in HNA is good, although recurrent episodes may cause residual deficits. HNA is genetically linked to chromosome 17q25, where mutations in the septin-9 (SEPT9) gene have been found.
Collapse
Affiliation(s)
- Phillip F Chance
- Division of Genetics and Developmental Medicine, Children's Hospital and Regional Medical Center, Department of Pediatrics, University of Washington School of Medicine, Box 356320, Room RR247, Seattle, Washington 98195, USA.
| |
Collapse
|
12
|
Lindsay SJ, Khajavi M, Lupski JR, Hurles ME. A chromosomal rearrangement hotspot can be identified from population genetic variation and is coincident with a hotspot for allelic recombination. Am J Hum Genet 2006; 79:890-902. [PMID: 17033965 PMCID: PMC1698570 DOI: 10.1086/508709] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 08/22/2006] [Indexed: 01/15/2023] Open
Abstract
Insights into the origins of structural variation and the mutational mechanisms underlying genomic disorders would be greatly improved by a genomewide map of hotspots of nonallelic homologous recombination (NAHR). Moreover, our understanding of sequence variation within the duplicated sequences that are substrates for NAHR lags far behind that of sequence variation within the single-copy portion of the genome. Perhaps the best-characterized NAHR hotspot lies within the 24-kb-long Charcot-Marie-Tooth disease type 1A (CMT1A)-repeats (REPs) that sponsor deletions and duplications that cause peripheral neuropathies. We investigated structural and sequence diversity within the CMT1A-REPs, both within and between species. We discovered a high frequency of retroelement insertions, accelerated sequence evolution after duplication, extensive paralogous gene conversion, and a greater than twofold enrichment of SNPs in humans relative to the genome average. We identified an allelic recombination hotspot underlying the known NAHR hotspot, which suggests that the two processes are intimately related. Finally, we used our data to develop a novel method for inferring the location of an NAHR hotspot from sequence variation within segmental duplications and applied it to identify a putative NAHR hotspot within the LCR22 repeats that sponsor velocardiofacial syndrome deletions. We propose that a large-scale project to map sequence variation within segmental duplications would reveal a wealth of novel chromosomal-rearrangement hotspots.
Collapse
Affiliation(s)
- Sarah J Lindsay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | | | | | | |
Collapse
|
13
|
Lam KWG, Jeffreys AJ. Processes of copy-number change in human DNA: the dynamics of {alpha}-globin gene deletion. Proc Natl Acad Sci U S A 2006; 103:8921-7. [PMID: 16709669 PMCID: PMC1482541 DOI: 10.1073/pnas.0602690103] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ectopic recombination between locally repeated DNA sequences is of fundamental importance in the evolution of gene families, generating copy-number variation in human DNA and often leading to pathological rearrangements. Despite its importance, little is known about the dynamics and processes of these unequal crossovers and the degree to which meiotic recombination plays a role in instability. We address this issue by using as a highly informative system the duplicated alpha-globin genes in which ectopic recombination can lead to gene deletions, often very prevalent in populations affected by malaria, as well as reduplications. Here we show that spontaneous deletions can be accessed directly in genomic DNA by using single-DNA-molecule methods. These deletions proved to be remarkably common in both blood and sperm. Somatic deletions arise by a strictly intrachromosomal pathway of homologous exchange that also operates in the germ line and can generate mutational mosaicism, whereas sperm deletions frequently involve recombinational interactions between homologous chromosomes that most likely occur at meiosis. Ectopic recombination frequencies show surprisingly little requirement for long, identical homology blocks shared by paralogous sequences, and exchanges can occur even between short regions of sequence identity. Finally, direct knowledge of germ-line deletion rates can give insights into the fitness of individuals with these alpha-globin gene deletions, providing a new approach to investigating historical levels of selection operating in human populations.
Collapse
Affiliation(s)
- Kwan-Wood G. Lam
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Alec J. Jeffreys
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Matejas V, Huehne K, Thiel C, Sommer C, Jakubiczka S, Rautenstrauss B. Identification of Alu elements mediating a partial PMP22 deletion. Neurogenetics 2006; 7:119-26. [PMID: 16570190 DOI: 10.1007/s10048-006-0030-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 01/11/2006] [Indexed: 11/28/2022]
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP) is most frequently caused by deletion of a 1.4-Mb region in chromosome 17p11.2-12 including the peripheral myelin protein 22 (PMP22) gene. Smaller deletions partially affecting the PMP22 gene are less frequently observed. We identified in a HNPP patient a deletion of the 5' region of PMP22 including non-coding exon 1, coding exons 2 and 3, whereas, exons 4 and 5 were present. PMP22 exon 3- and 4-specific qPCR resulted in a deletion of one exon 3 allele but in the presence of 2 exon 4 alleles. SNP analysis revealed the presence of heterozygosity for PMP22 coding exons 4 and 5. Finally, MLPA specific for the CMT1A region defined this deletion for the entire 5' region of PMP22 (exons 1, 2 and 3). These partial HNPP deletions may be missed by other techniques, e.g., STR marker analysis. Alu elements have been reported to mediate non-allelic recombination events. Bioinformatic analysis revealed 12 Alu elements flanking in close neighbourhood the estimated 40-kb deletion region as candidates for recombination events. PCR primers were designed to identify a breakpoint-spanning product including the respective Alu elements. PCR-driven identification of a junction fragment was successful with AluJo-AluSq and AluYb9-AluSq specific primer pairs comprising the same intronic region of PMP22. Sequence analysis of these breakpoint-overlapping PCR fragments revealed a 29-bp motif including a chi-like sequence (GCTGG) present both in the AluYb9 and the AluSq element. These data confirm that low-copy repeats (LCRs) mediate non-allelic homologous recombinations (NAHR).
Collapse
Affiliation(s)
- Verena Matejas
- Institute of Human Genetics, Friedrich Alexander University, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
BOERKOEL CF, INOUE K, REITER LT, WARNER LE, LUPSKI JR. Molecular Mechanisms for CMT1A Duplication and HNPP Deletion. Ann N Y Acad Sci 2006; 883:22-35. [DOI: 10.1111/j.1749-6632.1999.tb08563.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Affiliation(s)
- Philip F Chance
- Division of Genetics and Congenital Defects, Department of Pediatrics, Box 356320, University of Washington School of Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Lin KP, Chou CH, Lee HY, Soong BW. Allele-specific all-or-none PCR product diagnostic strategy for Charcot-Marie-Tooth 1A and hereditary neuropathy with liability to pressure palsies. J Chin Med Assoc 2006; 69:68-73. [PMID: 16570573 DOI: 10.1016/s1726-4901(09)70116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We designed allele-specific primers to amplify genomic DNA of patients with Charcot-Marie-Tooth 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). METHODS Genomic DNA analysis was performed on 40 unrelated CMT1A duplication patients, 25 unrelated HNPP deletion patients, and 50 unaffected control individuals. The CMT1A and HNPP patients had previously been identified with microsatellite mapping. RESULTS Amplification products came to 3.6 kb in length from the normal proximal CMT1A repeated segment on chromosome 17p11.2 (proximal CMT1A-REP), 3.57 kb from the normal distal CMT1A repeated segment on chromosome 17p11.2 (distal CMT1A-REP), 3.6 kb from HNPP patients, and 3.58 kb from CMT1A patients. We could identify the mutations by means of agarose gel electrophoresis after polymerase chain reaction (PCR) amplification without restriction enzyme digestion from 33 of the 40 CMT1A and 19 of the 25 HNPP samples. CONCLUSION Stringently specific primers were used to overcome the problem of nonspecific amplification and provide a rapid, all-or-none PCR product and efficient screening test for CMT1A and HNPP.
Collapse
Affiliation(s)
- Kon-Ping Lin
- The Neurological Institute, Taipei Veterans General Hospital, Taiwan, ROC.
| | | | | | | |
Collapse
|
19
|
Kurotaki N, Stankiewicz P, Wakui K, Niikawa N, Lupski JR. Sotos syndrome common deletion is mediated by directly oriented subunits within inverted Sos-REP low-copy repeats. Hum Mol Genet 2005; 14:535-42. [PMID: 15640245 DOI: 10.1093/hmg/ddi050] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sotos syndrome (Sos) is an overgrowth disorder also characterized clinically by mental retardation, specific craniofacial features and advanced bone age. As NSD1 haploinsufficiency was determined in 2002 to be the major cause of Sos, many intragenic mutations and chromosomal microdeletions involving the entire NSD1 gene have been described. In the Japanese population, half of the cases analyzed appear to have a common microdeletion; however, in the European population, deletion cases account for only 9%. Blast analysis of the Sos genomic region on 5q35 revealed two complex mosaic low-copy repeats (LCRs) that are centromeric and telomeric to NSD1. We termed these proximal Sos-REP (Sos-PREP, approximately 390 kb) and distal Sos-REP (Sos-DREP, approximately 429 kb), respectively. On the basis of the analysis of DNA sequence, we determined the size, structure, orientation and extent of sequence identity of these LCRs. We found that Sos-PREP and Sos-DREP are composed of six subunits termed A-F. Each of the homologous subunits, with the exception of one, is located in an inverted orientation and the order of subunits is different between the two Sos-REPs. Only the subunit C' in Sos-DREP is oriented directly with respect to the subunit C in Sos-PREP. These latter C' and C subunits are greater than 99% identical. Using pulsed-field gel electrophoresis analysis in eight Sos patients with a common deletion, we detected an approximately 550 kb junction fragment that we predicted according to the non-allelic homologous recombination (NAHR) mechanism using directly oriented Sos-PREP C and Sos-DREP C' subunits as substrates. This patient specific junction fragment was not present in 51 Japanese and non-Japanese controls. Subsequently, using long-range PCR with restriction enzyme digestion and DNA sequencing, we identified a 2.5 kb unequal crossover hotspot region in six out of nine analyzed Sos patients with the common deletion. Our data are consistent with an NAHR mechanism for generation of the Sos common deletion.
Collapse
Affiliation(s)
- Naohiro Kurotaki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
20
|
Visser R, Shimokawa O, Harada N, Kinoshita A, Ohta T, Niikawa N, Matsumoto N. Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am J Hum Genet 2005; 76:52-67. [PMID: 15580547 PMCID: PMC1196433 DOI: 10.1086/426950] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/20/2004] [Indexed: 11/03/2022] Open
Abstract
Sotos syndrome (SoS) is a congenital dysmorphic disorder characterized by overgrowth in childhood, distinctive craniofacial features, and mental retardation. Haploinsufficiency of the NSD1 gene owing to either intragenic mutations or microdeletions is known to be the major cause of SoS. The common approximately 2.2-Mb microdeletion encompasses the whole NSD1 gene and neighboring genes and is flanked by low-copy repeats (LCRs). Here, we report the identification of a 3.0-kb major recombination hotspot within these LCRs, in which we mapped deletion breakpoints in 78.7% (37/47) of patients with SoS who carry the common microdeletion. The deletion size was subsequently refined to 1.9 Mb. Sequencing of breakpoint fragments from all 37 patients revealed junctions between a segment of the proximal LCR (PLCR-B) and the corresponding region of the distal LCR (DLCR-2B). PLCR-B and DLCR-2B are the only directly oriented regions, whereas the remaining regions of the PLCR and DLCR are in inverted orientation. The PLCR, with a size of 394.0 kb, and the DLCR, with a size of of 429.8 kb, showed high overall homology (approximately 98.5%), with an increased sequence similarity (approximately 99.4%) within the 3.0-kb breakpoint cluster. Several recombination-associated motifs were identified in the hotspot and/or its vicinity. Interestingly, a 10-fold average increase of a translin motif, as compared with the normal distribution within the LCRs, was recognized. Furthermore, a heterozygous inversion of the interval between the LCRs was detected in all fathers of the children carrying a deletion in the paternally derived chromosome. The functional significance of these findings remains to be elucidated. Segmental duplications of the primate genome play a major role in chromosomal evolution. Evolutionary study showed that the duplication of the SoS LCRs occurred 23.3-47.6 million years ago, before the divergence of Old World monkeys.
Collapse
Affiliation(s)
- Remco Visser
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Osamu Shimokawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Naoki Harada
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Tohru Ohta
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Norio Niikawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| |
Collapse
|
21
|
Abstract
As recently as 20 years ago, there was relatively little information about the number and distribution of recombinational events in human meiosis, and we knew virtually nothing about factors affecting patterns of recombination. However, the generation of a variety of linkage-based genetic mapping tools and, more recently, cytological approaches that enable us to directly visualize the recombinational process in meiocytes, have led to an increased understanding of human meiosis. In this review, we discuss the different approaches used to study meiotic recombination in humans, our understanding of factors that affect the number and location of recombinational events, and clinical consequences of variation in the recombinational process.
Collapse
Affiliation(s)
- Audrey Lynn
- Department of Genetics and Center for Human Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
22
|
Forbes SH, Dorschner MO, Le R, Stephens K. Genomic context of paralogous recombination hotspots mediating recurrent NF1 region microdeletion. Genes Chromosomes Cancer 2004; 41:12-25. [PMID: 15236313 DOI: 10.1002/gcc.20065] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recombination between paralogs that flank the NF1 gene at 17q11.2 typically results in a 1.5-Mb microdeletion that includes NF1 and at least 13 other genes. We show that the principal sequences responsible are two 51-kb blocks with 97.5% sequence identity (NF1REP-P1-51 and NF1REP-M-51). These blocks belong to a complex group of paralogs with three components on 17q11.2 and another on 19p13.13. Breakpoint sequencing of deleted chromosomes from multiple patients revealed two paralogous recombination hot spots within the 51-kb blocks. Lack of sequence similarity between these sites failed to suggest or corroborate any putative cis-acting recombinogenic motifs. However, the NF1 REPs showed relatively high alignment mismatch between recombining paralogs, and we note that the NF1REP hot spots were regions of good alignment bordered by relatively large alignment gaps. Statistical tests for gene conversion detected a single significant tract of perfect match between the NF1REPs that was 700 bp long and coincided with PRS2, the predominant recombination hot spot. Tracts of perfect match occurring by chance may contribute to breakpoint localization, but our result suggests that perfect tracts at recombination hot spots may be a result of gene conversion at sites at which preferential pairing occurs for other, as-yet-unknown reasons.
Collapse
Affiliation(s)
- Stephen H Forbes
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
23
|
Carrington M, Cullen M. Justified chauvinism: advances in defining meiotic recombination through sperm typing. Trends Genet 2004; 20:196-205. [PMID: 15041174 DOI: 10.1016/j.tig.2004.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sperm typing offers an efficient means of studying the quantitative and qualitative aspects of meiotic recombination that are virtually unapproachable by pedigree analysis. Since the initial development of the technique >10 years ago, several salient findings based on empirically derived recombination data have been described. The precise rates and distributions of recombination have been reported for specific regions of the genome, serving as the prototype for high-resolution genome-wide recombination patterns. Identification and characterization of molecular genetic events, such as unequal crossing over, gene conversion and crossover asymmetry, are under close inspection for the first time as a result of this technology. The influence of these phenomena on the evolution of the genome is of primary interest from a scientific and medical perspective. In this article, we review the novel discoveries in mammalian meiotic recombination that have been revealed through sperm typing.
Collapse
Affiliation(s)
- Mary Carrington
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, National Institutes of Health, SAIC-Frederick, MD 21702, USA.
| | | |
Collapse
|
24
|
Abstract
The origin and frequency of spontaneous mutations that occur with age in humans have been a topic of intense discussion. The mechanisms by which spontaneous mutations arise depend on the parental germ line in which a mutation occurs. In general, paternal mutations are more likely than maternal mutations to be base substitutions. This is likely due to the larger number of germ cell divisions in spermatogenesis than in oogenesis. Maternal mutations are more often chromosomal abnormalities. Advanced parental age seems to influence some mutations, although it is not a factor in the creation of others. In this review, we focus on patterns of paternal bias and age dependence of mutations in different genetic disorders, and the various mechanisms by which these mutations arise. We also discuss recent data on age and the frequency of these mutations in the human male germ line and the impact of these data on this field of research.
Collapse
Affiliation(s)
- Rivka L Glaser
- Institute of Genetic Medicine at Johns Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
25
|
Schulte PA, Lomax G. Assessment of the scientific basis for genetic testing of railroad workers with carpal tunnel syndrome. J Occup Environ Med 2003; 45:592-600. [PMID: 12802212 DOI: 10.1097/01.jom.0000071502.96740.2c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In 2000, approximately 20 railroad track workers who filed injury reports or compensation claims for carpal tunnel syndrome were tested by their employer for two genetic traits to determine the work relatedness of the condition. The testing involved deletions, variants, or mutations in the genetic coding for peripheral myelin protein (PMP22) and transthyretin (TTR). This article is an assessment of whether there is a scientific basis for such testing. A review of the scientific literature indicated that neither the scientific basis nor the population validity of the PMP22 or TTR tests for carpal tunnel syndrome were adequately established before use on railroad track workers in 2000. Although ethical and legal issues may predominate in this case, the absence of a compelling scientific basis undermines the decision to conduct the tests.
Collapse
Affiliation(s)
- Paul A Schulte
- National Institute for Occupational Safety and Health, Center for Disease Control and Prevention, Cincinnati, Ohio 45226, USA.
| | | |
Collapse
|
26
|
Sironi M, Pozzoli U, Cagliani R, Giorda R, Comi GP, Bardoni A, Menozzi G, Bresolin N. Relevance of sequence and structure elements for deletion events in the dystrophin gene major hot-spot. Hum Genet 2003; 112:272-88. [PMID: 12596052 DOI: 10.1007/s00439-002-0881-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 11/04/2002] [Indexed: 11/24/2022]
Abstract
Large intragenic deletions within the DMD locus account for about 60% of Duchenne and Becker muscular dystrophy patients. Two deletion hot-spots have been described in the dystrophin gene, but the mechanisms that determine chromosome breaks in these regions are unknown, and the huge dimensions of the gene have hampered the description of a consistent number of breakpoint sequences. A long-distance polymerase chain reaction strategy was used to amplify 20 deletion junctions involving the major hot-spot and to describe breakpoint position at the sequence level. These junctions were analyzed together with previously reported breakpoint locations so as to increase the sample number and possibly provide a comprehensive study. Minisatellite core sequences, chi elements, translin-binding sites, Pur elements, and matrix attachment regions were sought over the whole gene. Sequence-dependent DNA curvature and duplex stability were also calculated throughout the gene, and their cumulative frequency distribution was evaluated. No association with either sequence or structure elements involved in known illegitimate recombination mechanisms was identified. This study highlights the importance of a whole gene approach to rule out the presumptive role of specific features that, when locally analyzed, might suggest involvement in gene rearrangements.
Collapse
Affiliation(s)
- Manuela Sironi
- IRCCS E. Medea, Associazione La Nostra Famiglia, Via Don Luigi Monza 20, 23842, Bosisio Parini (LC), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Genomic rearrangements play a major role in the pathogenesis of human genetic diseases. Nonallelic homologous recombination (NAHR) between low-copy repeats (LCRs) that flank unique genomic segments results in changes of genome organization and can cause a loss or gain of genomic segments. These LCRs appear to have arisen recently during primate speciation via paralogous segmental duplication, thus making the human species particularly susceptible to genomic rearrangements. Genomic disorders are defined as a group of diseases that result from genomic rearrangements, mostly mediated by NAHR. Molecular investigations of genomic disorders have revealed genome architectural features associated with susceptibility to rearrangements and the recombination mechanisms responsible for such rearrangements. The human genome sequence project reveals that LCRs may account for 5% of the genome, suggesting that many novel genomic disorders might still remain to be recognized.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
28
|
Shaw CJ, Bi W, Lupski JR. Genetic proof of unequal meiotic crossovers in reciprocal deletion and duplication of 17p11.2. Am J Hum Genet 2002; 71:1072-81. [PMID: 12375235 PMCID: PMC420000 DOI: 10.1086/344346] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Accepted: 08/14/2002] [Indexed: 12/11/2022] Open
Abstract
A number of common contiguous gene syndromes have been shown to result from nonallelic homologous recombination (NAHR) within region-specific low-copy repeats (LCRs). The reciprocal duplications are predicted to occur at the same frequency; however, probably because of ascertainment bias and milder phenotypes, reciprocal events have been identified in only a few cases to date. We previously described seven patients with dup(17)(p11.2p11.2), the reciprocal of the Smith-Magenis syndrome (SMS) deletion, del(17)(p11.2p11.2). In >90% of patients with SMS, identical approximately 3.7-Mb deletions in 17p11.2 have been identified. These deletions are flanked by large (approximately 200 kb), highly homologous, directly oriented LCRs (i.e., proximal and distal SMS repeats [SMS-REPs]). The third (middle) SMS-REP is inverted with respect to them and maps inside the commonly deleted genomic region. To investigate the parental origin and to determine whether the common deletion and duplication arise by unequal crossovers mediated through NAHR between the proximal and distal SMS-REPs, we analyzed the haplotypes of 14 families with SMS and six families with dup(17)(p11.2p11.2), using microsatellite markers directly flanking the SMS common deletion breakpoints. Our data indicate that reciprocal deletion and duplication of 17p11.2 result from unequal meiotic crossovers. These rearrangements occur via both interchromosomal and intrachromosomal exchange events between the proximal and distal SMS-REPs, and there appears to be no parental-origin bias associated with common SMS deletions and the reciprocal duplications.
Collapse
Affiliation(s)
- Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Weimin Bi
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| |
Collapse
|
29
|
Cullen M, Perfetto SP, Klitz W, Nelson G, Carrington M. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am J Hum Genet 2002; 71:759-76. [PMID: 12297984 PMCID: PMC378534 DOI: 10.1086/342973] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Accepted: 06/27/2002] [Indexed: 11/03/2022] Open
Abstract
Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall.
Collapse
Affiliation(s)
- Michael Cullen
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - Stephen P. Perfetto
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - William Klitz
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - George Nelson
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - Mary Carrington
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| |
Collapse
|
30
|
Emanuel BS, Shaikh TH. Segmental duplications: an 'expanding' role in genomic instability and disease. Nat Rev Genet 2001; 2:791-800. [PMID: 11584295 DOI: 10.1038/35093500] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The knowledge that specific genetic diseases are caused by recurrent chromosomal aberrations has indicated that genomic instability might be directly related to the structure of the regions involved. The sequencing of the human genome has directed significant attention towards understanding the molecular basis of such recombination 'hot spots'. Segmental duplications have emerged as a significant factor in the aetiology of disorders that are caused by abnormal gene dosage. These observations bring us closer to understanding the mechanisms and consequences of genomic rearrangement.
Collapse
Affiliation(s)
- B S Emanuel
- Division of Human Genetics and Molecular Biology, 1002 Abramson Research Center, The Children's Hospital of Philadelphia, 3516 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
31
|
Jenne DE, Tinschert S, Reimann H, Lasinger W, Thiel G, Hameister H, Kehrer-Sawatzki H. Molecular characterization and gene content of breakpoint boundaries in patients with neurofibromatosis type 1 with 17q11.2 microdeletions. Am J Hum Genet 2001; 69:516-27. [PMID: 11468690 PMCID: PMC1235482 DOI: 10.1086/323043] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 06/28/2001] [Indexed: 11/03/2022] Open
Abstract
Homologous recombination between poorly characterized regions flanking the NF1 locus causes the constitutional loss of approximately 1.5 Mb from 17q11.2 covering > or =11 genes in 5%-20% of patients with neurofibromatosis type 1 (NF1). To elucidate the extent of microheterogeneity at the deletion boundaries, we used single-copy DNA fragments from the extreme ends of the deleted segment to perform FISH on metaphase chromosomes from eight patients with NF1 who had large deletions. In six patients, these probes were deleted, suggesting that breakage and fusions occurred within the adjacent highly homologous sequences. Reexamination of the deleted region revealed two novel functional genes FLJ12735 (AK022797) and KIAA0653-related (WI-12393 and AJ314647), the latter of which is located closest to the distal boundary and is partially duplicated. We defined the complete reading frames for these genes and two expressed-sequence tag (EST) clusters that were reported elsewhere and are associated with the markers SHGC-2390 and WI-9521. Hybrid cell lines carrying only the deleted chromosome 17 were generated from two patients and used to identify the fusion sequences by junction-specific PCRs. The proximal breakpoints were found between positions 125279 and 125479 in one patient and within 4 kb of position 143000 on BAC R-271K11 (AC005562) in three patients, and the distal breakpoints were found at the precise homologous position on R-640N20 (AC023278). The interstitial 17q11.2 microdeletion arises from unequal crossover between two highly homologous WI-12393-derived 60-kb duplicons separated by approximately 1.5 Mb. Since patients with the NF1 large-deletion syndrome have a significantly increased risk of neurofibroma development and mental retardation, hemizygosity for genes from the deleted region around the neurofibromin locus (CYTOR4, FLJ12735, FLJ22729, HSA272195 (centaurin-alpha2), NF1, OMGP, EVI2A, EVI2B, WI-9521, HSA272196, HCA66, KIAA0160, and WI-12393) may contribute to the severe phenotype of these patients.
Collapse
Affiliation(s)
- D E Jenne
- Max-Planck-Institute of Neurobiology, Department of Neuroimmunology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Infante J, García A, Combarros O, Mateo JI, Berciano J, Sedano MJ, Gutiérrez-Rivas EJ, Palau F. Diagnostic strategy for familial and sporadic cases of neuropathy associated with 17p11.2 deletion. Muscle Nerve 2001; 24:1149-55. [PMID: 11494267 DOI: 10.1002/mus.1126] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Clinical, electrophysiologic and molecular studies were performed on at-risk members of 14 families with hereditary neuropathy with liability to pressure palsies (HNPP), in order to detect asymptomatic carriers of the 17p11.2 deletion. Sporadic cases due to de novo deletion accounted for 21% of the investigated HNPP families. Approximately one half of deletion carriers were asymptomatic and did not display significant signs on clinical examination. The electrophysiologic hallmark in both symptomatic and asymptomatic deletion carriers was the presence of a nonuniform sensorimotor demyelinating polyneuropathy with conduction abnormalities preferentially located at common entrapment sites and distal nerve segments. A perfect correlation was found between the molecular and electrophysiologic analyses. A reliable screening method to detect clinically unaffected carriers of the deletion in families with HNPP was the evaluation of motor conduction in at least two nerves across usual entrapment sites, especially the ulnar nerve at the elbow, and evaluation of sensory conduction in the sural nerve. In sporadic cases due to a de novo deletion, electrophysiologic studies were suggestive but not sufficient for the diagnosis, and molecular analysis represented the most sensitive diagnostic tool.
Collapse
Affiliation(s)
- J Infante
- Service of Neurology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Latour P, Boutrand L, Levy N, Bernard R, Boyer A, Claustrat F, Chazot G, Boucherat M, Vandenberghe A. Polymorphic Short Tandem Repeats for Diagnosis of the Charcot-Marie-Tooth 1A Duplication. Clin Chem 2001. [DOI: 10.1093/clinchem/47.5.829] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Background: A 1.5-Mb microduplication containing the gene for peripheral myelin protein 22 (PMP22) on chromosome 17p11.2-12 is responsible for 75% of cases of the demyelinating form of Charcot-Marie-Tooth disease (CMT1A). Methods for molecular diagnosis of CMT1A use Southern blot and/or amplification by PCR of polymorphic poly(AC) repeats (microsatellites) located within the duplicated region, or the detection of junction fragments specific for the duplication. Difficulties with both strategies have led us to develop a new diagnostic strategy with highly polymorphic short tandem repeats (STRs) located inside the CMT1A duplicated region.
Methods: We tested 10 STRs located within the duplication for polymorphic behavior. Three STRs were selected and used to test a set of 130 unrelated CMT1A patients and were compared with nonduplicated controls. The study was then extended to a larger population of patients. Alleles of interest were sequenced. A manual protocol using polyacrylamide electrophoresis and silver staining and an automated capillary electrophoresis protocol to separate fluorescently labeled alleles were validated.
Results: We identified three new STRs covering 0.55 Mb in the center of the CMT1A duplication. One marker, 4A, is located inside the PMP22 gene. The two others, 9A and 9B, more telomerically positioned, have the highest observed heterozygosity reported to date for CMT1A markers: 0.80 for 9A, and 0.79 for 9B. Tetra- and pentanucleotide repeats offered clear amplification, accurate sizing, and easy quantification of intensities.
Conclusions: Combined use of the three STRs allows robust diagnosis with almost complete informativeness. In our routine diagnosis for CMT1A, they have replaced the use of other polymorphic markers, either in a manual adaptation or combined with fluorescence labeling and allele sizing on a DNA sequencer.
Collapse
Affiliation(s)
- Philippe Latour
- Unité de Neurogénétique Moléculaire, Laboratoire de Biochimie, Hôpital de l’Antiquaille, F-69005 Lyon, France
| | - Laetitia Boutrand
- Département de Génétique Moléculaire et de Biochimie Clinique, Faculté de Pharmacie, F-69008 Lyon, France
| | - Nicolas Levy
- Département de Génétique Médicale, Hôpital d’Enfants de la Timone, F-13005 Marseille, France
| | - Rafaëlle Bernard
- Département de Génétique Médicale, Hôpital d’Enfants de la Timone, F-13005 Marseille, France
| | - Amandine Boyer
- Département de Génétique Médicale, Hôpital d’Enfants de la Timone, F-13005 Marseille, France
| | - Francine Claustrat
- Unité de Neurogénétique Moléculaire, Laboratoire de Biochimie, Hôpital de l’Antiquaille, F-69005 Lyon, France
| | - Guy Chazot
- Unité de Neurogénétique Moléculaire, Laboratoire de Biochimie, Hôpital de l’Antiquaille, F-69005 Lyon, France
| | - Michel Boucherat
- Unité de Neurogénétique Moléculaire, Laboratoire de Biochimie, Hôpital de l’Antiquaille, F-69005 Lyon, France
- Département de Génétique Moléculaire et de Biochimie Clinique, Faculté de Pharmacie, F-69008 Lyon, France
| | - Antoon Vandenberghe
- Unité de Neurogénétique Moléculaire, Laboratoire de Biochimie, Hôpital de l’Antiquaille, F-69005 Lyon, France
- Département de Génétique Moléculaire et de Biochimie Clinique, Faculté de Pharmacie, F-69008 Lyon, France
| |
Collapse
|
34
|
Abstract
Meiotic recombination events are distributed unevenly throughout eukaryotic genomes. This inhomogeneity leads to distortions of genetic maps that can hinder the ability of geneticists to identify genes by map-based techniques. Various lines of evidence, particularly from studies of yeast, indicate that the distribution of recombination events might reflect, at least in part, global features of chromosome structure, such as the distribution of modified nucleosomes.
Collapse
Affiliation(s)
- T D Petes
- Department of biology, University of North Carolina, Chapel Hill 27599-3280, USA.
| |
Collapse
|
35
|
Abstract
Cytogenetic imbalance in the newborn is a frequent cause of mental retardation and birth defects. Although aneuploidy accounts for the majority of imbalance, structural aberrations contribute to a significant fraction of recognized chromosomal anomalies. This review describes the major classes of constitutional, structural cytogenetic abnormalities and recent studies that explore the molecular mechanisms that bring about their de novo occurrence. Genomic features flanking the sites of recombination may result in susceptibility to chromosomal rearrangement. One such substrate for recombination is low-copy region-specific repeats. The identification of genome architectural features conferring susceptibility to rearrangements has been accomplished using methods that enable investigation of regions of the genome that are too small to be visualized by traditional cytogenetics and too large to be resolved by conventional gel electrophoresis. These investigations resulted in the identification of previously unrecognized structural cytogenetic anomalies, which are associated with genetic syndromes and allowed for the molecular basis of some chromosomal rearrangements to be delineated.
Collapse
Affiliation(s)
- L G Shaffer
- Department of Molecular and Human Genetics, Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Texas 77030, USA.
| | | |
Collapse
|
36
|
Periquet M, Lücking CB, Vaughan JR, Bonifati V, Dürr A, De Michele G, Horstink MW, Farrer M, Illarioshkin SN, Pollak P, Borg M, Brefel-Courbon C, Denefle P, Meco G, Gasser T, Breteler MMB, Wood NW, Agid Y, Brice A. Origin of the mutations in the parkin gene in Europe: exon rearrangements are independent recurrent events, whereas point mutations may result from Founder effects. Am J Hum Genet 2001; 68:617-26. [PMID: 11179010 PMCID: PMC1274475 DOI: 10.1086/318791] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Accepted: 01/02/2001] [Indexed: 11/03/2022] Open
Abstract
A wide variety of mutations in the parkin gene, including exon deletions and duplications, as well as point mutations, result in autosomal recessive early-onset parkinsonism. Interestingly, several of these anomalies were found repeatedly in unrelated patients and may therefore result from recurrent, de novo mutational events or from founder effects. In the present study, haplotype analysis, using 10 microsatellite markers covering a 4.7-cM region known to contain the parkin gene, was performed in 48 families, mostly from European countries, with early-onset autosomal recessive parkinsonism. The patients carried 14 distinct mutations in the parkin gene, and each mutation was detected in more than one family. Our results support the hypothesis that exon rearrangements occurred independently, whereas some point mutations, found in families from different geographic origins, may have been transmitted by a common founder.
Collapse
Affiliation(s)
- Magali Periquet
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Christoph B. Lücking
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Jenny R. Vaughan
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Vincenzo Bonifati
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Alexandra Dürr
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Giuseppe De Michele
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Martin W. Horstink
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Matt Farrer
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Sergei N. Illarioshkin
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Pierre Pollak
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Michel Borg
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Christine Brefel-Courbon
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Patrice Denefle
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Giuseppe Meco
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Thomas Gasser
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Monique M. B. Breteler
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Nick W. Wood
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Yves Agid
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | - Alexis Brice
- INSERM U289, Consultation de Génétique Médicale, and Fédération de Neurologie, Hôpital de la Salpêtrière, Paris; Institute of Neurology, London; Dipartimento di Scienze Neurologiche, Università “La Sapienza,” Rome; Dipartimento di Scienze Neurologiche, Università Federico II, Naples; Academisch Ziekenhuis Nijmegen, Nijmegen, The Netherlands; Laboratory of Neurogenetics, Departments of Neuroscience and Neurology, Mayo Clinic, Jacksonville, Florida; Department of Neurogenetics, Institute of Neurology, Moscow; Clinique Neurologique, Centre Hospitalier Universitaire de Grenoble, Grenoble; Service de Neurologie, Hôpital Pasteur, Nice; INSERM U317, Service de Pharmacologie Clinique, Toulouse; Biotechnology Department, Aventis Pharma, Vitry sur Seine, France; Neurologische Klinik der Ludwig-Maximilians-Universität, Munich; and Department of Epidemiology and Biostatistics, Rotterdam
| | | | | |
Collapse
|
37
|
Stögbauer F, Timmerman V, Van Broeckhoven C. 71st ENMC International Workshop, 6th workshop of the European Charcot-Marie-Tooth disease consortium: hereditary recurrent focal neuropathies, 24-25 September 1999, Soestduinen, the Netherlands. Neuromuscul Disord 2000; 10:518-24. [PMID: 10996785 DOI: 10.1016/s0960-8966(00)00110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F Stögbauer
- Westfälische Wilhelms-Universität Münster, Klinik & Poliklinik für Neurologie, Albert Schweitzer Strasse 33, D-48129, Münster, Germany
| | | | | |
Collapse
|
38
|
Hodes ME, Woodward K, Spinner NB, Emanuel BS, Enrico-Simon A, Kamholz J, Stambolian D, Zackai EH, Pratt VM, Thomas IT, Crandall K, Dlouhy SR, Malcolm S. Additional copies of the proteolipid protein gene causing Pelizaeus-Merzbacher disease arise by separate integration into the X chromosome. Am J Hum Genet 2000; 67:14-22. [PMID: 10827108 PMCID: PMC1287072 DOI: 10.1086/302965] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2000] [Accepted: 05/08/2000] [Indexed: 11/03/2022] Open
Abstract
The proteolipid protein gene (PLP) is normally present at chromosome Xq22. Mutations and duplications of this gene are associated with Pelizaeus-Merzbacher disease (PMD). Here we describe two new families in which males affected with PMD were found to have a copy of PLP on the short arm of the X chromosome, in addition to a normal copy on Xq22. In the first family, the extra copy was first detected by the presence of heterozygosity of the AhaII dimorphism within the PLP gene. The results of FISH analysis showed an additional copy of PLP in Xp22.1, although no chromosomal rearrangements could be detected by standard karyotype analysis. Another three affected males from the family had similar findings. In a second unrelated family with signs of PMD, cytogenetic analysis showed a pericentric inversion of the X chromosome. In the inv(X) carried by several affected family members, FISH showed PLP signals at Xp11.4 and Xq22. A third family has previously been reported, in which affected members had an extra copy of the PLP gene detected at Xq26 in a chromosome with an otherwise normal banding pattern. The identification of three separate families in which PLP is duplicated at a noncontiguous site suggests that such duplications could be a relatively common but previously undetected cause of genetic disorders.
Collapse
Affiliation(s)
- M E Hodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
López Correa C, Brems H, Lázaro C, Marynen P, Legius E. Unequal meiotic crossover: a frequent cause of NF1 microdeletions. Am J Hum Genet 2000; 66:1969-74. [PMID: 10775528 PMCID: PMC1378038 DOI: 10.1086/302920] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2000] [Accepted: 03/24/2000] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 1 is a common autosomal dominant disorder caused by mutations of the NF1 gene on chromosome 17. In only 5%-10% of cases, a microdeletion including the NF1 gene is found. We analyzed a set of polymorphic dinucleotide-repeat markers flanking the microdeletion on chromosome 17 in a group of seven unrelated families with a de novo NF1 microdeletion. Six of seven microdeletions were of maternal origin. The breakpoints of the microdeletions of maternal origin were localized in flanking paralogous sequences, called "NF1-REPs." The single deletion of paternal origin was shorter, and no crossover occurred on the paternal chromosome 17 during transmission. Five of the six cases of maternal origin were informative, and all five showed a crossover, between the flanking markers, after maternal transmission. The observed crossovers flanking the NF1 region suggest that these NF1 microdeletions result from an unequal crossover in maternal meiosis I, mediated by a misalignment of the flanking NF1-REPs.
Collapse
Affiliation(s)
- C López Correa
- Center for Human Genetics, University Hospital Gasthuisberg, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
40
|
Ji Y, Eichler EE, Schwartz S, Nicholls RD. Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res 2000; 10:597-610. [PMID: 10810082 DOI: 10.1101/gr.10.5.597] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromosome-specific low-copy repeats, or duplicons, occur in multiple regions of the human genome. Homologous recombination between different duplicon copies leads to chromosomal rearrangements, such as deletions, duplications, inversions, and inverted duplications, depending on the orientation of the recombining duplicons. When such rearrangements cause dosage imbalance of a developmentally important gene(s), genetic diseases now termed genomic disorders result, at a frequency of 0.7-1/1000 births. Duplicons can have simple or very complex structures, with variation in copy number from 2 to >10 repeats, and each varying in size from a few kilobases in length to hundreds of kilobases. Analysis of the different duplicons involved in human genomic disorders identifies features that may predispose to recombination, including large size and high sequence identity between the recombining copies, putative recombination promoting features, and the presence of multiple genes/pseudogenes that may include genes expressed in germ cells. Most of the chromosome rearrangements involve duplicons near pericentromeric regions, which may relate to the propensity of such regions to accumulate duplicons. Detailed analyses of the structure, polymorphic variation, and mechanisms of recombination in genomic disorders, as well as the evolutionary origin of various duplicons will further our understanding of the structure, function, and fluidity of the human genome.
Collapse
Affiliation(s)
- Y Ji
- Department of Genetics, Case Western Reserve University School of Medicine, and Center for Human Genetics, University Hospitals of Cleveland, Cleveland, Ohio 44106 USA
| | | | | | | |
Collapse
|
41
|
Jetten AM, Suter U. The peripheral myelin protein 22 and epithelial membrane protein family. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:97-129. [PMID: 10697408 DOI: 10.1016/s0079-6603(00)64003-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The peripheral myelin protein 22 (PMP22) and the epithelial membrane proteins (EMP-1, -2, and -3) comprise a subfamily of small hydrophobic membrane proteins. The putative four-transmembrane domain structure as well as the genomic structure are highly conserved among family members. PMP22 and EMPs are expressed in many tissues, and functions in cell growth, differentiation, and apoptosis have been reported. EMP-1 is highly up-regulated during squamous differentiation and in certain tumors, and a role in tumorigenesis has been proposed. PMP22 is most highly expressed in peripheral nerves, where it is localized in the compact portion of myelin. It plays a crucial role in normal physiological and pathological processes in the peripheral nervous system. Progress in molecular genetics has revealed that genetic alterations in the PMP22 gene, including duplications, deletions, and point mutations, are responsible for several forms of hereditary peripheral neuropathies, including Charcot-Marie-Tooth disease type 1A (CMT1A), Dejerine-Sottas syndrome (DDS), and hereditary neuropathy with liability to pressure palsies (HNPP). The natural mouse mutants Trembler and Trembler-J contain a missense mutation in different hydrophobic domains of PMP22, resulting in demyelination and Schwann cell proliferation. Transgenic mice carrying many copies of the PMP22 gene and PMP22-null mice display a variety of defects in the initial steps of myelination and/or maintenance of myelination, whereas no pathological alterations are detected in other tissues normally expressing PMP22. Further characterization of the interactions of PMP22 and EMPs with other proteins as well as their regulation will provide additional insight into their normal physiological function and their roles in disease and possibly will result in the development of therapeutic tools.
Collapse
Affiliation(s)
- A M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
42
|
Dubourg O, Mouton P, Brice A, LeGuern E, Bouche P. Guidelines for diagnosis of hereditary neuropathy with liability to pressure palsies. Neuromuscul Disord 2000; 10:206-8. [PMID: 10734269 DOI: 10.1016/s0960-8966(99)00103-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- O Dubourg
- Service d'Explorations Fonctionnelles Neurologiques, Hôpital La Salpêtrière, 47 Bd. de l'Hôpital, 75651, Paris, France
| | | | | | | | | |
Collapse
|
43
|
Abstract
Rett syndrome is a neurodevelopmental disorder affecting 1 in 10,000 to 15,000 females worldwide. Apparently normal at birth, girls with Rett syndrome undergo developmental regression and acquire a neurologic and behavioral profile that has been used to define diagnostic criteria for the disorder. Neurochemical and anatomic alterations indicate that Rett syndrome appears to result from an arrest of normal neuronal maturation. Although Rett syndrome generally occurs sporadically, rare familial recurrences indicate a genetic basis for the disorder. Data from familial recurrences are consistent with an X-linked dominant locus causing the classic phenotype in female patients and a distinct, more severe phenotype in hemizygous male patients. Exclusion mapping data from rare kindreds with recurrent Rett syndrome localize the gene to the distal long arm of the X chromosome (Xq27.3-Xqter).
Collapse
Affiliation(s)
- N C Schanen
- Department of Human Genetics and Pediatrics and the Mental Retardation Research Center, University of California, Los Angeles, School of Medicine, 90095-7088, USA.
| |
Collapse
|
44
|
Lopes J, Tardieu S, Silander K, Blair I, Vandenberghe A, Palau F, Ruberg M, Brice A, LeGuern E. Homologous DNA exchanges in humans can be explained by the yeast double-strand break repair model: a study of 17p11.2 rearrangements associated with CMT1A and HNPP. Hum Mol Genet 1999; 8:2285-92. [PMID: 10545609 DOI: 10.1093/hmg/8.12.2285] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rearrangements in 17p11.2, responsible for the 1.5 Mb duplications and deletions associated, respectively, with autosomal dominant Charcot-Marie-Tooth type 1A disease (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are a suitable model for studying human recombination. Rearrangements in 17p11.2 are caused by unequal crossing-over between two homologous 24 kb sequences, the CMT1A-REPs, that flank the disease locus and occur in most cases within a 1.7 kb hotspot. We sequenced this hotspot in 28 de novo patients (25 CMT1A and three HNPP), in order to localize precisely, at the DNA sequence level, the crossing-overs. We show that some chimeric CMT1A-REPs in de novo patients (10/28) present conversion of DNA segments associated with the crossing-over. These rearrangements can be explained by the double-strand break (DSB) repair model described in yeast. Fine mapping of the de novo rearrangements provided evidence that the successive steps of this model, heteroduplex DNA formation, mismatch correction and gene conversion, occurred in patients. Furthermore, the model explains 17p11.2 recombinations between chromosome homologues as well as between sister chromatids. In addition, defective mismatch repair of the heteroduplex DNA, observed in two patients, resulted in two heterozygous chimeric CMT1A-REPs which can be explained, as in yeast, by post-meiotic segregation. This work supports the hypothesis that the DSB repair model of DNA exchange may apply universally from yeasts to humans.
Collapse
Affiliation(s)
- J Lopes
- INSERM U289, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brusco A, Saviozzi S, Cinque F, Bottaro A, DeMarchi M. A Recurrent Breakpoint in the Most Common Deletion of the Ig Heavy Chain Locus (del A1-GP-G2-G4-E ). THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Human Ig heavy chain constant regions are encoded by a cluster of genes, the IGHC locus, on 14q32.3. Several forms of IGHC deletions and duplications spanning one to five genes have been described in different populations, with frequencies of 1.5–3.5% and 4.5–44%, respectively. Despite the common occurrence of these gene rearrangements, little is known about the breakpoint sites; evidence obtained from deletions in the IGHC locus and in other regions of the human genome suggests that they preferentially occur in highly homologous regions and might be favored by a variety of recombinogenic signals. We present here a detailed study of three homozygotes for the most common type of IGHC multiple gene deletion, spanning the A1-GP-G2-G4-E genes. Using a combination of Southern blotting, long-range PCR, and automated sequencing, the unequal crossover events of all of the six studied haplotypes have been mapped to a region of ∼2 kb with almost complete homology between EP1-A1 and E-A2, flanked by two minisatellites. These results are consistent with the hypothesis that segments of complete homology may be required for efficient homologous recombination in humans. The possible role of minisatellites as recombination signals is inferred, in agreement with current knowledge.
Collapse
Affiliation(s)
- Alfredo Brusco
- *Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy
| | - Silvia Saviozzi
- *Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy
| | - Fernanda Cinque
- *Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy
| | - Andrea Bottaro
- †Departments of Medicine and Microbiology and Immunology, and Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Mario DeMarchi
- ‡Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| |
Collapse
|
46
|
Abstract
Considerable advances in our knowledge of the most frequently encountered group of inherited neuropathies, Charcot-Marie-Tooth neurpathy (CMT) and related disorders, have recently been made by genetic studies demonstrating that these disorders are caused by duplication, deletion or point mutations of specific genes of the peripheral myelin. The present classification of CMT and related disorders is based on a combination of clinical, neurophysiological, and genetic findings, and new genes and distinct mutations responsible for different clinical phenotypes are continuously being added. The genes that encode peripheral myelin protein of 22 kDa, protein zero, connexin-32 and early growth response-2 are the genes known to be involved in the pathogenesis of inherited neuropathies. Overexpression or underexpression of peripheral myelin protein of 22 kDa are causative for the most frequent forms of CMT-CMT1A and hereditary neuropathy with liability to pressure palsies--but the mechanisms that lead to incorrect myelin formation and maintenance are still unknown. Point mutations in the myelin genes can determine a loss of function, but in some cases an aberrant protein can act through a dominant negative or a toxic gain of function mechanism, disrupting the regular and precise relationship between the different myelin genes. Animal and in-vitro models of inherited neuropathies have been developed and will probably give the information that is necessary to clarify the pathogenetic mechanisms of demyelination.
Collapse
Affiliation(s)
- A Schenone
- Department of Neurological Sciences, University of Genova, Italy.
| | | |
Collapse
|
47
|
Mimault C, Giraud G, Courtois V, Cailloux F, Boire JY, Dastugue B, Boespflug-Tanguy O. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Dysmyelinating Disease. Am J Hum Genet 1999; 65:360-9. [PMID: 10417279 PMCID: PMC1377935 DOI: 10.1086/302483] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pelizaeus-Merzbacher Disease (PMD) is an X-linked developmental defect of myelination affecting the central nervous system and segregating with the proteolipoprotein (PLP) locus. Investigating 82 strictly selected sporadic cases of PMD, we found PLP mutations in 77%; complete PLP-gene duplications were the most frequent abnormality (62%), whereas point mutations in coding or splice-site regions of the gene were involved less frequently (38%). We analyzed the maternal status of 56 cases to determine the origin of both types of PLP mutation, since this is relevant to genetic counseling. In the 22 point mutations, 68% of mothers were heterozygous for the mutation, a value identical to the two-thirds of carrier mothers that would be expected if there were an equal mutation rate in male and female germ cells. In sharp contrast, among the 34 duplicated cases, 91% of mothers were carriers, a value significantly (chi2=9. 20, P<.01) in favor of a male bias, with an estimation of the male/female mutation frequency (k) of 9.3. Moreover, we observed the occurrence of de novo mutations between parental and grandparental generations in 17 three-generation families, which allowed a direct estimation of the k value (k=11). Again, a significant male mutation imbalance was observed only for the duplications. The mechanism responsible for this strong male bias in the duplications may involve an unequal sister chromatid exchange, since two deletion events, responsible for mild clinical manifestations, have been reported in PLP-related diseases.
Collapse
Affiliation(s)
- C Mimault
- INSERM U.384-Faculté de Médecine, Clermont-Ferrand Cedex, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Inherited disorders of peripheral nerves represent a common group of neurologic diseases. Charcot-Marie-Tooth neuropathy type 1 (CMT1) is a genetically heterogeneous group of chronic demyelinating polyneuropathies with loci mapping to chromosome 17 (CMT1A), chromosome 1 (CMT1B) and to another unknown autosome (CMT1C). CMT1A is most often associated with a tandem 1.5-megabase (Mb) duplication in chromosome 17p11.2-12, or in rare patients may result from a point mutation in the peripheral myelin protein-22 (PMP22) gene. CMT1B is associated with point mutations in the myelin protein zero (P0 or MPZ) gene. The molecular defect in CMT1C is unknown. X-linked Charcot-Marie-Tooth neuropathy (CMTX), which has clinical features similar to CMT1, is associated with mutations in the connexin32 gene. Charcot-Marie-Tooth neuropathy type 2 (CMT2) is an axonal neuropathy, also of undetermined cause. One form of CMT2 maps to chromosome 1p36 (CMT2A), another to chromosome 3p (CMT2B) and another to 7p (CMT2D). Dejerine-Sottas disease (DSD), also called hereditary motor and sensory neuropathy type III (HMSNIII), is a severe, infantile-onset demyelinating polyneuropathy syndrome that may be associated with point mutations in either the PMP22 gene or the P0 gene and shares considerable clinical and pathological features with CMT1. Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder that results in a recurrent, episodic demyelinating neuropathy. HNPP is associated with a 1.5-Mb deletion in chromosome 17p11.2-12 and results from reduced expression of the PMP22 gene. CMT1A and HNPP are reciprocal duplication/deletion syndromes originating from unequal crossover during germ cell meiosis. Other rare forms of demyelinating peripheral neuropathies map to chromosome 8q, 10q and 11q. Hereditary neuralgic amyotrophy (familial brachial plexus neuropathy) is an autosomal dominant disorder causing painful, recurrent brachial plexopathies and maps to chromosome 17q25.
Collapse
Affiliation(s)
- M P Keller
- Department of Pediatrics, University of Washington School of Medicine, Seattle, USA
| | | |
Collapse
|
49
|
Haites NE, Nelis E, Van Broeckhoven C. 3rd workshop of the European CMT consortium: 54th ENMC International Workshop on genotype/phenotype correlations in Charcot-Marie-Tooth type 1 and hereditary neuropathy with liability to pressure palsies 28-30 November 1997, Naarden, The Netherlands. Neuromuscul Disord 1998; 8:591-603. [PMID: 10093067 DOI: 10.1016/s0960-8966(98)00067-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Abstract
Men have more germ-line cell divisions than women. Does this lead to a higher mutation rate in males? Most estimates of the proportion of mutations originating in men come either from direct observation of disease-inducing mutations or from analysis of the relative rate of evolution of sex-linked and autosomal genes in primates. The latter mode of analysis has also been applied to other mammals, birds and files. For unknown reasons, this method produces contradictory results. A majority of estimates using the best direct methods in humans indicate a male bias for point mutations, but the variance in estimates is high. It is unclear how the evolutionary and direct data correspond and a consensus as to the extent of any male bias is not presently possible. While the number of germ-line cell divisions might contribute to differences, this by no means accounts for all of the data.
Collapse
Affiliation(s)
- L D Hurst
- Department of Biology and Biochemistry, University of Bath, UK.
| | | |
Collapse
|