1
|
Dizhoor AM, Sato S, Luo Z, Tan L, Levin FE, Olshevskaya EV, Peshenko IV, Kefalov VJ. Phosphodiesterase 5 expression in photoreceptors rescues retinal degeneration induced by deregulation of membrane guanylyl cyclase. J Biol Chem 2025; 301:108265. [PMID: 39909376 PMCID: PMC11923828 DOI: 10.1016/j.jbc.2025.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Mutations in retinal membrane guanylyl cyclase 1 (RetGC1) and its calcium-sensor protein (guanylyl cyclase activating protein 1, GCAP1) cause congenital dominant retinopathies by elevation of cGMP synthesis in photoreceptors in the dark. We explored counteracting the elevated cGMP synthesis causing photoreceptor degeneration using ectopic expression of a nonphotoreceptor cGMP phosphodiesterase (PDE) isozyme PDE5. PDE5 primary structure was modified to direct the delivery of the recombinant PDE5 (PDE5r) to rod outer segments, by placing a C-terminal fragment derived from a cone-specific alpha-subunit of PDE6C at the C terminus of the PDE5, which allowed PDE5r expressed under control of mouse rod opsin promoter to accumulate in rod outer segments. Expression of PDE5r did not affect calcium-sensitivity of RetGC regulation in PDE5rTg transgenic retinas, but increased cGMP hydrolysis in the dark, which partially desensitized PDR5rTg rods in the dark via an "equivalent light" effect, analogous to exposure to a constant dim light of ∼20 to 40 photons μm-2 sec-1. The calcium-sensitivity of RetGC regulation remained drastically shifted outside the normal physiological range in hybrid R838STgPDE5rTg rods expressing both PDE5r and R838S RetGC1, the mutant causing GUCY2D dominant retinopathy, but the hybrid rods demonstrated a dramatic rescue from degeneration caused by the R838S RetGC1. In a similar fashion, PDE5r expression rescued degeneration of rods harboring Y99C GCAP1, one of the GCAP1 mutants most frequently causing GUCA1A dominant retinopathy. Our results open a possibility that ectopic expression of PDE5 can be used as an approach to rescue presently incurable dominant GUCY2D and GUCA1A retinopathies at the expense of a moderate reduction in rod light-sensitivity.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Graduate Program in Biomedicine, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania, United States.
| | - Shinya Sato
- Gavin Herbert Eye Institute, Department of Ophthalmology and Center for Translational Vision Research, University of California, Irvine, California, United States
| | - Zhuokai Luo
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Graduate Program in Biomedicine, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Lyuqi Tan
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Graduate Program in Biomedicine, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Fay E Levin
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Vladimir J Kefalov
- Gavin Herbert Eye Institute, Department of Ophthalmology and Center for Translational Vision Research, University of California, Irvine, California, United States; Department of Physiology and Biophysics, University of California, Irvine, California, United States
| |
Collapse
|
2
|
Liu S, Payne AM, Wang J, Zhu L, Paknejad N, Eng ET, Liu W, Miao Y, Hite RK, Huang XY. Architecture and activation of single-pass transmembrane receptor guanylyl cyclase. Nat Struct Mol Biol 2025; 32:469-478. [PMID: 39543315 DOI: 10.1038/s41594-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate. Despite their importance, the detailed architecture and domain interactions within full-length GC-A remain elusive. Here we present cryo-electron microscopy structures, functional analyses and molecular dynamics simulations of full-length human GC-A, in both the absence and the presence of atrial natriuretic peptide. The data reveal the architecture of full-length GC-A, highlighting the spatial arrangement of its various functional domains. This insight is crucial for understanding how different parts of the receptor interact and coordinate during activation. The study elucidates the molecular basis of how extracellular signals are transduced across the membrane to activate the intracellular guanylyl cyclase domain.
Collapse
Affiliation(s)
- Shian Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Alexander M Payne
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Ph.D. Program in Chemical Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Wu PL, Lin PH, Lee W, Wang EHH, Kang EYC, Liu L, Wang NK. A GUCY2D variant associated cone-rod dystrophy with electronegative ERG: A case report and review. Am J Ophthalmol Case Rep 2024; 36:102094. [PMID: 39100576 PMCID: PMC11294699 DOI: 10.1016/j.ajoc.2024.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Cone-rod dystrophies (CORD) are inherited retinal dystrophies characterized by primary cone degeneration with secondary rod involvement. We report two patients from the same family with a dominant variant in the guanylate cyclase 2D (GUCY2D) gene with different phenotypes in the electroretinogram (ERG). Observations A 21-year-old lady (Patient 1) was referred due to experiencing blurry vision and color vision impairment. Visual field testing revealed a central scotoma. Spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) documented macula dysfunction. Reduced amplitude was observed in the photopic responses of ERG. Her 54-year-old father (Patient 2) had similar issues with blurry vision. A dilated fundus examination displayed bilateral macular atrophy. Loss of the ellipsoid zone line and collapse of the outer nuclear segment were noted on the SD-OCT. Photopic ERG responses were extinguished, and an electronegative ERG was observed in the dark-adapted 3.0 ERG. The gene report revealed a c.2512C > T (p.Arg838Cys) variant in GUCY2D for both patients. They were respectively diagnosed as cone dystrophy (COD) and cone-rod dystrophy (CORD). Conclusions We report two different clinical phenotypes in GUCY2D-associated COD despite sharing the same variant. A dysfunction in the synaptic junction between the photoreceptor and the secondary neuron was proposed to explain the electronegative ERG. This explanation might extend to other gene-related cases of CORD with electronegative ERG.
Collapse
Affiliation(s)
- Pei-Liang Wu
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
- Department of Ophthalmology, National Taiwan University Yunlin Branch, Yunlin, Taiwan
| | - Winston Lee
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Ethan Hung-Hsi Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
- College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Laura Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| |
Collapse
|
4
|
Wang J, Wang Y, Jiang Y, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Datasets-Based IMPDH1 Revisited: Heterozygous Missense Variants for Dominant Retinitis Pigmentosa While Truncation Variants Are Likely Non-Pathogenic. Curr Eye Res 2024; 49:853-861. [PMID: 38604988 DOI: 10.1080/02713683.2024.2336158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Heterozygous variants of IMPDH1 are associated with autosomal dominant retinitis pigmentosa (adRP). The current study aims to investigate the characteristics of the adRP-associated variants. METHODS IMPDH1 variants from our exome sequencing dataset were retrieved and systemically evaluated through multiple online prediction tools, comparative genomics (in-house dataset, HGMD, and gnomAD), and phenotypic association. Potential pathogenic variants (PPVs) were further confirmed by Sanger sequencing and segregation analysis. RESULTS In total, seven heterozygous PPVs (six missenses and one inframe) were identified in 10 families with RP, in which six of the seven might be classified as pathogenic or likely pathogenic while one others as variants of uncertain significance. IMPDH1 variants contributed to 0.7% (10/1519) of RP families in our cohort, ranking the top four genes implicated in adRP. These adRP-associated variants were located in exons 8-10, a region within or downstream of the CBS domain. All these variants were predicted to be damaged by at least three of the six online prediction tools. Two truncation variants were considered non-pathogenic. Hitherto, 41 heterozygous variants of IMPDH1 were detected in 110 families in published literature, including 33 missenses, two inframes, and six truncations (including a synonymous variant affecting splicing). Of the 35 missense and inframe variants, most were clustered in exons 8-10 (77.1%, 27/35), including 18 (51.4%, 18/35) in exon 10 accounting for 70.9% (78/110) of the families. However, truncation variants were enriched in the general population with a pLI value of 0 (tolerated), and the reported variants in patients with RP did not cluster in specific region. CONCLUSIONS Our data together with comprehensive analysis of existing datasets suggest that causative variants of IMPDH1 are usually missense and mostly clustered in exons 8-10. Conversely, most missense variants outside this region and truncation variants should be interpreted with great care in clinical gene test.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Department of Ophthalmology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Scopelliti AJ, Jamieson RV, Barnes EH, Nash B, Rajagopalan S, Cornish EL, Grigg JR. A natural history study of autosomal dominant GUCY2D-associated cone-rod dystrophy. Doc Ophthalmol 2023; 147:189-201. [PMID: 37775646 PMCID: PMC10638150 DOI: 10.1007/s10633-023-09954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE To describe the natural history of autosomal dominant (AD) GUCY2D-associated cone-rod dystrophies (CRDs), and evaluate associated structural and functional biomarkers. METHODS Retrospective analysis was conducted on 16 patients with AD GUCY2D-CRDs across two sites. Assessments included central macular thickness (CMT) and length of disruption to the ellipsoid zone (EZ) via optical coherence tomography (OCT), electroretinography (ERG) parameters, best corrected visual acuity (BCVA), and fundus autofluorescence (FAF). RESULTS At first visit, with a mean age of 30 years (range 5-70 years), 12 patients had a BCVA below Australian driving standard (LogMAR ≥ 0.3 bilaterally), and 1 patient was legally blind (LogMAR ≥ 1). Longitudinal analysis demonstrated a deterioration of LogMAR by - 0.019 per year (p < 0.001). This accompanied a reduction in CMT of - 1.4 µm per year (p < 0.0001), lengthened EZ disruption by 42 µm per year (p = < 0.0001) and increased area of FAF by 0.05 mm2 per year (p = 0.027). Similarly, cone function decreased with increasing age, as demonstrated by decreasing b-wave amplitude of the light-adapted 30 Hz flicker and fused flicker (p = 0.005 and p = 0.018, respectively). Reduction in CMT and increased EZ disruption on OCT were associated with functional changes including poorer BCVA and decreased cone function on ERG. CONCLUSION We have described the natural long-term decline in vision and cone function associated with mutations in GUCY2D and identified a set of functional and structural biomarkers that may be useful as outcome parameters for future therapeutic clinical trials.
Collapse
Affiliation(s)
- Amanda J Scopelliti
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Robyn V Jamieson
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Benjamin Nash
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, NSW, Australia
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Locked Bag 7103, Liverpool, NSW, Australia
| | - Elisa L Cornish
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - John R Grigg
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Li Z, Cheng W, Zi F, Wang J, Huang X, Sheng X, Rong W. Four different gene-related cone-rod dystrophy: clinical and genetic findings in six Chinese families with diverse modes of inheritance. Front Genet 2023; 14:1157156. [PMID: 38028590 PMCID: PMC10652761 DOI: 10.3389/fgene.2023.1157156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose: To investigate pathogenic variants in six families with cone-rod dystrophy (CORD) presenting various inheritance patterns by using whole-exome sequencing (WES) and analyzing phenotypic features. Methods: A total of six families with CORD were enrolled in Ningxia Eye Hospital for this study. The probands and their family members received comprehensive ophthalmic examinations, and DNA was abstracted from patients and family members. Whole-exome sequencing was performed on probands to screen the causative variants, and all suspected pathogenic variants were determined via Sanger sequencing. Furthermore, co-segregation analysis was performed on available family members. The pathogenicity of novel variants was predicted using in silico analysis and evaluated according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Results: Of the six families, two families were assigned as X-linked recessive (XL), two families were assigned as autosomal recessive (AR), and two families were assigned as autosomal dominant (AD). Pathogenic variants were detected in CACNA1F in two X-linked recessive probands, among which family 1 had a hemizygous frameshift variant c.2201del (p.Val734Glyfs*17) and family 2 had a hemizygous missense variant c.245G>A (p.Arg82Gln). Both probands had high myopia, with fundus tessellation accompanied by abnormalities in the outer structure of the macular area. The homozygous splice variant c.2373 + 5G>T in PROM1 and the homozygous nonsense variant c.604C>T (p.Arg202Ter) in ADAM9 were detected in two autosomal recessive families of the probands. Both probands showed different degrees of atrophy in the macular area, and the lesions showed hypofluorescence changes in autofluorescence. The heterozygous variation in CRX c.682C>T (p.Gln228Ter) was detected in two autosomal dominant families. The onset age of the two probands was late, with better vision and severe macular atrophy. According to ACMG guidelines and the analysis of online in silico tools, all variations were labeled as potentially harmful or pathogenic. Conclusion: Pathogenic variants in CACNA1F, PROM1, ADAM9, and CRX genes were identified in six families affected by the diverse inheritance patterns of CORD. Furthermore, the potential impact of the nonsense-mediated decay (NMD) mechanism on the manifestation of CORD phenotypes was examined and addressed. Simultaneously, the spectrum of pathogenic variants and clinical phenotypes associated with the CORD gene was extended.
Collapse
Affiliation(s)
- Zhen Li
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Wanyu Cheng
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Feiyin Zi
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Juan Wang
- Department of Ophthalmology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Xiaoyu Huang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | | | - Weining Rong
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Mellen RW, Calabro KR, McCullough KT, Crosson SM, Cova ADL, Fajardo D, Xu E, Boye SL, Boye SE. Development of an AAV-CRISPR-Cas9-based treatment for dominant cone-rod dystrophy 6. Mol Ther Methods Clin Dev 2023; 30:48-64. [PMID: 37361352 PMCID: PMC10285452 DOI: 10.1016/j.omtm.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Cone-rod dystrophy 6 (CORD6) is caused by gain-of-function mutations in the GUCY2D gene, which encodes retinal guanylate cyclase-1 (RetGC1). There are currently no treatments available for this autosomal dominant disease, which is characterized by severe, early-onset visual impairment. The purpose of our study was to develop an adeno-associated virus (AAV)-CRISPR-Cas9-based approach referred to as "ablate and replace" and evaluate its therapeutic potential in mouse models of CORD6. This two-vector system delivers (1) CRISPR-Cas9 targeted to the early coding sequence of the wild-type and mutant GUCY2D alleles and (2) a CRISPR-Cas9-resistant cDNA copy of GUCY2D ("hardened" GUCY2D). Together, these vectors knock out ("ablate") expression of endogenous RetGC1 in photoreceptors and supplement ("replace") a healthy copy of exogenous GUCY2D. First, we confirmed that ablation of mutant R838S GUCY2D was therapeutic in a transgenic mouse model of CORD6. Next, we established a proof of concept for "ablate and replace" and optimized vector doses in Gucy2e+/-:Gucy2f-/- and Gucy2f-/- mice, respectively. Finally, we confirmed that the "ablate and replace" approach stably preserved retinal structure and function in a novel knockin mouse model of CORD6, the RetGC1 (hR838S, hWT) mouse. Taken together, our results support further development of the "ablate and replace" approach for treatment of CORD6.
Collapse
Affiliation(s)
- Russell W. Mellen
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kaitlyn R. Calabro
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - K. Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sean M. Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Alejandro de la Cova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Emily Xu
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
9
|
Wang J, Wang Y, Li S, Xiao X, Yi Z, Jiang Y, Li X, Jia X, Wang P, Jin C, Sun W, Zhang Q. Clinical and Genetic Analysis of RDH12-Associated Retinopathy in 27 Chinese Families: A Hypomorphic Allele Leads to Cone-Rod Dystrophy. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35994252 PMCID: PMC9419460 DOI: 10.1167/iovs.63.9.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the genetic basis of 2 distinct phenotypes associated with biallelic variants in RDH12. Methods Patients with biallelic variants in RDH12 were recruited from our genetic eye clinic. Ocular phenotypes were evaluated. Genotype-phenotype correlations were further clarified using in-house and existing databases. Results In total, 22 biallelic RDH12 variants, including 5 novel variants, were identified in 29 patients from 27 families. Two distinct phenotypes were observed: early-onset and generalized retinal dystrophy with severe impairment of rods and cones in 24 patients (82.8%, 24/29), and late-onset cone-rod dystrophy (CORD) with central macular atrophy in 5 patients from 5 unrelated families (17.2%, 5/29), in which a hypomorphic allele (c.806C>G/p.Ala269Gly) was shared by all 5 patients. During follow-up, patients with late-onset CORD were relatively stable and did not progress to the severe form, which was considered to be an independent manifestation of RDH12-associated retinopathy caused by specific genotypes. Conclusions The hypomorphic allele is responsible for the unique late-onset CORD in 5 families with recessive RDH12-associated retinopathy, in contrast to the well-known severe and generalized retinopathy. Determining the therapeutic value of interventions may depend on understanding the molecular mechanisms underlying manifestation of this hypomorphic variant only in the central macular region, with relative preservation of the peripheral retina.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
10
|
Rider AT, Henning GB, Stockman A. A reinterpretation of critical flicker-frequency (CFF) data reveals key details about light adaptation and normal and abnormal visual processing. Prog Retin Eye Res 2021; 87:101001. [PMID: 34506951 DOI: 10.1016/j.preteyeres.2021.101001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Our ability to see flicker has an upper frequency limit above which flicker is invisible, known as the "critical flicker frequency" (CFF), that typically grows with light intensity (I). The relation between CFF and I, the focus of nearly 200 years of research, is roughly logarithmic, i.e., CFF ∝ log(I)-a relation called the Ferry-Porter law. However, why this law should occur, and how it relates to the underlying physiology, have never been adequately explained. Over the past two decades we have measured CFF in normal observers and in patients with retinal gene defects. Here, we reanalyse and model our data and historical CFF data. Remarkably, CFF-versus-I functions measured under a wide range of conditions in patients and in normal observers all have broadly similar shapes when plotted in double-logarithmic coordinates, i.e., log (CFF)-versus-log(I). Thus, the entire dataset can be characterised by horizontal and vertical logarithmic shifts of a fixed-shape template. Shape invariance can be predicted by a simple model of visual processing built from a sequence of low-pass filters, subtractive feedforward stages and gain adjustment (Rider, Henning & Stockman, 2019). It depends primarily on the numbers of visual processing stages that approach their power-law region at a given intensity and a frequency-independent gain reduction at higher light levels. Counter-intuitively, the CFF-versus-I relation depends primarily on the gain of the visual response rather than its speed-a conclusion that changes our understanding and interpretation of human flicker perception. The Ferry-Porter "law" is merely an approximation of the shape-invariant template.
Collapse
Affiliation(s)
- Andrew T Rider
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, England, UK
| | - G Bruce Henning
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, England, UK
| | - Andrew Stockman
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, England, UK.
| |
Collapse
|
11
|
Yi Z, Sun W, Xiao X, Li S, Jia X, Li X, Yu B, Wang P, Zhang Q. Novel variants in GUCY2D causing retinopathy and the genotype-phenotype correlation. Exp Eye Res 2021; 208:108637. [PMID: 34048777 DOI: 10.1016/j.exer.2021.108637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of retinopathy and cone/cone-rod dystrophy (CORD) is a common form of inherited retinopathy. Variants in GUCY2D constitute the most common cause of LCA and autosomal dominant CORD (ADCORD). The purpose of this study was to reveal novel variants and document associated phenotypes of patients with GUCY2D-associated retinopathy. Fifty-two potentially pathogenic variants (PPVs), including 12 novel ones (p.Gly144_Ala164del, p.Trp154Glyfs*12, p.Leu186Pro, p.Ala207Pro, p.Ala229Asp, p.Ala353Glu, p.Trp372*, p.Arg528*, p.Arg660Pro, p.Ile682Thr, p.Trp788Cys, and c.1026 + 171_*486del), were identified in 16 families with ADCORD and 34 families with autosomal recessive LCA (ARLCA). The novel variant c.1026 + 171_*486del is a large-scale (16.3 kb) deletion involving exons 4-20 of GUCY2D, and was identified in an ARLCA family in heterozygous status mimicking a homozygous p.Trp788Cys variant. Among the detected 52 PPVs, 32 (61.5%) were missense, seven (13.5%) were splicing, six (11.5%) were nonsense, four (7.7%) were inframe indel, and three (5.8%) were frameshift deletion. The median age of examination in 27 patients with ADCORD was 21.0 years (ranges 3-54) with a median visual acuity (VA) of 0.10 (ranges 0.02-0.90). There were 48.0% of patients with macular atrophy, 86.4% with severe reduced or extinguished cone responses, 77.3% with normal or mildly reduced rod responses, and 60.9% with high myopia. Visual impairment, macular dystrophy, and cone dysfunction deteriorated with age. The median age of examination in 34 patients with ARLCA was 1.1 years (ranges 0.3-25). There were 55.9% of patients with roving nystagmus, 68.2% with VA of worse than hand motion, 59.4% with almost normal fundus, 90.6% with extinguished rod and cone responses, and 50.0% with high hyperopia. In conclusions, twelve novel PPVs in GUCY2D (including a novel large-scale deletion) were identified. Most (32/52, 61.5%) of causative GUCY2D variants were missense. Progressive development of macular atrophy, cone dysfunction, visual impairment, and myopia are four major characteristics of GUCY2D-associated ADCORD. Normal fundus, roving nystagmus, and hypermetropia in early age are common findings specific to GUCY2D-associated ARLCA. The obtained data in this study will be of value in counselling patients and designing future therapeutic approaches.
Collapse
Affiliation(s)
- Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Bilin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
13
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Hull S, Kiray G, Chiang JPW, Vincent AL. Molecular and phenotypic investigation of a New Zealand cohort of childhood-onset retinal dystrophy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:708-717. [PMID: 32856788 DOI: 10.1002/ajmg.c.31836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Inherited retinal diseases are clinically heterogeneous and are associated with nearly 300 different genes. In this retrospective, observational study of a consecutive cohort of 159 patients (134 families) with childhood-onset (<16 years of age) retinal dystrophy, molecular investigations, and in-depth phenotyping were performed to determine key clinical and molecular characteristics. The most common ocular phenotype was rod-cone dystrophy in 40 patients. Leber Congenital Amaurosis, the most severe form of retinal dystrophy, was present in 10 patients, and early onset severe retinal dystrophy in 22 patients. Analysis has so far identified 131 pathogenic or likely pathogenic variants including 22 novel variants. Molecular diagnosis was achieved in 112 of 134 families (83.6%) by NGS gene panel investigation in 60 families, Sanger sequencing in 27 families, and Asper microarray in 25 families. An additional nine variants of uncertain significance were also found including three novel variants. Variants in 36 genes have been identified with the most common being ABCA4 retinopathy in 36 families. Five sporadic retinal dystrophy patients were found to have variants in dominant and X-linked genes (CRX, RHO, RP2, and RPGR) resulting in more accurate genetic counseling of inheritance for these families. Variants in syndromic associated genes including ALMS1, SDCCAG8, and PPT1 were identified in eight families enabling directed systemic care.
Collapse
Affiliation(s)
- Sarah Hull
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand.,Institute of Ophthalmology, University College London, London, UK
| | - Gulunay Kiray
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | | | - Andrea L Vincent
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
15
|
Sun Z, Wu S, Zhu T, Li H, Wei X, Du H, Sui R. Variants at codon 838 in the GUCY2D gene result in different phenotypes of cone rod dystrophy. Ophthalmic Genet 2020; 41:548-555. [PMID: 32811265 DOI: 10.1080/13816810.2020.1807026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The GUCY2D gene encodes the photoreceptor guanylate cyclase (GC-E) and different pathogenic variants can lead to Leber congenital amaurosis (LCA) or cone-rod dystrophy (CRD). In this study, we describe three unrelated families who carried different mutations at codon 838 of the GUCY2D gene, and presented different phenotypes of retinal degeneration. MATERIALS AND METHODS Family and personal histories were collected, and the patients underwent best corrected visual acuity (BCVA), fundus photography (FP), electroretinography (ERG), optical coherence tomography (OCT) and fundus autofluorescence (FAF). Venous blood was drawn from patients and family members, and genomic DNA was extracted. Next-generation sequencing of known ocular genes was applied to the proband to find pathogenic variants. Polymerase chain reaction (PCR) and Sanger sequencing were conducted for validation and segregation. RESULTS Six patients from three unrelated families were enrolled. All the patients manifested decreased vision, photophobia and myopia from childhood. ERG recordings demonstrated a significant reduction in cone responses for all patients, while rod responses ranged widely from normal to moderately reduced. All patients were diagnosed with CRD, but the disease severity and progression rates in the three families were significantly different. Three pathogenic variants in the GUCY2D gene (c.2512 C > T (p.R838C), c.2512 C > A (p.R838S) and c.2513 G > A (p.R838H)) were identified. CONCLUSIONS We presented the phenotypes of three Chinese adCRD families carrying different variants at codon 838 of the GUCY2D gene. The R838S variant is a novel genotype associated with GUCY2D-CRD. The R838H variant can cause severe retinal features. Our findings enhance the understanding of GUCY2D phenotypic diversity.
Collapse
Affiliation(s)
- Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Hong Du
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| |
Collapse
|
16
|
Liu X, Fujinami K, Kuniyoshi K, Kondo M, Ueno S, Hayashi T, Mochizuki K, Kameya S, Yang L, Fujinami-Yokokawa Y, Arno G, Pontikos N, Sakuramoto H, Kominami T, Terasaki H, Katagiri S, Mizobuchi K, Nakamura N, Yoshitake K, Miyake Y, Li S, Kurihara T, Tsubota K, Iwata T, Tsunoda K. Clinical and Genetic Characteristics of 15 Affected Patients From 12 Japanese Families with GUCY2D-Associated Retinal Disorder. Transl Vis Sci Technol 2020; 9:2. [PMID: 32821499 PMCID: PMC7408927 DOI: 10.1167/tvst.9.6.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the clinical and genetic characteristics of patients with GUCY2D-associated retinal disorder (GUCY2D-RD). Methods Fifteen patients from 12 families with inherited retinal disorder (IRD) and harboring GUCY2D variants were ascertained from 730 Japanese families with IRD. Comprehensive ophthalmological examinations, including visual acuity (VA) measurement, retinal imaging, and electrophysiological assessment were performed to classify patients into three phenotype subgroups; macular dystrophy (MD), cone-rod dystrophy (CORD), and Leber congenital amaurosis (LCA). In silico analysis was performed for the detected variants, and the molecularly confirmed inheritance pattern was determined (autosomal dominant/recessive [AD/AR]). Results The median age of onset/examination was 22.0/38.0 years (ranges, 0-55 and 1-73) with a median VA of 0.80/0.70 LogMAR units (ranges, 0.00-1.52 and 0.10-1.52) in the right/left eye, respectively. Macular atrophy was identified in seven patients (46.7%), and two had diffuse fundus disturbance (13.3%), and six had an essentially normal fundus (40.0%). There were 11 patients with generalized cone-rod dysfunction (78.6%), two with entire functional loss (14.3%), and one with confined macular dysfunction (7.1%). There were nine families with ADCORD, one with ARCORD, one with ADMD, and one with ARLCA. Ten GUCY2D variants were identified, including four novel variants (p.Val56GlyfsTer262, p.Met246Ile, p.Arg761Trp, p.Glu874Lys). Conclusions This large cohort study delineates the disease spectrum of GUCY2D-RD. Diverse clinical presentations with various severities of ADCORD and the early-onset severe phenotype of ARLCA are illustrated. A relatively lower prevalence of GUCY2D-RD for ADCORD and ARLCA in the Japanese population was revealed. Translational Relevance The obtained data help to monitor and counsel patients, especially in East Asia, as well as to design future therapeutic approaches.
Collapse
Affiliation(s)
- Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu-shi, Gifu, Japan
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Graduate School of Health Management, Keio University, Shinjuku-ku, Tokyo, Japan.,Division of Public Health, Yokokawa Clinic, Suita, Osaka, Japan
| | - Gavin Arno
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Hiroyuki Sakuramoto
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Natsuko Nakamura
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization National Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Yozo Miyake
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Aichi Medical University, Nagakute, Aichi, Japan
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization National Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | | |
Collapse
|
17
|
GCAP neuronal calcium sensor proteins mediate photoreceptor cell death in the rd3 mouse model of LCA12 congenital blindness by involving endoplasmic reticulum stress. Cell Death Dis 2020; 11:62. [PMID: 31980596 PMCID: PMC6981271 DOI: 10.1038/s41419-020-2255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Loss-of-function mutations in the retinal degeneration 3 (RD3) gene cause inherited retinopathy with impaired rod and cone function and fast retinal degeneration in patients and in the natural strain of rd3 mice. The underlying physiopathology mechanisms are not well understood. We previously proposed that guanylate cyclase-activating proteins (GCAPs) might be key Ca2+-sensors mediating the physiopathology of this disorder, based on the demonstrated toxicity of GCAP2 when blocked in its Ca2+-free form at photoreceptor inner segments. We here show that the retinal degeneration in rd3 mice is substantially delayed by GCAPs ablation. While the number of retinal photoreceptor cells is halved in 6 weeks in rd3 mice, it takes 8 months to halve in rd3/rd3 GCAPs-/- mice. Although this substantial morphological rescue does not correlate with recovery of visual function due to very diminished guanylate cyclase activity in rd3 mice, it is very informative of the mechanisms underlying photoreceptor cell death. By showing that GCAP2 is mostly in its Ca2+-free-phosphorylated state in rd3 mice, we infer that the [Ca2+]i at rod inner segments is permanently low. GCAPs are therefore retained at the inner segment in their Ca2+-free, guanylate cyclase activator state. We show that in this conformational state GCAPs induce endoplasmic reticulum (ER) stress, mitochondrial swelling, and cell death. ER stress and mitochondrial swelling are early hallmarks of rd3 retinas preceding photoreceptor cell death, that are substantially rescued by GCAPs ablation. By revealing the involvement of GCAPs-induced ER stress in the physiopathology of Leber's congenital amaurosis 12 (LCA12), this work will aid to guide novel therapies to preserve retinal integrity in LCA12 patients to expand the window for gene therapy intervention to restore vision.
Collapse
|
18
|
Lamb TD. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Prog Retin Eye Res 2019; 76:100823. [PMID: 31790748 DOI: 10.1016/j.preteyeres.2019.100823] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
This paper reviews current knowledge of the evolution of the multiple genes encoding proteins that mediate the process of phototransduction in rod and cone photoreceptors of vertebrates. The approach primarily involves molecular phylogenetic analysis of phototransduction protein sequences, combined with analysis of the syntenic arrangement of the genes. At least 35 of these phototransduction genes appear to reside on no more than five paralogons - paralogous regions that each arose from a common ancestral region. Furthermore, it appears that such paralogs arose through quadruplication during the two rounds of genome duplication (2R WGD) that occurred in a chordate ancestor prior to the vertebrate radiation, probably around 600 millions years ago. For several components of the phototransduction cascade, it is shown that distinct isoforms already existed prior to WGD, with the likely implication that separate classes of scotopic and photopic photoreceptor cells had already evolved by that stage. The subsequent quadruplication of the entire genome then permitted the refinement of multiple distinct protein isoforms in rods and cones. A unified picture of the likely pattern and approximate timing of all the important gene duplications is synthesised, and the implications for our understanding of the evolution of rod and cone phototransduction are presented.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
19
|
Boulanger-Scemama E, Mohand-Saïd S, El Shamieh S, Démontant V, Condroyer C, Antonio A, Michiels C, Boyard F, Saraiva JP, Letexier M, Sahel JA, Zeitz C, Audo I. Phenotype Analysis of Retinal Dystrophies in Light of the Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrophies. Int J Mol Sci 2019; 20:ijms20194854. [PMID: 31574917 PMCID: PMC6801687 DOI: 10.3390/ijms20194854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
Phenotypes observed in a large cohort of patients with cone and cone-rod dystrophies (COD/CORDs) are described based on multimodal retinal imaging features in order to help in analyzing massive next-generation sequencing data. Structural abnormalities of 58 subjects with molecular diagnosis of COD/CORDs were analyzed through specific retinal imaging including spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (BAF/IRAF). Findings were analyzed with the underlying genetic defects. A ring of increased autofluorescence was mainly observed in patients with CRX and GUCY2D mutations (33% and 22% of cases respectively). “Speckled” autofluorescence was observed with mutations in three different genes (ABCA4 64%; C2Orf71 and PRPH2, 18% each). Peripapillary sparing was only found in association with mutations in ABCA4, although only present in 40% of such genotypes. Regarding SD-OCT, specific outer retinal abnormalities were more commonly observed in particular genotypes: focal retrofoveal interruption and GUCY2D mutations (50%), foveal sparing and CRX mutations (50%), and outer retinal atrophy associated with hyperreflective dots and ABCA4 mutations (69%). This study outlines the phenotypic heterogeneity of COD/CORDs hampering statistical correlations. A larger study correlating retinal imaging with genetic results is necessary to identify specific clinical features that may help in selecting pathogenic variants generated by high-throughput sequencing.
Collapse
Affiliation(s)
- Elise Boulanger-Scemama
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
- Fondation Ophtalmologique Adolphe de Rothschild, 75012 Paris, France.
| | - Saddek Mohand-Saïd
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, 28 rue de Charenton, 75012 Paris, France.
| | - Said El Shamieh
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| | - Vanessa Démontant
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
| | - Christel Condroyer
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
| | - Aline Antonio
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, 28 rue de Charenton, 75012 Paris, France.
| | - Christelle Michiels
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
| | - Fiona Boyard
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
| | | | | | - José-Alain Sahel
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
- Fondation Ophtalmologique Adolphe de Rothschild, 75012 Paris, France.
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, 28 rue de Charenton, 75012 Paris, France.
- Académie des Sciences-Institut de France, 75006 Paris, France.
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA 15213, USA.
| | - Christina Zeitz
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
| | - Isabelle Audo
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 17 rue Moreau, 75012 Paris, France.
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, 28 rue de Charenton, 75012 Paris, France.
- University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
20
|
Possible dual contribution of a novel GUCY2D mutation in the development of retinal degeneration in a consanguineous population. Eur J Med Genet 2019; 63:103750. [PMID: 31470097 DOI: 10.1016/j.ejmg.2019.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/22/2022]
Abstract
Molecular characterization of novel mutations in Leber Congenital Amaurosis (LCA) disease improves the disease diagnosis and contributes to the development of preventive and therapeutic approaches. We studied an isolated inbred population in Iran with a high prevalence of retinal degeneration with clinical variability. The clinical examinations were performed on eight patients belonging to three consanguineous families. The identical-by-descent (IBD) mapping technique was employed to identify the shared loci in patients. Subsequently, Sanger sequencing of the GUCY2D gene, in silico analysis, as well as segregation study were conducted. The whole-exome sequencing method was applied for negative cases of GUCY2D mutation, followed by segregation study in suspected variants among families. A novel deletion mutation in the GUCY2D gene can explain the emergence of LCA-1 in most patients but not all. Besides, a heterozygous variant of uncertain significance (VUS) was observed in the BEST1 gene in some healthy and participant patients. These results further support inter/intra-familial clinical heterogeneity in retinal dystrophy and suggest that screening the GUCY2D gene would be needed for the diagnosis of LCA in Iranian people living in the central regions. The variant in the BEST1 gene might be considered a benign heterozygous variant; however, we hypothesized a possible double heterozygosity in both GUCY2D and BEST1 genes that may cause the pathogenesis of cone-rod dystrophy-6 (CRD-6) disease. This would propose a new scenario for the pathogenesis of a monogenic disorder such as CRD-6 disease in which other genetic elements may be involved in the development of the disease.
Collapse
|
21
|
Chapi M, Sabbaghi H, Suri F, Alehabib E, Rahimi-Aliabadi S, Jamali F, Jamshidi J, Emamalizadeh B, Darvish H, Mirrahimi M, Ahmadieh H, Daftarian N. Incomplete penetrance of CRX gene for autosomal dominant form of cone-rod dystrophy. Ophthalmic Genet 2019; 40:259-266. [PMID: 31215831 DOI: 10.1080/13816810.2019.1622023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Cone-rod dystrophy (CRD) is an inherited retinal dystrophy that is transmitted via different modes of inheritance. Mutations in more than 30 genes have been identified to cause the disease. We aimed to investigate the genetic agents of two unrelated cone-rod dystrophy affected Iranian families with autosomal recessive inheritance patterns. Methods: Whole-exome sequencing (WES) was performed for identification of the disease-causing mutations in the probands of both families. The candidate mutations were further confirmed by Sanger sequencing. Samples from five available members of each family were then sequenced for the mutations present in the probands. Comprehensive ocular examinations for all members of the families carrying the mutations were completed by ophthalmologists. Results: We identified a novel premature stop codon c.310C>T in CRX gene in heterozygote form in two symptomatic and two non-symptomatic members of one family (family-A), and a known CRX mutation c.122G>A in homozygote form in another (family B). c.122G>A has been reported to cause late-onset autosomal dominant form of the disease in previous studies. However, the middle-aged heterozygous carriers of the mutation in this family showed normal phenotype. Conclusion: The CRX gene has been previously linked to the autosomal dominant form of cone-rod dystrophy. We report incomplete penetrance of CRX gene for autosomal dominant form of the disease. Incomplete penetrance of the mutations may be partly caused by the influence of other genes in the complex genetic network underlying retinal regulation.
Collapse
Affiliation(s)
- Marjan Chapi
- a Department of Medical Genetics , School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hamideh Sabbaghi
- b Ophthalmic Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fatemeh Suri
- b Ophthalmic Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Elham Alehabib
- a Department of Medical Genetics , School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Simin Rahimi-Aliabadi
- a Department of Medical Genetics , School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Faezeh Jamali
- a Department of Medical Genetics , School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Javad Jamshidi
- c Department of Psychology , University of New South Wales and Neuroscience Research Australia , Sydney , NSW , Australia.,d Noncommunicable Diseases Research Center , Fasa University of Medical Sciences , Fasa , Iran
| | - Babak Emamalizadeh
- e Department of Medical Genetics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hossein Darvish
- f Cancer Research Center , Semnan University of Medical Sciences , Semnan , Iran.,g Department of Medical Genetics , Semnan University of Medical Sciences , Semnan , Iran
| | - Mehraban Mirrahimi
- h Ocular Tissue Engineering Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hamid Ahmadieh
- b Ophthalmic Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,h Ocular Tissue Engineering Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Narsis Daftarian
- b Ophthalmic Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,h Ocular Tissue Engineering Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
22
|
McCullough KT, Boye SL, Fajardo D, Calabro K, Peterson JJ, Strang CE, Chakraborty D, Gloskowski S, Haskett S, Samuelsson S, Jiang H, Witherspoon CD, Gamlin PD, Maeder ML, Boye SE. Somatic Gene Editing of GUCY2D by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque. Hum Gene Ther 2019; 30:571-589. [PMID: 30358434 PMCID: PMC6534089 DOI: 10.1089/hum.2018.193] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
Mutations in GUCY2D, the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in GUCY2D (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair. Here, adeno-associated virus (AAV)-delivered CRISPR/Cas9 was used specifically to edit/disrupt this gene's early coding sequence in mouse and macaque photoreceptors in vivo, thereby knocking out retGC1 expression and demonstrably altering retinal function and structure. Neither preexisting nor induced Cas9-specific T-cell responses resulted in ocular inflammation in macaques, nor did it limit GUCY2D editing. The results show, for the first time, the ability to perform somatic gene editing in primates using AAV-CRISPR/Cas9 and demonstrate the viability this approach for treating inherited retinal diseases in general and CORD6 in particular.
Collapse
Affiliation(s)
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - Diego Fajardo
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - Kaitlyn Calabro
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - James J. Peterson
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - Christianne E. Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dibyendu Chakraborty
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | - Paul D. Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Shannon E. Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Peshenko IV, Cideciyan AV, Sumaroka A, Olshevskaya EV, Scholten A, Abbas S, Koch KW, Jacobson SG, Dizhoor AM. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration. J Biol Chem 2019; 294:3476-3488. [PMID: 30622141 DOI: 10.1074/jbc.ra118.006180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Artur V Cideciyan
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander Sumaroka
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander Scholten
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Seher Abbas
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Samuel G Jacobson
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027,
| |
Collapse
|
24
|
Tsokolas G, Almuhtaseb H, Griffiths H, Shawkat F, Pengelly RJ, Sarah E, Lotery A. Long term follow-up of a family with GUCY2D dominant cone dystrophy. Int J Ophthalmol 2018; 11:1945-1950. [PMID: 30588428 DOI: 10.18240/ijo.2018.12.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
AIM To describe long term follow-up in a family with GUCY2D dominant cone dystrophy. METHODS Optical coherence tomography scans and fundus autofluorescence images were obtained. Flash and pattern electroretinograms (ERGs) and occipital pattern reversal visual evoked potentials were recorded. RESULTS Two members of the same family (father and son) were identified to have the heterozygous R838C mutation in the GUCY2D gene. The father presented at the age of 45 with bilateral bull's eye maculopathy and temporal disc pallor. Over 13y of serial follow up visits, the bull's eye maculopathy progressed gradually into macular atrophy. Electrophysiological tests were significantly degraded suggesting poor macular function. Spectral-domain optical coherence tomography (SD-OCT) scans showed progressive loss and disruption of the ellipsoid layer at the foveal level. His son presented at the age of 16 with bilateral granular retinal pigment epithelial changes in both maculae. Electrophysiological testing was initially borderline normal but has gradually deteriorated to show reduced cone ERGs and macula function. SD-OCT demonstrated gradual macular thinning and atrophy bilaterally. Unlike his father, there was no disruption of the ellipsoid layer. CONCLUSION Both family members exhibited gradual changes in their fundi, electrophysiological testing and multimodal imaging. Changes were milder than those observed in other mutations of the same gene.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire SO16 6YD, UK.,Eye Unit, University Hospital Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Hussein Almuhtaseb
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire SO16 6YD, UK.,Eye Unit, University Hospital Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Helen Griffiths
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Fatima Shawkat
- Eye Unit, University Hospital Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Reuben J Pengelly
- Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, Hamphsire, SO16 6YD, UK
| | - Ennis Sarah
- Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, Hamphsire, SO16 6YD, UK
| | - Andrew Lotery
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire SO16 6YD, UK.,Eye Unit, University Hospital Southampton, Southampton, Hampshire SO16 6YD, UK
| |
Collapse
|
25
|
Duda T, Pertzev A, Ravichandran S, Sharma RK. Ca 2+-Sensor Neurocalcin δ and Hormone ANF Modulate ANF-RGC Activity by Diverse Pathways: Role of the Signaling Helix Domain. Front Mol Neurosci 2018; 11:430. [PMID: 30546296 PMCID: PMC6278801 DOI: 10.3389/fnmol.2018.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Sarangan Ravichandran
- Advanced Biomedical Computational Sciences Group, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Leidos Biomedical Research Inc., Fredrick, MD, United States
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| |
Collapse
|
26
|
Lamb TD, Hunt DM. Evolution of the calcium feedback steps of vertebrate phototransduction. Open Biol 2018; 8:180119. [PMID: 30257895 PMCID: PMC6170504 DOI: 10.1098/rsob.180119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
We examined the genes encoding the proteins that mediate the Ca-feedback regulatory system in vertebrate rod and cone phototransduction. These proteins comprise four families: recoverin/visinin, the guanylyl cyclase activating proteins (GCAPs), the guanylyl cyclases (GCs) and the sodium/calcium-potassium exchangers (NCKXs). We identified a paralogon containing at least 36 phototransduction genes from at least fourteen families, including all four of the families involved in the Ca-feedback loop (recoverin/visinin, GCAPs, GCs and NCKXs). By combining analyses of gene synteny with analyses of the molecular phylogeny for each of these four families of genes for Ca-feedback regulation, we have established the likely pattern of gene duplications and losses underlying the expansion of isoforms, both before and during the two rounds of whole-genome duplication (2R WGD) that occurred in early vertebrate evolution. Furthermore, by combining our results with earlier evidence on the timing of duplication of the visual G-protein receptor kinase genes, we propose that specialization of proto-vertebrate photoreceptor cells for operation at high and low light intensities preceded the emergence of rhodopsin, which occurred during 2R WGD.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - David M Hunt
- Centre for Ophthalmology and Visual Science, The Lions Eye Institute, The University of Western Australia, Western Australia 6009, Australia
- School of Biological Sciences, The University of Western Australia, Western Australia 6009, Australia
| |
Collapse
|
27
|
Sisk RA, Hufnagel RB, Laham A, Wohler ES, Sobreira N, Ahmed ZM. Peripheral Cone Dystrophy: Expanded Clinical Spectrum, Multimodal and Ultrawide-Field Imaging, and Genomic Analysis. J Ophthalmol 2018; 2018:2984934. [PMID: 30116628 PMCID: PMC6079493 DOI: 10.1155/2018/2984934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To present new clinical features, multimodal and ultrawide-field imaging characteristics of peripheral cone dystrophy (PCD), and results of laboratory and genetic investigation to decipher the etiology. METHODS Retrospective observational case-series. RESULTS Three patients with PCD presented with bilateral paracentral scotomas and a mean visual acuity of 20/25. All exhibited confluent macular hyperautofluorescence with a central bull's eye lesion. Spectral-domain optical coherence tomography revealed loss of outer retinal elements, particularly the inner segment ellipsoid band and external limiting membrane, within the area of macular hyperautofluorescence. This area corresponded with a lightened fundus appearance and variable retinal pigment epithelium (RPE) abnormalities. Full field and multifocal electroretinography distinguished PCD from other photoreceptor dystrophies. Ultrawide-field imaging revealed irregular peripheral retinal lesions in a distribution greater nasally than temporally and not contiguous with the macular lesion. Functional and anatomic testing remained stable over a mean follow-up of 3 years. Laboratory investigation for causes of uveitis was negative. Whole exome sequencing identified rare variants in genes associated with macular or cone dystrophy or degeneration. CONCLUSIONS In contrast to the original description, the funduscopic and fluorescein angiographic appearance of PCD is abnormal, although the defects are subtle. Peripheral lesions may be observed in some patients. Bilateral, symmetric, macular hyperautofluorescence associated with outer retinal atrophy that spares the fovea is a characteristic of PCD. Pathogenic variants in the same gene were not shared across the cohort, suggesting genetic heterogeneity. Further evaluation is warranted.
Collapse
Affiliation(s)
- Robert A. Sisk
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Eye Institute, Cincinnati, OH, USA
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert B. Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ailee Laham
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth S. Wohler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
28
|
Stunkel ML, Brodie SE, Cideciyan AV, Pfeifer WL, Kennedy EL, Stone EM, Jacobson SG, Drack AV. Expanded Retinal Disease Spectrum Associated With Autosomal Recessive Mutations in GUCY2D. Am J Ophthalmol 2018; 190:58-68. [PMID: 29559409 DOI: 10.1016/j.ajo.2018.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE GUCY2D has been associated with autosomal recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. This report expands the phenotype of autosomal recessive mutations to congenital night blindness, which may slowly progress to mild retinitis pigmentosa. DESIGN Retrospective case series. METHODS Multicenter study of 5 patients (3 male, 2 female). RESULTS All patients presented with night blindness since childhood. Age at referral was 9-45 years. Length of follow-up was 1-7 years. Best-corrected visual acuity at presentation ranged from 20/15 to 20/30 and at most recent visit averaged 20/25. No patient had nystagmus or high refractive error. ISCEV standard electroretinography revealed nondetectable dark-adapted dim flash responses and reduced amplitude but not electronegative dark-adapted bright flash responses with similar waveforms to the reduced-amplitude light-adapted single flash responses. The 30 Hz flicker responses were relatively preserved. Macular optical coherence tomography revealed normal lamination in 3 patients, with abnormalities in 2. Goldmann visual fields were normal at presentation in children but constricted in 1 adult. One child showed loss of midperipheral fields over time. Fundus appearance was normal in childhood; the adult had sparse bone spicule-like pigmentation. Full-field stimulus testing (FST) revealed markedly decreased retinal sensitivity to light. Dark adaptation demonstrated lack of rod-cone break. Two patients had tritanopia. All 5 had compound heterozygous mutations in GUCY2D. Three of the 5 patients harbor the Arg768Trp mutation reported in GUCY2D-associated Leber congenital amaurosis. CONCLUSIONS Autosomal recessive GUCY2D mutations may cause congenital night blindness with normal acuity and refraction, and unique electroretinography. Progression to mild retinitis pigmentosa may occur.
Collapse
Affiliation(s)
- Maria L Stunkel
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Scott E Brodie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wanda L Pfeifer
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth L Kennedy
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arlene V Drack
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
29
|
Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype-Phenotype Correlations, and Inheritance Models. Genes (Basel) 2018; 9:genes9040215. [PMID: 29659558 PMCID: PMC5924557 DOI: 10.3390/genes9040215] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal diseases (IRDs) are genetically and clinically heterogeneous disorders.[...].
Collapse
|
30
|
Sharon D, Wimberg H, Kinarty Y, Koch KW. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retin Eye Res 2018; 63:69-91. [DOI: 10.1016/j.preteyeres.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
|
31
|
GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1. J Neurosci 2018; 38:2990-3000. [PMID: 29440533 DOI: 10.1523/jneurosci.2985-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S+ rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca2+ phototransduction feedback and abnormally high free-Ca2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2+/+ or GCAP1,2+/- backgrounds, was prevented in GCAP1,2-/- mice lacking Ca2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca2+ levels in photoreceptors.SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to the cyclase mediated by guanylyl cyclase activating proteins (GCAPs), which are calcium-sensor proteins. The abnormal calcium sensitivity of the cyclase increases cGMP-gated dark current in the rod outer segments, reshapes rod photoresponses, and triggers photoreceptor death. This work is the first to demonstrate a direct physiological effect of GUCY2D CORD6-linked mutation on photoreceptor physiology in vivo It also identifies the abnormal regulation of the cyclase by calcium-sensor proteins as the main trigger for the photoreceptor death.
Collapse
|
32
|
Duda T, Pertzev A, Sharma RK. CO 2/bicarbonate modulates cone photoreceptor ROS-GC1 and restores its CORD6-linked catalytic activity. Mol Cell Biochem 2018; 448:91-105. [PMID: 29427171 DOI: 10.1007/s11010-018-3317-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 01/12/2023]
Abstract
This study with recombinant reconstituted system mimicking the cellular conditions of the native cones documents that photoreceptor ROS-GC1 is modulated by gaseous CO2. Mechanistically, CO2 is sensed by carbonic anhydrase (CAII), generates bicarbonate that, in turn, directly targets the core catalytic domain of ROS-GC1, and activates it to increased synthesis of cyclic GMP. This, then, functions as a second messenger for the cone phototransduction. The study demonstrates that, in contrast to the Ca2+-modulated phototransduction, the CO2 pathway is Ca2+-independent, yet is linked with it and synergizes it. It, through R787C mutation in the third heptad of the signal helix domain of ROS-GC1, affects cone-rod dystrophy, CORD6. CORD6 is caused firstly by lowered basal and GCAP1-dependent ROS-GC1 activity and secondly, by a shift in Ca2+ sensitivity of the ROS-GC1/GCAP1 complex that remains active in darkness. Remarkably, the first but not the second defect disappears with bicarbonate thus explaining the basis for CORD6 pathological severity. Because cones, but not rods, express CAII, the excessive synthesis of cyclic GMP would be most acute in cones.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Alexander Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA.
| |
Collapse
|
33
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
34
|
Whole exome sequencing using Ion Proton system enables reliable genetic diagnosis of inherited retinal dystrophies. Sci Rep 2017; 7:42078. [PMID: 28181551 PMCID: PMC5299602 DOI: 10.1038/srep42078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
Inherited retinal dystrophies (IRD) comprise a wide group of clinically and genetically complex diseases that progressively affect the retina. Over recent years, the development of next-generation sequencing (NGS) methods has transformed our ability to diagnose heterogeneous diseases. In this work, we have evaluated the implementation of whole exome sequencing (WES) for the molecular diagnosis of IRD. Using Ion ProtonTM system, we simultaneously analyzed 212 genes that are responsible for more than 25 syndromic and non-syndromic IRD. This approach was used to evaluate 59 unrelated families, with the pathogenic variant(s) successfully identified in 71.18% of cases. Interestingly, the mutation detection rate varied substantially depending on the IRD subtype. Overall, we found 63 different mutations (21 novel) in 29 distinct genes, and performed in vivo functional studies to determine the deleterious impact of variants identified in MERTK, CDH23, and RPGRIP1. In addition, we provide evidences that support CDHR1 as a gene responsible for autosomal recessive retinitis pigmentosa with early macular affectation, and present data regarding the disease mechanism of this gene. Altogether, these results demonstrate that targeted WES of all IRD genes is a reliable, hypothesis-free approach, and a cost- and time-effective strategy for the routine genetic diagnosis of retinal dystrophies.
Collapse
|
35
|
Dizhoor AM, Olshevskaya EV, Peshenko IV. The R838S Mutation in Retinal Guanylyl Cyclase 1 (RetGC1) Alters Calcium Sensitivity of cGMP Synthesis in the Retina and Causes Blindness in Transgenic Mice. J Biol Chem 2016; 291:24504-24516. [PMID: 27703005 DOI: 10.1074/jbc.m116.755553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/03/2016] [Indexed: 11/06/2022] Open
Abstract
Substitutions of Arg838 in the dimerization domain of a human retinal membrane guanylyl cyclase 1 (RetGC1) linked to autosomal dominant cone-rod degeneration type 6 (CORD6) change RetGC1 regulation in vitro by Ca2+ In addition, we find that R838S substitution makes RetGC1 less sensitive to inhibition by retinal degeneration-3 protein (RD3). We selectively expressed human R838S RetGC1 in mouse rods and documented the decline in rod vision and rod survival. To verify that changes in rods were specifically caused by the CORD6 mutation, we used for comparison cones, which in the same mice did not express R838S RetGC1 from the transgenic construct. The R838S RetGC1 expression in rod outer segments reduced inhibition of cGMP production in the transgenic mouse retinas at the free calcium concentrations typical for dark-adapted rods. The transgenic mice demonstrated early-onset and rapidly progressed with age decline in visual responses from the targeted rods, in contrast to the longer lasting preservation of function in the non-targeted cones. The decline in rod function in the retina resulted from a progressive degeneration of rods between 1 and 6 months of age, with the severity and pace of the degeneration consistent with the extent to which the Ca2+ sensitivity of the retinal cGMP production was affected. Our study presents a new experimental model for exploring cellular mechanisms of the CORD6-related photoreceptor death. This mouse model provides the first direct biochemical and physiological in vivo evidence for the Arg838 substitutions in RetGC1 being the culprit behind the pathogenesis of the CORD6 congenital blindness.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- From the Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027.
| | - Elena V Olshevskaya
- From the Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Igor V Peshenko
- From the Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
36
|
Miyata M, Ogino K, Gotoh N, Morooka S, Hasegawa T, Hata M, Yoshimura N. Inner segment ellipsoid band length is a prognostic factor in retinitis pigmentosa associated with EYS mutations: 5-year observation of retinal structure. Eye (Lond) 2016; 30:1588-1592. [PMID: 27564720 DOI: 10.1038/eye.2016.196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023] Open
Abstract
PurposeTo evaluate whether the length of the inner segment ellipsoid (ISe) band can be used as a prognostic factor for disease course in retinitis pigmentosa (RP) patients with EYS mutations by observation over a period of 5 years.MethodsTwelve RP patients with EYS mutations were studied. The horizontal and vertical ISe length of the right eye was manually measured at five time points annually, using spectral domain optical coherence tomography. A regression line through the five points from baseline to the final measurement was drawn and the ratio of the length (%) at each point to the baseline length was calculated; the slope was defined as the rate of ISe shortening (%/year). The correlation between the rate of ISe shortening and age, visual acuity, and mean deviation (MD) value were evaluated. The intraclass correlation coefficient (ICC) for the measurements was calculated.ResultsThe mean rate of ISe shortening was -4.65±2.89% per year and the decline was statistically significant. The rate of shortening was significantly negatively correlated with the baseline length (P=0.046, r=0.58), but not with the baseline age, visual acuity, and MD value. The ICC (2, 1) was 0.999.ConclusionsISe of all RP patients with EYS mutations shortened during the 5 years of annual observation. The measurement of the length of ISe is a simple and convenient method with high repeatability, and the length is a sensitive prognostic factor for the rate of ISe shortening in RP patients with EYS mutations.
Collapse
Affiliation(s)
- M Miyata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - K Ogino
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - N Gotoh
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - S Morooka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - M Hata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - N Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
37
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Functional Study and Mapping Sites for Interaction with the Target Enzyme in Retinal Degeneration 3 (RD3) Protein. J Biol Chem 2016; 291:19713-23. [PMID: 27471269 DOI: 10.1074/jbc.m116.742288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/24/2022] Open
Abstract
Retinal degeneration 3 (RD3) protein, essential for normal expression of retinal membrane guanylyl cyclase (RetGC) in photoreceptor cells, blocks RetGC catalytic activity and stimulation by guanylyl cyclase-activating proteins (GCAPs). In a mouse retina, RD3 inhibited both RetGC1 and RetGC2 isozymes. Photoreceptors in the rd3/rd3 mouse retinas lacking functional RD3 degenerated more severely than in the retinas lacking both RetGC isozymes, consistent with a hypothesis that the inhibitory activity of RD3 has a functional role in photoreceptors. To map the potential target-binding site(s) on RD3, short evolutionary conserved regions of its primary structure were scrambled and the mutations were tested for the RD3 ability to inhibit RetGC1 and co-localize with the cyclase in co-transfected cells. Substitutions in 4 out of 22 tested regions, (87)KIHP(90), (93)CGPAI(97), (99)RFRQ(102), and (119)RSVL(122), reduced the RD3 apparent affinity for the cyclase 180-700-fold. Changes of amino acid sequences outside the Lys(87)-Leu(122) central portion of the molecule either failed to prevent RD3 binding to the cyclase or had a much smaller effect. Mutations in the (93)CGPAI(97) portion of a predicted central α-helix most drastically suppressed the inhibitory activity of RD3 and disrupted RD3 co-localization with RetGC1 in HEK293 cells. Different side chains replacing Cys(93) profoundly reduced RD3 affinity for the cyclase, irrespective of their relative helix propensities. We conclude that the main RetGC-binding interface on RD3 required for the negative regulation of the cyclase localizes to the Lys(87)-Leu(122) region.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
38
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Huang L, Xiao X, Li S, Jia X, Wang P, Sun W, Xu Y, Xin W, Guo X, Zhang Q. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands. Exp Eye Res 2016; 146:252-258. [DOI: 10.1016/j.exer.2016.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/27/2015] [Accepted: 03/14/2016] [Indexed: 01/17/2023]
|
40
|
Lu QK, Zhao N, Lv YS, Gong WK, Wang HY, Tong QH, Lai XM, Liu RR, Fang MY, Zhang JG, Du ZF, Zhang XN. A novel CRX mutation by whole-exome sequencing in an autosomal dominant cone-rod dystrophy pedigree. Int J Ophthalmol 2015; 8:1112-7. [PMID: 26682157 DOI: 10.3980/j.issn.2222-3959.2015.06.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/30/2015] [Indexed: 11/02/2022] Open
Abstract
AIM To identify the disease-causing gene mutation in a Chinese pedigree with autosomal dominant cone-rod dystrophy (adCORD). METHODS A southern Chinese adCORD pedigree including 9 affected individuals was studied. Whole-exome sequencing (WES), coupling the Agilent whole-exome capture system to the Illumina HiSeq 2000 DNA sequencing platform was used to search the specific gene mutation in 3 affected family members and 1 unaffected member. After a suggested variant was found through the data analysis, the putative mutation was validated by Sanger DNA sequencing of samples from all available family members. RESULTS The results of both WES and Sanger sequencing revealed a novel nonsense mutation c.C766T (p.Q256X) within exon 5 of CRX gene which was pathogenic for adCORD in this family. The mutation could affect photoreceptor-specific gene expression with a dominant-negative effect and resulted in loss of the OTX tail, thus the mutant protein occupies the CRX-binding site in target promoters without establishing an interaction and, consequently, may block transactivation. CONCLUSION All modes of Mendelian inheritance in CORD have been observed, and genetic heterogeneity is a hallmark of CORD. Therefore, conventional genetic diagnosis of CORD would be time-consuming and labor-intensive. Our study indicated the robustness and cost-effectiveness of WES in the genetic diagnosis of CORD.
Collapse
Affiliation(s)
- Qin-Kang Lu
- Ophthalmology Center, Yinzhou People's Hospital, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Na Zhao
- Ophthalmology Center, Yinzhou People's Hospital, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Ya-Su Lv
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Wei-Kun Gong
- Ophthalmology Center, Yinzhou People's Hospital, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Hui-Yun Wang
- Ophthalmology Center, Yinzhou People's Hospital, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Qi-Hu Tong
- Ophthalmology Center, Yinzhou People's Hospital, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Xiao-Ming Lai
- Ophthalmology Center, Yinzhou People's Hospital, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Rong-Rong Liu
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Ming-Yan Fang
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| | - Jian-Guo Zhang
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| | - Zhen-Fang Du
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Xian-Ning Zhang
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
41
|
Kostic C, Arsenijevic Y. Animal modelling for inherited central vision loss. J Pathol 2015; 238:300-10. [PMID: 26387748 PMCID: PMC5063185 DOI: 10.1002/path.4641] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.
Collapse
Affiliation(s)
- Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| |
Collapse
|
42
|
Jiang F, Xu K, Zhang X, Xie Y, Bai F, Li Y. GUCY2D mutations in a Chinese cohort with autosomal dominant cone or cone–rod dystrophies. Doc Ophthalmol 2015; 131:105-14. [DOI: 10.1007/s10633-015-9509-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
|
43
|
Boye SL, Peterson JJ, Choudhury S, Min SH, Ruan Q, McCullough KT, Zhang Z, Olshevskaya EV, Peshenko IV, Hauswirth WW, Ding XQ, Dizhoor AM, Boye SE. Gene Therapy Fully Restores Vision to the All-Cone Nrl(-/-) Gucy2e(-/-) Mouse Model of Leber Congenital Amaurosis-1. Hum Gene Ther 2015; 26:575-92. [PMID: 26247368 DOI: 10.1089/hum.2015.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in GUCY2D are the cause of Leber congenital amaurosis type 1 (LCA1). GUCY2D encodes retinal guanylate cyclase-1 (retGC1), a protein expressed exclusively in outer segments of photoreceptors and essential for timely recovery from photoexcitation. Recent clinical data show that, despite a high degree of visual disturbance stemming from a loss of cone function, LCA1 patients retain normal photoreceptor architecture, except for foveal cone outer segment abnormalities and, in some patients, foveal cone loss. These results point to the cone-rich central retina as a target for GUCY2D replacement. LCA1 gene replacement studies thus far have been conducted in rod-dominant models (mouse) or with vectors and organisms lacking clinical translatability. Here we investigate gene replacement in the Nrl(-/-) Gucy2e(-/-) mouse, an all-cone model deficient in retGC1. We show that AAV-retGC1 treatment fully restores cone function, cone-mediated visual behavior, and guanylate cyclase activity, and preserves cones in treated Nrl(-/-) Gucy2e(-/-) mice over the long-term. A novel finding was that retinal function could be restored to levels above that in Nrl(-/-) controls, contrasting results in other models of retGC1 deficiency. We attribute this to increased cyclase activity in treated Nrl(-/-) Gucy2e(-/-) mice relative to Nrl(-/-) controls. Thus, Nrl(-/-) Gucy2e(-/-) mice possess an expanded dynamic range in ERG response to gene replacement relative to other models. Lastly, we show that a candidate clinical vector, AAV5-GRK1-GUCY2D, when delivered to adult Nrl(-/-) Gucy2e(-/-) mice, restores retinal function that persists for at least 6 months. Our results provide strong support for clinical application of a gene therapy targeted to the cone-rich, central retina of LCA1 patients.
Collapse
Affiliation(s)
- Sanford L Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - James J Peterson
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Shreyasi Choudhury
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Seok Hong Min
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Qing Ruan
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - K Tyler McCullough
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Zhonghong Zhang
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Elena V Olshevskaya
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - Igor V Peshenko
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - William W Hauswirth
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Xi-Qin Ding
- 3 Department of Cell Biology, College of Medicine, University of Oklahoma , Oklahoma City, Oklahoma
| | - Alexander M Dizhoor
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - Shannon E Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
44
|
Boulanger-Scemama E, El Shamieh S, Démontant V, Condroyer C, Antonio A, Michiels C, Boyard F, Saraiva JP, Letexier M, Souied E, Mohand-Saïd S, Sahel JA, Zeitz C, Audo I. Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation. Orphanet J Rare Dis 2015; 10:85. [PMID: 26103963 PMCID: PMC4566196 DOI: 10.1186/s13023-015-0300-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 06/15/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cone and cone-rod dystrophies are clinically and genetically heterogeneous inherited retinal disorders with predominant cone impairment. They should be distinguished from the more common group of rod-cone dystrophies (retinitis pigmentosa) due to their more severe visual prognosis with early central vision loss. The purpose of our study was to document mutation spectrum of a large French cohort of cone and cone-rod dystrophies. Methods We applied Next-Generation Sequencing targeting a panel of 123 genes implicated in retinal diseases to 96 patients. A systematic filtering approach was used to identify likely disease causing variants, subsequently confirmed by Sanger sequencing and co-segregation analysis when possible. Results Overall, the likely causative mutations were detected in 62.1 % of cases, revealing 33 known and 35 novel mutations. This rate was higher for autosomal dominant (100 %) than autosomal recessive cases (53.8 %). Mutations in ABCA4 and GUCY2D were responsible for 19.2 % and 29.4 % of resolved cases with recessive and dominant inheritance, respectively. Furthermore, unexpected genotype-phenotype correlations were identified, confirming the complexity of inherited retinal disorders with phenotypic overlap between cone-rod dystrophies and other retinal diseases. Conclusions In summary, this time-efficient approach allowed mutation detection in the most important cohort of cone-rod dystrophies investigated so far covering the largest number of genes. Association of known gene defects with novel phenotypes and mode of inheritance were established. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0300-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elise Boulanger-Scemama
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Said El Shamieh
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Vanessa Démontant
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Christel Condroyer
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Aline Antonio
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, F-75012, France
| | - Christelle Michiels
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Fiona Boyard
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Jean-Paul Saraiva
- IntegraGen SA, Genopole CAMPUS 1 bat G8 FR-91030 EVRY, Paris, France
| | - Mélanie Letexier
- IntegraGen SA, Genopole CAMPUS 1 bat G8 FR-91030 EVRY, Paris, France
| | - Eric Souied
- Centre Hospitalier Intercommunal de Créteil, Department of Ophthalmology, Université Paris-Est Créteil, 94000, Créteil, France
| | - Saddek Mohand-Saïd
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, F-75012, France
| | - José-Alain Sahel
- INSERM, U968, Paris, F-75012, France.,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, F-75012, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019, Paris, France.,Académie des Sciences-Institut de France, 75006, Paris, France.,University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Christina Zeitz
- INSERM, U968, Paris, F-75012, France. .,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France. .,CNRS, UMR_7210, Paris, F-75012, France.
| | - Isabelle Audo
- INSERM, U968, Paris, F-75012, France. .,Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, 17, rue Moreau, Paris, F-75012, France. .,CNRS, UMR_7210, Paris, F-75012, France. .,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, F-75012, France. .,University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
45
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface. J Biol Chem 2015; 290:19584-96. [PMID: 26100624 DOI: 10.1074/jbc.m115.661371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 01/11/2023] Open
Abstract
The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823).
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander M Dizhoor
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
46
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Evaluating the role of retinal membrane guanylyl cyclase 1 (RetGC1) domains in binding guanylyl cyclase-activating proteins (GCAPs). J Biol Chem 2015; 290:6913-24. [PMID: 25616661 PMCID: PMC4358116 DOI: 10.1074/jbc.m114.629642] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/21/2015] [Indexed: 12/17/2022] Open
Abstract
Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase-activating proteins (GCAPs) controls photoreceptor recovery and when mutated causes blinding disorders. We evaluated the principal models of how GCAP1 and GCAP2 bind RetGC1: through a shared docking interface versus independent binding sites formed by distant portions of the cyclase intracellular domain. At near-saturating concentrations, GCAP1 and GCAP2 activated RetGC1 from HEK293 cells and RetGC2(-/-)GCAPs1,2(-/-) mouse retinas in a non-additive fashion. The M26R GCAP1, which binds but does not activate RetGC1, suppressed activation of recombinant and native RetGC1 by competing with both GCAP1 and GCAP2. Untagged GCAP1 displaced both GCAP1-GFP and GCAP2-GFP from the complex with RetGC1 in HEK293 cells. The intracellular segment of a natriuretic peptide receptor A guanylyl cyclase failed to bind GCAPs, but replacing its kinase homology and dimerization domains with those from RetGC1 restored GCAP1 and GCAP2 binding by the hybrid cyclase and its GCAP-dependent regulation. Deletion of the Tyr(1016)-Ser(1103) fragment in RetGC1 did not block GCAP2 binding to the cyclase. In contrast, substitutions in the kinase homology domain, W708R and I734T, linked to Leber congenital amaurosis prevented binding of both GCAP1-GFP and GCAP2-GFP. Our results demonstrate that GCAPs cannot regulate RetGC1 using independent primary binding sites. Instead, GCAP1 and GCAP2 bind with the cyclase molecule in a mutually exclusive manner using a common or overlapping binding site(s) in the Arg(488)-Arg(851) portion of RetGC1, and mutations in that region causing Leber congenital amaurosis blindness disrupt activation of the cyclase by both GCAP1 and GCAP2.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander M Dizhoor
- From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
47
|
Schultz JE, Kanchan K, Ziegler M. Intraprotein signal transduction by HAMP domains: a balancing act. Int J Med Microbiol 2014; 305:243-51. [PMID: 25595022 DOI: 10.1016/j.ijmm.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HAMP domains are small protein modules that predominantly operate as signal transducers in bacterial sensor proteins most of which are membrane delimited. The domain organization of such sensors has the HAMPs localized at the intersection between the membrane-anchored input sensor and the cytosolic output machinery. The data summarized here indicate that HAMP modules use a universal signaling language in balancing the communication between diverse membrane-bound input domains and cytosolic output domains that are completely foreign to each other.
Collapse
Affiliation(s)
- Joachim E Schultz
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen H 4032, Hungary
| | - Miriam Ziegler
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Lazar CH, Mutsuddi M, Kimchi A, Zelinger L, Mizrahi-Meissonnier L, Marks-Ohana D, Boleda A, Ratnapriya R, Sharon D, Swaroop A, Banin E. Whole exome sequencing reveals GUCY2D as a major gene associated with cone and cone-rod dystrophy in Israel. Invest Ophthalmol Vis Sci 2014; 56:420-30. [PMID: 25515582 DOI: 10.1167/iovs.14-15647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The Israeli population has a unique genetic make-up, with a high prevalence of consanguineous marriages and autosomal recessive diseases. In rod-dominated phenotypes, disease-causing genes and mutations that differ from those identified in other populations often are incurred. We used whole exome sequencing (WES) to identify genetic defects in Israeli families with cone-dominated retinal phenotypes. METHODS Clinical analysis included family history, detailed ocular examination, visual function testing, and retinal imaging. Whole exome sequencing, followed by segregation analysis, was performed in 6 cone-dominated retinopathy families in which prior mutation analysis did not reveal the causative gene. Based on the WES findings, we screened 106 additional families with cone-dominated phenotypes. RESULTS The WES analysis revealed mutations in known retinopathy genes in five of the six families: two pathogenic mutations in the GUCY2D gene in three families, and one each in CDHR1 and C8orf37. Targeted screening of additional cone-dominated families led to identification of GUCY2D mutations in four other families, which included two highly probable novel disease-causing variants. CONCLUSIONS Our study suggested that GUCY2D is a major cause of autosomal dominant cone and cone-rod dystrophies in Israel; this is similar to other Caucasian populations and is in contrast with retinitis pigmentosa (primary rod disease), where the genetic make-up of the Israeli population is distinct from other ethnic groups. We also conclude that WES permits more comprehensive and rapid analyses that can be followed by targeted screens of larger samples to delineate the genetic structure of retinal disease in unique population cohorts.
Collapse
Affiliation(s)
- Csilla H Lazar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, Romania
| | - Mousumi Mutsuddi
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Adva Kimchi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lina Zelinger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Devorah Marks-Ohana
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alexis Boleda
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Eyal Banin
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
49
|
Abstract
The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging.
Collapse
Affiliation(s)
- Gökhan Gün
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, Neustadt, Germany
- Molecular Biology & Genetics, Istanbul Technical University, Istanbul, Turkey
- Histology and Embryology Department, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Wilfried A. Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, Neustadt, Germany
| |
Collapse
|
50
|
Sharma RK, Duda T. Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. Front Mol Neurosci 2014; 7:56. [PMID: 25071437 PMCID: PMC4079103 DOI: 10.3389/fnmol.2014.00056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/30/2014] [Indexed: 12/22/2022] Open
Abstract
A sequel to these authors' earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC) from its origin to the year 2010, this article contains 13 sections. The first is historical and covers MGC from the year 1963–1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its biochemical identity. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its expansion. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of phototransduction. Sections ROS-GC, a Ca2+-Modulated Two Component Transduction System to Migration Patterns and Translations of the GCAP Signals Into Production of Cyclic GMP are Different cover its biochemistry and physiology. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Section ROS-GC1 Gene Linked Retinal Dystrophies demonstrates how this knowledge begins to be translated into the diagnosis and providing the molecular definition of retinal dystrophies. Section Controlled By Low and High Levels of [Ca2+]i, ROS-GC1 is a Bimodal Transduction Switch discusses a striking property of ROS-GC where it becomes a “[Ca2+]i bimodal switch” and transcends its signaling role in other neural processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cyclase activator), the S100B protein, is made. It extends the role of the ROS-GC transduction system beyond the phototransduction to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in section Ca2+-Modulated Neurocalcin δ ROS-GC1 Transduction System Exists in the Inner Plexiform Layer (IPL) of the Retinal Neurons, discovery of another CD-GCAP, NCδ, is made and its linkage with signaling of the inner plexiform layer neurons is established. Section ROS-GC Linkage With Other Than Vision-Linked Neurons discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the next, section Evolution of a General Ca2+-Interlocked ROS-GC Signal Transduction Concept in Sensory and Sensory-Linked Neurons, a theoretical concept is proposed where “Ca2+-interlocked ROS-GC signal transduction” machinery becomes a common signaling component of the sensory and sensory-linked neurons. Closure to the review is brought by the conclusion and future directions.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|