1
|
Leow DMK, Ng YK, Wang LC, Koh HW, Zhao T, Khong ZJ, Tabaglio T, Narayanan G, Giadone RM, Sobota RM, Ng SY, Teo AKK, Parson SH, Rubin LL, Ong WY, Darras BT, Yeo CJ. Hepatocyte-intrinsic SMN deficiency drives metabolic dysfunction and liver steatosis in spinal muscular atrophy. J Clin Invest 2024; 134:e173702. [PMID: 38722695 PMCID: PMC11178536 DOI: 10.1172/jci173702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
Spinal muscular atrophy (SMA) is typically characterized as a motor neuron disease, but extraneuronal phenotypes are present in almost every organ in severely affected patients and animal models. Extraneuronal phenotypes were previously underappreciated, as patients with severe SMA phenotypes usually died in infancy; however, with current treatments for motor neurons increasing patient lifespan, impaired function of peripheral organs may develop into significant future comorbidities and lead to new treatment-modified phenotypes. Fatty liver is seen in SMA animal models, but generalizability to patients and whether this is due to hepatocyte-intrinsic survival motor neuron (SMN) protein deficiency and/or subsequent to skeletal muscle denervation is unknown. If liver pathology in SMA is SMN dependent and hepatocyte intrinsic, this suggests SMN-repleting therapies must target extraneuronal tissues and motor neurons for optimal patient outcome. Here, we showed that fatty liver is present in SMA patients and that SMA patient-specific induced pluripotent stem cell-derived hepatocyte-like cells were susceptible to steatosis. Using proteomics, functional studies, and CRISPR/Cas9 gene editing, we confirmed that fatty liver in SMA is a primary SMN-dependent hepatocyte-intrinsic liver defect associated with mitochondrial and other hepatic metabolism implications. These pathologies require monitoring and indicate the need for systematic clinical surveillance and additional and/or combinatorial therapies to ensure continued SMA patient health.
Collapse
Affiliation(s)
- Damien Meng-Kiat Leow
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yang Kai Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | - Hiromi W.L. Koh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | - Zi Jian Khong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | | | - Richard M. Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge Massachusetts, USA
| | - Radoslaw M. Sobota
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | - Shi-Yan Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
| | - Simon H. Parson
- Institute of Education in Healthcare and Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge Massachusetts, USA
| | - Wei-Yi Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Basil T. Darras
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Crystal J.J. Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Institute of Education in Healthcare and Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Kordala AJ, Stoodley J, Ahlskog N, Hanifi M, Garcia Guerra A, Bhomra A, Lim WF, Murray LM, Talbot K, Hammond SM, Wood MJA, Rinaldi C. PRMT inhibitor promotes SMN2 exon 7 inclusion and synergizes with nusinersen to rescue SMA mice. EMBO Mol Med 2023; 15:e17683. [PMID: 37724723 PMCID: PMC10630883 DOI: 10.15252/emmm.202317683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Collapse
Affiliation(s)
- Anna J Kordala
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Jessica Stoodley
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Nina Ahlskog
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | | | - Antonio Garcia Guerra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Amarjit Bhomra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Wooi Fang Lim
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
- Euan McDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | | | - Matthew JA Wood
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| | - Carlo Rinaldi
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| |
Collapse
|
3
|
Liu Y, Iqbal A, Li W, Ni Z, Wang Y, Ramprasad J, Abraham KJ, Zhang M, Zhao DY, Qin S, Loppnau P, Jiang H, Guo X, Brown PJ, Zhen X, Xu G, Mekhail K, Ji X, Bedford MT, Greenblatt JF, Min J. A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II. Nat Commun 2022; 13:5453. [PMID: 36114190 PMCID: PMC9481570 DOI: 10.1038/s41467-022-33229-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.
Collapse
Affiliation(s)
- Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
| | - Aman Iqbal
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Weiguo Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jurupula Ramprasad
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Karan Joshua Abraham
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mengmeng Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | | | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xingyue Ji
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
5
|
Alerasool N, Leng H, Lin ZY, Gingras AC, Taipale M. Identification and functional characterization of transcriptional activators in human cells. Mol Cell 2022; 82:677-695.e7. [PMID: 35016035 DOI: 10.1016/j.molcel.2021.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Transcription is orchestrated by thousands of transcription factors (TFs) and chromatin-associated proteins, but how these are causally connected to transcriptional activation is poorly understood. Here, we conduct an unbiased proteome-scale screen to systematically uncover human proteins that activate transcription in a natural chromatin context. By combining interaction proteomics and chemical inhibitors, we delineate the preference of these transcriptional activators for specific co-activators, highlighting how even closely related TFs can function via distinct cofactors. We also identify potent transactivation domains among the hits and use AlphaFold2 to predict and experimentally validate interaction interfaces of two activation domains with BRD4. Finally, we show that many novel activators are partners in fusion events in tumors and functionally characterize a myofibroma-associated fusion between SRF and C3orf62, a potent p300-dependent activator. Our work provides a functional catalog of potent transactivators in the human proteome and a platform for discovering transcriptional regulators at genome scale.
Collapse
Affiliation(s)
- Nader Alerasool
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - He Leng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
6
|
Jha NN, Kim JK, Monani UR. Motor neuron biology and disease: A current perspective on infantile-onset spinal muscular atrophy. FUTURE NEUROLOGY 2018; 13:161-172. [PMID: 31396020 DOI: 10.2217/fnl-2018-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infantile-onset spinal muscular atrophy (SMA) is a prototypical disease in which to investigate selective neurodegenerative phenotypes. Caused by low levels of the ubiquitously expressed Survival Motor Neuron (SMN) protein, the disease mainly targets the spinal motor neurons. This selective phenotype remains largely unexplained, but has not hindered the development of SMN repletion as a means to a treatment. Here we chronicle recent advances in the area of SMA biology. We provide a brief background to the disease, highlight major advances that have shaped our current understanding of SMA, trace efforts to treat the condition, discuss the outcome of two promising new therapies and conclude by considering contemporary as well as new challenges stemming from recent successes within the field.
Collapse
Affiliation(s)
- Narendra N Jha
- Department of Pathology & Cell Biology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Center for Motor Neuron Biology & Disease, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032
| | - Jeong-Ki Kim
- Department of Pathology & Cell Biology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Center for Motor Neuron Biology & Disease, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032
| | - Umrao R Monani
- Department of Pathology & Cell Biology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Department of Neurology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Center for Motor Neuron Biology & Disease, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
7
|
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations/deletions within the survival of motor neuron 1 (SMN1) gene that lead to a pathological reduction of SMN protein levels. SMN is part of a multiprotein complex, functioning as a molecular chaperone that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNP). In addition to its role in spliceosome formation, SMN has also been found to interact with mRNA-binding proteins (mRBPs), and facilitate their assembly into mRNP transport granules. The association of protein and RNA in RNP complexes plays an important role in an extensive and diverse set of cellular processes that regulate neuronal growth, differentiation, and the maturation and plasticity of synapses. This review discusses the role of SMN in RNP assembly and localization, focusing on molecular defects that affect mRNA processing and may contribute to SMA pathology.
Collapse
|
8
|
Rodriguez-Muela N, Litterman NK, Norabuena EM, Mull JL, Galazo MJ, Sun C, Ng SY, Makhortova NR, White A, Lynes MM, Chung WK, Davidow LS, Macklis JD, Rubin LL. Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease. Cell Rep 2017; 18:1484-1498. [PMID: 28178525 DOI: 10.1016/j.celrep.2017.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 11/09/2016] [Accepted: 01/15/2017] [Indexed: 12/29/2022] Open
Abstract
The mechanism underlying selective motor neuron (MN) death remains an essential question in the MN disease field. The MN disease spinal muscular atrophy (SMA) is attributable to reduced levels of the ubiquitous protein SMN. Here, we report that SMN levels are widely variable in MNs within a single genetic background and that this heterogeneity is seen not only in SMA MNs but also in MNs derived from controls and amyotrophic lateral sclerosis (ALS) patients. Furthermore, cells with low SMN are more susceptible to cell death. These findings raise the important clinical implication that some SMN-elevating therapeutics might be effective in MN diseases besides SMA. Supporting this, we found that increasing SMN across all MN populations using an Nedd8-activating enzyme inhibitor promotes survival in both SMA and ALS-derived MNs. Altogether, our work demonstrates that examination of human neurons at the single-cell level can reveal alternative strategies to be explored in the treatment of degenerative diseases.
Collapse
Affiliation(s)
- Natalia Rodriguez-Muela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Nadia K Litterman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Erika M Norabuena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jesse L Mull
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Maria José Galazo
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Chicheng Sun
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shi-Yan Ng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nina R Makhortova
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Andrew White
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Maureen M Lynes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Lance S Davidow
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
10
|
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The disease originates from low levels of SMN protein due to deletion and/or mutations of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1. While SMN1 and SMN2 are nearly identical, SMN2 predominantly generates a truncated protein (SMNΔ7) due to skipping of exon 7, the last coding exon. Several avenues for SMA therapy are being explored, including means to enhance SMN2 transcription, correct SMN2 exon 7 splicing, stabilize SMN/SMNΔ7 protein, manipulate SMN-regulated pathways and SMN1 gene delivery by viral vectors. This review focuses on the aspects of target discovery, validations and outcome measures for a promising therapy of SMA.
Collapse
|
11
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
12
|
Cucchiarini M, Madry H, Terwilliger EF. Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J Cell Mol Med 2013; 18:115-24. [PMID: 24237934 PMCID: PMC3916123 DOI: 10.1111/jcmm.12170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/19/2013] [Indexed: 01/24/2023] Open
Abstract
The identification of new components implicated in the pathogenesis of osteoarthritis (OA) might improve our understanding of the disease process. Here, we investigated the levels of the survival of motor neuron (SMN) expression in OA cartilage considering the fundamental role of the SMN protein in cell survival and its involvement in other stress-associated pathologies. We report that SMN expression is up-regulated in human OA compared with normal cartilage, showing a strong correlation with the disease severity, a result confirmed in vivo in an experimental model of the disease. We further show that the prominent inflammatory cytokines (IL-1β, TNF-α) are critical inducers of SMN expression. This is in marked contrast with the reported impaired levels of SMN in spinal muscular atrophy, a single inherited neuromuscular disorder characterized by mutations in the smn gene whereas OA is a complex disease with multiple aetiologies. While the precise functions of SMN during OA remain to be elucidated, the conclusions of this study shed light on a novel pathophysiological pathway involved in the progression of OA, potentially offering new targets for therapy.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | | |
Collapse
|
13
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Seo J, Howell MD, Singh NN, Singh RN. Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2180-90. [PMID: 23994186 DOI: 10.1016/j.bbadis.2013.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/27/2013] [Accepted: 08/14/2013] [Indexed: 12/24/2022]
Abstract
Humans have two nearly identical copies of survival motor neuron gene: SMN1 and SMN2. Deletion or mutation of SMN1 combined with the inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA affects 1 in ~6000 live births, a frequency much higher than in several genetic diseases. The major known defect of SMN2 is the predominant exon 7 skipping that leads to production of a truncated protein (SMNΔ7), which is unstable. Therefore, SMA has emerged as a model genetic disorder in which almost the entire disease population could be linked to the aberrant splicing of a single exon (i.e. SMN2 exon 7). Diverse treatment strategies aimed at improving the function of SMN2 have been envisioned. These strategies include, but are not limited to, manipulation of transcription, correction of aberrant splicing and stabilization of mRNA, SMN and SMNΔ7. This review summarizes up to date progress and promise of various in vivo studies reported for the treatment of SMA.
Collapse
Affiliation(s)
- Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
15
|
Goulet BB, McFall ER, Wong CM, Kothary R, Parks RJ. Supraphysiological expression of survival motor neuron protein from an adenovirus vector does not adversely affect cell function. Biochem Cell Biol 2013; 91:252-64. [DOI: 10.1139/bcb-2012-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the most common inherited neurodegenerative disease that leads to infant mortality. It is caused by mutations in the survival motor neuron (SMN) protein resulting in death of alpha motor neurons. Increasing evidence suggests that several other tissues are also affected in SMA, including skeletal and cardiac muscle, liver, and pancreas, indicating that systemic delivery of therapeutics may be necessary for true disease correction. Due to the natural biodistribution of therapeutics, a level of SMN several-fold above physiological levels can be achieved in some tissues. In this study, we address whether supraphysiological levels of SMN adversely affects cell function. Infection of a variety of cell types with an adenovirus (Ad) vector encoding SMN leads to very high expression, but the resulting protein correctly localizes within the cell, and associates with normal cellular partners. Although SMN affects transcription of certain target genes and can alter the splicing pattern of others, we did not observe any difference in select target gene splicing or expression in cells overexpressing SMN. However, normal human fibroblasts treated with Ad-SMN showed a slight reduction in growth rate, suggesting that certain cell types may be differently impacted by high levels of SMN.
Collapse
Affiliation(s)
- Benoit B. Goulet
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emily R. McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmen M. Wong
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Nurputra DK, Lai PS, Harahap NIF, Morikawa S, Yamamoto T, Nishimura N, Kubo Y, Takeuchi A, Saito T, Takeshima Y, Tohyama Y, Tay SKH, Low PS, Saito K, Nishio H. Spinal muscular atrophy: from gene discovery to clinical trials. Ann Hum Genet 2013; 77:435-63. [PMID: 23879295 DOI: 10.1111/ahg.12031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/26/2013] [Indexed: 12/25/2022]
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000-10,000 newborns with a carrier frequency of 1 in 40-60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population-wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2-targeting, SMN1-introduction, and non-SMN targeting. Here, we provide a comprehensive and up-to-date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.
Collapse
Affiliation(s)
- Dian K Nurputra
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Balabanian S, Gendron NH, MacKenzie AE. Histologic and transcriptional assessment of a mild SMA model. Neurol Res 2013; 29:413-24. [PMID: 17535551 DOI: 10.1179/016164107x159243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by survival of motor neuron (SMN) deficiency, leading to specific motor neuron attrition. The time course and molecular pathophysiologic etiology of motor neuron loss observed in SMA remains obscure. Mice heterozygous for Smn show up to 50% motor neuron attrition by 6 months of age and are used as a model for mild SMA in humans. To determine both the rate of cellular loss and the molecular events underlying motor neuron degeneration in SMA, motor neuron counts and mRNA quantification were performed in spinal cords of Smn(+/-) mice and wild-type littermates. Surprisingly, despite the chronic, subclinical nature of motor neuron loss, we find that the bulk of the loss occurs by 5 weeks of age. RNA isolated from the spinal cords of 5 week-old Smn(+/-) mice subjected to microarray analysis reveal alterations in genes involved in RNA metabolism, apoptosis and transcriptional regulation including a general perturbation of transcripts coding for calcium binding proteins. A subset of these changes in expression was further characterized by semi-quantitative RT-PCR and Western blot analysis at various time points. Taken together, these results indicate that spinal cord cells present the first signs of the apoptotic process consistent with a response to the stress of Smn depletion. A picture of comparatively rapid neuronal attrition in spite of the very mild nature of SMA is obtained. Furthermore, changes occur, which may be reactive to and not causative of the cellular loss, involving central cellular functions as well as calcium modulating proteins.
Collapse
|
18
|
Förthmann B, Brinkmann H, Ratzka A, Stachowiak MK, Grothe C, Claus P. Immobile survival of motoneuron (SMN) protein stored in Cajal bodies can be mobilized by protein interactions. Cell Mol Life Sci 2013; 70:2555-68. [PMID: 23334184 PMCID: PMC11113639 DOI: 10.1007/s00018-012-1242-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 12/25/2022]
Abstract
Reduced levels of survival of motoneuron (SMN) protein lead to spinal muscular atrophy, but it is still unknown how SMN protects motoneurons in the spinal cord against degeneration. In the nucleus, SMN is associated with two types of nuclear bodies denoted as gems and Cajal bodies (CBs). The 23 kDa isoform of fibroblast growth factor-2 (FGF-2(23)) is a nuclear protein that binds to SMN and destabilizes the SMN-Gemin2 complex. In the present study, we show that FGF-2(23) depletes SMN from CBs without affecting their general structure. FRAP analysis of SMN-EGFP in CBs demonstrated that the majority of SMN in CBs remained mobile and allowed quantification of fast, slow and immobile nuclear SMN populations. The potential for SMN release was confirmed by in vivo photoconversion of SMN-Dendra2, indicating that CBs concentrate immobile SMN that could have a specialized function in CBs. FGF-2(23) accelerated SMN release from CBs, accompanied by a conversion of immobile SMN into a mobile population. Furthermore, FGF-2(23) caused snRNP accumulation in CBs. We propose a model in which Cajal bodies store immobile SMN that can be mobilized by its nuclear interaction partner FGF-2(23), leading to U4 snRNP accumulation in CBs, indicating a role for immobile SMN in tri-snRNP assembly.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, NY 14214 USA
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| |
Collapse
|
19
|
Bottai D, Adami R. Spinal muscular atrophy: new findings for an old pathology. Brain Pathol 2013; 23:613-22. [PMID: 23750936 DOI: 10.1111/bpa.12071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022] Open
Abstract
Understanding the events that are responsible for a disease is mandatory for setting up a therapeutic strategy. Although spinal muscular atrophy (SMA) is considered a rare neurodegenerative pathology, its impact in our society is really devastating as it strikes young people from birth onward, and it affects their families either emotionally or financially. Moreover, it requires intensive care for the children, and this diverts both parents and relatives from their occupations. Each neuron is very different from one another; therefore, in a neurodegenerative disease, the population of axons, synapses and cell bodies degenerate asynchronously, and subpopulations of neurons have different vulnerabilities. The knowledge of the sequence of events along the lengths of individual neurons is crucial to understand if each synapse degenerates before the corresponding axon, or if each axon degenerates before the corresponding cell body. Early degeneration of one neuronal compartment in disease often reflects molecular defects somewhere else. Up until now, SMA is considered mostly a lower motor neuron disease caused by the loss-of-function mutations in the SMN1 gene; here, we inspect other features that can be altered by this defect, such as the cross talk between muscle and motor neuron and the role of physical inactivity.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Science Health, University of Milan, Milano, Italy
| | | |
Collapse
|
20
|
Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity. Eur J Hum Genet 2013; 21:988-93. [PMID: 23299920 DOI: 10.1038/ejhg.2012.293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 11/08/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic disorder that is subdivided into four different types and caused by survival motor neuron gene 1 (SMN1) deletion. Discordant cases of SMA suggest that there exist additional severity modifying factors, apart from the SMN2 gene copy number. Here we performed the first genome-wide methylation profiling of SMA patients and healthy individuals to study the association of DNA methylation status with the severity of the SMA phenotype. We identified strong significant differences in methylation level between SMA patients and healthy controls in CpG sites close to the genes CHML, ARHGAP22, CYTSB, CDK2AP1 and SLC23A2. Interestingly, the CHML and ARHGAP22 genes are associated with the activity of Rab and Rho GTPases, which are important regulators of vesicle formation, actin dynamics, axonogenesis, processes that could be critical for SMA development. We suggest that epigenetic modifications may influence the severity of SMA and that these novel genetic positions could prove to be valuable biomarkers for the understanding of SMA pathogenesis.
Collapse
|
21
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
22
|
Singh NN, Seo J, Rahn SJ, Singh RN. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. PLoS One 2012. [PMID: 23185376 PMCID: PMC3501452 DOI: 10.1371/journal.pone.0049595] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Humans have two near identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 coupled with the predominant skipping of SMN2 exon 7 causes spinal muscular atrophy (SMA), a neurodegenerative disease. SMA patient cells devoid of SMN1 provide a powerful system to examine splicing pattern of various SMN2 exons. Until now, similar system to examine splicing of SMN1 exons was unavailable. We have recently screened several patient cell lines derived from various diseases, including SMA, Alzheimer’s disease, Parkinson’s disease and Batten disease. Here we report a Batten disease cell line that lacks functional SMN2, as an ideal system to examine pre-mRNA splicing of SMN1. We employ a multiple-exon-skipping detection assay (MESDA) to capture simultaneously skipping of multiple exons. Our results show surprising diversity of splice isoforms and reveal novel splicing events that include skipping of exon 4 and co-skipping of three adjacent exons of SMN. Contrary to the general belief, MESDA captured oxidative-stress induced skipping of SMN1 exon 5 in several cell types, including non-neuronal cells. We further demonstrate that the predominant SMN2 exon 7 skipping induced by oxidative stress is modulated by a combinatorial control that includes promoter sequence, endogenous context, and the weak splice sites. We also show that an 8-mer antisense oligonucleotide blocking a recently described GC-rich sequence prevents SMN2 exon 7 skipping under the conditions of oxidative stress. Our findings bring new insight into splicing regulation of an essential housekeeping gene linked to neurodegeneration and infant mortality.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sarah J. Rahn
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
23
|
Singh NN, Singh RN. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model. RNA Biol 2011; 8:600-6. [PMID: 21654213 DOI: 10.4161/rna.8.4.16224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene: SMN1 and SMN2. The two SMN genes code for identical proteins; however, SMN2 predominantly generates a shorter transcript due to skipping of exon 7, the last coding exon. Skipping of SMN2 exon 7 leads to production of a truncated SMN protein that is highly unstable. The inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), the second most prevalent genetic cause of infant mortality. Since SMN2 is almost universally present in SMA patients, correction of SMN2 exon 7 splicing holds the promise for cure. Consistently, SMN2 exon 7 splicing has emerged as one of the best studied splicing systems in humans. The vast amount of recent literature provides a clue that SMN2 exon 7 splicing is regulated by an intron definition mechanism, which does not require cross-exon communication as prerequisite for exon inclusion. Our conclusion is based on the prominent role of intronic cis-elements, some of them have emerged as the frontrunners among potential therapeutic targets of SMA. Further, the widely expressed T-cell-restricted intracellular antigen-1 (TIA1), a member of the Q-rich domain containing RNA-binding proteins, has recently been found to regulate SMN exon 7 splicing by binding to intron 7 sequences away from the 5′ ss. These findings make a strong argument for an "intron definition model", according to which regulatory sequences within a downstream intron are capable of enforcing exon inclusion even in the absence of a defined upstream 3′ ss of an alternatively spliced exon.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences Iowa State University, Ames, IA, USA
| | | |
Collapse
|
24
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
25
|
Abstract
Motor neurons are large, highly polarised cells with very long axons and a requirement for precise spatial and temporal gene expression. Neurodegenerative disorders characterised by selective motor neuron vulnerability include various forms of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). A rapid expansion in knowledge on the pathophysiology of motor neuron degeneration has occurred in recent years, largely through the identification of genes leading to familial forms of ALS and SMA. The major emerging theme is that motor neuron degeneration can result from mutation in genes that encode factors important for ribonucleoprotein biogenesis and RNA processing, including splicing regulation, transcript stabilisation, translational repression and localisation of mRNA. Complete understanding of how these pathways interact and elucidation of specialised mechanisms for mRNA targeting and processing in motor neurons are likely to produce new targets for therapy in ALS and related disorders.
Collapse
|
26
|
Shafey D, Boyer JG, Bhanot K, Kothary R. Identification of novel interacting protein partners of SMN using tandem affinity purification. J Proteome Res 2010; 9:1659-69. [PMID: 20201562 DOI: 10.1021/pr9006987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the survival motor neuron (SMN) gene cause spinal muscular atrophy (SMA), a neuromuscular disease associated with muscle weakness that progresses to paralysis, respiratory distress, and ultimately death. Both neurons and muscle are severely affected in this disease. Tandem affinity purification (TAP) has emerged as a useful tool for studying protein complexes in vitro. We have used this purification system to discover novel SMN interacting partners in C2C12 muscle and PC12 neuronal cells. To do so, we fused a TAP-tag, consisting of a HIS hexamer and FLAG epitope separated by the tobacco etch virus (TEV) protease cleavage site, to either the N- or C-terminal region of SMN. Interestingly, the profile of SMN interacting proteins varies depending on the cell type and stage. We have identified a number of novel SMN interacting proteins in both C2C12 and PC12 cells, and from among these we have validated Annexin II and myosin regulatory light chain (MRLC). The discovery of these proteins will lead to a better understanding of the mechanisms underlying the pathophysiology of SMA.
Collapse
Affiliation(s)
- Dina Shafey
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
27
|
Bäumer D, Lee S, Nicholson G, Davies JL, Parkinson NJ, Murray LM, Gillingwater TH, Ansorge O, Davies KE, Talbot K. Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 2009; 5:e1000773. [PMID: 20019802 PMCID: PMC2787017 DOI: 10.1371/journal.pgen.1000773] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/16/2009] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT-PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival.
Collapse
Affiliation(s)
- Dirk Bäumer
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sheena Lee
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - George Nicholson
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Joanna L. Davies
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. Parkinson
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lyndsay M. Murray
- Centre for Integrative Physiology and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Thomas H. Gillingwater
- Centre for Integrative Physiology and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Olaf Ansorge
- Department of Neuropathology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kevin Talbot
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
28
|
Shanmugarajan S, Tsuruga E, Swoboda KJ, Maria BL, Ries WL, Reddy SV. Bone loss in survival motor neuron (Smn(-/-) SMN2) genetic mouse model of spinal muscular atrophy. J Pathol 2009; 219:52-60. [PMID: 19434631 DOI: 10.1002/path.2566] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spinal muscular atrophy (SMA) is characterized by degenerating lower motor neurons and an increased incidence of congenital bone fractures. Survival motor neuron (SMN) levels are significantly reduced due to deletions/mutations in the telomeric SMN1 gene in these patients. We utilized the Smn(-/-) SMN2 mouse model of SMA to determine the functional role for SMN in bone remodelling. microCT analysis of lumber vertebrae, tibia and femur bones from SMA mice revealed an osteoporotic bone phenotype. Histological analysis demonstrated a thin porous cortex of cortical bone and thin trabeculae at the proximal end of the growth plate in the vertebrae of SMA mice compared to wild-type mice. Histochemical staining of the vertebrae showed the presence of abundant activated osteoclasts on the sparse trabeculae and on the endosteal surface of the thin cortex in SMA mice. Histomorphometric analysis of vertebrae from SMA mice showed an increased number of osteoclasts. Serum TRAcP5b and urinary NTx levels were elevated, consistent with increased bone resorption in these mice. SMA mice showed a significant decrease in the levels of osteoblast differentiation markers, osteocalcin, osteopontin and osterix mRNA expression; however, there were no change in the levels of alkaline phosphatase expression compared to WT mice. SMA mouse bone marrow cultures revealed an increased rate of osteoclast formation (54%) and bone resorption capacity (46%) compared to WT mice. Pre-osteoclast cells from SMA mice showed constitutive up-regulation of RANK receptor signalling molecules critical for osteoclast differentiation. Our results implicate SMN function in bone remodelling and skeletal pathogenesis in SMA. Understanding basic mechanisms of SMN action in bone remodelling may uncover new therapeutic targets for preventing bone loss/fracture risk in SMA.
Collapse
|
29
|
Rossoll W, Bassell GJ. Spinal muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes. Results Probl Cell Differ 2009; 48:289-326. [PMID: 19343312 PMCID: PMC3718852 DOI: 10.1007/400_2009_4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease that results from loss of function of the SMN1 gene, encoding the ubiquitously expressed survival of motor neuron (SMN) protein, a protein best known for its housekeeping role in the SMN-Gemin multiprotein complex involved in spliceosomal small nuclear ribonucleoprotein (snRNP) assembly. However, numerous studies reveal that SMN has many interaction partners, including mRNA binding proteins and actin regulators, suggesting its diverse role as a molecular chaperone involved in mRNA metabolism. This review focuses on studies suggesting an important role of SMN in regulating the assembly, localization, or stability of axonal messenger ribonucleoprotein (mRNP) complexes. Various animal models for SMA are discussed, and phenotypes described that indicate a predominant function for SMN in neuronal development and synapse formation. These models have begun to be used to test different therapeutic strategies that have the potential to restore SMN function. Further work to elucidate SMN mechanisms within motor neurons and other cell types involved in neuromuscular circuitry hold promise for the potential treatment of SMA.
Collapse
Affiliation(s)
- Wilfried Rossoll
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
30
|
Search for cellular partners of human papillomavirus type 16 E2 protein. Arch Virol 2008; 153:983-90. [PMID: 18305892 DOI: 10.1007/s00705-008-0061-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/25/2008] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that infect cutaneous and mucosal epithelia. Type 16 (HPV16) displays tropism to genital epithelia, giving rise to genital warts and cervical intraepithelial neoplasia (CIN), which is a precursor lesion to invasive carcinoma of the cervix. The great majority of human cervical cancers contain integrated HPV DNA where the E2 gene is usually disrupted, suggesting that the loss of the E2 protein is an important step in HPV-induced carcinogenesis. The HPV16 E2 protein is a regulatory protein that seems to be essential for creating favourable conditions for establishment of infection and proper completion of the viral life cycle. Recently, diverse activities of the E2 proteins have been described, but the molecular basis of these processes has not beenfully elucidated. Using a yeast two-hybrid system, we have identified epithelial cellular proteins that bind to the E2 protein of HPV16.
Collapse
|
31
|
Abstract
Protein arginine methylation is a rapidly growing field of biomedical research that holds great promise for extending our understanding of developmental and pathological processes. Less than ten years ago, fewer than two dozen proteins were verified to contain methylarginine. Currently, however, hundreds of methylarginine proteins have been detected and many have been confirmed by mass spectrometry and other proteomic and molecular techniques. Several of these proteins are products of disease genes or are implicated in disease processes by recent experimental or clinical observations. The purpose of this chapter is twofold; (1) to re-examine the role of protein arginine methylation placed within the context of cell growth and differentiation, as well as within the rich variety of cellular metabolic methylation pathways and (2) to review the implications of recent advances in protein methylarginine detection and the analysis of protein methylarginine function for our understanding of human disease.
Collapse
|
32
|
Shanmugarajan S, Swoboda KJ, Iannaccone ST, Ries WL, Maria BL, Reddy SV. Congenital bone fractures in spinal muscular atrophy: functional role for SMN protein in bone remodeling. J Child Neurol 2007; 22:967-73. [PMID: 17761651 PMCID: PMC2787099 DOI: 10.1177/0883073807305664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal muscular atrophy is the second most common fatal childhood disorder. Core clinical features include muscle weakness caused by degenerating lower motor neurons and a high incidence of bone fractures and hypercalcemia. Fractures further compromise quality of life by progression of joint contractures or additional loss of motor function. Recent observations suggest that bone disease in spinal muscular atrophy may not be attributed entirely to lower motor neuron degeneration. The presence of the spinal muscular atrophy disease-determining survival motor neuron gene (SMN), SMN expression, and differential splicing in bone-resorbing osteoclasts was recently discovered. Its ubiquitous expression and the differential expression of splice variants suggest that SMN has specific roles in bone cell function. SMN protein also interacts with osteoclast stimulatory factor. Mouse models of human spinal muscular atrophy disease suggest a potential role of SMN protein in skeletal development. Dual energy x-ray absorptiometry analysis demonstrated a substantial decrease in total bone area and poorly developed caudal vertebra in the mouse model. These mice also had pelvic bone fractures. Studies delineating SMN signaling mechanisms and gene transcription in a cell-specific manner will provide important molecular insights into the pathogenesis of bone disease in children with spinal muscular atrophy. Moreover, understanding bone remodeling in spinal muscular atrophy may lead to novel therapeutic approaches to enhance skeletal health and quality of life. This article reviews the skeletal complications associated with spinal muscular atrophy and describes a functional role for SMN protein in osteoclast development and bone resorption activity.
Collapse
Affiliation(s)
- Srinivasan Shanmugarajan
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
33
|
Setola V, Terao M, Locatelli D, Bassanini S, Garattini E, Battaglia G. Axonal-SMN (a-SMN), a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis. Proc Natl Acad Sci U S A 2007; 104:1959-64. [PMID: 17261814 PMCID: PMC1794299 DOI: 10.1073/pnas.0610660104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease of childhood due to loss of the telomeric survival motor neuron gene, SMN1. The general functions of the main SMN1 protein product, full-length SMN (FL-SMN), do not explain the selective motoneuronal loss of SMA. We identified axonal-SMN (a-SMN), an alternatively spliced SMN form, preferentially encoded by the SMN1 gene in humans. The a-SMN transcript and protein are down-regulated during early development in different tissues. In the spinal cord, the a-SMN protein is selectively expressed in motor neurons and mainly localized in axons. Forced expression of a-SMN stimulates motor neuron axonogenesis in a time-dependent fashion and induces axonal-like growth in non-neuronal cells. Exons 2b and 3 are essential for the axonogenic effects. This discovery indicates an unexpected complexity of the SMN gene system and may help in understanding the pathogenesis of SMA.
Collapse
Affiliation(s)
- Veronica Setola
- *Molecular Neuroanatomy Laboratory, Department of Experimental Neurophysiology and Epileptology, Istituto Neurologico “C. Besta,” via Celoria 11, 20133 Milano, Italy; and
| | - Mineko Terao
- Molecular Biology Laboratory, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche “Mario Negri,” via Eritrea 62, 20157 Milano, Italy
| | - Denise Locatelli
- *Molecular Neuroanatomy Laboratory, Department of Experimental Neurophysiology and Epileptology, Istituto Neurologico “C. Besta,” via Celoria 11, 20133 Milano, Italy; and
| | - Stefania Bassanini
- *Molecular Neuroanatomy Laboratory, Department of Experimental Neurophysiology and Epileptology, Istituto Neurologico “C. Besta,” via Celoria 11, 20133 Milano, Italy; and
| | - Enrico Garattini
- Molecular Biology Laboratory, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche “Mario Negri,” via Eritrea 62, 20157 Milano, Italy
| | - Giorgio Battaglia
- *Molecular Neuroanatomy Laboratory, Department of Experimental Neurophysiology and Epileptology, Istituto Neurologico “C. Besta,” via Celoria 11, 20133 Milano, Italy; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Giavazzi A, Setola V, Simonati A, Battaglia G. Neuronal-specific roles of the survival motor neuron protein: evidence from survival motor neuron expression patterns in the developing human central nervous system. J Neuropathol Exp Neurol 2006; 65:267-77. [PMID: 16651888 DOI: 10.1097/01.jnen.0000205144.54457.a3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite recent data on the cellular function of the survival motor neuron (SMN) gene, the spinal muscular atrophy (SMA) disease gene, the role of the SMN protein in motor neurons and hence in the pathogenesis of SMA is still unclear. The spatial and temporal expression of SMN in neurons, particularly during development, could help in verifying the hypotheses on the SMN protein functions so far proposed. We have therefore investigated the expression and subcellular localization of the SMN protein in the human central nervous system (CNS) during ontogenesis with immunocytochemical, confocal immunofluorescence, and Western blot experiments using a panel of anti-SMN antibodies recognizing the full-length SMN protein. The experiments not only revealed the early SMN expression in all neurons, but also demonstrated the progressive shift in SMN subcellular localization from mainly nuclear to cytoplasmic and then to axons during CNS maturation. This finding was present in selected neuronal cell populations and it was particularly conspicuous in motor neurons. Our data support the idea of a specific role for SMN in axons, which becomes predominant in the ontogenetic period encompassing axonogenesis and axonal sprouting. In addition, the asymmetric SMN staining demonstrated in the germinative neuroepithelium suggests a possible role for SMN in neuronal migration and/or differentiation.
Collapse
Affiliation(s)
- Alessio Giavazzi
- Molecular Neuroanatomy Lab, Department of Neurophysiology, Neurological Institute C. Besta, Milano, Italy
| | | | | | | |
Collapse
|
35
|
Abstract
The molecular basis of spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the homozygous loss of the survival motor neuron gene 1 (SMN1). A nearly identical copy of the SMN1 gene, called SMN2, modulates the disease severity. The functional difference between both genes is a translationally silent mutation that, however, disrupts an exonic splicing enhancer causing exon 7 skipping in most SMN2 transcripts. Only 10% of SMN2 transcripts encode functional full-length protein identical to SMN1. Transcriptional activation, facilitation of correct SMN2 splicing, or stabilization of the protein are considered as strategies for SMA therapy. Among various drugs, histone deacetylase inhibitors such as valproic acid (VPA) or 4-phenylbutyrate (PBA) have been shown to increase SMN2-derived RNA and protein levels. Recently, in vivo activation of the SMN gene was shown in VPA-treated SMA patients and carriers. Clinical trials are underway to investigate the effect of VPA and PBA on motor function in SMA patients.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
36
|
Eggert C, Chari A, Laggerbauer B, Fischer U. Spinal muscular atrophy: the RNP connection. Trends Mol Med 2006; 12:113-21. [PMID: 16473550 DOI: 10.1016/j.molmed.2006.01.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/22/2005] [Accepted: 01/27/2006] [Indexed: 02/01/2023]
Abstract
Degenerated motor neurons in the spinal cord are the pathological hallmark of spinal muscular atrophy (SMA). SMA is caused by mutations in the ubiquitously expressed survival motor neuron 1 (SMN1) gene, which lead to reduced levels of functional SMN protein. Many different functions have been assigned to SMN, including assembly of ribonucleoproteins (RNPs), splicing, transcription and axonal mRNA transport. Recently, tissue from SMA patients and animal models has been used to determine which function of SMN is affected in SMA patients. A surprising picture has emerged: the impaired assembly of RNP subunits of the spliceosome seems to be responsible for SMA pathogenesis. Here, we present a model of how this defect might cause motor-neuron degeneration and consider potential therapies.
Collapse
Affiliation(s)
- Christian Eggert
- Theodor Boveri Institute, Biocenter at the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
37
|
Winkler C, Eggert C, Gradl D, Meister G, Giegerich M, Wedlich D, Laggerbauer B, Fischer U. Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev 2005; 19:2320-30. [PMID: 16204184 PMCID: PMC1240041 DOI: 10.1101/gad.342005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disease caused by reduced levels of survival motoneuron (SMN) protein. Previous studies have assigned SMN to uridine-rich small nuclear ribonucleoprotein particle (U snRNP) assembly, splicing, transcription, and RNA localization. Here, we have used gene silencing to assess the effect of SMN protein deficiency on U snRNP metabolism in living cells and organisms. In HeLa cells, we show that reduction of SMN to levels found in SMA patients impairs U snRNP assembly. In line with this, induced silencing of SMN expression in Xenopus laevis or zebrafish arrested embryonic development. Under less severe knock-down conditions, zebrafish embryos proceeded through development yet exhibited dramatic SMA-like motor axon degeneration. The same was observed after silencing two other essential factors in the U snRNP assembly pathway, Gemin2 and pICln. Importantly, the injection of purified U snRNPs into either SMN- or Gemin2-deficient embryos of Xenopus and zebrafish prevented developmental arrest and motoneuron degeneration, respectively. These findings suggest that motoneuron degeneration in SMA patients is a direct consequence of impaired production of U snRNPs.
Collapse
Affiliation(s)
- Christoph Winkler
- Institute of Biochemistry and Institute of Physiological Chemistry, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jaglarz MK, Bilinski SM, Kloc M. Assembly and breakdown of Cajal bodies in accessory nuclei of Hymenoptera. Differentiation 2005; 73:99-108. [PMID: 15811133 DOI: 10.1111/j.1432-0436.2005.07302005.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In some species of insects, oocytes have vesicular organelles, termed accessory nuclei (ANs). The ANs form by budding off from the nuclear envelope of the oocyte and are filled with translucent matrix containing dense inclusions. One type of these inclusions contains coilin and small nuclear ribonucleoproteins (snRNPs) and is homologous to Cajal bodies. We describe the early events in the morphogenesis of Cajal bodies in the ANs (ANCBs) of the common wasp, Vespula germanica, and show that they contain survival of motor neurons (SMN) protein. We present evidence that in the wasp, ANCBs form by the gradual accumulation of aggregates composed of SMN and small nuclear RNAs. We also show that ANCBs break down and disperse within the ANs as the ANs, which initially surround the oocyte nucleus, localize to the oocyte cortex. The components of dispersed ANCBs are retained within ANs until the end of oogenesis, which suggests that their function may be required at the onset of embryonic development. Because the morphology and behavior of ANs and their Cajal body-like inclusions are conserved in two other hymenopteran species, these features might be characteristic of all hymenopterans.
Collapse
|
39
|
Jarecki J, Chen X, Bernardino A, Coovert DD, Whitney M, Burghes A, Stack J, Pollok BA. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet 2005; 14:2003-18. [PMID: 15944201 DOI: 10.1093/hmg/ddi205] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have exploited the existence of a second copy of the human SMN gene (SMN2) to develop a high-throughput screening strategy to identify potential small molecule therapeutics for the genetic disease spinal muscular atrophy (SMA), which is caused by the loss of the SMN1 gene. Our screening process was designed to identify synthetic compounds that increase the total amount of full-length SMN messenger RNA and protein arising from the SMN2 gene, thereby suppressing the deleterious effects of losing SMN1. A cell-based bioassay was generated that detects SMN2 promoter activity, on which greater than 550,000 compounds was tested. This resulted in the identification of 17 distinct compounds with confirmed biological activity on the cellular primary assay, belonging to nine different structural families. Six of the nine scaffolds were chosen on the basis of their drug-like features to be tested for their ability to modulate SMN gene expression in SMA patient-derived fibroblasts. Five of the six compound classes altered SMN mRNA levels or mRNA splicing patterns in SMA patient-derived fibroblasts. Two of the compound classes, a quinazoline compound series and an indole compound, also increased SMN protein levels and nuclear gem/Cajal body numbers in patient-derived cells. In addition, these two distinct scaffolds showed additive effects when used in combination, suggesting that they may act on different molecular targets. The work described here has provided the foundation for a successful medicinal chemistry effort to further advance these compounds as potential small molecule therapeutics for SMA.
Collapse
Affiliation(s)
- Jill Jarecki
- Vertex Pharmaceuticals, Inc., San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zou J, Barahmand-pour F, Blackburn ML, Matsui Y, Chansky HA, Yang L. Survival Motor Neuron (SMN) Protein Interacts with Transcription Corepressor mSin3A. J Biol Chem 2004; 279:14922-8. [PMID: 14749338 DOI: 10.1074/jbc.m309218200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. SMA results from loss of survival motor neuron (SMN) expression and subsequent death of motor neuron cells. To study SMN-associated proteins that may be involved in transcriptional regulation, we carried out immunoprecipitation experiments and found that the transcription corepressor mSin3A associates with SMN protein. Deletional analysis localized the mSin3A-interacting domain to the exon 6 region of SMN. When targeted to a promoter, wild-type SMN was able to repress transcription of a downstream luciferase reporter gene. This repression was relieved by treatment with the histone deacetylase inhibitor trichostatin A in a dose-dependent manner, and deletion of exon 6 abolished the ability of SMN to repress the reporter gene. Analysis of SMN missense mutations within the exon 6 region implicated the SMA-associated mutation Y272C with impairment of the mSin3A-interaction. Gel filtration experiments revealed that wild-type SMN, via the exon 6 region, forms protein supra-complexes exceeding 40,000 kDa in size, whereas the Y272C mutation may affect higher order protein assembly, as the mutant SMN was more abundant in smaller complexes. Together, these findings provide a potential mechanism by which lack of fully functional SMN protein is detrimental to motor neuron survival.
Collapse
Affiliation(s)
- Junhui Zou
- Departments of Orthopedics and Sports Medicine and Medicine/Hematology, University of Washington, Seattle, Washington 98195 USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Spinal muscular atrophy is a common genetic disease of the motor neuron (frequency of eight cases per 100,000 live births) with a high mortality during infancy and no known treatment. Death is caused by severe and progressive restrictive lung disease. New information regarding the nature and function of the SMN protein and the availability of new pharmacologic agents now make it possible to consider clinical trials in this disease. Rehabilitation and proper management of medical complications have improved both the quality and duration of life for children with spinal muscular atrophy.
Collapse
Affiliation(s)
- Susan T Iannaccone
- Division of Neuromuscular Disease and Neurorehabilitation, Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219, USA.
| | | | | |
Collapse
|
42
|
Krauer KG, Buck M, Belzer DK, Flanagan J, Chojnowski GM, Sculley TB. The Epstein–Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein. Virology 2004; 318:280-94. [PMID: 14972554 DOI: 10.1016/j.virol.2003.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 09/16/2003] [Accepted: 09/19/2003] [Indexed: 01/15/2023]
Abstract
The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6.
Collapse
Affiliation(s)
- Kenia G Krauer
- Queensland Institute of Medical Research and ACITHN University of Queensland, Brisbane 4029, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Malatesta M, Scassellati C, Meister G, Plöttner O, Bühler D, Sowa G, Martin TE, Keidel E, Fischer U, Fakan S. Ultrastructural characterisation of a nuclear domain highly enriched in survival of motor neuron (SMN) protein. Exp Cell Res 2004; 292:312-21. [PMID: 14697339 DOI: 10.1016/j.yexcr.2003.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations in the survival of motor neuron (SMN) gene are the major cause of spinal muscular atrophy (SMA). The SMN gene encodes a 38-kDa protein that localises in the cytoplasm and in nuclear bodies termed Gemini of coiled bodies (gems). When visualised by immunofluorescence microscopy, gems often appeared either in close proximity to, or entirely overlapping with coiled (Cajal) bodies (CBs) implying a possible functional relationship between these nuclear domains. With the aim of identifying subnuclear compartments corresponding to gems, we have investigated the intranuclear localisation of SMN and of its interacting protein Gemin2 by immunoelectron microscopy in cultured cells and in liver cells of hibernating dormouse. These antigens are highly enriched in round-shaped electron-dense fibro-granular clusters (EFGCs), which also display a biochemical composition similar to gems visualised by immunofluorescence microscopy. Our data reveal a novel SMN/Gemin2 containing nuclear domain and support the idea that it represents the structural counterpart of gems seen in the light microscope.
Collapse
Affiliation(s)
- Manuela Malatesta
- Centre of Electron Microscopy, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Spinal muscular atrophies reveal motor neuron vulnerability to defects in ribonucleoprotein handling. Curr Opin Neurol 2003. [DOI: 10.1097/00019052-200310000-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Carnegie GK, Sleeman JE, Morrice N, Hastie CJ, Peggie MW, Philp A, Lamond AI, Cohen PTW. Protein phosphatase 4 interacts with the Survival of Motor Neurons complex and enhances the temporal localisation of snRNPs. J Cell Sci 2003; 116:1905-13. [PMID: 12668731 DOI: 10.1242/jcs.00409] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Protein phosphatase 4 (PPP4) is a ubiquitous essential protein serine/threonine phosphatase found in higher eukaryotes. Coordinate variation of the levels of the catalytic subunit (PPP4c) and the regulatory subunit (R2) suggests that PPP4c and R2 form a heterodimeric core to which other regulatory subunits bind. Two proteins that specifically co-purify with Flag-epitope-tagged R2 expressed in HEK-293 cells were identified as Gemin3 and Gemin4. These two proteins have been identified previously as components of the Survival of Motor Neurons (SMN) protein complex, which is functionally defective in the hereditary disorder spinal muscular atrophy. Immuno-sedimentation of the epitope-tagged SMN protein complex from HeLa cells expressing CFP-SMN showed that the SMN protein interacts, as previously reported, with Gemin2 (SIP1), Gemin3 and Gemin4 and in addition associates with PPP4c. The SMN complex has been implicated in the assembly and maturation of small nuclear ribonucleoproteins (snRNPs). Expression of GFP-R2-PPP4c in HeLa cells enhances the temporal localisation of newly formed snRNPs, which is consistent with an association of R2-PPP4c with the SMN protein complex.
Collapse
MESH Headings
- Blotting, Northern
- Cell Line
- Cell Nucleus/metabolism
- Chromosomes, Human, Pair 3/ultrastructure
- Chromosomes, Human, Pair 5/ultrastructure
- Coiled Bodies/metabolism
- Cyclic AMP Response Element-Binding Protein
- DEAD Box Protein 20
- DEAD-box RNA Helicases
- DNA, Complementary/metabolism
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Epitopes
- HeLa Cells
- Humans
- In Situ Hybridization, Fluorescence
- Microscopy, Fluorescence
- Minor Histocompatibility Antigens
- Muscular Atrophy, Spinal/metabolism
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/biosynthesis
- Phosphoprotein Phosphatases/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA Helicases/biosynthesis
- RNA-Binding Proteins
- Ribonucleoproteins, Small Nuclear/metabolism
- SMN Complex Proteins
- Time Factors
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- Graeme K Carnegie
- Medical Research Council Protein Phosphorylation Unit, Division of Cell Signalling, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Barth S, Liss M, Voss MD, Dobner T, Fischer U, Meister G, Grässer FA. Epstein-Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol 2003; 77:5008-13. [PMID: 12663808 PMCID: PMC152127 DOI: 10.1128/jvi.77.8.5008-5013.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we provide evidence that EBNA2 is methylated in vivo and that methylation of EBNA2 is a prerequisite for binding to SMN. We present SMN as a novel binding partner of EBNA2 by showing that EBNA2 colocalizes with SMN in nuclear gems and that both proteins can be coimmunoprecipitated from cellular extract. Furthermore, in vitro methylation of either wild-type EBNA2 or a glutathione S-transferase-EBNA2 fusion protein encompassing the arginine-glycine (RG) repeat element is necessary for in vitro binding to the Tudor domain of SMN. The recently shown functional cooperation of SMN and EBNA2 in transcriptional activation and the previous observation of a severely reduced transformation potential yet strongly enhanced transcriptional activity of an EBNA2 mutant lacking the RG repeat indicate that binding of SMN to EBNA2 is a critical step in B-cell transformation by Epstein-Barr virus.
Collapse
Affiliation(s)
- Stephanie Barth
- Institut für Medizinische Mikrobiologie und Hygiene, Abteilung Virologie, Universitätskliniken des Saarlandes, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Vrbová G, Melki J. 103rd ENMC international workshop: designing rational therapy of SMA based on the understanding of its pathophysiology, 18-20 January 2002, Naarden, The Netherlands. Neuromuscul Disord 2003; 13:173-8. [PMID: 12565917 DOI: 10.1016/s0960-8966(02)00198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Gerta Vrbová
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
48
|
Monani UR, Pastore MT, Gavrilina TO, Jablonka S, Le TT, Andreassi C, DiCocco JM, Lorson C, Androphy EJ, Sendtner M, Podell M, Burghes AHM. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 2003; 160:41-52. [PMID: 12515823 PMCID: PMC2172739 DOI: 10.1083/jcb.200208079] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5q spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and the leading genetic cause of infantile death. Patients lack a functional survival of motor neurons (SMN1) gene, but carry one or more copies of the highly homologous SMN2 gene. A homozygous knockout of the single murine Smn gene is embryonic lethal. Here we report that in the absence of the SMN2 gene, a mutant SMN A2G transgene is unable to rescue the embryonic lethality. In its presence, the A2G transgene delays the onset of motor neuron loss, resulting in mice with mild SMA. We suggest that only in the presence of low levels of full-length SMN is the A2G transgene able to form partially functional higher order SMN complexes essential for its functions. Mild SMA mice exhibit motor neuron degeneration, muscle atrophy, and abnormal EMGs. Animals homozygous for the mutant transgene are less severely affected than heterozygotes. This demonstrates the importance of SMN levels in SMA even if the protein is expressed from a mutant allele. Our mild SMA mice will be useful in (a) determining the effect of missense mutations in vivo and in motor neurons and (b) testing potential therapies in SMA.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Blotting, Southern
- Blotting, Western
- Cyclic AMP Response Element-Binding Protein
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electromyography
- Electrophysiology
- Genotype
- Glutathione Transferase/metabolism
- Homozygote
- Immunohistochemistry
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Genetic
- Motor Neurons/pathology
- Muscles/cytology
- Muscles/metabolism
- Muscles/pathology
- Muscular Atrophy, Spinal/genetics
- Mutation
- Mutation, Missense
- Nerve Tissue Proteins/genetics
- Phenotype
- Protein Binding
- RNA-Binding Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- SMN Complex Proteins
- Survival of Motor Neuron 1 Protein
- Survival of Motor Neuron 2 Protein
- Time Factors
- Tissue Distribution
- Transgenes
Collapse
Affiliation(s)
- Umrao R Monani
- Department of Neurology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chapter 16 Spinal Muscular Atrophy. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1877-3419(09)70117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Boner W, Morgan IM. Novel cellular interacting partners of the human papillomavirus 16 transcription/replication factor E2. Virus Res 2002; 90:113-8. [PMID: 12457967 DOI: 10.1016/s0168-1702(02)00145-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human papillomaviruses (HPVs) are causative agents in a number of human diseases. HPV can be divided into two groups: low risk that cause diseases such as genital warts, and high risk that cause ano-genital cancers. Of the high-risk group, HPV16 is the most commonly found in cervical cancer. All HPV encode an E2 protein and this protein regulates transcription from, and replication of, the viral genome making it essential for the viral life cycle. In order to function E2 must interact with cellular proteins; identification of these cellular partners will provide targets for disruption of the viral life cycle and will also provide insights into the processes of transcription and replication. To identify the cellular interacting partners for HPV16 E2, we carried out a yeast two-hybrid screen with the amino-terminus of E2 that is essential for mediating transcription and replication. Here we describe how this screen was carried out and detail the interacting partners that were identified; these include the proteins TopBP1, RACK1, POMP, p27(BBP), ODC antizyme, and Delta-adaptin. Several of these partners have characteristics that make them ideal candidates for mediating E2 function.
Collapse
Affiliation(s)
- Winifred Boner
- Department of Veterinary Pathology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, G61 1QH, Glasgow, UK
| | | |
Collapse
|