1
|
Lenning OB, Myhre R, Vadla MS, Omdal R, Martínez Jarreta B, Gómez Moreno Á, De Blas I, Braut GS. Do genetic variants of the Y chromosome affect mortality from COVID-19. Scand J Public Health 2025:14034948251333236. [PMID: 40230068 DOI: 10.1177/14034948251333236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
AIMS During the early stages of the COVID-19 pandemic, significant differences in mortality patterns emerged based on sex and geographical regions. While we were studying on the heredity of variants of the Y chromosome, we observed that regional variations in mortality rates appeared to correlate with the geographical distribution of certain variants of the Y chromosome. This observation led us to propose that some genes on the Y chromosome, with an influence on immune responses, may represent a confounding factor in the observed geographical mortality differences. METHODS In this analysis, we investigate the potential associations between COVID-19 morbidity and disease-specific mortality and specific Y chromosome variants. The study is based on publicly available pandemic data validated by state authorities or presented in scientific literature documented in PubMed and Medline. RESULTS We find that Y chromosome haplogroups in different populations exhibit wave-like patterns corresponding with persistent global disparities in COVID-19-related mortality. CONCLUSIONS These findings warrant further research to uncover possible new pathophysiological mechanisms.
Collapse
Affiliation(s)
- Ole Bernt Lenning
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Ronny Myhre
- Norwegian Institute of Public Health, Division of Health Data and Digitalization, Department of Genetics and Bioinformatics (HDGB), Oslo, Norway
| | | | - Roald Omdal
- Research Department, Stavanger University Hospital, Clinical Immunology Research Group, Stavanger, Norway
| | - Begoña Martínez Jarreta
- Facultad de Medicina/Faculty of Medicine, Universidad de Zaragoza/University of Zaragoza, Zaragoza (Spain), Spain
| | - Ángel Gómez Moreno
- Dpto. of Hispanic Literature and Bibliography, Universidad Complutense de Madrid, Madrid, Spain
| | - Ignacio De Blas
- Facultad of Veterinary Sciences, Instituto Universitario de Investigación Mixto, Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| | - Geir Sverre Braut
- Research Department, Stavanger University Hospital and Department of Social Science, Western Norway University of Applied Sciences, Stavanger, Norway
| |
Collapse
|
2
|
Wagner J, Olson ND, McDaniel J, Harris L, Pinto BJ, Jáspez D, Muñoz-Barrera A, Rubio-Rodríguez LA, Lorenzo-Salazar JM, Flores C, Sahraeian SME, Narzisi G, Byrska-Bishop M, Evani US, Xiao C, Lake JA, Fontana P, Greenberg C, Freed D, Mootor MFE, Boutros PC, Murray L, Shafin K, Carroll A, Sedlazeck FJ, Wilson M, Zook JM. Small variant benchmark from a complete assembly of X and Y chromosomes. Nat Commun 2025; 16:497. [PMID: 39779690 PMCID: PMC11711550 DOI: 10.1038/s41467-024-55710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The sex chromosomes contain complex, important genes impacting medical phenotypes, but differ from the autosomes in their ploidy and large repetitive regions. To enable technology developers along with research and clinical laboratories to evaluate variant detection on male sex chromosomes X and Y, we create a small variant benchmark set with 111,725 variants for the Genome in a Bottle HG002 reference material. We develop an active evaluation approach to demonstrate the benchmark set reliably identifies errors in challenging genomic regions and across short and long read callsets. We show how complete assemblies can expand benchmarks to difficult regions, but highlight remaining challenges benchmarking variants in long homopolymers and tandem repeats, complex gene conversions, copy number variable gene arrays, and human satellites.
Collapse
Affiliation(s)
- Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, USA
| | - Nathan D Olson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, USA
| | - Jennifer McDaniel
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, USA
| | - Lindsay Harris
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, USA
| | - Brendan J Pinto
- Center for Evolution & Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85281 USA - Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, Spain
| | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, Spain
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | - Chunlin Xiao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Peter Fontana
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Dr. Mailstop 8940, Gaithersburg, MD, USA
| | - Craig Greenberg
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Dr. Mailstop 8940, Gaithersburg, MD, USA
| | | | | | - Paul C Boutros
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kishwar Shafin
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
| | - Andrew Carroll
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
| | - Fritz J Sedlazeck
- Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, USA
| | - Melissa Wilson
- Center for Evolution & Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, USA.
| |
Collapse
|
3
|
The ape Y chromosome evolves extremely rapidly, but the X chromosome is conserved. Nature 2024:10.1038/d41586-024-02404-7. [PMID: 39048867 DOI: 10.1038/d41586-024-02404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
|
4
|
Mochizuki H, Estrada AJ, Boggess M. Assessment of Y chromosome copy number alterations in non-neoplastic and neoplastic leukocytes of male dogs. Vet J 2024; 304:106088. [PMID: 38412887 DOI: 10.1016/j.tvjl.2024.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
The loss of the Y chromosome (ChrY), also known as LOY, is a common genetic alteration observed in men. It occurs in non-neoplastic cells as an age-related change as well as in neoplastic cells of various cancer types. While well-documented in humans, LOY has not been extensively studied in non-human mammals. In this study, we developed simple digital PCR-based assays to assess the copy number of ChrY relative to the X chromosome (ChrX) and chromosome 8 (Chr8) to evaluate ChrY numerical alterations in male canine DNA specimens. Using these assays, we analyzed non-neoplastic leukocytes from 162 male dogs without hematopoietic neoplasia to investigate the occurrence of age-related LOY in non-neoplastic leukocytes. Additionally, we examined 101 tumor DNA specimens obtained from male dogs diagnosed with various types of lymphoma and leukemia to determine whether copy number alterations of the ChrY occur in canine hematopoietic cancers. Analysis of the 162 non-neoplastic leukocyte DNA specimens from male dogs of varying ages revealed a consistent ∼1:1 ChrY:ChrX ratio. This suggests that age-related LOY in non-neoplastic leukocytes is rare or absent in dogs. Conversely, a decreased or increased ChrY:ChrX ratio was detected in canine neoplastic leukocytes at varying frequencies across different canine hematopoietic malignancies (P = 0.01, Fisher's exact test). Notably, a higher incidence of LOY was observed in more aggressive cancer types. To determine if this relative LOY to ChrX was caused by changes in ChrY or ChrX, we further analyzed their relative copy numbers using Chr8 as a reference. Loss of ChrX relative to Chr8 was found in 21% (9/41) of B-cell lymphomas and 6% (1/18) of non-T-zone/high-grade T-cell lymphomas. In contrast, a subset (29%, 4/14) of T-cell chronic lymphocytic leukemia showed gain of ChrX relative to Chr8. Notably, no relative LOY to Chr8 was detected indolent hematopoietic cancers such as T-zone lymphoma (0/9) and chronic lymphocytic leukemia of B-cell (0/11) and T-cell origins (0/14). However, relative LOY to Chr8 was present in more aggressive canine hematopoietic cancers, with incidences of 24% (10/41) in B-cell lymphoma, 44% (8/18) in non-T-zone/high-grade T-cell lymphoma, and 75% (6/8) in acute leukemia. This study highlights both similarities and differences in LOY between human and canine non-neoplastic and neoplastic leukocytes. It underscores the need for further research into the role of ChrY in canine health and disease, as well as the significance of LOY across various species.
Collapse
Affiliation(s)
- H Mochizuki
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| | - A J Estrada
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - M Boggess
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Rojas MG, Pozzi E, Ramasamy R. Unlocking the mystery of the human Y chromosome. Nat Rev Urol 2024; 21:65-66. [PMID: 37803196 DOI: 10.1038/s41585-023-00826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Affiliation(s)
- Miguel G Rojas
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Edoardo Pozzi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Zhou Y, Zhan X, Jin J, Zhou L, Bergman J, Li X, Rousselle MMC, Belles MR, Zhao L, Fang M, Chen J, Fang Q, Kuderna L, Marques-Bonet T, Kitayama H, Hayakawa T, Yao YG, Yang H, Cooper DN, Qi X, Wu DD, Schierup MH, Zhang G. Eighty million years of rapid evolution of the primate Y chromosome. Nat Ecol Evol 2023; 7:1114-1130. [PMID: 37268856 DOI: 10.1038/s41559-022-01974-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/15/2022] [Indexed: 06/04/2023]
Abstract
The Y chromosome usually plays a critical role in determining male sex and comprises sequence classes that have experienced unique evolutionary trajectories. Here we generated 19 new primate sex chromosome assemblies, analysed them with 10 existing assemblies and report rapid evolution of the Y chromosome across primates. The pseudoautosomal boundary has shifted at least six times during primate evolution, leading to the formation of a Simiiformes-specific evolutionary stratum and to the independent start of young strata in Catarrhini and Platyrrhini. Different primate lineages experienced different rates of gene loss and structural and chromatin change on their Y chromosomes. Selection on several Y-linked genes has contributed to the evolution of male developmental traits across the primates. Additionally, lineage-specific expansions of ampliconic regions have further increased the diversification of the structure and gene composition of the Y chromosome. Overall, our comprehensive analysis has broadened our knowledge of the evolution of the primate Y chromosome.
Collapse
Affiliation(s)
| | | | | | - Long Zhou
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Juraj Bergman
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus C., Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus C., Denmark
| | - Xuemei Li
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Lan Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | | | | | - Qi Fang
- BGI-Shenzhen, Shenzhen, China
| | - Lukas Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Haruka Kitayama
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Xiaoguang Qi
- College of Life Sciences, Northwest University, Xi'an, China
| | - Dong-Dong Wu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Esteller-Cucala P, Palmada-Flores M, Kuderna LFK, Fontsere C, Serres-Armero A, Dabad M, Torralvo M, Faella A, Ferrández-Peral L, Llovera L, Fornas O, Julià E, Ramírez E, González I, Hecht J, Lizano E, Juan D, Marquès-Bonet T. Y chromosome sequence and epigenomic reconstruction across human populations. Commun Biol 2023; 6:623. [PMID: 37296226 PMCID: PMC10256797 DOI: 10.1038/s42003-023-05004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications among the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.
Collapse
Affiliation(s)
- Paula Esteller-Cucala
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain.
| | - Marc Palmada-Flores
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Claudia Fontsere
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Aitor Serres-Armero
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, Spain
| | - María Torralvo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Armida Faella
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Luis Ferrández-Peral
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Laia Llovera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Oscar Fornas
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona, Spain
| | - Eva Julià
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Erika Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Irene González
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - David Juan
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain.
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
8
|
Khramtsova EA, Wilson MA, Martin J, Winham SJ, He KY, Davis LK, Stranger BE. Quality control and analytic best practices for testing genetic models of sex differences in large populations. Cell 2023; 186:2044-2061. [PMID: 37172561 PMCID: PMC10266536 DOI: 10.1016/j.cell.2023.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/31/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic sex-based differences exist for many complex traits. In other cases, phenotypes may be similar, but underlying biology may vary. Thus, sex-aware genetic analyses are becoming increasingly important for understanding the mechanisms driving these differences. To this end, we provide a guide outlining the current best practices for testing various models of sex-dependent genetic effects in complex traits and disease conditions, noting that this is an evolving field. Insights from sex-aware analyses will not only teach us about the biology of complex traits but also aid in achieving the goals of precision medicine and health equity for all.
Collapse
Affiliation(s)
- Ekaterina A Khramtsova
- Population Analytics and Insights, Data Science Analytics & Insights, Janssen R&D, Lower Gwynedd Township, PA, USA.
| | - Melissa A Wilson
- School of Life Sciences, Center for Evolution and Medicine, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85282, USA
| | - Joanna Martin
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Karen Y He
- Population Analytics and Insights, Data Science Analytics & Insights, Janssen R&D, Lower Gwynedd Township, PA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara E Stranger
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Reddy KD, Oliver BGG. Sexual dimorphism in chronic respiratory diseases. Cell Biosci 2023; 13:47. [PMID: 36882807 PMCID: PMC9993607 DOI: 10.1186/s13578-023-00998-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Sex differences in susceptibility, severity, and progression are prevalent for various diseases in multiple organ systems. This phenomenon is particularly apparent in respiratory diseases. Asthma demonstrates an age-dependent pattern of sexual dimorphism. However, marked differences between males and females exist in other pervasive conditions such as chronic obstructive pulmonary disease (COPD) and lung cancer. The sex hormones estrogen and testosterone are commonly considered the primary factors causing sexual dimorphism in disease. However, how they contribute to differences in disease onset between males and females remains undefined. The sex chromosomes are an under-investigated fundamental form of sexual dimorphism. Recent studies highlight key X and Y-chromosome-linked genes that regulate vital cell processes and can contribute to disease-relevant mechanisms. This review summarises patterns of sex differences in asthma, COPD and lung cancer, highlighting physiological mechanisms causing the observed dimorphism. We also describe the role of the sex hormones and present candidate genes on the sex chromosomes as potential factors contributing to sexual dimorphism in disease.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Brian Gregory George Oliver
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
11
|
Fan GY. Assessing the factors influencing the performance of machine learning for classifying haplogroups from Y-STR haplotypes. Forensic Sci Int 2022; 340:111466. [PMID: 36150277 DOI: 10.1016/j.forsciint.2022.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics. Current approaches to infer haplogroup status rely on genotyping lots of Y-SNP loci. Given the relationship between haplotype and haplogroup of a Y chromosome, a cost-effective strategy of Y-STRs typing had an advantage in haplogroup prediction. Many machine learning algorithms have sprung up for assigning a Y-STR haplotype to a haplogroup. However, a series of issues must be solved before the using of machine learning method in practice. Thus, the k-nearest neighbor (kNN) classifier was built respectively based on different situations in this study. We assessed different factors which may influence the performance of the kNN prediction model for classifying haplogroups. The training set was based on a diverse ground-truth data set comprising Y-STR haplotypes and corresponding Y-SNP haplogroups. Our results showed that combining different levels of haplogroups into the observations or transracial prediction was impractical. Moreover, using more slow mutation Y-STR loci in the category is good for promoting classification accuracy. The preconditions for an effective and accurate haplogroup assignment by the kNN classifier were revealed.
Collapse
Affiliation(s)
- Guang-Yao Fan
- Forensic Center, College of Medicine, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
12
|
Cechova M, Miga KH. Satellite DNAs and human sex chromosome variation. Semin Cell Dev Biol 2022; 128:15-25. [PMID: 35644878 PMCID: PMC9233459 DOI: 10.1016/j.semcdb.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Satellite DNAs are present on every chromosome in the cell and are typically enriched in repetitive, heterochromatic parts of the human genome. Sex chromosomes represent a unique genomic and epigenetic context. In this review, we first report what is known about satellite DNA biology on human X and Y chromosomes, including repeat content and organization, as well as satellite variation in typical euploid individuals. Then, we review sex chromosome aneuploidies that are among the most common types of aneuploidies in the general population, and are better tolerated than autosomal aneuploidies. This is demonstrated also by the fact that aging is associated with the loss of the X, and especially the Y chromosome. In addition, supernumerary sex chromosomes enable us to study general processes in a cell, such as analyzing heterochromatin dosage (i.e. additional Barr bodies and long heterochromatin arrays on Yq) and their downstream consequences. Finally, genomic and epigenetic organization and regulation of satellite DNA could influence chromosome stability and lead to aneuploidy. In this review, we argue that the complete annotation of satellite DNA on sex chromosomes in human, and especially in centromeric regions, will aid in explaining the prevalence and the consequences of sex chromosome aneuploidies.
Collapse
Affiliation(s)
- Monika Cechova
- Faculty of Informatics, Masaryk University, Czech Republic
| | - Karen H Miga
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA; UC Santa Cruz Genomics Institute, University of California Santa Cruz, CA 95064, USA
| |
Collapse
|
13
|
Munds RA, Cooper EB, Janiak MC, Lam LG, DeCasien AR, Bauman Surratt S, Montague MJ, Martinez MI, Research Unit CB, Kawamura S, Higham JP, Melin AD. Variation and heritability of retinal cone ratios in a free-ranging population of rhesus macaques. Evolution 2022; 76:1776-1789. [PMID: 35790204 PMCID: PMC9544366 DOI: 10.1111/evo.14552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023]
Abstract
A defining feature of catarrhine primates is uniform trichromacy-the ability to distinguish red (long; L), green (medium; M), and blue (short; S) wavelengths of light. Although the tuning of photoreceptors is conserved, the ratio of L:M cones in the retina is variable within and between species, with human cone ratios differing from other catarrhines. Yet, the sources and structure of variation in cone ratios are poorly understood, precluding a broader understanding of color vision variability. Here, we report a large-scale study of a pedigreed population of rhesus macaques (Macaca mulatta). We collected foveal RNA and analyzed opsin gene expression using cDNA and estimated additive genetic variance of cone ratios. The average L:M ratio and standard error was 1.03:1 ± 0.02. There was no age effect, and genetic contribution to variation was negligible. We found marginal sex effects with females having larger ratios than males. S cone ratios (0.143:1 ± 0.002) had significant genetic variance with a heritability estimate of 43% but did not differ between sexes or age groups. Our results contextualize the derived human condition of L-cone dominance and provide new information about the heritability of cone ratios and variation in primate color vision.
Collapse
Affiliation(s)
- Rachel A. Munds
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Eve B. Cooper
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460
| | - Mareike C. Janiak
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada,Department of AnthropologyNew York UniversityNew YorkNew York10003,School of Science, Engineering and EnvironmentUniversity of SalfordSalfordM5 4NTUnited Kingdom
| | - Linh Gia Lam
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Alex R. DeCasien
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460,Section on Developmental NeurogenomicsNational Institute of Mental HealthBethesdaMaryland20892
| | | | - Michael J. Montague
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Melween I. Martinez
- Caribbean Primate Research CenterUniversity of Puerto RicoSan JuanPuerto Rico00936
| | | | - Shoji Kawamura
- Department of Integrated BiosciencesUniversity of TokyoKashiwa277‐8562Japan
| | - James P. Higham
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460
| | - Amanda D. Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada,Department of Medical GeneticsUniversity of CalgaryCalgaryABT2N 1N4Canada,Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryABT2N 1N4Canada
| |
Collapse
|
14
|
Pei Z, Lu W, Feng Y, Xu C, Hsueh AJW. Out of step societal and Darwinian adaptation during evolution is the cause of multiple women's health issues. Hum Reprod 2022; 37:1959-1969. [PMID: 35881063 DOI: 10.1093/humrep/deac156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/18/2022] [Indexed: 11/15/2022] Open
Abstract
During human evolution, major changes in our societal conditions and environment took place without sufficient time for concomitant genetic alterations, leading to out of step adaptation and diseases in women. We first discuss recent societal adaptation mismatch (menstrual bleeding; increases in cancers of reproductive organs, endometriosis; mother's nursing; polycystic ovarian syndrome; transgenerational epigenetic modifications), followed by Darwinian out of step adaptation (labor difficulties; sex chromosomes, human diseases and sex disparity in genomic DNA). We discuss the evolutionary basis of menstrual bleeding, followed by recent increases in cancers of reproductive organs and endometriosis. The importance of breastfeeding by mothers is also emphasized. Earlier onset of menarche, decreased rates of childbirths and breastfeeding resulted in increased number of menstrual cycles in a lifetime, coupled with excess estrogen exposure and incessant ovulation, conditions that increased the susceptibility to mammary and uterine cancers as well as ovarian epithelial cancer and endometriosis. Shorter lactation duration in mothers also contributed to more menstrual cycles. We further discuss the evolutionary basis of the prevalent polycystic ovary syndrome. During the long-term Darwinian evolution, difficulties in childbirth evolved due to a narrowed pelvis, our upright walking and enlarged fetal brain sizes. Because there are 1.5% genomic DNA differences between woman and man, it is of significance to investigate sex-specific human physiology and diseases. In conclusion, understanding out of step adaptation during evolution could allow the prevention and better management of female reproductive dysfunction and diseases.
Collapse
Affiliation(s)
- Zhenle Pei
- Department of Genetics, Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhan Lu
- Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Congjian Xu
- Department of Genetics, Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Aaron J W Hsueh
- Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Division of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Abualhaija N. Men's health disparities: Causes and interventions. Nurs Forum 2022; 57:785-792. [PMID: 35701992 DOI: 10.1111/nuf.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
According to the existing, extensive scientific evidence in the literature, men on average are living sicker and dying younger at a higher rate compared to women. The causes of men's infirmities are complex and multifaceted, contributing to increased morbidity and mortality rates and decreased life expectancy. Despite the statistics of the doomed health status among men, interests to eliminate their health disparities remain inconsistent and ill-defined. Therefore, efforts to eradicate men's health disparities should be positioned in interdisciplinary health education, research, and policy using sex and gender-based health frameworks. The purpose of this paper is to explore men's health generally by discussing common health disparities, the causes of the gender gap in men's health outcomes, proposing some strategies for advancing men's health, and finally providing nursing implications for education, practice, research, and health/public policy. Notably, interdisciplinary, gender-based health education potentially has significant impacts on men's health. The promotion of such initiatives can consequently address the intricacies of men's health, which will provide future healthcare professionals with the knowledge, attitude, and skills necessary to improve men's health.
Collapse
Affiliation(s)
- Nashat Abualhaija
- School of Nursing, College of Health Sciences and Human Performance, University of Texas Permian Basin, Odessa, Texas, USA
| |
Collapse
|
16
|
Carey SB, Lovell JT, Jenkins J, Leebens-Mack J, Schmutz J, Wilson MA, Harkess A. Representing sex chromosomes in genome assemblies. CELL GENOMICS 2022; 2. [PMID: 35720975 PMCID: PMC9205529 DOI: 10.1016/j.xgen.2022.100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sex chromosomes have evolved hundreds of independent times across eukaryotes. As genome sequencing, assembly, and scaffolding techniques rapidly improve, it is now feasible to build fully phased sex chromosome assemblies. Despite technological advances enabling phased assembly of whole chromosomes, there are currently no standards for representing sex chromosomes when publicly releasing a genome. Furthermore, most computational analysis tools are unable to efficiently investigate their unique biology relative to autosomes. We discuss a diversity of sex chromosome systems and consider the challenges of representing sex chromosome pairs in genome assemblies. By addressing these issues now as technologies for full phasing of chromosomal assemblies are maturing, we can collectively ensure that future genome analysis toolkits can be broadly applied to all eukaryotes with diverse types of sex chromosome systems. Here we provide best practice guidelines for presenting a genome assembly that contains sex chromosomes. These guidelines can also be applied to other non-recombining genomic regions, such as S-loci in plants and mating-type loci in fungi and algae.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.,US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa A Wilson
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
17
|
Carpentier F, Rodríguez de la Vega RC, Jay P, Duhamel M, Shykoff JA, Perlin MH, Wallen RM, Hood ME, Giraud T. Tempo of degeneration across independently evolved non-recombining regions. Mol Biol Evol 2022; 39:6553583. [PMID: 35325190 PMCID: PMC9004411 DOI: 10.1093/molbev/msac060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recombination is beneficial over the long term, allowing more effective selection. Despite long-term advantages of recombination, local recombination suppression can evolve and lead to genomic degeneration, in particular on sex chromosomes. Here, we investigated the tempo of degeneration in nonrecombining regions, that is, the function curve for the accumulation of deleterious mutations over time, leveraging on 22 independent events of recombination suppression identified on mating-type chromosomes of anther-smut fungi, including newly identified ones. Using previously available and newly generated high-quality genome assemblies of alternative mating types of 13 Microbotryum species, we estimated degeneration levels in terms of accumulation of nonoptimal codons and nonsynonymous substitutions in nonrecombining regions. We found a reduced frequency of optimal codons in the nonrecombining regions compared with autosomes, that was not due to less frequent GC-biased gene conversion or lower ancestral expression levels compared with recombining regions. The frequency of optimal codons rapidly decreased following recombination suppression and reached an asymptote after ca. 3 Ma. The strength of purifying selection remained virtually constant at dN/dS = 0.55, that is, at an intermediate level between purifying selection and neutral evolution. Accordingly, nonsynonymous differences between mating-type chromosomes increased linearly with stratum age, at a rate of 0.015 per My. We thus develop a method for disentangling effects of reduced selection efficacy from GC-biased gene conversion in the evolution of codon usage and we quantify the tempo of degeneration in nonrecombining regions, which is important for our knowledge on genomic evolution and on the maintenance of regions without recombination.
Collapse
Affiliation(s)
- Fantin Carpentier
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Université de Lille, CNRS, UMR 8198-Evo-Eco-Paleo F-59000, Lille, France
| | - Ricardo C. Rodríguez de la Vega
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Corresponding authors: E-mails: ;
| | - Paul Jay
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Marine Duhamel
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Jacqui A. Shykoff
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Michael H. Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| | - R. Margaret Wallen
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| | | | - Tatiana Giraud
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Corresponding authors: E-mails: ;
| |
Collapse
|