1
|
Berwanger C, Terres D, Pesta D, Eggers B, Marcus K, Wittig I, Wiesner RJ, Schröder R, Clemen CS. Immortalised murine R349P desmin knock-in myotubes exhibit a reduced proton leak and decreased ADP/ATP translocase levels in purified mitochondria. Eur J Cell Biol 2024; 103:151399. [PMID: 38412640 DOI: 10.1016/j.ejcb.2024.151399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
Desmin gene mutations cause myopathies and cardiomyopathies. Our previously characterised R349P desminopathy mice, which carry the ortholog of the common human desmin mutation R350P, showed marked alterations in mitochondrial morphology and function in muscle tissue. By isolating skeletal muscle myoblasts from offspring of R349P desminopathy and p53 knock-out mice, we established an immortalised cellular disease model. Heterozygous and homozygous R349P desmin knock-in and wild-type myoblasts could be well differentiated into multinucleated spontaneously contracting myotubes. The desminopathy myoblasts showed the characteristic disruption of the desmin cytoskeleton and desmin protein aggregation, and the desminopathy myotubes showed the characteristic myofibrillar irregularities. Long-term electrical pulse stimulation promoted myotube differentiation and markedly increased their spontaneous contraction rate. In both heterozygous and homozygous R349P desminopathy myotubes, this treatment restored a regular myofibrillar cross-striation pattern as seen in wild-type myotubes. High-resolution respirometry of mitochondria purified from myotubes by density gradient ultracentrifugation revealed normal oxidative phosphorylation capacity, but a significantly reduced proton leak in mitochondria from the homozygous R349P desmin knock-in cells. Consistent with a reduced proton flux across the inner mitochondrial membrane, our quantitative proteomic analysis of the purified mitochondria revealed significantly reduced levels of ADP/ATP translocases in the homozygous R349P desmin knock-in genotype. As this alteration was also detected in the soleus muscle of R349P desminopathy mice, which, in contrast to the mitochondria purified from cultured cells, showed a variety of other dysregulated mitochondrial proteins, we consider this finding to be an early step in the pathogenesis of secondary mitochondriopathy in desminopathy.
Collapse
Affiliation(s)
- Carolin Berwanger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Dominic Terres
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Medical Faculty, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, and Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, and Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Rudolf J Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Schröder
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, Blanc J, Hocini H, Lefebvre C, El-Jahrani N, Kitsara M, L'honoré A, Kordeli E, Fornes P, Concordet JP, Tachdjian G, Rodriguez AM, Vartanian JP, Béhin A, Wahbi K, Joanne P, Agbulut O. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther 2024; 15:10. [PMID: 38167524 PMCID: PMC10763022 DOI: 10.1186/s13287-023-03619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.
Collapse
Affiliation(s)
- Yeranuhi Hovhannisyan
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Zhenlin Li
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Domitille Callon
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vivien Batoumeni
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Ksilink, Strasbourg, France
| | - Alexis Canette
- Service de Microscopie Électronique (IBPS-SME), Institut de Biologie Paris-Seine (IBPS), CNRS, Sorbonne Université, Paris, France
| | - Jocelyne Blanc
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Nora El-Jahrani
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Maria Kitsara
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Aurore L'honoré
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Ekaterini Kordeli
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Paul Fornes
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Gérard Tachdjian
- Laboratoire de Cytogénétique, Service d'Histologie-Embryologie-Cytogénétique, AP-HP, Hôpital Antoine Béclère, Université Paris Saclay, Clamart, France
| | - Anne-Marie Rodriguez
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Béhin
- Reference Center for Muscle Diseases Paris-Est, Myology Institute, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Karim Wahbi
- Cardiology Department, AP-HP, Cochin Hospital, Université Paris Cité, Paris, France
| | - Pierre Joanne
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| | - Onnik Agbulut
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| |
Collapse
|
3
|
Sukhareva KS, Smolina NA, Churkina AI, Kalugina KK, Zhuk SV, Khudiakov AA, Khodot AA, Faggian G, Luciani GB, Sejersen T, Kostareva AA. Desmin mutations impact the autophagy flux in C2C12 cell in mutation-specific manner. Cell Tissue Res 2023; 393:357-375. [PMID: 37277577 PMCID: PMC10406715 DOI: 10.1007/s00441-023-03790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Desmin is the main intermediate filament of striated and smooth muscle cells and plays a crucial role in maintaining the stability of muscle fiber during contraction and relaxation cycles. Being a component of Z-disk area, desmin integrates autophagic pathways, and the disturbance of Z-disk proteins' structure negatively affects chaperone-assisted selective autophagy (CASA). In the present study, we focused on alteration of autophagy flux in myoblasts expressing various Des mutations. We applied Western blotting, immunocytochemistry, RNA sequencing, and shRNA approach to demonstrate that DesS12F, DesA357P, DesL345P, DesL370P, and DesD399Y mutations. Mutation-specific effect on autophagy flux being most severe in aggregate-prone Des mutations such as DesL345P, DesL370P, and DesD399Y. RNA sequencing data confirmed the most prominent effect of these mutations on expression profile and, in particular, on autophagy-related genes. To verify CASA contribution to desmin aggregate formation, we suppressed CASA by knocking down Bag3 and demonstrated that it promoted aggregate formation and lead to downregulation of Vdac2 and Vps4a and upregulation of Lamp, Pink1, and Prkn. In conclusion, Des mutations showed a mutation-specific effect on autophagy flux in C2C12 cells with either a predominant impact on autophagosome maturation or on degradation and recycling processes. Aggregate-prone desmin mutations lead to the activation of basal autophagy level while suppressing the CASA pathway by knocking down Bag3 can promote desmin aggregate formation.
Collapse
Affiliation(s)
- K S Sukhareva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia.
- Graduate School of Life and Health Science, University of Verona, Verona, Italy.
| | - N A Smolina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A I Churkina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K K Kalugina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - S V Zhuk
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A A Khudiakov
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A A Khodot
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - G Faggian
- Graduate School of Life and Health Science, University of Verona, Verona, Italy
| | - G B Luciani
- Graduate School of Life and Health Science, University of Verona, Verona, Italy
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - A A Kostareva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Krause K, Eggers B, Uszkoreit J, Eulitz S, Rehmann R, Güttsches AK, Schreiner A, van der Ven PFM, Fürst DO, Marcus K, Vorgerd M, Kley RA. Target formation in muscle fibres indicates reinnervation - A proteomic study in muscle samples from peripheral neuropathies. Neuropathol Appl Neurobiol 2023; 49:e12853. [PMID: 36180966 DOI: 10.1111/nan.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/20/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
AIMS Target skeletal muscle fibres - defined by different concentric areas in oxidative enzyme staining - can occur in patients with neurogenic muscular atrophy. Here, we used our established hypothesis-free proteomic approach with the aim of deciphering the protein composition of targets. We also searched for potential novel interactions between target proteins. METHODS Targets and control areas were laser microdissected from skeletal muscle sections of 20 patients with neurogenic muscular atrophy. Samples were analysed by a highly sensitive mass spectrometry approach, enabling relative protein quantification. The results were validated by immunofluorescence studies. Protein interactions were investigated by yeast two-hybrid assays, coimmunoprecipitation experiments and bimolecular fluorescence complementation. RESULTS More than 1000 proteins were identified. Among these, 55 proteins were significantly over-represented and 40 proteins were significantly under-represented in targets compared to intraindividual control samples. The majority of over-represented proteins were associated with the myofibrillar Z-disc and actin dynamics, followed by myosin and myosin-associated proteins, proteins involved in protein biosynthesis and chaperones. Under-represented proteins were mainly mitochondrial proteins. Functional studies revealed that the LIM domain of the over-represented protein LIMCH1 interacts with isoform A of Xin actin-binding repeat-containing protein 1 (XinA). CONCLUSIONS In particular, proteins involved in myofibrillogenesis are over-represented in target structures, which indicate an ongoing process of sarcomere assembly and/or remodelling within this specific area of the muscle fibres. We speculate that target structures are the result of reinnervation processes in which filamin C-associated myofibrillogenesis is tightly regulated by the BAG3-associated protein quality system.
Collapse
Affiliation(s)
- Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Julian Uszkoreit
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Stefan Eulitz
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anne K Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | | | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf A Kley
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, Borken, Germany
| |
Collapse
|
5
|
Desmin Knock-Out Cardiomyopathy: A Heart on the Verge of Metabolic Crisis. Int J Mol Sci 2022; 23:ijms231912020. [PMID: 36233322 PMCID: PMC9570457 DOI: 10.3390/ijms231912020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/05/2022] Open
Abstract
Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.
Collapse
|
6
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
7
|
Bhunia S, Barbhuiya MA, Gupta S, Shrivastava BR, Tiwari PK. Epigenetic downregulation of desmin in gall bladder cancer reveals its potential role in disease progression. Indian J Med Res 2021; 151:311-318. [PMID: 32461394 PMCID: PMC7371065 DOI: 10.4103/ijmr.ijmr_501_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background & objectives: Gall bladder cancer (GBC) is a fatal neoplasm, with a globally variable incidence rates. To improve the survival rate of patients, a newer set of biomarkers needs to be discovered for its early detection and better prognosis. Our earlier studies on GBC proteomics and whole-genome methylome data revealed expression of desmin to be significantly downregulated with correlated promoter hypermethylation during gall bladder carcinogenesis. Thus, to evaluate desmin as a potential biomarker for GBC, we carried out a detailed follow up study. Methods: Methylation-specific polymerase chain reaction (MS-PCR) (n=17, GBC and n=23, non-tumour control), real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) [n=14, GBC and n=14, adjacent non-tumour (ANT)], immunohistochemistry (n=27, GBC and n=14, non-tumour) and immunoblotting (n=13, GBC and n=13, ANT) were performed in surgically removed gall bladder tissue samples. Results: MS-PCR analysis showed methylation of desmin in 88.23 per cent (15/17) gall bladder tumour samples as compared to non-tumour tissues (39.13%, 9/23). Real-time qRT-PCR analysis revealed a significant downregulation of desmin expression in GBC as compared to ANT tissue. This was further confirmed by western blot, showing reduced expression of desmin protein in GBC, as compared to non-tumour tissue. Immunohistochemical analysis also showed a decreased level of desmin i.e., more than 95 per cent (26/27) in tumour cells compared to non-tumours (35.71%, 5/14). Interpretation & conclusions: The increased frequency of desmin promoter methylation which could be responsible for its significant downregulation, indicates its potential as a candidate biomarker for GBC. This requires further validation in a large group of patients to evaluate its clinical utility.
Collapse
Affiliation(s)
- Shushruta Bhunia
- Department of Molecular & Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mustafa Ahmed Barbhuiya
- Department of Pathology & Laboratory Medicine, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sanjiv Gupta
- Department of Pathology, Cancer Hospital & Research Institute, Gwalior, Madhya Pradesh, India
| | - Braj Raj Shrivastava
- Department of Pathology, Cancer Hospital & Research Institute, Gwalior, Madhya Pradesh, India
| | - Pramod Kumar Tiwari
- Department of Molecular & Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
8
|
Williams ZJ, Velez-Irizarry D, Petersen JL, Ochala J, Finno CJ, Valberg SJ. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet J 2021; 53:306-315. [PMID: 32453872 PMCID: PMC7864122 DOI: 10.1111/evj.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM-like disorders. OBJECTIVES To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non-MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non-MFM WB. STUDY DESIGN Case-control. ANIMALS 8 MFM WB, 8 non-MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. METHODS Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non-MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non-MFM WB by fitting a negative binomial generalised log-linear model per gene (false discovery rate <0.05). The maximal isometric force/cross-sectional area generated by isolated membrane-permeabilised muscle fibres was determined. RESULTS None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed-specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre-specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non-MFM WB (140.2 ± 43.7 kPa) (P = .8). MAIN LIMITATIONS RNA-seq-only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. CONCLUSIONS Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.
Collapse
Affiliation(s)
- Zoë J. Williams
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Deborah Velez-Irizarry
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Julien Ochala
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Carrie J. Finno
- University of California at Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Stephanie J. Valberg
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| |
Collapse
|
9
|
Desminopathy: Novel Desmin Variants, a New Cardiac Phenotype, and Further Evidence for Secondary Mitochondrial Dysfunction. J Clin Med 2020; 9:jcm9040937. [PMID: 32235386 PMCID: PMC7231262 DOI: 10.3390/jcm9040937] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The pleomorphic clinical presentation makes the diagnosis of desminopathy difficult. We aimed to describe the prevalence, phenotypic expression, and mitochondrial function of individuals with putative disease-causing desmin (DES) variants identified in patients with an unexplained etiology of cardiomyopathy. Methods: A total of 327 Czech patients underwent whole exome sequencing and detailed phenotyping in probands harboring DES variants. Results: Rare, conserved, and possibly pathogenic DES variants were identified in six (1.8%) probands. Two DES variants previously classified as variants of uncertain significance (p.(K43E), p.(S57L)), one novel DES variant (p.(A210D)), and two known pathogenic DES variants (p.(R406W), p.(R454W)) were associated with characteristic desmin-immunoreactive aggregates in myocardial and/or skeletal biopsy samples. The individual with the novel DES variant p.(Q364H) had a decreased myocardial expression of desmin with absent desmin aggregates in myocardial/skeletal muscle biopsy and presented with familial left ventricular non-compaction cardiomyopathy (LVNC), a relatively novel phenotype associated with desminopathy. An assessment of the mitochondrial function in four probands heterozygous for a disease-causing DES variant confirmed a decreased metabolic capacity of mitochondrial respiratory chain complexes in myocardial/skeletal muscle specimens, which was in case of myocardial succinate respiration more profound than in other cardiomyopathies. Conclusions: The presence of desminopathy should also be considered in individuals with LVNC, and in the differential diagnosis of mitochondrial diseases.
Collapse
|
10
|
Smolina N, Khudiakov A, Knyazeva A, Zlotina A, Sukhareva K, Kondratov K, Gogvadze V, Zhivotovsky B, Sejersen T, Kostareva A. Desmin mutations result in mitochondrial dysfunction regardless of their aggregation properties. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165745. [PMID: 32105824 DOI: 10.1016/j.bbadis.2020.165745] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Desmin, being a major intermediate filament of muscle cells, contributes to stabilization and positioning of mitochondria. Desmin mutations have been reported in conjunction with skeletal myopathies accompanied by mitochondrial dysfunction. Depending on the ability to promote intracellular aggregates formation, mutations can be considered aggregate-prone or non-aggregate-prone. The aim of the present study was to describe how expression of different desmin mutant isoforms effects mitochondria and contributes to the development of myocyte dysfunction. To achieve this goal, two non-aggregate-prone (Des S12F and Des A213V) and four aggregate-prone (Des L345P, Des A357P, Des L370P, Des D399Y) desmin mutations were expressed in skeletal muscle cells. We showed that all evaluated mutations affected the morphology of mitochondrial network, suppressed parameters of mitochondrial respiration, diminished mitochondrial membrane potential, increased ADP/ATP ratio, and enhanced mitochondrial DNA (mtDNA) release. mtDNA was partially secreted through exosomes as demonstrated by GW4869 treatment. Dysfunction of mitochondria was observed regardless the type of mutation: aggregate-prone or non-aggregate-prone. However, expression of aggregate-prone mutations resulted in more prominent phenotype. Thus, in this comparative study of six pathogenic desmin mutations that cause skeletal myopathy development, we confirmed a role of mitochondrial dysfunction and mtDNA release in the pathogenesis of desmin myopathies, regardless of the aggregation capacity of the mutated desmin.
Collapse
Affiliation(s)
- Natalia Smolina
- Almazov National Medical Research Centre, Saint Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| | | | | | - Anna Zlotina
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Kseniya Sukhareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia; University of Verona, Verona, Italy
| | - Kirill Kondratov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Vladimir Gogvadze
- Faculty of medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Boris Zhivotovsky
- Faculty of medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Delort F, Segard BD, Hakibilen C, Bourgois-Rocha F, Cabet E, Vicart P, Huang ME, Clary G, Lilienbaum A, Agbulut O, Batonnet-Pichon S. Alterations of redox dynamics and desmin post-translational modifications in skeletal muscle models of desminopathies. Exp Cell Res 2019; 383:111539. [PMID: 31369751 DOI: 10.1016/j.yexcr.2019.111539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/24/2022]
Abstract
Desminopathies are a type of myofibrillar myopathy resulting from mutations in DES, encoding the intermediate filament protein desmin. They display heterogeneous phenotypes, suggesting environment influences. Patient muscle proteins show oxidative features linking oxidative stress, protein aggregation, and abnormal protein deposition. To improve understanding of redox balance in desminopathies, we further developed cellular models of four pathological mutants localized in 2B helical domain (the most important region for desmin polymerization) to explore desmin behavior upon oxidative stress. We show that the mutations desQ389P and desD399Y share common stress-induced aggregates, desR406W presents more scattered cytoplasmic aggregative pattern, and pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant molecule, prevents all type of aggregation. Mutants desD399Y and desR406W had delayed oxidation kinetics following H2O2 stress prevented by NAC pretreatment. Further, we used AAV-injected mouse models to confirm in vivo effects of N-acetyl-l-cysteine. AAV-desD399Y-injected muscles displayed similar physio-pathological characteristics as observed in patients. However, after 2 months of NAC treatment, they did not have reduced aggregates. Finally, in both models, stress induced some post-translational modifications changing Isoelectric Point, such as potential hyperphosphorylations, and/or molecular weight of human desmin by proteolysis. However, each mutant presented its own pattern that seemed to be post-aggregative. In conclusion, our results indicate that individual desmin mutations have unique pathological molecular mechanisms partly linked to alteration of redox homeostasis. Integrating these mutant-specific behaviors will be important when considering future therapeutics.
Collapse
Affiliation(s)
- Florence Delort
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Bertrand-David Segard
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Coralie Hakibilen
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Fany Bourgois-Rocha
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Eva Cabet
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Patrick Vicart
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Guilhem Clary
- Inserm U1016, Institut Cochin, CNRS UMR8104, Université Paris-Descartes, Sorbonne Paris Cité, Plateforme Protéomique 3P5, Paris, France
| | - Alain Lilienbaum
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Sabrina Batonnet-Pichon
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France.
| |
Collapse
|
12
|
Gibertini S, Ruggieri A, Saredi S, Salerno F, Blasevich F, Napoli L, Moggio M, Nigro V, Morandi L, Maggi L, Mora M. Long term follow-up and further molecular and histopathological studies in the LGMD1F sporadic TNPO3-mutated patient. Acta Neuropathol Commun 2018; 6:141. [PMID: 30567601 PMCID: PMC6299540 DOI: 10.1186/s40478-018-0648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/10/2018] [Indexed: 11/10/2022] Open
|
13
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
14
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
15
|
Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice. Sci Rep 2017; 7:1391. [PMID: 28469177 PMCID: PMC5431221 DOI: 10.1038/s41598-017-01485-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
In striated muscle, desmin intermediate filaments interlink the contractile myofibrillar apparatus with mitochondria, nuclei, and the sarcolemma. The desmin network’s pivotal role in myocytes is evident since mutations in the human desmin gene cause severe myopathies and cardiomyopathies. Here, we investigated skeletal muscle pathology in myofibers and myofibrils isolated from young hetero- and homozygous R349P desmin knock-in mice, which carry the orthologue of the most frequent human desmin missense mutation R350P. We demonstrate that mutant desmin alters myofibrillar cytoarchitecture, markedly disrupts the lateral sarcomere lattice and distorts myofibrillar angular axial orientation. Biomechanical assessment revealed a high predisposition to stretch-induced damage in fiber bundles of R349P mice. Notably, Ca2+-sensitivity and passive myofibrillar tension were decreased in heterozygous fiber bundles, but increased in homozygous fiber bundles compared to wildtype mice. In a parallel approach, we generated and subsequently subjected immortalized heterozygous R349P desmin knock-in myoblasts to magnetic tweezer experiments that revealed a significantly increased sarcolemmal lateral stiffness. Our data suggest that mutated desmin already markedly impedes myocyte structure and function at pre-symptomatic stages of myofibrillar myopathies.
Collapse
|
16
|
Li H, Zheng L, Mo Y, Gong Q, Jiang A, Zhao J. Voltage-Dependent Anion Channel 1(VDAC1) Participates the Apoptosis of the Mitochondrial Dysfunction in Desminopathy. PLoS One 2016; 11:e0167908. [PMID: 27941998 PMCID: PMC5152834 DOI: 10.1371/journal.pone.0167908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Desminopathies caused by the mutation in the gene coding for desmin are genetically protein aggregation myopathies. Mitochondrial dysfunction is one of pathological changes in the desminopathies at the earliest stage. The molecular mechanisms of mitochondria dysfunction in desminopathies remain exclusive. VDAC1 regulates mitochondrial uptake across the outer membrane and mitochondrial outer membrane permeabilization (MOMP). Relationships between desminopathies and Voltage-dependent anion channel 1 (VDAC1) remain unclear. Here we successfully constructed the desminopathy rat model, evaluated with conventional stains, containing hematoxylin and eosin (HE), Gomori Trichrome (MGT), (PAS), red oil (ORO), NADH-TR, SDH staining and immunohistochemistry. Immunofluorescence results showed that VDAC1 was accumulated in the desmin highly stained area of muscle fibers of desminopathy patients or desminopathy rat model compared to the normal ones. Meanwhile apoptosis related proteins bax and ATF2 were involved in desminopathy patients and desminopathy rat model, but not bcl-2, bcl-xl or HK2.VDAC1 and desmin are closely relevant in the tissue splices of deminopathies patients and rats with desminopathy at protein lever. Moreover, apoptotic proteins are also involved in the desminopathies, like bax, ATF2, but not bcl-2, bcl-xl or HK2. This pathological analysis presents the correlation between VDAC1 and desmin, and apoptosis related proteins are correlated in the desminopathy. Furthermore, we provide a rat model of desminopathy for the investigation of desmin related myopathy.
Collapse
Affiliation(s)
- Huanyin Li
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Lan Zheng
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Yanqing Mo
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Qi Gong
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Aihua Jiang
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Jing Zhao
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
- * E-mail:
| |
Collapse
|
17
|
Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol 2016; 132:453-73. [PMID: 27393313 PMCID: PMC4992032 DOI: 10.1007/s00401-016-1592-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022]
Abstract
Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.
Collapse
|
18
|
Vincent AE, Grady JP, Rocha MC, Alston CL, Rygiel KA, Barresi R, Taylor RW, Turnbull DM. Mitochondrial dysfunction in myofibrillar myopathy. Neuromuscul Disord 2016; 26:691-701. [PMID: 27618136 PMCID: PMC5066370 DOI: 10.1016/j.nmd.2016.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Clonally expanded mtDNA deletions were found in a small number of patient fibres. Complex I and IV deficiency is higher than in control muscle. Mitochondrial mass is significantly reduced in patients relative to controls. No relationship between MFM protein aggregates and reduced mitochondrial mass. Negative correlations was detected between mitochondrial mass and muscle fibre area.
Myofibrillar myopathies (MFM) are characterised by focal myofibrillar destruction and accumulation of myofibrillar elements as protein aggregates. They are caused by mutations in the DES, MYOT, CRYAB, FLNC, BAG3, DNAJB6 and ZASP genes as well as other as yet unidentified genes. Previous studies have reported changes in mitochondrial morphology and cellular positioning, as well as clonally-expanded, large-scale mitochondrial DNA (mtDNA) deletions and focal respiratory chain deficiency in muscle of MFM patients. Here we examine skeletal muscle from patients with desmin (n = 6), ZASP (n = 1) and myotilin (n = 2) mutations and MFM protein aggregates, to understand how mitochondrial dysfunction may contribute to the underlying mechanisms causing disease pathology. We have used a validated quantitative immunofluorescent assay to study respiratory chain protein levels, together with oxidative enzyme histochemistry and single cell mitochondrial DNA analysis, to examine mitochondrial changes. Results demonstrate a small number of clonally-expanded mitochondrial DNA deletions, which we conclude are due to both ageing and disease pathology. Further to this we report higher levels of respiratory chain complex I and IV deficiency compared to age matched controls, although overall levels of respiratory deficient muscle fibres in patient biopsies are low. More strikingly, a significantly higher percentage of myofibrillar myopathy patient muscle fibres have a low mitochondrial mass compared to controls. We concluded this is mechanistically unrelated to desmin and myotilin protein aggregates; however, correlation between mitochondrial mass and muscle fibre area is found. We suggest this may be due to reduced mitochondrial biogenesis in combination with muscle fibre hypertrophy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adult
- Aged
- Cell Cycle Proteins/genetics
- Cohort Studies
- Connectin/genetics
- DNA, Mitochondrial
- Desmin/genetics
- Female
- Humans
- LIM Domain Proteins/genetics
- Male
- Microfilament Proteins
- Middle Aged
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutation
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Ribonucleotide Reductases/genetics
Collapse
Affiliation(s)
- Amy E Vincent
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John P Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mariana C Rocha
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karolina A Rygiel
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rita Barresi
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4AZ, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
19
|
Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function. Cells 2016; 5:cells5030030. [PMID: 27399781 PMCID: PMC5040972 DOI: 10.3390/cells5030030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases.
Collapse
|
20
|
Ahmed MI, Guichard JL, Soorappan RN, Ahmad S, Mariappan N, Litovsky S, Gupta H, Lloyd SG, Denney TS, Powell PC, Aban I, Collawn J, Davies JE, McGiffin DC, Dell'Italia LJ. Disruption of desmin-mitochondrial architecture in patients with regurgitant mitral valves and preserved ventricular function. J Thorac Cardiovasc Surg 2016; 152:1059-1070.e2. [PMID: 27464577 DOI: 10.1016/j.jtcvs.2016.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Recent studies have demonstrated improved outcomes in patients receiving early surgery for degenerative mitral regurgitation (MR) rather than adhering to conventional guidelines for surgical intervention. However, studies providing a mechanistic basis for these findings are limited. METHODS Left ventricular (LV) myocardium from 22 patients undergoing mitral valve repair for American Heart Association class I indications was evaluated for desmin, the voltage-dependent anion channel, α-B-crystallin, and α, β-unsaturated aldehyde 4-hydroxynonenal by fluorescence microscopy. The same was evaluated in 6 normal control LV autopsy specimens. Cardiomyocyte ultrastructure was examined by transmission electron microscopy. Magnetic resonance imaging with tissue tagging was performed in 55 normal subjects and 22 MR patients before and 6 months after mitral valve repair. RESULTS LV end-diastolic volume was 1.5-fold (P < .0001) higher and LV mass-to-volume ratio was lower in MR (P = .004) hearts versus normal hearts and showed improvement 6 months after mitral valve surgery. However, LV ejection fraction decreased from 65% ± 7% to 52% ± 9% (P < .0001) and LV circumferential (P < .0001) and longitudinal strain decreased significantly below normal values (P = .002) after surgery. Hearts with MR had a 53% decrease in desmin (P < .0001) and a 2.6-fold increase in desmin aggregates (P < .0001) versus normal, along with substantial, intense perinuclear staining of α, β-unsaturated aldehyde 4-hydroxynonenal in areas of mitochondrial breakdown and clustering. Transmission electron microscopy demonstrated numerous electron-dense deposits, myofibrillar loss, Z-disc abnormalities, and extensive granulofilamentous debris identified as desmin-positive by immunogold transmission electron microscopy. CONCLUSIONS Despite well-preserved preoperative LV ejection fraction, severe oxidative stress and disruption of cardiomyocyte desmin-mitochondrial sarcomeric architecture may explain postoperative LV functional decline and further supports the move toward earlier surgical intervention.
Collapse
Affiliation(s)
- Mustafa I Ahmed
- Department of Medicine, Division of Cardiovascular Disease, UAB
| | | | | | - Shama Ahmad
- Department of Anesthesiology& Perioperative Medicine, UAB
| | | | | | - Himanshu Gupta
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| | - Steven G Lloyd
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| | - Thomas S Denney
- Auburn University School of Engineering, Auburn, Alabama, USA
| | - Pamela Cox Powell
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA
| | | | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, UAB
| | - James E Davies
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Surgery, Division of Thoracic and Cardiovascular Surgery, UAB
| | | | - Louis J Dell'Italia
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| |
Collapse
|
21
|
Jackson S, Schaefer J, Meinhardt M, Reichmann H. Mitochondrial abnormalities in the myofibrillar myopathies. Eur J Neurol 2015. [DOI: 10.1111/ene.12814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S. Jackson
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - J. Schaefer
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - M. Meinhardt
- Department of Pathology; Technische Universität Dresden; Dresden Germany
| | - H. Reichmann
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
22
|
McCormick EM, Kenyon L, Falk MJ. Desmin common mutation is associated with multi-systemic disease manifestations and depletion of mitochondria and mitochondrial DNA. Front Genet 2015; 6:199. [PMID: 26097489 PMCID: PMC4456612 DOI: 10.3389/fgene.2015.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022] Open
Abstract
Desmin (DES) is a major muscle scaffolding protein that also functions to anchor mitochondria. Pathogenic DES mutations, however, have not previously been recognized as a cause of multi-systemic mitochondrial disease. Here, we describe a 45-year-old man who presented to The Children's Hospital of Philadelphia Mitochondrial-Genetics Diagnostic Clinic for evaluation of progressive cardiac, neuromuscular, gastrointestinal, and mood disorders. Muscle biopsy at age 45 was remarkable for cytoplasmic bodies, as well as ragged red fibers and SDH positive/COX negative fibers that were suggestive of a mitochondrial myopathy. Muscle also showed significant reductions in mitochondrial content (16% of control mean for citrate synthase activity) and mitochondrial DNA (35% of control mean). His family history was significant for cardiac conduction defects and myopathy in multiple maternal relatives. Multiple single gene and panel-based sequencing studies were unrevealing. Whole exome sequencing identified a known pathogenic p.S13F mutation in DES that had previously been associated with desmin-related myopathy. Desmin-related myopathy is an autosomal dominant disorder characterized by right ventricular hypertrophic cardiomyopathy, myopathy, and arrhythmias. However, neuropathy, gastrointestinal dysfunction, and depletion of both mitochondria and mitochondrial DNA have not previously been widely recognized in this disorder. Recognition that mitochondrial dysfunction occurs in desmin-related myopathy clarifies the basis for the multi-systemic manifestations, as are typical of primary mitochondrial disorders. Understanding the mitochondrial pathophysiology of desmin-related myopathy highlights the possibility of new therapies for this otherwise untreatable and often fatal class of disease. We postulate that drug treatments aimed at improving mitochondrial biogenesis or reducing oxidative stress may be effective therapies to ameliorate the effects of desmin-related disease.
Collapse
Affiliation(s)
- Elizabeth M McCormick
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Lawrence Kenyon
- Department of Pathology, Thomas Jefferson University Hospital Philadelphia, PA, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia Philadelphia, PA, USA ; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
23
|
Guglielmi V, Marini M, Masson ÉF, Malatesta M, Forget D, Tomelleri G, Coulombe B, Vattemi G. Abnormal expression of RNA polymerase II-associated proteins in muscle of patients with myofibrillar myopathies. Histopathology 2015; 67:859-65. [PMID: 25891782 DOI: 10.1111/his.12715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/14/2015] [Indexed: 01/13/2023]
Abstract
AIMS Myofibrillar myopathies (MFMs) are a group of inherited or sporadic neuromuscular disorders characterized morphologically by foci of myofibril dissolution, disintegration of the Z-disk and insoluble protein aggregates within the muscle fibres. The sequential events leading to muscle fibre damage remains largely unknown. METHODS AND RESULTS We investigated the expression and the cellular localization of RNA polymerase II (RNAPII)-associated proteins (RPAPs) in muscle biopsies from patients with genetically proven and sporadic MFMs. Our data demonstrated that RPAP2, and to a lesser extent GPN1/RPAP4, are accumulated focally in the cytoplasm of MFM muscle fibres in which they co-localize with POLR2A/RPB1, the largest subunit of RNAPII, and correspond to αB-cystallin deposits in distribution and staining intensity. No abnormal staining for RPAP2 has been observed in muscle of patients with central cores, minicores and neurogenic target fibres. CONCLUSIONS Together, these findings could provide new insights into the molecular pathogenesis of MFMs and suggest that RPAP2 immunostaining can be a useful diagnostic tool to depict protein aggregates in MFMs.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Matteo Marini
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | | | - Manuela Malatesta
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy
| | - Diane Forget
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Giuliano Tomelleri
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Gaetano Vattemi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Der Perng M, Quinlan RA. The Dynamic Duo of Small Heat Proteins and IFs Maintain Cell Homeostasis, Resist Cellular Stress and Enable Evolution in Cells and Tissues. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Brodehl A, Dieding M, Klauke B, Dec E, Madaan S, Huang T, Gargus J, Fatima A, Saric T, Cakar H, Walhorn V, Tönsing K, Skrzipczyk T, Cebulla R, Gerdes D, Schulz U, Gummert J, Svendsen JH, Olesen MS, Anselmetti D, Christensen AH, Kimonis V, Milting H. The novel desmin mutant p.A120D impairs filament formation, prevents intercalated disk localization, and causes sudden cardiac death. ACTA ACUST UNITED AC 2013; 6:615-23. [PMID: 24200904 DOI: 10.1161/circgenetics.113.000103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The intermediate filament protein desmin is encoded by the gene DES and contributes to the mechanical stabilization of the striated muscle sarcomere and cell contacts within the cardiac intercalated disk. DES mutations cause severe skeletal and cardiac muscle diseases with heterogeneous phenotypes. Recently, DES mutations were also found in patients with arrhythmogenic right ventricular cardiomyopathy. Currently, the cellular and molecular pathomechanisms of the DES mutations leading to this disease are not exactly known. METHODS AND RESULTS We identified the 2 novel variants DES-p.A120D (c.359C>A) and DES-p.H326R (c.977A>G), which were characterized by cell culture experiments and atomic force microscopy. Family analysis indicated a broad spectrum of cardiomyopathies with a striking frequency of arrhythmias and sudden cardiac deaths. The in vitro experiments of desmin-p.A120D reveal a severe intrinsic filament formation defect causing cytoplasmic aggregates in cell lines and of the isolated recombinant protein. Model variants of codon 120 indicated that ionic interactions contribute to this filament formation defect. Ex vivo analysis of ventricular tissue slices revealed a loss of desmin staining within the intercalated disk and severe cytoplasmic aggregate formation, whereas z-band localization was not affected. The functional experiments of desmin-p.H326R did not demonstrate any differences from wild type. CONCLUSIONS Because of the functional in vivo and in vitro characterization, DES-p.A120D has to be regarded as a pathogenic mutation and DES-p.H326R as a rare variant with unknown significance. Presumably, the loss of the desmin-p. A120D filament localization at the intercalated disk explains its clinical arrhythmogenic potential.
Collapse
|
26
|
McLaughlin HM, Kelly MA, Hawley PP, Darras BT, Funke B, Picker J. Compound heterozygosity of predicted loss-of-function DES variants in a family with recessive desminopathy. BMC MEDICAL GENETICS 2013; 14:68. [PMID: 23815709 PMCID: PMC3711885 DOI: 10.1186/1471-2350-14-68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
Abstract
Background Variants in the desmin gene (DES) are associated with desminopathy; a myofibrillar myopathy mainly characterized by muscle weakness, conduction block, and dilated cardiomyopathy. To date, only ~50 disease-associated variants have been described, and the majority of these lead to dominant-negative effects. However, the complete genotypic spectrum of desminopathy is not well established. Case presentation Next-generation sequencing was performed on 51 cardiac disease genes in a proband with profound skeletal myopathy, dilated cardiomyopathy, and respiratory dysfunction. Our analyses revealed compound heterozygous DES variants, both of which are predicted to lead to a loss-of-function. Consistent with recessive inheritance, each variant was identified in an unaffected parent. Conclusions This case report serves to broaden the variant spectrum of desminopathies and provides insight into the molecular mechanisms of desminopathy, supporting distinct dominant-negative and loss-of-function etiologies.
Collapse
Affiliation(s)
- Heather M McLaughlin
- Laboratory for Molecular Medicine, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
27
|
Cetin N, Balci-Hayta B, Gundesli H, Korkusuz P, Purali N, Talim B, Tan E, Selcen D, Erdem-Ozdamar S, Dincer P. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 2013; 50:437-43. [DOI: 10.1136/jmedgenet-2012-101487] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Elliott JL, Der Perng M, Prescott AR, Jansen KA, Koenderink GH, Quinlan RA. The specificity of the interaction between αB-crystallin and desmin filaments and its impact on filament aggregation and cell viability. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120375. [PMID: 23530264 PMCID: PMC3638400 DOI: 10.1098/rstb.2012.0375] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CRYAB (αB-crystallin) is expressed in many tissues and yet the R120G mutation in CRYAB causes tissue-specific pathologies, namely cardiomyopathy and cataract. Here, we present evidence to demonstrate that there is a specific functional interaction of CRYAB with desmin intermediate filaments that predisposes myocytes to disease caused by the R120G mutation. We use a variety of biochemical and biophysical techniques to show that plant, animal and ascidian small heat-shock proteins (sHSPs) can interact with intermediate filaments. Nevertheless, the mutation R120G in CRYAB does specifically change that interaction when compared with equivalent substitutions in HSP27 (R140G) and into the Caenorhabditis elegans HSP16.2 (R95G). By transient transfection, we show that R120G CRYAB specifically promotes intermediate filament aggregation in MCF7 cells. The transient transfection of R120G CRYAB alone has no significant effect upon cell viability, although bundling of the endogenous intermediate filament network occurs and the mitochondria are concentrated into the perinuclear region. The combination of R120G CRYAB co-transfected with wild-type desmin, however, causes a significant reduction in cell viability. Therefore, we suggest that while there is an innate ability of sHSPs to interact with and to bind to intermediate filaments, it is the specific combination of desmin and CRYAB that compromises cell viability and this is potentially the key to the muscle pathology caused by the R120G CRYAB.
Collapse
Affiliation(s)
- Jayne L Elliott
- School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | | | |
Collapse
|
29
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
30
|
Nalini A, Richard P, Urtizberea JA, Cobo AM, Gayathri N. New mutation of the desmin gene identified in an extended Indian pedigree presenting with distal myopathy and cardiac disease. Neurol India 2013; 61:622-6. [DOI: 10.4103/0028-3886.125269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Ruparelia AA, Zhao M, Currie PD, Bryson-Richardson RJ. Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. Hum Mol Genet 2012; 21:4073-83. [PMID: 22706277 DOI: 10.1093/hmg/dds231] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myofibrillar myopathies are a group of muscle disorders characterized by the disintegration of skeletal muscle fibers and formation of sarcomeric protein aggregates. All the proteins known to be involved in myofibrillar myopathies localize to a region of the sarcomere known as the Z-disk, the site at which defects are first observed. Given the common cellular phenotype observed in this group of disorders, it is thought that there is a common mechanism of pathology. Mutations in filamin C, which has several proposed roles in the development and function of skeletal muscle, can result in filamin-related myofibrillar myopathy. The lack of a suitable animal model system has limited investigation into the mechanism of pathology in this disease and the role of filamin C in muscle development. Here, we characterize stretched out (sot), a zebrafish filamin Cb mutant, together with targeted knockdown of zebrafish filamin Ca, revealing fiber dissolution and formation of protein aggregates strikingly similar to those seen in filamin-related myofibrillar myopathies. Through knockdown of both zebrafish filamin C homologues, we demonstrate that filamin C is not required for fiber specification and that fiber damage is a consequence of muscle activity. The remarkable similarities in the myopathology between our models and filamin-related myofibrillar myopathy makes them suitable for the study of these diseases and provides unique opportunities for the investigation of the function of filamin C in muscle and development of therapies.
Collapse
Affiliation(s)
- Avnika A Ruparelia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | | | | |
Collapse
|
32
|
Serum Proteomic Analysis from Bacteremic and Leucopenic Rabbits. J Surg Res 2011; 171:749-54. [DOI: 10.1016/j.jss.2010.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/02/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022]
|
33
|
Abstract
The intermediate filament protein desmin is an integral component of the cardiomyocyte and serves to maintain the overall structure and cytoskeletal organization within striated muscle cells. Desmin-related myopathy can be caused by mutations in desmin or associated proteins, which leads to intracellular accumulation of misfolded protein and production of soluble pre-amyloid oligomers, which leads to weakened skeletal and cardiac muscle. In this review, we examine the cellular phenotypes in relevant animal models of desmin-related cardiomyopathy. These models display characteristic sarcoplasmic protein aggregates. Aberrant protein aggregation leads to mitochondrial dysfunction, abnormal metabolism, and altered cardiomyocyte structure. These deficits to cardiomyocyte function may stem from impaired cellular proteolytic mechanisms. The data obtained from these models allow a more complete picture of the pathology in desmin-related cardiomyopathy to be described. Moreover, these studies highlight the importance of desmin in maintaining cardiomyocyte structure and illustrate how disrupting this network can be deleterious to the heart. We emphasize the similarities observed between desmin-related cardiomyopathy and other protein conformational disorders and speculate that therapies to treat this disease may be broadly applicable to diverse protein aggregation-based disorders.
Collapse
Affiliation(s)
- Patrick M McLendon
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
34
|
Cardiac conduction disturbances and differential effects on atrial and ventricular electrophysiological properties in desmin deficient mice. J Interv Card Electrophysiol 2010; 28:71-80. [PMID: 20390331 DOI: 10.1007/s10840-010-9482-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/02/2010] [Indexed: 01/23/2023]
Abstract
PURPOSE Desmin mutations in humans cause desmin-related cardiomyopathy, resulting in heart failure, atrial and ventricular arrhythmias, and sudden cardiac death. The intermediate filament desmin is strongly expressed in striated muscle cells and in Purkinje fibers of the ventricular conduction system. The aim of the present study was to characterize electrophysiological cardiac properties in a desmin-deficient mouse model. METHODS The impact of desmin deficiency on cardiac electrophysiological characteristics was examined in the present study. In vivo electrophysiological studies were carried out in 29 adult desmin deficient (Des-/-) and 19 wild-type (Des+/+) mice. Additionally, epicardial activation mapping was performed in Langendorff-perfused hearts. RESULTS Intracardiac electrograms showed no significant differences in AV, AH, and HV intervals. Functional testing revealed equal AV-nodal refractory periods, sinus-node recovery times, and Wenckebach points. However, compared to the wild-type situation, Des-/- mice were found to have a significantly reduced atrial (23.6+/-10.3 ms vs. 31.8+/-12.5 ms; p=0.045), but prolonged ventricular refractory period (33.0+/-8.7 ms vs. 26.7+/-6.5 ms; p=0.009). The probability of induction of atrial fibrillation was significantly higher in Des-/- mice (Des-/-: 38% vs. Des+/+: 27%; p=0.0255), while ventricular tachycardias significantly were reduced (Des-/-: 7% vs. Des+/+: 21%; p<0.0001). Epicardial activation mapping showed slowing of conduction in the ventricles of Des-/- mice. CONCLUSIONS Des-/- mice exhibit reduced atrial but prolonged ventricular refractory periods and ventricular conduction slowing, accompanied by enhanced inducibility of atrial fibrillation and diminished susceptibility to ventricular arrhythmias. Desmin deficiency does not result in electrophysiological changes present in human desminopathies, suggesting that functional alterations rather than loss of desmin cause the cardiac alterations in these patients.
Collapse
|
35
|
O'Rourke B. From bioblasts to mitochondria: ever expanding roles of mitochondria in cell physiology. Front Physiol 2010; 1:7. [PMID: 21423350 PMCID: PMC3059936 DOI: 10.3389/fphys.2010.00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 01/19/2023] Open
Affiliation(s)
- Brian O'Rourke
- Bernard Laboratory of Fundamental Research in Preventive Cardiology, Institute of Molecular Cardiobiology, Johns Hopkins University Baltimore, MD, USA.
| |
Collapse
|
36
|
Bär H, Sharma S, Kleiner H, Mücke N, Zentgraf H, Katus HA, Aebi U, Herrmann H. Interference of amino-terminal desmin fragments with desmin filament formation. ACTA ACUST UNITED AC 2009; 66:986-99. [DOI: 10.1002/cm.20396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Abstract
Myofibrillar myopathies (MFMs) are histopathologically characterized by desmin-positive protein aggregates and myofibrillar degeneration. Because of the marked phenotypic and pathomorphological variability, establishing the diagnosis of MFM can be a challenging task. While MFMs are partly caused by mutations in genes encoding for extramyofibrillar proteins (desmin, alphaB-crystallin, plectin) or myofibrillar proteins (myotilin, Z-band alternatively spliced PDZ-containing protein, filamin C, Bcl-2-associated athanogene-3, four-and-a-half LIM domain 1), a large number of these diseases are caused by still unresolved gene defects. Although recent years have brought new insight into the pathogenesis of MFMs, the precise molecular pathways and sequential steps that lead from an individual gene defect to progressive muscle damage are still unclear. This review focuses on the clinical and myopathological aspects of genetically defined MFMs, and shall provide a diagnostic guide for this numerically significant group of protein aggregate myopathies.
Collapse
Affiliation(s)
- Rolf Schröder
- Institute of Neuropathology and Department of Neurology, University Hospital Erlangen, Erlangen, Germany.
| | | |
Collapse
|
38
|
Abstract
Myofibrillar myopathies (MFMs) are a group of heterogeneous muscle disorders morphologically defined by the presence of foci of dissolution of the myofibrils, accumulation of the products of myofibrillar degradation and ectopic expression of multiple proteins. MFMs represent the paradigm of conformational protein diseases of skeletal and cardiac muscles. Protein aggregation in MFMs is now considered to be the result of a failure of the extralysosomal proteolytic degradation system. Several factors including mutant proteins, aggresome formation and oxidative stress may compromise the ubiquitin-proteasome system, promoting the accumulation of potentially toxic protein aggregates within muscle cells.
Collapse
Affiliation(s)
- Montse Olivé
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
39
|
Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 2009; 119:1806-13. [PMID: 19587455 PMCID: PMC2701871 DOI: 10.1172/jci38027] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Muscle fiber deterioration resulting in progressive skeletal muscle weakness, heart failure, and respiratory distress occurs in more than 20 inherited myopathies. As discussed in this Review, one of the newly identified myopathies is desminopathy, a disease caused by dysfunctional mutations in desmin, a type III intermediate filament protein, or alphaB-crystallin, a chaperone for desmin. The range of clinical manifestations in patients with desminopathy is wide and may overlap with those observed in individuals with other myopathies. Awareness of this disease needs to be heightened, diagnostic criteria reliably outlined, and molecular testing readily available; this would ensure prevention of sudden death from cardiac arrhythmias and other complications.
Collapse
Affiliation(s)
- Lev G. Goldfarb
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Marinos C. Dalakas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
40
|
Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul Disord 2009; 19:308-15. [PMID: 19380227 DOI: 10.1016/j.nmd.2009.01.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/15/2008] [Accepted: 01/18/2009] [Indexed: 01/18/2023]
Abstract
Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM) associated with Paget's disease of the bone (PDB) and fronto-temporal dementia (FTD) or IBMPFD. Although IBMPFD is a multisystem disorder, muscle weakness is the presenting symptom in greater than half of patients and an isolated symptom in 30%. Patients with the full spectrum of the disease make up only 12% of those affected; therefore it is important to consider and recognize IBMPFD in a neuromuscular clinic. The current review describes the skeletal muscle phenotype and common muscle histochemical features in IBMPFD. In addition to myopathic features; vacuolar changes and tubulofilamentous inclusions are found in a subset of patients. The most consistent findings are VCP, ubiquitin and TAR DNA-binding protein 43 (TDP-43) positive inclusions. VCP is a ubiquitously expressed multifunctional protein that is a member of the AAA+ (ATPase associated with various activities) protein family. It has been implicated in multiple cellular functions ranging from organelle biogenesis to protein degradation. Although the role of VCP in skeletal muscle is currently unknown, it is clear that VCP mutations lead to the accumulation of ubiquitinated inclusions and protein aggregates in patient tissue, transgenic animals and in vitro systems. We suggest that IBMPFD is novel type of protein surplus myopathy. Instead of accumulating a poorly degraded and aggregated mutant protein as seen in some myofibrillar and nemaline myopathies, VCP mutations disrupt its normal role in protein homeostasis resulting in the accumulation of ubiquitinated and aggregated proteins that are deleterious to skeletal muscle.
Collapse
Affiliation(s)
- Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
41
|
Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study. Acta Neuropathol 2009; 117:293-307. [PMID: 19151983 DOI: 10.1007/s00401-008-0479-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 12/26/2008] [Accepted: 12/29/2008] [Indexed: 12/17/2022]
Abstract
Myofibrillar myopathies (MFMs) are rare inherited or sporadic progressive neuromuscular disorders with considerable clinical and genetic heterogeneity. In the current study, we have analyzed histopathological and immunohistochemical characteristics in genetically identified MFMs. We performed a morphological and morphometrical study in a cohort of 24 genetically identified MFM patients (12 desmin, 6 alphaB-crystallin, 4 ZASP, 2 myotilin), and an extensive immunohistochemical study in 15 of these patients, using both well-known and novel antibodies directed against distinct compartments of the muscle fibers, including Z-disc and M-band proteins. Our morphological data revealed some significant differences between the distinct MFM subgroups: the consistent presence of 'rubbed-out' fibers in desminopathies and alphaB-crystallinopathies, an elevated frequency of vacuoles in ZASPopathies and myotilinopathies, and the presence of a few necrotic fibers in the two myotilinopathy patients. Immunohistochemistry showed that in MFM only a subset of Z-disc proteins, such as filamin C and its ligands myotilin and Xin, exhibited significant alterations in their localization, whereas other Z-disc proteins like alpha-actinin, myopodin and tritopodin, did not. In contrast, M-band proteins revealed no abnormalities in MFM. We conclude that the presence of 'rubbed-out' fibers are a suggestive feature for desminopathy or alphaB-crystallinopathy, and that MFM is not a general disease of the myofibril, but primarily affects a subgroup of stress-responsive Z-disc proteins.
Collapse
|
42
|
Fischer D, Kley RA, Strach K, Meyer C, Sommer T, Eger K, Rolfs A, Meyer W, Pou A, Pradas J, Heyer CM, Grossmann A, Huebner A, Kress W, Reimann J, Schröder R, Eymard B, Fardeau M, Udd B, Goldfarb L, Vorgerd M, Olivé M. Distinct muscle imaging patterns in myofibrillar myopathies. Neurology 2008; 71:758-65. [PMID: 18765652 DOI: 10.1212/01.wnl.0000324927.28817.9b] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare muscle imaging findings in different subtypes of myofibrillar myopathies (MFM) in order to identify characteristic patterns of muscle alterations that may be helpful to separate these genetic heterogeneous muscular disorders. METHODS Muscle imaging and clinical findings of 46 patients with MFM were evaluated (19 desminopathy, 12 myotilinopathy, 11 filaminopathy, 1 alphaB-crystallinopathy, and 3 ZASPopathy). The data were collected retrospectively in 43 patients and prospectively in 3 patients. RESULTS In patients with desminopathy, the semitendinosus was at least equally affected as the biceps femoris, and the peroneal muscles were never less involved than the tibialis anterior (sensitivity of these imaging criteria to detect desminopathy in our cohort 100%, specificity 95%). In most of the patients with myotilinopathy, the adductor magnus showed more alterations than the gracilis muscle, and the sartorius was at least equally affected as the semitendinosus (sensitivity 90%, specificity 93%). In filaminopathy, the biceps femoris and semitendinosus were at least equally affected as the sartorius muscle, and the medial gastrocnemius was more affected than the lateral gastrocnemius. The semimembranosus mostly showed more alterations than the adductor magnus (sensitivity 88%, specificity 96%). Early adult onset and cardiac involvement was most often associated with desminopathy. In patients with filaminopathy, muscle weakness typically beginning in the 5th decade of life was mostly pronounced proximally, while late adult onset (>50 years) with distal weakness was more often present in myotilinopathy. CONCLUSIONS Muscle imaging in combination with clinical data may be helpful for separation of distinct myofibrillar myopathy subtypes and in scheduling of genetic analysis.
Collapse
Affiliation(s)
- D Fischer
- Department of Neurology, University Hospital Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Myofibrillar myopathies (MFMs) are clinically and genetically heterogeneous muscle disorders that are defined morphologically by the presence of foci of myofibril dissolution, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins. MFMs are the paradigm of conformational protein diseases of the skeletal (and cardiac) muscles characterised by intracellular protein accumulation in muscle cells. Understanding of this group of disorders has advanced in recent years through the identification of causative mutations in various genes, most of which encode proteins of the sarcomeric Z-disc, including desmin, alphaB-crystallin, myotilin, ZASP and filamin C. This review focuses on the MFMs arising from defects in these proteins, summarising genetic and clinical features of the disorders and then discussing emerging understanding of the molecular pathogenic mechanisms leading to muscle fibre degeneration. Defective extralysosomal degradation of proteins is now recognised as an important element in this process. Several factors--including mutant proteins, a defective ubiquitin-proteasome system, aggresome formation, mutant ubiquitin, p62, oxidative stress and abnormal regulation of some transcription factors--are thought to participate in the cascade of events occurring in muscle fibres in MFMs.
Collapse
|
44
|
Panagopoulou P, Davos CH, Milner DJ, Varela E, Cameron J, Mann DL, Capetanaki Y. Desmin mediates TNF-alpha-induced aggregate formation and intercalated disk reorganization in heart failure. ACTA ACUST UNITED AC 2008; 181:761-75. [PMID: 18519735 PMCID: PMC2396798 DOI: 10.1083/jcb.200710049] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We explored the involvement of the muscle-specific intermediate filament protein desmin in the model of tumor necrosis factor alpha (TNF-alpha)-induced cardiomyopathy. We demonstrate that in mice overexpressing TNF-alpha in the heart (alpha-myosin heavy chain promoter-driven secretable TNF-alpha [MHCsTNF]), desmin is modified, loses its intercalated disk (ID) localization, and forms aggregates that colocalize with heat shock protein 25 and ubiquitin. Additionally, other ID proteins such as desmoplakin and beta-catenin show similar localization changes in a desmin-dependent fashion. To address underlying mechanisms, we examined whether desmin is a substrate for caspase-6 in vivo as well as the implications of desmin cleavage in MHCsTNF mice. We generated transgenic mice with cardiac-restricted expression of a desmin mutant (D263E) and proved that it is resistant to caspase cleavage in the MHCsTNF myocardium. The aggregates are diminished in these mice, and D263E desmin, desmoplakin, and beta-catenin largely retain their proper ID localization. Importantly, D263E desmin expression attenuated cardiomyocyte apoptosis, prevented left ventricular wall thinning, and improved the function of MHCsTNF hearts.
Collapse
Affiliation(s)
- Panagiota Panagopoulou
- Cell Biology Division, Center of Basic Research, and 2Cardiovascular Research Division, Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Mutations of the human desmin gene on chromosome 2q35 cause a familial or sporadic form of skeletal myopathy frequently associated with cardiac abnormalities. Skeletal and cardiac muscle from patients with primary desminopathies characteristically display cytoplasmic accumulation of desmin-immunoreactive material and myofibrillar changes. However, desmin-positive protein aggregates in conjunction with myofibrillar abnormalities are also the morphological hallmark of the large group of secondary desminopathies (synonyms: myofibrillar myopathies, desmin-related myopathies), which comprise sporadic and familial neuromuscular conditions of considerable clinical and genetic heterogeneity. Here, we will give an overview on the functional role of desmin in striated muscle as well as the main clinical, myopathological, genetic and patho-physiological aspects of primary desminopathies. Furthermore, we will discuss recent genetic and biochemical advances in distinguishing primary from secondary desminopathies.
Collapse
Affiliation(s)
- Rolf Schröder
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
46
|
Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, Toivola DM, Ursitti JA, Omary MB, Bloch RJ. Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 2007; 120:3999-4008. [PMID: 17971417 DOI: 10.1242/jcs.009241] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. We examined the contractile properties and morphology of fast-twitch skeletal muscle from mice lacking keratin 19. Tibialis anterior muscles of keratin-19-null mice showed a small but significant decrease in mean fiber diameter and in the specific force of tetanic contraction, as well as increased plasma creatine kinase levels. Costameres at the sarcolemma of keratin-19-null muscle, visualized with antibodies against spectrin or dystrophin, were disrupted and the sarcolemma was separated from adjacent myofibrils by a large gap in which mitochondria accumulated. The costameric dystrophin-dystroglycan complex, which co-purified with gamma-actin, keratin 8 and keratin 19 from striated muscles of wild-type mice, co-purified with gamma-actin but not keratin 8 in the mutant. Our results suggest that keratin 19 in fast-twitch skeletal muscle helps organize costameres and links them to the contractile apparatus, and that the absence of keratin 19 disrupts these structures, resulting in loss of contractile force, altered distribution of mitochondria and mild myopathy. This is the first demonstration of a mammalian phenotype associated with a genetic perturbation of keratin 19.
Collapse
Affiliation(s)
- Michele R Stone
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mignot C, Delarasse C, Escaich S, Della Gaspera B, Noé E, Colucci-Guyon E, Babinet C, Pekny M, Vicart P, Boespflug-Tanguy O, Dautigny A, Rodriguez D, Pham-Dinh D. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease. Exp Cell Res 2007; 313:2766-79. [PMID: 17604020 DOI: 10.1016/j.yexcr.2007.04.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 04/27/2007] [Accepted: 04/27/2007] [Indexed: 01/23/2023]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder characterized by large cytoplasmic aggregates in astrocytes and myelin abnormalities and caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP), the main intermediate filament protein in astrocytes. We tested the effects of three mutations (R236H, R76H and L232P) associated with AxD in cells transiently expressing mutated GFAP fused to green fluorescent protein (GFP). Mutated GFAP-GFP expressed in astrocytes formed networks or aggregates similar to those found in the brains of patients with the disease. Time-lapse recordings of living astrocytes showed that aggregates of mutated GFAP-GFP may either disappear, associated with cell survival, or coalesce in a huge juxtanuclear structure associated with cell death. Immunolabeling of fixed cells suggested that this gathering of aggregates forms an aggresome-like structure. Proteasome inhibition and immunoprecipitation assays revealed mutated GFAP-GFP ubiquitination, suggesting a role of the ubiquitin-proteasome system in the disaggregation process. In astrocytes from wild-type-, GFAP-, and vimentin-deficient mice, mutated GFAP-GFP aggregated or formed a network, depending on qualitative and quantitative interactions with normal intermediate filament partners. Particularly, vimentin displayed an anti-aggregation effect on mutated GFAP. Our data indicate a dynamic and reversible aggregation of mutated GFAP, suggesting that therapeutic approaches may be possible.
Collapse
|
48
|
Löwe T, Kley RA, van der Ven PFM, Himmel M, Huebner A, Vorgerd M, Fürst DO. The pathomechanism of filaminopathy: altered biochemical properties explain the cellular phenotype of a protein aggregation myopathy. Hum Mol Genet 2007; 16:1351-8. [PMID: 17412757 DOI: 10.1093/hmg/ddm085] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myofibrillar myopathy (MFM) is a pathologically defined group of hereditary human muscle diseases, characterized by focal myofibrillar destruction and cytoplasmic aggregates that contain several Z-disc-related proteins. The previously reported MFM-associated mutation (8130G --> A; W2710X) in the filamin C gene (FLNC) leads to a partial disturbance of the secondary structure of the dimerization domain of filamin C, resulting in massive protein aggregation in skeletal muscle fibers of the patients. Here, we provide a thorough characterization of the biochemical, biophysical and cellular properties of the mutated filamin C polypeptide. Our experiments revealed that the mutant dimerization domain is less stable and more susceptible to proteolysis. As a consequence, it does not dimerize properly and forms aggregates in vitro. Furthermore, the expression of mutant filamin in cultured cells results in the formation of protein aggregates. The mutant filamin does not associate with wild type filamin. These findings are of great importance to explain the pathomechanism of this disease.
Collapse
Affiliation(s)
- Thomas Löwe
- Department of Cell Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Moric-Janiszewska E, Markiewicz-Loskot G. Review on the genetics of arrhythmogenic right ventricular dysplasia. Europace 2007; 9:259-66. [PMID: 17363426 DOI: 10.1093/europace/eum034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arrhythmogenic right ventricular dysplasia (ARVD) is a clinical and pathologic entity whose diagnosis rests on electrocardiographic and angiographic criteria; pathologic findings, replacement of ventricular myocardium with fatty and fibrous elements, preferentially involve the right ventricular (RV) free wall. There is a familial occurrence in about 50% of cases, with autosomal dominant inheritance with variable penetrance and polymorphic phenotypic expression, and is one of the major genetic causes of juvenile sudden death. When the dysplasia is extensive, it may represent the extensive form of ARVCM (arrhythmogenic right ventricular cardiomyopathy). In this review, we focus on the some candidate genes mutations and information on some genotype-phenotype correlation in the ARVD. Our findings are in agreement with those of European Society of Cardiology who stated that: genetic analysis is usefull in families with RV cardiomyopathy because whenever a pathogenetic mutation is identified, it becomes possible to establish a presymptomatic diagnosis of the disease among family members and to provide them with genetic counseling to monitor the development of the disease and to assess the risk of transmitting the disease offspring. On the basis of current knowledge, genetic analysis does not contribute to risk stratification of arrhythmogenic RV cardiomyopathy.
Collapse
Affiliation(s)
- Ewa Moric-Janiszewska
- Department of Biochemistry, Medical University of Silesia, Narcyzów 1, 41-200 Sosnowiec, Poland.
| | | |
Collapse
|
50
|
Taylor MRG, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel E, Haubold K, Boucek MM, Ferguson D, Graw SL, Zhu X, Cavanaugh J, Sucharov CC, Long CS, Bristow MR, Lavori P, Mestroni L. Prevalence of Desmin Mutations in Dilated Cardiomyopathy. Circulation 2007; 115:1244-51. [PMID: 17325244 DOI: 10.1161/circulationaha.106.646778] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Desmin-related myofibrillar myopathy (DRM) is a cardiac and skeletal muscle disease caused by mutations in the desmin (DES) gene. Mutations in the central 2B domain of DES cause skeletal muscle disease that typically precedes cardiac involvement. However, the prevalence of DES mutations in dilated cardiomyopathy (DCM) without skeletal muscle disease is not known. METHODS AND RESULTS Denaturing high-performance liquid chromatography was used to screen DES for mutations in 116 DCM families from the Familial Dilated Cardiomyopathy Registry and in 309 subjects with DCM from the Beta-Blocker Evaluation of Survival Trial (BEST). DES mutations were transfected into SW13 and human smooth muscle cells and neonatal rat cardiac myocytes, and the effects on cytoskeletal desmin network architecture were analyzed with confocal microscopy. Five novel missense DES mutations, including the first localized to the highly conserved 1A domain, were detected in 6 subjects (1.4%). Transfection of DES mutations in the 2B domain severely disrupted the fine intracytoplasmic staining of desmin, causing clumping of the desmin protein. A tail domain mutation (Val459Ile) showed milder effects on desmin cytoplasmic network formation and appears to be a low-penetrant mutation restricted to black subjects. CONCLUSIONS The prevalence of DES mutations in DCM is between 1% and 2%, and mutations in the 1A helical domain, as well as the 2B rod domain, are capable of causing a DCM phenotype. The lack of severe disruption of cytoskeletal desmin network formation seen with mutations in the 1A and tail domains suggests that dysfunction of seemingly intact desmin networks is sufficient to cause DCM.
Collapse
Affiliation(s)
- Matthew R G Taylor
- University of Colorado at Denver and Health Sciences Center, Denver, Colo, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|