1
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
2
|
Ashcroft FM. KATP Channels and the Metabolic Regulation of Insulin Secretion in Health and Disease: The 2022 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2023; 72:693-702. [PMID: 37815796 PMCID: PMC10202764 DOI: 10.2337/dbi22-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 10/11/2023]
Abstract
Diabetes is characterized by elevation of plasma glucose due to an insufficiency of the hormone insulin and is associated with both inadequate insulin secretion and impaired insulin action. The Banting Medal for Scientific Achievement Commemorates the work of Sir Frederick Banting, a member of the team that first used insulin to treat a patient with diabetes almost exactly one hundred years ago on 11 January 1922. This article is based on my Banting lecture of 2022 and concerns the mechanism of glucose-stimulated insulin secretion from pancreatic β-cells, with an emphasis on the metabolic regulation of the KATP channel. This channel plays a central role in insulin release. Its closure in response to metabolically generated changes in the intracellular concentrations of ATP and MgADP stimulates β-cell electrical activity and insulin granule exocytosis. Activating mutations in KATP channel genes that impair the ability of the channel to respond to ATP give rise to neonatal diabetes. Impaired KATP channel regulation may also play a role in type 2 diabetes. I conjecture that KATP channel closure in response to glucose is reduced because of impaired glucose metabolism, which fails to generate a sufficient increase in ATP. Consequently, glucose-stimulated β-cell electrical activity is less. As ATP is also required for insulin granule exocytosis, both reduced exocytosis and less β-cell electrical activity may contribute to the reduction in insulin secretion. I emphasize that what follows is not a definitive review of the topic but a personal account of the contribution of my team to the field that is based on my Banting lecture.
Collapse
Affiliation(s)
- Frances M. Ashcroft
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
3
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
4
|
De Franco E. Neonatal diabetes caused by disrupted pancreatic and β-cell development. Diabet Med 2021; 38:e14728. [PMID: 34665882 DOI: 10.1111/dme.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Neonatal diabetes is diagnosed before the age of 6 months and is usually caused by single-gene mutations. More than 30 genetic causes of neonatal diabetes have been described to date, resulting in severely reduced β-cell number or function. Seven of these genes are known to cause neonatal diabetes through disrupted development of the whole pancreas, resulting in diabetes and exocrine pancreatic insufficiency. Pathogenic variants in five transcription factors essential for β-cell development cause neonatal diabetes without other pancreatic phenotypes. However, additional extra-pancreatic features are common. This review will focus on the genes causing neonatal diabetes through disrupted β-cell development, discussing what is currently known about the genetic and phenotypic features of these genetic conditions, and what discoveries may come in the future.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Sachse G, Haythorne E, Hill T, Proks P, Joynson R, Terrón-Expósito R, Bentley L, Tucker SJ, Cox RD, Ashcroft FM. The KCNJ11-E23K Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion. Diabetes 2021; 70:1145-1156. [PMID: 33568422 DOI: 10.2337/db20-0691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022]
Abstract
The ATP-sensitive K+ (KATP) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic β-cells. E23K, a common polymorphism in the pore-forming KATP channel subunit (KCNJ11) gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high-fat diet (HFD) and obesity. KATP-channels in β-cells with two K23 risk alleles (KK) showed decreased ATP inhibition, and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycemic control was impaired in KK mice fed a standard diet. On an HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing β-cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of β-cell function in the early stages of diabetes progression.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Thomas Hill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
- Department of Physics, University of Oxford, Oxford, U.K
| | - Russell Joynson
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Raul Terrón-Expósito
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Liz Bentley
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | | | - Roger D Cox
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
6
|
Sachse G, Haythorne E, Proks P, Stewart M, Cater H, Ellard S, Davies B, Ashcroft FM. Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. Wellcome Open Res 2021; 5:15. [PMID: 34368464 PMCID: PMC8323074 DOI: 10.12688/wellcomeopenres.15529.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 01/12/2023] Open
Abstract
Background: The K ATP channel plays a key role in glucose homeostasis by coupling metabolically generated changes in ATP to insulin secretion from pancreatic beta-cells. Gain-of-function mutations in either the pore-forming (Kir6.2) or regulatory (SUR1) subunit of this channel are a common cause of transient neonatal diabetes mellitus (TNDM), in which diabetes presents shortly after birth but remits within the first few years of life, only to return in later life. The reasons behind this time dependence are unclear. Methods: In an attempt to understand the mechanism behind diabetes remission and relapse, we generated mice expressing the common TNDM mutation SUR1-R1183W. We employed Cre/LoxP technology for both inducible and constitutive expression of SUR1-R1183W specifically in mouse beta-cells, followed by investigation of their phenotype using glucose tolerance tests and insulin secretion from isolated islets. Results: We found that the R1183W mutation impaired inhibition of K ATP channels by ATP when heterologously expressed in human embryonic kidney cells. However, neither induced nor constitutive expression of SUR1-R1183W in mice resulted in changes in blood glucose homeostasis, compared to littermate controls. When challenged with a high fat diet, female mice expressing SUR1-R1183W showed increased weight gain, elevated blood glucose and impaired glycaemic control, but glucose-stimulated insulin secretion from pancreatic islets appeared unchanged. Conclusions: The mouse model of TNDM did not recapitulate the human phenotype. We discuss multiple potential reasons why this might be the case. Based on our findings, we recommend future TNDM mouse models employing a gain-of-function SUR1 mutation should be created using the minimally invasive CRISPR/Cas technology, which avoids many potential pitfalls associated with the Cre/LoxP system.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Department of Physics, University of Oxford, Oxford, OX1 3PJ, UK
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Barrack Road, Exeter, EX2 5DW, UK
| | - Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
7
|
Zhang H, Colclough K, Gloyn AL, Pollin TI. Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest 2021; 131:142244. [PMID: 33529164 PMCID: PMC7843214 DOI: 10.1172/jci142244] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Monogenic diabetes refers to diabetes mellitus (DM) caused by a mutation in a single gene and accounts for approximately 1%-5% of diabetes. Correct diagnosis is clinically critical for certain types of monogenic diabetes, since the appropriate treatment is determined by the etiology of the disease (e.g., oral sulfonylurea treatment of HNF1A/HNF4A-diabetes vs. insulin injections in type 1 diabetes). However, achieving a correct diagnosis requires genetic testing, and the overlapping of the clinical features of monogenic diabetes with those of type 1 and type 2 diabetes has frequently led to misdiagnosis. Improvements in sequencing technology are increasing opportunities to diagnose monogenic diabetes, but challenges remain. In this Review, we describe the types of monogenic diabetes, including common and uncommon types of maturity-onset diabetes of the young, multiple causes of neonatal DM, and syndromic diabetes such as Wolfram syndrome and lipodystrophy. We also review methods of prioritizing patients undergoing genetic testing, and highlight existing challenges facing sequence data interpretation that can be addressed by forming collaborations of expertise and by pooling cases.
Collapse
Affiliation(s)
- Haichen Zhang
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, and,Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, California, USA
| | - Toni I. Pollin
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Stone SI, Abreu D, McGill JB, Urano F. Monogenic and syndromic diabetes due to endoplasmic reticulum stress. J Diabetes Complications 2021; 35:107618. [PMID: 32518033 PMCID: PMC7648725 DOI: 10.1016/j.jdiacomp.2020.107618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) lies at the crossroads of protein folding, calcium storage, lipid metabolism, and the regulation of autophagy and apoptosis. Accordingly, dysregulation of ER homeostasis leads to β-cell dysfunction in type 1 and type 2 diabetes that ultimately culminates in cell death. The ER is therefore an emerging target for understanding the mechanisms of diabetes mellitus that captures the complex etiologies of this multifactorial class of metabolic disorders. Our strategy for developing ER-targeted diagnostics and therapeutics is to focus on monogenic forms of diabetes related to ER dysregulation in an effort to understand the exact contribution of ER stress to β-cell death. In this manner, we can develop personalized genetic medicine for ERstress-related diabetic disorders, such as Wolfram syndrome. In this article, we describe the phenotypes and molecular pathogenesis of ERstress-related monogenic forms of diabetes.
Collapse
Affiliation(s)
- Stephen I Stone
- Department of Pediatrics, Division of Endocrinology and Diabetes, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janet B McGill
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Ngoc CTB, Dien TM, De Franco E, Ellard S, Houghton JAL, Lan NN, Thao BP, Khanh NN, Flanagan SE, Craig ME, Dung VC. Molecular Genetics, Clinical Characteristics, and Treatment Outcomes of K ATP-Channel Neonatal Diabetes Mellitus in Vietnam National Children's Hospital. Front Endocrinol (Lausanne) 2021; 12:727083. [PMID: 34566892 PMCID: PMC8458931 DOI: 10.3389/fendo.2021.727083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neonatal diabetes mellitus (NDM) is defined as insulin-requiring persistent hyperglycemia occurring within the first 6 months of life, which can result from mutations in at least 25 different genes. Activating heterozygous mutations in genes encoding either of the subunits of the ATP-sensitive K+ channel (KATP channel; KCNJ11 or ABCC8) of the pancreatic beta cell are the most common cause of permanent NDM and the second most common cause of transient NDM. Patients with NDM caused by KATP channel mutations are sensitive to sulfonylurea (SU) treatment; therefore, their clinical management can be improved by replacing insulin with oral agents. PATIENTS AND METHODS Seventy patients were diagnosed with NDM between May 2008 and May 2021 at Vietnam National Children's Hospital, and molecular genetic testing for all genes known to cause NDM was performed at the Exeter Genomic Laboratory, UK. Patients with ABCC8 or KCNJ11 mutations were transferred from insulin to oral SU. Clinical characteristics, molecular genetics, and annual data relating to glycemic control, SU dose, severe hypoglycemia, and side effects were collected. The main outcomes of interest were SU dose, SU failure (defined as permanent reintroduction of daily insulin), and glycemic control (HbA1c). RESULTS Fifty-four of 70 patients (77%) with NDM harbored a genetic mutation and of these; 27 (50%) had activating heterozygous mutations in ABCC8 or KCNJ11. A total of 21 pathogenic mutations were identified in the 27 patients, including 13 mutations in ABCC8 and 8 mutations in KCNJ11. Overall, 51% had low birth weight (below 3rd percentile), 23 (85%) were diagnosed before 3 months of age, and 23 (85%) presented with diabetic ketoacidosis. At diagnosis, clinical and biochemical findings (mean ± SD) were pH 7.16 ± 0.16; HCO3- , 7.9 ± 7.4 mmol/L; BE, -17.9 ± 9.1 mmol/L; HbA1C, 7.98% ± 2.93%; blood glucose, 36.2 ± 12.3 mmol/L; and C-peptide median, 0.09 (range, 0-1.61 nmol/l). Twenty-six patients were successfully transferred from insulin to SU therapy. In the remaining case, remission of diabetes occurred prior to transfer. Glycemic control on SU treatment was better than on insulin treatment: HbA1c and blood glucose level decreased from 7.58% ± 4.63% and 19.04 ± 14.09 mmol/L when treated with insulin to 5.8 ± 0.94% and 6.87 ± 3.46 mmol/L when treated with SU, respectively. CONCLUSIONS This is the first case series of NDM patients with ABCC8/KCNJ11 mutations reported in Vietnam. SU is safe in the short term for these patients and more effective than insulin therapy, consistent with all studies to date. This is relevant for populations where access to and cost of insulin are problematic, reinforcing the importance of genetic testing for NDM.
Collapse
Affiliation(s)
- Can Thi Bich Ngoc
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Tran Minh Dien
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Jayne A. L. Houghton
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Phuong Thao
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Nguyen Ngoc Khanh
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Maria E. Craig
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead/Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales Medicine, Sydney, NSW, Australia
| | - Vu Chi Dung
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
- *Correspondence: Vu Chi Dung,
| |
Collapse
|
10
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
11
|
Involvement of Essential Signaling Cascades and Analysis of Gene Networks in Diabesity. Genes (Basel) 2020; 11:genes11111256. [PMID: 33113859 PMCID: PMC7693799 DOI: 10.3390/genes11111256] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023] Open
Abstract
(1) Aims: Diabesity, defined as diabetes occurring in the context of obesity, is a serious health problem that is associated with an increased risk of premature heart attack, stroke, and death. To date, a key challenge has been to understand the molecular pathways that play significant roles in diabesity. In this study, we aimed to investigate the genetic links between diabetes and obesity in diabetic individuals and highlight the role(s) of shared genes in individuals with diabesity. (2) Methods: The interactions between the genes were analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) tool after the compilation of obesity genes associated with type 1 diabetes (T1D), type 2 diabetes (T2D), and maturity-onset diabetes of the young (MODY). Cytoscape plugins were utilized for enrichment analysis. (3) Results: We identified 546 obesity genes that are associated with T1D, T2D, and MODY. The network backbone of the identified genes comprised 514 nodes and 4126 edges with an estimated clustering coefficient of 0.242. The Molecular Complex Detection (MCODE) generated three clusters with a score of 33.61, 16.788, and 6.783, each. The highest-scoring nodes of the clusters were AGT, FGB, and LDLR genes. The genes from cluster 1 were enriched in FOXO-mediated transcription of oxidative stress, renin secretion, and regulation of lipolysis in adipocytes. The cluster 2 genes enriched in Src homology 2 domain-containing (SHC)-related events triggered by IGF1R, regulation of lipolysis in adipocytes, and GRB2: SOS produce a link to mitogen-activated protein kinase (MAPK) signaling for integrins. The cluster 3 genes ere enriched in IGF1R signaling cascade and insulin signaling pathway. (4) Conclusion: This study presents a platform to discover potential targets for diabesity treatment and helps in understanding the molecular mechanism.
Collapse
|
12
|
Garcin L, Mericq V, Fauret-Amsellem AL, Cave H, Polak M, Beltrand J. Neonatal diabetes due to potassium channel mutation: Response to sulfonylurea according to the genotype. Pediatr Diabetes 2020; 21:932-941. [PMID: 32418263 DOI: 10.1111/pedi.13041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE A precision medicine approach is used to improve treatment of patients with monogenic diabetes. Herein, we searched SU efficiency according to the genotype-phenotype correlation, dosage used, and side effects. RESEARCH DESIGN AND METHODS Systematic review conducted according the PRISMA control criteria identifying relevant studies evaluating the in vivo and in vitro sensitivity of ATP-dependent potassium channels according to the characteristics of genetic mutation. RESULTS Hundred and three selected articles with complete data in 502 cases in whom 413 (82.3%) had mutations in KCNJ11 (#64) and 89 in ABCC8 (# 56). Successful transfer from insulin to SU was achieved in 91% and 86.5% patients, respectively, at a mean age of 36.5 months (0-63 years). Among patients with KCNJ11 and ABCC8 mutations 64 and 46 were associated with constant success, 5 and 5 to constant failure, and 10 and 4 to variable degrees of reported success rate, respectively. The glibenclamide dosage required for each genotype ranged from 0.017 to 2.8 mg/kg/day. Comparing both the in vivo and in vitro susceptibility results, some mutations appear more sensitive than others to sulfonylurea treatment. Side effects were reported in 17/103 of the included articles: mild gastrointestinal symptoms and hypoglycaemia were the most common. One premature patient had an ulcerative necrotizing enterocolitis which association with SU is difficult to ascertain. CONCLUSIONS Sulfonylureas are an effective treatment for monogenic diabetes due to KCNJ11 and ABCC8 genes mutations. The success of the treatment is conditioned by differences in pharmacogenetics, younger age, pharmacokinetics, compliance, and maximal dose used.
Collapse
Affiliation(s)
- Laure Garcin
- Pediatric Gynecology Diabetes and Endocrinology, APHP Centre - Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Veronica Mericq
- Faculty of Medicine, Institute of Maternal and Child Research (IDIMI), University of Chile, Santiago, Chile
| | - Anne-Laure Fauret-Amsellem
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Robert Debré, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France
| | - Helene Cave
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Robert Debré, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France.,Université de Paris, Paris, France
| | - Michel Polak
- Pediatric Gynecology Diabetes and Endocrinology, APHP Centre - Hôpital Universitaire Necker Enfants Malades, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France.,Université de Paris, Paris, France.,Institut IMAGINE, Paris, France.,Inserm U1016, Institut Cochin, Paris, France.,ENDO European Reference Network, Main Thematic Group 3, Genetic Disorders of Glucose and Insulin Homeostasis, European Reference Networks, Paris, France
| | - Jacques Beltrand
- Pediatric Gynecology Diabetes and Endocrinology, APHP Centre - Hôpital Universitaire Necker Enfants Malades, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France.,Université de Paris, Paris, France.,Institut IMAGINE, Paris, France.,Inserm U1016, Institut Cochin, Paris, France.,ENDO European Reference Network, Main Thematic Group 3, Genetic Disorders of Glucose and Insulin Homeostasis, European Reference Networks, Paris, France
| |
Collapse
|
13
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
15
|
Sachse G, Haythorne E, Proks P, Stewart M, Cater H, Ellard S, Davies B, Ashcroft FM. Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. Wellcome Open Res 2020; 5:15. [PMID: 34368464 PMCID: PMC8323074 DOI: 10.12688/wellcomeopenres.15529.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The K ATP channel plays a key role in glucose homeostasis by coupling metabolically generated changes in ATP to insulin secretion from pancreatic beta-cells. Gain-of-function mutations in either the pore-forming (Kir6.2) or regulatory (SUR1) subunit of this channel are a common cause of transient neonatal diabetes mellitus (TNDM), in which diabetes presents shortly after birth but remits within the first few years of life, only to return in later life. The reasons behind this time dependence are unclear. Methods: In an attempt to understand the mechanism behind diabetes remission and relapse, we generated mice expressing the common TNDM mutation SUR1-R1183W. We employed Cre/LoxP technology for both inducible and constitutive expression of SUR1-R1183W specifically in mouse beta-cells, followed by investigation of their phenotype using glucose tolerance tests and insulin secretion from isolated islets. Results: We found that the R1183W mutation impaired inhibition of K ATP channels by ATP when heterologously expressed in human embryonic kidney cells. However, neither induced nor constitutive expression of SUR1-R1183W in mice resulted in changes in blood glucose homeostasis, compared to littermate controls. When challenged with a high fat diet, female mice expressing SUR1-R1183W showed increased weight gain, elevated blood glucose and impaired glycaemic control, but glucose-stimulated insulin secretion from pancreatic islets appeared unchanged. Conclusions: The mouse model of TNDM did not recapitulate the human phenotype. We discuss multiple potential reasons why this might be the case. Based on our findings, we recommend future TNDM mouse models employing a gain-of-function SUR1 mutation should be created using the minimally invasive CRISPR/Cas technology, which avoids many potential pitfalls associated with the Cre/LoxP system.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Department of Physics, University of Oxford, Oxford, OX1 3PJ, UK
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Barrack Road, Exeter, EX2 5DW, UK
| | - Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
16
|
Beltrand J, Busiah K, Vaivre-Douret L, Fauret AL, Berdugo M, Cavé H, Polak M. Neonatal Diabetes Mellitus. Front Pediatr 2020; 8:540718. [PMID: 33102403 PMCID: PMC7554616 DOI: 10.3389/fped.2020.540718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal Diabetes (ND) mellitus is a rare genetic disease (1 in 90,000 live births). It is defined by the presence of severe hyperglycaemia associated with insufficient or no circulating insulin, occurring mainly before 6 months of age and rarely between 6 months and 1 year. Such hyperglycaemia requires either transient treatment with insulin in about half of cases, or permanent insulin treatment. The disease is explained by two major groups of mechanism: malformation of the pancreas with altered insulin-secreting cells development/survival or abnormal function of the existing pancreatic β cell. The most frequent genetic causes of neonatal diabetes mellitus with abnormal β cell function are abnormalities of the 6q24 locus and mutations of the ABCC8 or KCNJ11 genes coding for the potassium channel in the pancreatic β cell. Other genes are associated with pancreas malformation or insufficient β cells development or destruction of β cells. Clinically, compared to patients with an ABCC8 or KCNJ11 mutation, patients with a 6q24 abnormality have lower birth weight and height, are younger at diagnosis and remission, and have a higher malformation frequency. Patients with an ABCC8 or KCNJ11 mutation have neurological and neuropsychological disorders in all those tested carefully. Up to 86% of patients who go into remission have recurrent diabetes when they reach puberty, with no difference due to the genetic origin. All these results reinforce the importance of prolonged follow-up by a multidisciplinary pediatric team, and later doctors specializing in adult medicine. 90% of the patients with an ABCC8 or KCNJ11 mutation as well as those with 6q24 anomalies are amenable to a successful switch from insulin injection to oral sulfonylureas.
Collapse
Affiliation(s)
- Jacques Beltrand
- Paediatric Endocrinology, Gynaecology and Diabetology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, IMAGINE Institute, ENDO-European Reference Network Team, Paris, France.,Faculty of Medicine, Université de Paris, Paris, France.,INSERM U1016, Cochin Institute, Paris, France
| | - Kanetee Busiah
- Paediatric Endocrinology, Gynaecology and Diabetology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, IMAGINE Institute, ENDO-European Reference Network Team, Paris, France.,Paediatric Endocrinology, Diabetology and Obesity Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Laurence Vaivre-Douret
- Paediatric Endocrinology, Gynaecology and Diabetology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, IMAGINE Institute, ENDO-European Reference Network Team, Paris, France.,Faculty of Medicine, Université de Paris, Paris, France.,Inserm UMR-1018-CESP, Necker-Enfants Malades University Hospital Paedopsychiatry Department, Cochin University Hospital Paediatrics Department, Institut Universitaire de France, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Anne Laure Fauret
- Genetics Department, Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marianne Berdugo
- Faculty of Medicine, Université de Paris, Paris, France.,INSERM U1138, Cordeliers Research Centre, Paris, France
| | - Hélène Cavé
- Faculty of Medicine, Université de Paris, Paris, France.,Genetics Department, Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michel Polak
- Paediatric Endocrinology, Gynaecology and Diabetology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, IMAGINE Institute, ENDO-European Reference Network Team, Paris, France.,Faculty of Medicine, Université de Paris, Paris, France.,INSERM U1016, Cochin Institute, Paris, France
| |
Collapse
|
17
|
De Franco E. From Biology to Genes and Back Again: Gene Discovery for Monogenic Forms of Beta-Cell Dysfunction in Diabetes. J Mol Biol 2019; 432:1535-1550. [PMID: 31479665 DOI: 10.1016/j.jmb.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
This review focuses on gene discovery strategies used to identify monogenic forms of diabetes caused by reduced pancreatic beta-cell number (due to destruction or defective development) or impaired beta-cell function. Gene discovery efforts in monogenic diabetes have identified 36 genes so far. These genetic causes have been identified using four main approaches: linkage analysis, candidate gene sequencing and most recently, exome and genome sequencing. The advent of next-generation sequencing has allowed researchers to move away from linkage analysis (relying on large pedigrees and/or multiple families with the same genetic condition) and candidate gene (relying on previous knowledge on the gene's role) strategies to use a gene agnostic approach, utilizing genetic evidence (such as variant frequency, predicted variant effect on protein function, and predicted mode of inheritance) to identify the causative mutation. This approach led to the identification of seven novel genetic causes of monogenic diabetes, six by exome sequencing and one by genome sequencing. In many of these cases, the disease-causing gene was not known to be important for beta-cell function prior to the gene discovery study. These novel findings highlight a new role for gene discovery studies in furthering our understanding of beta-cell function and dysfunction in diabetes. While many gene discovery studies in the past were led by knowledge in the field (through the candidate gene strategy), now they often lead the scientific advances in the field by identifying new important biological players to be further characterized by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, EX2 5DW Exeter, UK; Institute of Biomedical and Clinical Science, Level 3, RILD Building, Barrack Road, EX2 5DW Exeter, United Kingdom.
| |
Collapse
|
18
|
Letourneau LR, Greeley SAW. Precision Medicine: Long-Term Treatment with Sulfonylureas in Patients with Neonatal Diabetes Due to KCNJ11 Mutations. Curr Diab Rep 2019; 19:52. [PMID: 31250216 PMCID: PMC6894166 DOI: 10.1007/s11892-019-1175-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on the safety and efficacy of long-term sulfonylurea use in patients with KCNJ11-related diabetes. Publications from 2004 to the present were reviewed with an emphasis on literature since 2014. RECENT FINDINGS Sulfonylureas, often taken at high doses, have now been utilized effectively in KCNJ11 patients for over 10 years. Mild-moderate hypoglycemia can occur, but in two studies with a combined 975 patient-years on sulfonylureas, no severe hypoglycemic events were reported. Improvements in neurodevelopment and motor function after transition to sulfonylureas continue to be described. Sulfonylureas continue to be an effective, sustainable, and safe treatment for KCNJ11-related diabetes. Ongoing follow-up of patients in research registries will allow for deeper understanding of the facilitators and barriers to long-term sustainability. Further understanding of the effect of sulfonylurea on long-term neurodevelopmental outcomes, and the potential for adjunctive therapies, is needed.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Section of Pediatric and Adult Endocrinology, Diabetes, and Metabolism Kovler Diabetes Center, University of Chicago, 5841 S. Maryland Ave., MC1027-N235, Chicago, IL, 60637, USA
| | - Siri Atma W Greeley
- Section of Pediatric and Adult Endocrinology, Diabetes, and Metabolism Kovler Diabetes Center, University of Chicago, 5841 S. Maryland Ave., MC1027-N235, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Li G, Liu X, Huang S, Zeng Y, Yang G, Lu Z, Zhang Y, Ma X, Wang L, Huang X, Liu J. Efficient Generation of Pathogenic A-to-G Mutations in Human Tripronuclear Embryos via ABE-Mediated Base Editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:289-296. [PMID: 31279230 PMCID: PMC6611966 DOI: 10.1016/j.omtn.2019.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Abstract
Base editing systems show their power in modeling and correcting the pathogenic mutations of genetic diseases. Previous studies have already demonstrated the editing efficiency of BE3-mediated C-to-T conversion in human embryos. However, the precision and efficiency of a recently developed adenine base editor (ABE), which converts A-to-G editing in human embryos, remain to be addressed. Here we selected reported pathogenic mutations to characterize the ABE in human tripronuclear embryos. We found effective A-to-G editing occurred at the desirable sites using the ABE system. Furthermore, ABE-mediated A-to-G editing in the single blastomere of the edited embryos exhibited high product purity. By deep sequencing and whole-genome sequencing, A or T mutations didn’t increase significantly, and no off-target or insertion or deletion (indel) mutations were detected in these edited embryos, indicating the ABE-mediated base editing in human embryos is precise and controllable. For some sites, since a different editing pattern was obtained from the cells and the embryos targeted with the same single guide RNA (sgRNA), it suggests that ABE-mediated editing might have different specificity in vivo. Taken together, we efficiently generated pathogenic A-to-G mutations in human tripronuclear embryos via ABE-mediated base editing.
Collapse
Affiliation(s)
- Guanglei Li
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xinyi Liu
- Department of Gastroenterology, Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 510632, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Yanting Zeng
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Guang Yang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Zongyang Lu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Xu Ma
- National Research Institute for Family Planning, No. 12 Dahuishi Road, Beijing 100081, China
| | - Lisheng Wang
- Department of Gastroenterology, Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 510632, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Jianqiao Liu
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
20
|
Emfinger CH, Yan Z, Welscher A, Hung P, McAllister W, Hruz PW, Nichols CG, Remedi MS. Contribution of systemic inflammation to permanence of K ATP-induced neonatal diabetes in mice. Am J Physiol Endocrinol Metab 2018; 315:E1121-E1132. [PMID: 30226997 PMCID: PMC6336961 DOI: 10.1152/ajpendo.00137.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gain-of-function (GOF) mutations in the ATP-sensitive potassium (KATP) channels cause neonatal diabetes. Despite the well-established genetic root of the disease, pathways modulating disease severity and treatment effectiveness remain poorly understood. Patient phenotypes can vary from severe diabetes to remission, even in individuals with the same mutation and within the same family, suggesting that subtle modifiers can influence disease outcome. We have tested the underlying mechanism of transient vs. permanent neonatal diabetes in KATP-GOF mice treated for 14 days with glibenclamide. Some KATP-GOF mice show remission of diabetes and enhanced insulin sensitivity long after diabetes treatment has ended, while others maintain severe insulin-resistance. However, insulin sensitivity is not different between the two groups before or during diabetes induction, suggesting that improved sensitivity is a consequence, rather than the cause of, remission, implicating other factors modulating glucose early in diabetes progression. Leptin, glucagon, insulin, and glucagon-like peptide-1 are not different between remitters and nonremitters. However, liver glucose production is significantly reduced before transgene induction in remitter, relative to nonremitter and nontreated, mice. Surprisingly, while subsequent remitter animals exhibited normal serum cytokines, nonremitter mice showed increased cytokines, which paralleled the divergence in blood glucose. Together, these results suggest that systemic inflammation may play a role in the remitting versus non-remitting outcome. Supporting this conclusion, treatment with the anti-inflammatory meloxicam significantly increased the fraction of remitting animals. Beyond neonatal diabetes, the potential for inflammation and glucose production to exacerbate other forms of diabetes from a compensated state to a glucotoxic state should be considered.
Collapse
Affiliation(s)
- Christopher H Emfinger
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| | - Zihan Yan
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Alecia Welscher
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Peter Hung
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
| | - William McAllister
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Paul W Hruz
- Department of Pediatrics, Washington University in St. Louis , St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| | - Maria S Remedi
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| |
Collapse
|
21
|
Gole E, Oikonomou S, Ellard S, De Franco E, Karavanaki K. A Novel KCNJ11 Mutation Associated with Transient Neonatal Diabetes. J Clin Res Pediatr Endocrinol 2018; 10:175-178. [PMID: 28943514 PMCID: PMC5985388 DOI: 10.4274/jcrpe.5166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a rare type of monogenic diabetes that presents in the first 6 months of life. Activating mutations in the KCNJ11 gene encoding for the Kir6.2 subunit of the ATP-sensitive potassium (KATP ) channel can lead to transient NDM (TNDM) or to permanent NDM (PNDM). A female infant presented on the 22nd day of life with severe hyperglycemia and ketoacidosis (glucose: 907mg/dL, blood gas pH: 6.84, HCO3: 6 mmol/L). She was initially managed with intravenous (IV) fluids and IV insulin. Ketoacidosis resolved within 48 hours and she was started on subcutaneous insulin injections with intermediate acting insulin NPH twice daily requiring initially 0.75-1.35 IU/kg/d. Pre-prandial C-peptide levels were 0.51 ng/mL (normal: 1.77-4.68). Insulin requirements were gradually reduced and insulin administration was discontinued at the age of 10 months with subsequent normal glucose and HbA1c levels. C-peptide levels normalized (pre-prandial: 1.6 ng/mL, postprandial: 2 ng/mL). Genetic analysis identified a novel missense mutation (p.Pro254Gln) in the KCNJ11 gene. We report a novel KCNJ11 mutation in a patient who presented in the first month of life with a phenotype of NDM that subsided at the age of 10 months. It is likely that the novel p.P254Q mutation results in mild impairment of the KATP channel function leading to TNDM.
Collapse
Affiliation(s)
- Evangelia Gole
- University of Athens, 2nd Department of Pediatrics, “P&A Kyriakou” Children’s Hospital, Diabetes and Metabolism Unit, Athens, Greece
| | - Stavroula Oikonomou
- University of Athens, 2nd Department of Pediatrics, “P&A Kyriakou” Children’s Hospital, Diabetes and Metabolism Unit, Athens, Greece
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Elisa De Franco
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Kyriaki Karavanaki
- University of Athens, 2nd Department of Pediatrics, “P&A Kyriakou” Children’s Hospital, Diabetes and Metabolism Unit, Athens, Greece,* Address for Correspondence: University of Athens, 2nd Department of Pediatrics, “P&A Kyriakou” Children’s Hospital, Diabetes and Metabolism Unit, Athens, Greece Phone: +30-210-7726488 E-mail:
| |
Collapse
|
22
|
Zammit MA, Agius SM, Calleja-Agius J. Transient Neonatal Diabetes Mellitus: A Challenge and Opportunity for Specialized Nursing Care. Neonatal Netw 2017; 36:196-205. [PMID: 28764822 DOI: 10.1891/0730-0832.36.4.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transient neonatal diabetes mellitus (TNDM) is a rare disorder, with a reported incidence of approximately 1 in 450,000 live births. It is characterized by insulin-requiring hyperglycemia in the neonatal period. The disease improves by early childhood, but the patient may relapse in later life. Diagnosis is made after genetic testing following presentation with hyperglycemia not conforming to Type 1 or Type 2 diabetes. Management is based on insulin and possible sulfonylurea administration. Three genetically distinct subtypes of TNDM are recognized. Type 1 TNDM is due to overexpression of genes at the 6q24 locus, whereas the 11p15 locus is involved in Type 2 and 3 TNDM. In this article the clinical presentation, management, and genetics of TNDM are discussed, particularly emphasizing the role of the neonatal nurse.
Collapse
|
23
|
Abstract
BACKGROUND Neonatal diabetes mellitusis a rare disorder with an incidence of 1 in 2,60,000 live births. METHODS Retrospective analysis of clinical and genetic profile of children admitted with neonatal diabetes mellitus in a tertiary-care hospital in Chennai, India over 11 years. RESULTS Ten children were diagnosed with neonatal diabetes of whom 9 had permanent neonatal diabetes mellitus. The age range at onset was from 3 days- 5 months. Of the 9 children, KCNJ11 gene mutation was positive in one, and ABCC 8 and INS gene mutation in two children each. Children with KCNJ11 and ABCC 8 gene mutations were switched over to oral sulfonyl urea therapy. CONCLUSION Few genotypes causing NDM can be managed effectively with oral sulfonyl ureas.
Collapse
Affiliation(s)
- Ramaswamy Ganesh
- Departments of Pediatrics and *Endocrinology, Kanchi Kamakoti CHILDS Trust Hospital and The CHILDS Trust Medical Research Foundation, Chennai, Tamil Nadu, India. Correspondence to: Dr Ramaswamy Ganesh, Consultant Pediatrician, Kanchi Kamakoti CHILDS Trust Hospital, Chennai 600 034, India.
| | | | | | | |
Collapse
|
24
|
Notary AM, Westacott MJ, Hraha TH, Pozzoli M, Benninger RKP. Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise. PLoS Comput Biol 2016; 12:e1005116. [PMID: 27681078 PMCID: PMC5040430 DOI: 10.1371/journal.pcbi.1005116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022] Open
Abstract
Diabetes is caused by dysfunction to β-cells in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. Gap junction-mediated electrical coupling between β-cells in the islet plays a major role in coordinating a pulsatile secretory response at elevated glucose and suppressing insulin secretion at basal glucose. Previously, we demonstrated that a critical number of inexcitable cells can rapidly suppress the overall islet response, as a result of gap junction coupling. This was demonstrated in a murine model of Neonatal Diabetes Mellitus (NDM) involving expression of ATP-insensitive KATP channels, and by a multi-cellular computational model of islet electrical activity. Here we examined the mechanisms by which gap junction coupling contributes to islet dysfunction in NDM. We first verified the computational model against [Ca2+] and insulin secretion measurements in islets expressing ATP-insensitive KATP channels under different levels of gap junction coupling. We then applied this model to predict how different KATP channel mutations found in NDM suppress [Ca2+], and the role of gap junction coupling in this suppression. We further extended the model to account for stochastic noise and insulin secretion dynamics. We found experimentally and in the islet model that reductions in gap junction coupling allow progressively greater glucose-stimulated [Ca2+] and insulin secretion following expression of ATP-insensitive KATP channels. The model demonstrated good correspondence between suppression of [Ca2+] and clinical presentation of different NDM mutations. Significant recoveries in [Ca2+] and insulin secretion were predicted for many mutations upon reductions in gap junction coupling, where stochastic noise played a significant role in the recoveries. These findings provide new understanding how the islet functions as a multicellular system and for the role of gap junction channels in exacerbating the effects of decreased cellular excitability. They further suggest novel therapeutic options for NDM and other monogenic forms of diabetes. Diabetes is a disease reaching a global epidemic, which results from dysfunction to the islets of Langerhans in the pancreas and their ability to secrete the hormone insulin to regulate glucose homeostasis. Islets are multicellular structures that show extensive coupling between heterogeneous cellular units; and central to the causes of diabetes is a dysfunction to these cellular units and their interactions. Understanding the inter-relationship between structure and function is challenging in biological systems, but is crucial to the cause of disease and discovering therapeutic targets. With the goal of further characterizing the islet of Langerhans and its excitable behavior, we examined the role of important channels in the islet where dysfunction is linked to or causes diabetes. Advances in our ability to computationally model perturbations in physiological systems has allowed for the testing of hypothesis quickly, in systems that are not experimentally accessible. Using an experimentally validated model and modeling human mutations, we discover that monogenic forms of diabetes may be remedied by a reduction in electrical coupling between cells; either alone or in conjunction with pharmacological intervention. Knowledge of biological systems in general is also helped by these findings, in that small changes to cellular elements may lead to major disruptions in the overall system. This may then be overcome by allowing the system components to function independently in the presence of dysfunction to individual cells.
Collapse
Affiliation(s)
- Aleena M. Notary
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Matthew J. Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Thomas H. Hraha
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Richard K. P. Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Anastasiou V, Ninou E, Alexopoulou D, Stertmann J, Müller A, Dahl A, Solimena M, Speier S, Serafimidis I, Gavalas A. Aldehyde dehydrogenase activity is necessary for beta cell development and functionality in mice. Diabetologia 2016; 59:139-150. [PMID: 26518685 PMCID: PMC4670456 DOI: 10.1007/s00125-015-3784-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells maintain glucose homeostasis and beta cell dysfunction is a major risk factor in developing diabetes. Therefore, understanding the developmental regulatory networks that define a fully functional beta cell is important for elucidating the genetic origins of the disease. Aldehyde dehydrogenase activity has been associated with stem/progenitor cells and we have previously shown that Aldh1b1 is specifically expressed in pancreas progenitor pools. Here we address the hypothesis that Aldh1b1 may regulate the timing of the appearance and eventual functionality of beta cells. METHODS We generated an Aldh1b1-knockout mouse line (Aldh1b1 (tm1lacZ)) and used this to study pancreatic development, beta cell functionality and glucose homeostasis in the absence of Aldh1b1 function. RESULTS Differentiation in the developing pancreas of Aldh1b1 (tm1lacZ) null mice was accelerated. Transcriptome analyses of newborn and adult islets showed misregulation of key beta cell transcription factors and genes crucial for beta cell function. Functional analyses showed that glucose-stimulated insulin secretion was severely compromised in islets isolated from null mice. Several key features of beta cell functionality were affected, including control of oxidative stress, glucose sensing, stimulus-coupling secretion and secretory granule biogenesis. As a result of beta cell dysfunction, homozygous mice developed glucose intolerance and age-dependent hyperglycaemia. CONCLUSIONS/INTERPRETATION These findings show that Aldh1b1 influences the timing of the transition from the pancreas endocrine progenitor to the committed beta cell and demonstrate that changes in the timing of this transition lead to beta cell dysfunction and thus constitute a diabetes risk factor later in life. Gene Expression Omnibus (GEO) accession: GSE58025.
Collapse
Affiliation(s)
- Vivian Anastasiou
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
| | - Elpiniki Ninou
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece
| | - Dimitra Alexopoulou
- Deep Sequencing Group SFB655, BIOTEChnology Center (BioZ), TU Dresden, Dresden, Germany
| | - Julia Stertmann
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Andreas Müller
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB655, BIOTEChnology Center (BioZ), TU Dresden, Dresden, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ioannis Serafimidis
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece.
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- DZD - German Centre for Diabetes Research, Germany, .
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece.
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
26
|
De Franco E, Flanagan SE, Houghton JAL, Lango Allen H, Mackay DJG, Temple IK, Ellard S, Hattersley AT. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 2015; 386:957-63. [PMID: 26231457 PMCID: PMC4772451 DOI: 10.1016/s0140-6736(15)60098-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Traditional genetic testing focusses on analysis of one or a few genes according to clinical features; this approach is changing as improved sequencing methods enable simultaneous analysis of several genes. Neonatal diabetes is the presenting feature of many discrete clinical phenotypes defined by different genetic causes. Genetic subtype defines treatment, with improved glycaemic control on sulfonylurea treatment for most patients with potassium channel mutations. We investigated the effect of early, comprehensive testing of all known genetic causes of neonatal diabetes. METHODS In this large, international, cohort study, we studied patients with neonatal diabetes diagnosed with diabetes before 6 months of age who were referred from 79 countries. We identified mutations by comprehensive genetic testing including Sanger sequencing, 6q24 methylation analysis, and targeted next-generation sequencing of all known neonatal diabetes genes. FINDINGS Between January, 2000, and August, 2013, genetic testing was done in 1020 patients (571 boys, 449 girls). Mutations in the potassium channel genes were the most common cause (n=390) of neonatal diabetes, but were identified less frequently in consanguineous families (12% in consanguineous families vs 46% in non-consanguineous families; p<0·0001). Median duration of diabetes at the time of genetic testing decreased from more than 4 years before 2005 to less than 3 months after 2012. Earlier referral for genetic testing affected the clinical phenotype. In patients with genetically diagnosed Wolcott-Rallison syndrome, 23 (88%) of 26 patients tested within 3 months from diagnosis had isolated diabetes, compared with three (17%) of 18 patients referred later (>4 years; p<0·0001), in whom skeletal and liver involvement was common. Similarly, for patients with genetically diagnosed transient neonatal diabetes, the diabetes had remitted in only ten (10%) of 101 patients tested early (<3 months) compared with 60 (100%) of the 60 later referrals (p<0·0001). INTERPRETATION Patients are now referred for genetic testing closer to their presentation with neonatal diabetes. Comprehensive testing of all causes identified causal mutations in more than 80% of cases. The genetic result predicts the best diabetes treatment and development of related features. This model represents a new framework for clinical care with genetic diagnosis preceding development of clinical features and guiding clinical management. FUNDING Wellcome Trust and Diabetes UK.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Hana Lango Allen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Deborah J G Mackay
- Wessex Regional Genetics Laboratory, Salisbury Foundation Trust, Salisbury, UK; University Hospital Southampton NHS Trust, Southampton, UK; Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - I Karen Temple
- Wessex Regional Genetics Laboratory, Salisbury Foundation Trust, Salisbury, UK; University Hospital Southampton NHS Trust, Southampton, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
27
|
Lau E, Correia C, Freitas P, Nogueira C, Costa M, Saavedra A, Costa C, Carvalho D, Fontoura M. Permanent neonatal diabetes by a new mutation in KCNJ11: unsuccessful switch to sulfonylurea. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:559-61. [PMID: 26331221 DOI: 10.1590/2359-3997000000076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022]
Abstract
Permanent neonatal diabetes (PNDM) can result from activating heterozygous mutations in KCNJ11 gene, encoding the Kir6.2 subunit of the pancreatic ATP-sensitive potassium channels (KATP). Sulfonylureas promote KATP closure and stimulate insulin secretion, being an alternative therapy in PNDM, instead of insulin. Male, 20 years old, diagnosed with diabetes at 3 months of age. The genetic study identified a novel heterozygous mutation in exon 1 of the KCNJ11 gene - KCNJ11:c1001G>7 (p.Gly334Val) - and confirmed the diagnosis of PNDM. Therefore it was attempted to switch from insulin therapy to sulfonylurea. During glibenclamide institution C-peptide levels increased, however the suboptimal glycemic control lead us to restart an intensive insulin scheme. This new variant of KCNJ11 mutation had a phenotypic lack of response to sulfonylurea therapy. Age, prior poor metabolic control and functional change of KATP channel induced by this specific mutation may explain the observed unsuccessful switch to sulfonylurea. Interestingly, C-peptide levels raise during glibenclamide administration support some degree of improvement in insulin secretory capacity induced by the treatment. Understanding the response to sulfonylurea is crucial as successful treatment may be life-changing in these patients.
Collapse
Affiliation(s)
- Eva Lau
- Instituto de Investigação e Inovação em Saúde, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Cintia Correia
- Departamento de Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Paula Freitas
- Instituto de Investigação e Inovação em Saúde, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Claúdia Nogueira
- Departamento de Endocrinologia, Diabetes e Metabolismo, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria Costa
- Departamento de Endocrinologia, Diabetes e Metabolismo, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Ana Saavedra
- Departamento de Endocrinologia, Diabetes e Metabolismo, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Carla Costa
- Departamento de Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Davide Carvalho
- Instituto de Investigação e Inovação em Saúde, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Manuel Fontoura
- Departamento de Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Abstract
The use of targeted gene panels now allows the analysis of all the genes known to cause a disease in a single test. For neonatal diabetes, this has resulted in a paradigm shift with patients receiving a genetic diagnosis early and the genetic results guiding their clinical management. Exome and genome sequencing are powerful tools to identify novel genetic causes of known diseases. For neonatal diabetes, the use of these technologies has resulted in the identification of 2 novel disease genes (GATA6 and STAT3) and a novel regulatory element of PTF1A, in which mutations cause pancreatic agenesis.
Collapse
|
29
|
Thurber BW, Carmody D, Tadie EC, Pastore AN, Dickens JT, Wroblewski KE, Naylor RN, Philipson LH, Greeley SAW. Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes. Diabetologia 2015; 58:1430-5. [PMID: 25877689 PMCID: PMC4641523 DOI: 10.1007/s00125-015-3593-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/27/2015] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Individuals with heterozygous activating mutations of the KCNJ11 gene encoding a subunit of the ATP-sensitive potassium channel (KATP) can usually be treated with oral sulfonylurea (SU) pills in lieu of insulin injections. The aim of this study was to test our hypothesis that younger age at the time of initiation of SU therapy is correlated with lower required doses of SU therapy, shorter transition time and decreased likelihood of requiring additional diabetes medications. METHODS We performed a retrospective cohort study using data on 58 individuals with neonatal diabetes due to KCNJ11 mutations identified through the University of Chicago Monogenic Diabetes Registry ( http://monogenicdiabetes.uchicago.edu/registry ). We assessed the influence of age at initiation of SU therapy on treatment outcomes. RESULTS HbA1c fell from an average of 8.5% (69 mmol/mol) before transition to 6.2% (44 mmol/mol) after SU therapy (p < 0.001). Age of initiation of SU correlated with the dose (mg kg(-1) day(-1)) of SU required at follow-up (r = 0.80, p < 0.001). Similar associations were observed across mutation subtypes. Ten participants required additional glucose-lowering medications and all had initiated SU at age 13 years or older. No serious adverse events were reported. CONCLUSIONS/INTERPRETATION Earlier age at initiation of SU treatment is associated with improved response to SU therapy. Declining sensitivity to SU may be due to loss of beta cell mass over time in those treated with insulin. Our data support the need for early genetic diagnosis and appropriate personalised treatment in all cases of neonatal diabetes.
Collapse
Affiliation(s)
- Brian W. Thurber
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | - David Carmody
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | - Elizabeth C. Tadie
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | - Ashley N. Pastore
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | - Jazzmyne T. Dickens
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | | | - Rochelle N. Naylor
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | - Louis H. Philipson
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | - Siri Atma W. Greeley
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
30
|
Abstract
Neonatal diabetes mellitus is a rare condition (1/90,000 to 1/260,000 live births) defined as mild-to-severe hyperglycemia within the first year of life. Permanent neonatal diabetes mellitus requires lifelong therapy, whereas transient form resolves early in life but may relapse later on. Two main physiopathological mechanisms may explain this disease: β cell functional impairment or absence (pancreas agenesis or β cells destruction). The main genetic causes of β cells impairment are 6q24 abnormalities and mutations in ABCC8 or KCNJ11 potassium channel (KATP channel) genes. Compared to the KATP subtype, the 6q24 subtype had specific features: developmental defects involving the heart, kidneys, or urinary tract, intrauterine growth restriction, and early diagnosis. Remission of neonatal diabetes mellitus occurred in 51% of probands at a median age of 17 weeks. Recurrence was common at pubertal age, with no difference between the 6q24 and KATP-channel groups (82% vs 86%, p=0.36, respectively). Patients with mutations in ABCC8 or KCNJ11 genes had developmental delay with or without epilepsy but also developmental coordination disorder (particularly visual-spatial dyspraxia) or attention deficits in all of those who underwent in-depth neuropsychomotor investigations.
Collapse
|
31
|
Rubio-Cabezas O, Ellard S. Diabetes mellitus in neonates and infants: genetic heterogeneity, clinical approach to diagnosis, and therapeutic options. Horm Res Paediatr 2013; 80:137-46. [PMID: 24051999 PMCID: PMC3884170 DOI: 10.1159/000354219] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/04/2013] [Indexed: 12/29/2022] Open
Abstract
Over the last decade, we have witnessed major advances in the understanding of the molecular basis of neonatal and infancy-onset diabetes. It is now widely accepted that diabetes presenting before 6 months of age is unlikely to be autoimmune type 1 diabetes. The vast majority of such patients will have a monogenic disorder responsible for the disease and, in some of them, also for a number of other associated extrapancreatic clinical features. Reaching a molecular diagnosis will have immediate clinical consequences for about half of affected patients, as identification of a mutation in either of the two genes encoding the ATP-sensitive potassium channel allows switching from insulin injections to oral sulphonylureas. It also facilitates genetic counselling within the affected families and predicts clinical prognosis. Importantly, monogenic diabetes seems not to be limited to the first 6 months but extends to some extent into the second half of the first year of life, when type 1 diabetes is the more common cause of diabetes. From a scientific perspective, the identification of novel genetic aetiologies has provided important new knowledge regarding the development and function of the human pancreas.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Department of Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain,Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK,*Prof. Sian Ellard, PhD, FRCPath, Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5AD (UK), E-Mail
| |
Collapse
|
32
|
Abstract
Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in pancreatic β-cells play a crucial role in insulin secretion and glucose homeostasis. These channels are composed of two subunits: a pore-forming subunit (Kir6.2) and a regulatory subunit (sulphonylurea receptor-1). Recent studies identified large number of gain of function mutations in the regulatory subunit of the channel which cause neonatal diabetes. Majority of mutations cause neonatal diabetes alone, however some lead to a severe form of neonatal diabetes with associated neurological complications. This review focuses on the functional effects of these mutations as well as the implications for treatment.
Collapse
Affiliation(s)
- Peter Proks
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Gaal Z, Klupa T, Kantor I, Mlynarski W, Albert L, Tolloczko J, Balogh I, Czajkowski K, Malecki MT. Sulfonylurea use during entire pregnancy in diabetes because of KCNJ11 mutation: a report of two cases. Diabetes Care 2012; 35:e40. [PMID: 22619292 PMCID: PMC3357257 DOI: 10.2337/dc12-0163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zsolt Gaal
- From the 4th Department of Medicine, Josa Andras Teaching Hospital, Nyiregyhaza, Szabolcs-Szatmár-Bereg, Hungary; the
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College and University Hospital, Krakow, Malopolskie, Poland; the
| | - Irene Kantor
- Department of Pediatrics, Josa Andras Teaching Hospital, Nyiregyhaza, Szabolcs-Szatmár-Bereg, Hungary; the
| | - Wojciech Mlynarski
- Department of Pediatrics, Medical University of Lodz, Lodz, Lodzkie, Poland; the
| | - Laszlo Albert
- Department of Obstetrics and Gynecology, Josa Andras Teaching Hospital, Nyiregyhaza, Szabolcs-Szatmár-Bereg, Hungary; the
| | - Justyna Tolloczko
- Department of Neonatology and Neonatal Intensive Care, Warsaw Medical University, Warsaw, Mazowieckie, Poland; the
| | - Istvan Balogh
- Department of Laboratory Medicine, University of Debrecen, Debrecen, Hajdu-Bihar, Hungary; and the
| | - Krzysztof Czajkowski
- 2nd Department of Obstetrics and Gynecology, Warsaw Medical University, Warsaw, Mazowieckie, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College and University Hospital, Krakow, Malopolskie, Poland; the
| |
Collapse
|
34
|
Soty M, Visa M, Soriano S, Carmona MDC, Nadal Á, Novials A. Involvement of ATP-sensitive potassium (K(ATP)) channels in the loss of beta-cell function induced by human islet amyloid polypeptide. J Biol Chem 2011; 286:40857-66. [PMID: 21984830 DOI: 10.1074/jbc.m111.232801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.
Collapse
Affiliation(s)
- Maud Soty
- Diabetes and Obesity Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Remedi MS, Agapova SE, Vyas AK, Hruz PW, Nichols CG. Acute sulfonylurea therapy at disease onset can cause permanent remission of KATP-induced diabetes. Diabetes 2011; 60:2515-22. [PMID: 21813803 PMCID: PMC3178299 DOI: 10.2337/db11-0538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVE Neonatal diabetes mellitus (NDM) can be caused by gain-of-function ATP-sensitive K(+) (K(ATP)) channel mutations. This realization has led to sulfonylurea therapy replacing insulin injections in many patients. In a murine model of K(ATP)-dependent NDM, hyperglycemia and consequent loss of β-cells are both avoided by chronic sulfonylurea treatment. Interestingly, K(ATP) mutations may underlie remitting-relapsing, transient, or permanent forms of the disease in different patients, but the reason for the different outcomes is unknown. RESEARCH DESIGN AND METHODS To gain further insight into disease progression and outcome, we examined the effects of very early intervention by injecting NDM mice with high-dose glibenclamide for only 6 days, at the beginning of disease onset, then after the subsequent progression with measurements of blood glucose, islet function, and insulin sensitivity. RESULTS Although ∼70% of mice developed severe diabetes after treatment cessation, ∼30% were essentially cured, maintaining near-normal blood glucose until killed. Another group of NDM mice was initiated on oral glibenclamide (in the drinking water), and the dose was titrated daily, to maintain blood glucose <200 mg/dL. In this case, ∼30% were also essentially cured; they were weaned from the drug after ∼4 weeks and again subsequently maintained near-normal blood glucose. These cured mice maintain normal insulin content and were more sensitive to insulin than control mice, a compensatory mechanism that together with basal insulin secretion may be sufficient to maintain near-normal glucose levels. CONCLUSIONS At least in a subset of animals, early sulfonylurea treatment leads to permanent remission of NDM. These cured animals exhibit insulin-hypersensitivity. Although untreated NDM mice rapidly lose insulin content and progress to permanently extremely elevated blood glucose levels, early tight control of blood glucose may permit this insulin-hypersensitivity, in combination with maintained basal insulin secretion, to provide long-term remission.
Collapse
Affiliation(s)
- Maria Sara Remedi
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Sophia E. Agapova
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Arpita K. Vyas
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Paul W. Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
- Corresponding author: Colin G. Nichols,
| |
Collapse
|
36
|
El-sisi AE, Hegazy SK, Metwally SS, Wafa AM, Dawood NA. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab 2011; 2:155-64. [PMID: 23148181 PMCID: PMC3474636 DOI: 10.1177/2042018811415985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE This study investigated the possibility that genetic factors, such as polymorphism of K inward rectifier subunit (Kir6.2), E23K, and Arg(972) polymorphism of insulin receptor sub-strate-1 (IRS-1), may predispose patients to sulfonylurea failure. METHODS A total of 100 unrelated Egyptian patients with type 2 diabetes were recruited. They were divided into two equal groups: group I consisted of patients with secondary failure to sulfonylurea (hemoglobin A(1c) ≥ 8% despite sulfonylurea therapy) while group II consisted of patients whose condition was controlled with oral therapy. RESULTS Of all the patients, 45% and 14% were carriers of the K allele and Arg(972) variants respectively. The frequency of the K allele was 34% among patients with diabetes that was controlled with oral therapy and 56% among patients with secondary failure to sulfonylurea. The frequency of the Arg(972) IRS-1 variant was 6% among patients with diabetes controlled with oral therapy and 22% among patients with secondary failure. CONCLUSION The E23K variant of the Kir6.2 gene and Arg(972) IRS-1 variants are associated with increased risk for secondary failure to sulfonylurea.
Collapse
Affiliation(s)
| | | | | | | | - Naglaa A. Dawood
- Specialized Internal Medicine Hospital, Mansoura University, Lecturer in clinical pharmacy dept., Pharmacy collage, King Khalid University, KSA
| |
Collapse
|
37
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
38
|
Rubio-Cabezas O, Klupa T, Malecki MT. Permanent neonatal diabetes mellitus--the importance of diabetes differential diagnosis in neonates and infants. Eur J Clin Invest 2011; 41:323-33. [PMID: 21054355 DOI: 10.1111/j.1365-2362.2010.02409.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The differential diagnosis of various types and forms of diabetes is of great practical importance. This is particularly true for monogenic disease forms, where some spectacular applications of pharmacogenetics have recently been described. DESIGN For many years the distinct character of diabetes diagnosed in the first weeks and months of life remained unnoticed. The results of the search for type 1 diabetes-related autoantibodies, description of the HLA haplotypes distribution and analysis of clinical features in patients diagnosed in the first 6 months of life provided the initial evidence that the etiology of their disease might be different from that of autoimmune diabetes. RESULTS Over the last decade, mutations in about a dozen of genes have been linked to the development of Permanent Neonatal Diabetes Mellitus (PNDM). The most frequent causes of PNDM are heterozygous mutations in the KCNJ11, INS and ABCC8 genes. Although PNDM is a rare phenomenon (one case in about 200,000 live births), this discovery has had a large impact on clinical practice as most carriers of KCNJ11 and ABCC8 gene mutations have been switched from insulin to oral sulphonylureas with an improvement in glycemic control. In this review we summarize the practical aspects of diabetes differential diagnosis in neonates and infants. CONCLUSIONS Genetic testing should be advised in all subjects with PNDM as it may influence medical care in subjects with these monogenic forms of early onset diabetes.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Universities of Exeter & Plymouth, Exeter, UK
| | | | | | | |
Collapse
|
39
|
Ioannou YS, Ellard S, Hattersley A, Skordis N. KCNJ11 activating mutations cause both transient and permanent neonatal diabetes mellitus in Cypriot patients. Pediatr Diabetes 2011; 12:133-7. [PMID: 21352428 DOI: 10.1111/j.1399-5448.2010.00743.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the KCNJ11 gene encoding the Kir6.2 subunit of the ATP-sensitive potassium channel (K(ATP) channel) of the pancreatic β-cell cause diabetes in about 30-60% of all permanent neonatal diabetes mellitus cases diagnosed before 6 months of age. The K(ATP) channel plays an essential role in the regulation of the electrical status of the membrane through which the secretion of insulin is activated. Transient neonatal diabetes mellitus due to KCNJ11 mutations is less frequent than abnormalities affecting the imprinted region of chromosome 6q24. We studied the genetic basis of two Cypriot patients who developed diabetes before 6 months of age. They both carried mutations of the KCNJ11 gene. The R201H mutation was identified in a patient who developed hyperglycemia and ketoacidosis at the age of 40 d and was successfully transferred to sulphonylureas which activate the channel through an ATP independent route. The R50Q mutation was identified in a child diagnosed at day 45 after birth with remission of his diabetes at 9 months of age. The same defect was identified both in his asymptomatic mother and the recently diagnosed 'type 2' diabetic maternal grandmother. The remission-relapse mechanism in cases of transient neonatal diabetes is not known. Nevertheless, it is possible that the residue of the mutation within the Kir6.2 molecule is associated with the sensitivity to ATP reflecting to the severity of the diabetic phenotype.
Collapse
|
40
|
Bens S, Siebert R, Caliebe A. Transienter neonataler Diabetes und Hypomethylierungssyndrome. MED GENET-BERLIN 2010. [DOI: 10.1007/s11825-010-0246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zusammenfassung
Der transiente neonatale Diabetes (TNDM) ist definiert als Manifestation einer diabetogenen Stoffwechsellage in den ersten Lebenswochen und Normalisierung des Glukosestoffwechsels bis zum 18. Lebensmonat. Zu den klinischen Kardinalsymptomen zählen intrauterine Wachstumsverzögerung, Hyperglykämie und Dehydratation bei fehlender Ketoazidose. Die Ätiologie des TNDM ist sehr heterogen. In 70% der Fälle ist die Erkrankung mit Aberrationen in der Chromosomenregion 6q24 assoziiert. Diese Chromosomenregion enthält die genomisch geprägten Gene PLAGL1/ZAC und HYMAI. Durch eine paternale uniparentale Disomie 6 (upd(6)pat), eine paternale Duplikation der geprägten Region in 6q24 oder durch Imprintingdefekte des maternalen Allels kommt es zu einer Überexpression des paternal exprimierten Gens PLAGL1. Imprintingdefekte können isoliert oder im Rahmen eines Hypomethylierungssyndroms mit Beteiligung mehrerer geprägter Loci des Genoms auftreten. Hypomethylierung an multiplen Loci wurde bis jetzt bei Patienten mit TNDM, Silver-Russell-Syndrom (SRS) und Beckwith-Wiedemann-Syndrom (BWS) beobachtet. Das Wiederholungsrisiko hängt wesentlich von der Ursache des TNDM an. Chromosomale Aberrationen der Eltern unter Beteiligung des Chromosoms 6 erhöhen das Risiko sowohl für eine UPD des geprägten Bereichs in 6q24 als auch für eine paternale Duplikation. Jedoch entstehen sowohl UPD als auch Duplikationen zumeist de novo.
Collapse
Affiliation(s)
- S. Bens
- Aff1_246 grid.412468.d 0000000406462097 Institut für Humangenetik Christian-Albrechts-Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Campus Kiel Schwanenweg 24 24105 Kiel Deutschland
| | - R. Siebert
- Aff1_246 grid.412468.d 0000000406462097 Institut für Humangenetik Christian-Albrechts-Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Campus Kiel Schwanenweg 24 24105 Kiel Deutschland
| | - A. Caliebe
- Aff1_246 grid.412468.d 0000000406462097 Institut für Humangenetik Christian-Albrechts-Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Campus Kiel Schwanenweg 24 24105 Kiel Deutschland
| |
Collapse
|
41
|
Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenomics Pers Med 2010; 3:145-61. [PMID: 23226049 PMCID: PMC3513215 DOI: 10.2147/pgpm.s6969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Indexed: 12/14/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel Kir6.2 and SUR1 subunits, respectively, are found in ∼50% of NDM patients. In the pancreatic β-cell, K(ATP) channel activity couples glucose metabolism to insulin secretion via cellular excitability and mutations in either KCNJ11 or ABCC8 genes alter K(ATP) channel activity, leading to faulty insulin secretion. Inactivation mutations decrease K(ATP) channel activity and stimulate excessive insulin secretion, leading to hyperinsulinism of infancy. In direct contrast, activation mutations increase K(ATP) channel activity, resulting in impaired insulin secretion, NDM, and in severe cases, developmental delay and epilepsy. Many NDM patients with KCNJ11 and ABCC8 mutations can be successfully treated with sulfonylureas (SUs) that inhibit the K(ATP) channel, thus replacing the need for daily insulin injections. There is also strong evidence indicating that SU therapy ameliorates some of the neurological defects observed in patients with more severe forms of NDM. This review focuses on the molecular and cellular mechanisms of mutations in the K(ATP) channel that underlie NDM. SU pharmacogenomics is also discussed with respect to evaluating whether patients with certain K(ATP) channel activation mutations can be successfully switched to SU therapy.
Collapse
Affiliation(s)
- Veronica Lang
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Abstract
The pancreatic β-cell ATP-sensitive K(+) channel (K(ATP) channel) plays a critical role in glucose homeostasis by linking glucose metabolism to electrical excitability and insulin secretion. Changes in the intracellular ratio of ATP/ADP mediate the metabolic regulation of channel activity. The β-cell K(ATP) channel is a hetero-octameric complex composed of two types of subunits: four inward-rectifying potassium channel pore-forming (Kir6.2) subunits and four high-affinity sulfonylurea receptor 1 (SUR1) subunits. Kir6.2 and SUR1 are encoded by the genes KCNJ11 and ABCC8, respectively. Mutations in these genes can result in congenital hyperinsulinism and permanent neonatal diabetes. This review highlights the important role of the β-cell K(ATP) channel in glucose physiology and provides an introduction to some of the other review articles in this special edition of the Reviews in Endocrine and Metabolic Disorders.
Collapse
Affiliation(s)
- Kate Bennett
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | | | | |
Collapse
|
43
|
Greeley SAW, Tucker SE, Naylor RN, Bell GI, Philipson LH. Neonatal diabetes mellitus: a model for personalized medicine. Trends Endocrinol Metab 2010; 21:464-72. [PMID: 20434356 PMCID: PMC2914172 DOI: 10.1016/j.tem.2010.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/19/2010] [Accepted: 03/19/2010] [Indexed: 01/30/2023]
Abstract
Neonatal diabetes mellitus occurs in approximately 1 out of every 100,000 live births. It can be either permanent or transient, and recent studies indicate that is likely to have an underlying genetic cause, particularly when diagnosed before 6 months of age. Permanent neonatal diabetes is most commonly due to activating mutations in either of the genes encoding the two subunits of the ATP-sensitive potassium channel. In most of these patients, switching from insulin to oral sulfonylurea therapy leads to improved metabolic control, as well as possible amelioration of occasional associated neurodevelopmental disabilities. It remains to be determined what is the most appropriate treatment of other causes. The diagnosis and treatment of neonatal diabetes, therefore, represents a model for personalized medicine.
Collapse
Affiliation(s)
- Siri Atma W Greeley
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Pritzker School of Medicine, 5841 S Maryland Ave, MC 1027, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
44
|
Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:115-63. [PMID: 20217497 DOI: 10.1007/978-90-481-3271-3_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.
Collapse
Affiliation(s)
- Gisela Drews
- Institute of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
45
|
KCNJ11 activating mutation in an Indian family with remitting and relapsing diabetes. Indian J Pediatr 2010; 77:551-4. [PMID: 20401705 DOI: 10.1007/s12098-010-0062-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To identify the genetic cause of transient neonatal diabetes mellitus in three siblings from an Indian family. METHODS Case reports with clinical and molecular evaluation of an activating mutation in the KCNJ11 gene are presented. We describe an Indian family with two asymptomatic parents with 3 children presenting with hyperglycemia at 6, 1.5 and 1 month of age respectively. Blood glucose levels at presentation were 22.2, 18.3 and 20 mmol/L and the diabetes remitted in all three children by 5 years of age. None of the affected siblings had dysmorphism or neurological abnormalities. Diabetes relapsed in the oldest sibling at 9.4 years of age and she is now euglycemic on 1mg/Kg of Glibenclamide twice a day. RESULTS A novel heterozygous missense mutation (G53V) in the KCNJ11 gene was identified in all 3 affected children and the father. CONCLUSIONS Our report suggests that screening for KCNJ11 mutations is appropriate in patients diagnosed with neonatal diabetes as it provides valuable information concerning possible course of the disease and choice of treatment.
Collapse
|
46
|
Endoplasmic reticulum accumulation of Kir6.2 without activation of ER stress response in islet cells from adult Sur1 knockout mice. Cell Tissue Res 2010; 340:335-46. [DOI: 10.1007/s00441-010-0958-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/26/2010] [Indexed: 12/12/2022]
|
47
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1087] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci U S A 2010; 107:3105-10. [PMID: 20133622 DOI: 10.1073/pnas.0910533107] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man.
Collapse
|
49
|
Clark R, Proks P. ATP-sensitive potassium channels in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:165-92. [PMID: 20217498 DOI: 10.1007/978-90-481-3271-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel plays a crucial role in insulin secretion and thus glucose homeostasis. K(ATP) channel activity in the pancreatic beta-cell is finely balanced; increased activity prevents insulin secretion, whereas reduced activity stimulates insulin release. The beta-cell metabolism tightly regulates K(ATP) channel gating, and if this coupling is perturbed, two distinct disease states can result. Diabetes occurs when the K(ATP) channel fails to close in response to increased metabolism, whereas congenital hyperinsulinism results when K(ATP) channels remain closed even at very low blood glucose levels. In general there is a good correlation between the magnitude of K(ATP) current and disease severity. Mutations that cause a complete loss of K(ATP) channels in the beta-cell plasma membrane produce a severe form of congenital hyperinsulinism, whereas mutations that partially impair channel function produce a milder phenotype. Similarly mutations that greatly reduce the ATP sensitivity of the K(ATP) channel lead to a severe form of neonatal diabetes with associated neurological complications, whilst mutations that cause smaller shifts in ATP sensitivity cause neonatal diabetes alone. This chapter reviews our current understanding of the pancreatic beta-cell K(ATP) channel and highlights recent structural, functional and clinical advances.
Collapse
Affiliation(s)
- Rebecca Clark
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | |
Collapse
|
50
|
Remedi MS, Koster JC. K(ATP) channelopathies in the pancreas. Pflugers Arch 2009; 460:307-20. [PMID: 19921246 DOI: 10.1007/s00424-009-0756-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 12/14/2022]
Abstract
Adenosine-triphosphate-sensitive potassium channels (KATP) are regulated by adenosine nucleotides, and, thereby, couple cellular metabolism with electrical activity in multiple tissues including the pancreatic beta-cell. The critical involvement of KATP in insulin secretion is confirmed by the demonstration that inactivating and activating mutations in KATP underlie persistent hyperinsulinemia and neonatal diabetes mellitus, respectively, in both animal models and humans. In addition, a common variant in KATP represents a risk factor in the etiology of type 2 diabetes. This review focuses on the mechanistic basis by which KATP mutations underlie insulin secretory disorders and the implications of these findings for successful clinical intervention.
Collapse
Affiliation(s)
- Maria S Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|