1
|
Witham M, Hengel S. The role of RAD51 regulators and variants in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome. NAR MOLECULAR MEDICINE 2024; 1:ugae010. [PMID: 39359934 PMCID: PMC11443433 DOI: 10.1093/narmme/ugae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The study of RAD51 regulators in female reproductive diseases has novel biomarker potential and implications for therapeutic advancement. Regulators of RAD51 play important roles in maintaining genome integrity and variations in these genes have been identified in female reproductive diseases including primary ovarian insufficiency (POI), endometriosis, and polycystic ovary syndrome (PCOS). RAD51 modulators change RAD51 activity in homologous recombination, replication stress, and template switching pathways. However, molecular implications of these proteins in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome have been understudied. For each reproductive disease, we provide its definition, current diagnostic and therapeutic treatment strategies, and associated genetic variations. Variants were discovered in RAD51, and regulators including DMC1, RAD51B, SWS1, SPIDR, XRCC2 and BRCA2 linked with POI. Endometriosis is associated with variants in XRCC3, BRCA1 and CSB genes. Variants in BRCA1 were associated with PCOS. Our analysis identified novel biomarkers for POI (DMC1 and RAD51B) and PCOS (BRCA1). Further biochemical and cellular analyses of RAD51 regulator functions in reproductive disorders will advance our understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Maggie Witham
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sarah R Hengel
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Rein HL, Bernstein KA. Finding significance: New perspectives in variant classification of the RAD51 regulators, BRCA2 and beyond. DNA Repair (Amst) 2023; 130:103563. [PMID: 37651978 PMCID: PMC10529980 DOI: 10.1016/j.dnarep.2023.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
For many individuals harboring a variant of uncertain functional significance (VUS) in a homologous recombination (HR) gene, their risk of developing breast and ovarian cancer is unknown. Integral to the process of HR are BRCA1 and regulators of the central HR protein, RAD51, including BRCA2, PALB2, RAD51C and RAD51D. Due to advancements in sequencing technology and the continued expansion of cancer screening panels, the number of VUS identified in these genes has risen significantly. Standard practices for variant classification utilize different types of predictive, population, phenotypic, allelic and functional evidence. While variant analysis is improving, there remains a struggle to keep up with demand. Understanding the effects of an HR variant can aid in preventative care and is critical for developing an effective cancer treatment plan. In this review, we discuss current perspectives in the classification of variants in the breast and ovarian cancer genes BRCA1, BRCA2, PALB2, RAD51C and RAD51D.
Collapse
Affiliation(s)
- Hayley L Rein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Kara A Bernstein
- University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions. Genes (Basel) 2023; 14:genes14020262. [PMID: 36833189 PMCID: PMC9957003 DOI: 10.3390/genes14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested.
Collapse
|
4
|
Li Q, Kaur A, Okada K, McKenney RJ, Engebrecht J. Differential requirement for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in the Caenorhabditis elegans germ line. PLoS Genet 2023; 19:e1010457. [PMID: 36716349 PMCID: PMC9910797 DOI: 10.1371/journal.pgen.1010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
The tumor suppressor BRCA1-BARD1 complex regulates many cellular processes; of critical importance to its tumor suppressor function is its role in genome integrity. Although RING E3 ubiquitin ligase activity is the only known enzymatic activity of the complex, the in vivo requirement for BRCA1-BARD1 E3 ubiquitin ligase activity has been controversial. Here we probe the role of BRCA1-BARD1 E3 ubiquitin ligase activity in vivo using C. elegans. Genetic, cell biological, and biochemical analyses of mutants defective for E3 ligase activity suggest there is both E3 ligase-dependent and independent functions of the complex in the context of DNA damage repair and meiosis. We show that E3 ligase activity is important for nuclear accumulation of the complex and specifically to concentrate at meiotic recombination sites but not at DNA damage sites in proliferating germ cells. While BRCA1 alone is capable of monoubiquitylation, BARD1 is required with BRCA1 to promote polyubiquitylation. We find that the requirement for E3 ligase activity and BARD1 in DNA damage signaling and repair can be partially alleviated by driving the nuclear accumulation and self-association of BRCA1. Our data suggest that in addition to E3 ligase activity, BRCA1 may serve a structural role for DNA damage signaling and repair while BARD1 plays an accessory role to enhance BRCA1 function.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| |
Collapse
|
5
|
Clark KA, Paquette A, Tao K, Bell R, Boyle JL, Rosenthal J, Snow AK, Stark AW, Thompson BA, Unger J, Gertz J, Varley KE, Boucher KM, Goldgar DE, Foulkes WD, Thomas A, Tavtigian SV. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am J Hum Genet 2022; 109:1153-1174. [PMID: 35659930 PMCID: PMC9247830 DOI: 10.1016/j.ajhg.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein-truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a mammalian two-hybrid assay. Downstream of the laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data, such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that 15%-20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 45 with concordant computational and functional assay evidence in favor of pathogenicity plus 223 with concordant evidence in favor of benignity; these are particularly likely to be classified as likely pathogenic and likely benign, respectively, once human observational data become available.
Collapse
Affiliation(s)
- Kathleen A Clark
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew Paquette
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayoko Tao
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Russell Bell
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Julie L Boyle
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Judith Rosenthal
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Angela K Snow
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Alex W Stark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bryony A Thompson
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Unger
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine E Varley
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth M Boucher
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - David E Goldgar
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - William D Foulkes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Research Institute McGill University Health Center, Montreal, QC H3T 1E2, Canada; Departments of Medicine, Human Genetics, and Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alun Thomas
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
He Z, Ghorayeb R, Tan S, Chen K, Lorentzian AC, Bottyan J, Aalam SMM, Pujana MA, Lange PF, Kannan N, Eaves CJ, Maxwell CA. Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation. Nat Commun 2022; 13:2200. [PMID: 35459234 PMCID: PMC9033786 DOI: 10.1038/s41467-022-29885-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Chen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda C Lorentzian
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack Bottyan
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Syed Mohammed Musheer Aalam
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Miguel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Adamovich AI, Diabate M, Banerjee T, Nagy G, Smith N, Duncan K, Mendoza Mendoza E, Prida G, Freitas MA, Starita LM, Parvin JD. The functional impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break repair assays. Am J Hum Genet 2022; 109:618-630. [PMID: 35196514 DOI: 10.1016/j.ajhg.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.
Collapse
Affiliation(s)
- Aleksandra I Adamovich
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mariame Diabate
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gregory Nagy
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Nahum Smith
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kathryn Duncan
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Erika Mendoza Mendoza
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gisselle Prida
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Lacoursiere RE, Hadi D, Shaw GS. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules 2022; 12:biom12030467. [PMID: 35327659 PMCID: PMC8946176 DOI: 10.3390/biom12030467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is controlled by a series of E1, E2, and E3 enzymes that can ligate ubiquitin to cellular proteins and dictate the turnover of a substrate and the outcome of signalling events such as DNA damage repair and cell cycle. This process is complex due to the combinatorial power of ~35 E2 and ~1000 E3 enzymes involved and the multiple lysine residues on ubiquitin that can be used to assemble polyubiquitin chains. Recently, mass spectrometric methods have identified that most enzymes in the ubiquitination cascade can be further modified through acetylation or phosphorylation under particular cellular conditions and altered modifications have been noted in different cancers and neurodegenerative diseases. This review provides a cohesive summary of ubiquitination, acetylation, and phosphorylation sites in ubiquitin, the human E1 enzyme UBA1, all E2 enzymes, and some representative E3 enzymes. The potential impacts these post-translational modifications might have on each protein function are highlighted, as well as the observations from human disease.
Collapse
|
9
|
Kim DM, Feilotter HE, Davey SK. BRCA1 Variant Assessment Using a Simple Analytic Assay. J Appl Lab Med 2022; 7:674-688. [PMID: 35021209 DOI: 10.1093/jalm/jfab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND We previously developed a biological assay to accurately predict BRCA1 (BRCA1 DNA repair associated) mutation status, based on gene expression profiles of Epstein-Barr virus-transformed lymphoblastoid cell lines. The original work was done using whole genome expression microarrays, and nearest shrunken centroids analysis. While these approaches are appropriate for model building, they are difficult to implement clinically, where more targeted testing and analysis are required for time and cost savings. METHODS Here, we describe adaptation of the original predictor to use the NanoString nCounter platform for testing, with analysis based on the k-top scoring pairs (k-TSP) method. RESULTS Assessing gene expression using the nCounter platform on a set of lymphoblastoid cell lines yielded 93.8% agreement with the microarray-derived data, and 87.5% overall correct classification of BRCA1 carriers and controls. Using the original gene expression microarray data used to develop our predictor with nearest shrunken centroids, we rebuilt a classifier based on the k-TSP method. This classifier relies on the relative expression of 10 pairs of genes, compared to the original 43 identified by nearest shrunken centroids (NSC), and was 96.2% concordant with the original training set prediction, with a 94.3% overall correct classification of BRCA1 carriers and controls. CONCLUSIONS The k-TSP classifier was shown to accurately predict BRCA1 status using data generated on the nCounter platform and is feasible for initiating a clinical validation.
Collapse
Affiliation(s)
- Daniel M Kim
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Harriet E Feilotter
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Scott K Davey
- Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Departments of Oncology and Biomedical and Molecular Sciences, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
| |
Collapse
|
10
|
The BRCA1/BARD1 ubiquitin ligase and its substrates. Biochem J 2021; 478:3467-3483. [PMID: 34591954 DOI: 10.1042/bcj20200864] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.
Collapse
|
11
|
Moesslacher CS, Kohlmayr JM, Stelzl U. Exploring absent protein function in yeast: assaying post translational modification and human genetic variation. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:164-183. [PMID: 34395585 PMCID: PMC8329848 DOI: 10.15698/mic2021.08.756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| |
Collapse
|
12
|
Liu D, Gao Y, Li L, Chen H, Bai L, Qu Y, Zhou B, Yan Y, Zhao Y. Single nucleotide polymorphisms in breast cancer susceptibility gene 1 are associated with susceptibility to lung cancer. Oncol Lett 2021; 21:424. [PMID: 33850565 DOI: 10.3892/ol.2021.12685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
BRCA1 is a tumor suppressor that has been found to be involved DNA synthesis during cell replication. In a recent study, the single nucleotide polymorphism (SNP), rs799917, in BRCA1 was found to be associated with the development and progression of various types of tumor. In the present study, the association between rs799917 and susceptibility to lung cancer was evaluated in a Han Chinese population in the Liaoning Province of China. The BRCA1 rs799917 genotypes (C/C, C/T and T/T) were analyzed using TaqMan quantitative PCR in 682 patients with lung cancer and 694 healthy controls, and the results were analyzed using a Student's t-test, a χ2 test and logistic regression analysis. Individuals carrying the C/T or T/T genotype had a lower risk of lung cancer compared with those carrying the C/C genotype [odds ratio (OR), 0.741; P=0.021; and OR, 0.610; P=0.011, respectively). The C/T + T/T genotype group had an even lower risk (OR, 0.709; P=0.005) compared with that in the C/C genotype group. In the stratified analyses of non-smokers, individuals with the C/T or T/T genotype had a lower risk of developing lung cancer compared with that in those carrying the C/C genotype (OR, 0.681; P=0.013; and OR, 0.569; P=0.021, respectively). The stratified analyses of the BRCA1 rs799917 polymorphism based on pathological type, chemotherapy and radiotherapy, showed that in the squamous cell carcinoma, non-chemotherapy and non-radiotherapy subgroups, individuals with the T/T genotype had a lower risk of lung cancer compared with that in those carrying the C/C genotype (OR, 0.454; P=0.007; OR, 0.485; P=0.002; and OR, 0.599; P=0.020, respectively). In conclusion, the T allele of the rs799917 SNP in BRCA1 was associated with a lower risk of lung cancer in the ethnic Han Chinese population in Liaoning Province and may represent a protective factor against lung cancer.
Collapse
Affiliation(s)
- Dan Liu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Ya Gao
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China.,Department of Oncology, Kailuan Hospital, Tangshan, Hebei 063000, P.R. China
| | - Lingling Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - He Chen
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Lu Bai
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanli Qu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Baosen Zhou
- Department of Epidemiology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ying Yan
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China.,Department of Radiation Oncology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Yuxia Zhao
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
13
|
Li W, Gu X, Liu C, Shi Y, Wang P, Zhang N, Wu R, Leng L, Xie B, Song C, Li M. A synergetic effect of BARD1 mutations on tumorigenesis. Nat Commun 2021; 12:1243. [PMID: 33623049 PMCID: PMC7902612 DOI: 10.1038/s41467-021-21519-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
To date, a large number of mutations have been screened from breast and ovarian cancer patients. However, most of them are classified into benign or unidentified alterations due to their undetectable phenotypes. Whether and how they could cause tumors remains unknown, and this significantly limits diagnosis and therapy. Here, in a study of a family with hereditary breast and ovarian cancer, we find that two BARD1 mutations, P24S and R378S, simultaneously exist in cis in surviving cancer patients. Neither of the single mutations causes a functional change, but together they synergetically impair the DNA damage response and lead to tumors in vitro and in vivo. Thus, our report not only demonstrates that BARD1 defects account for tumorigenesis but also uncovers the potential risk of synergetic effects between the large number of cis mutations in individual genes in the human genome.
Collapse
Affiliation(s)
- Wenjing Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Xiaoyang Gu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Chunhong Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Pan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Na Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rui Wu
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China.
| |
Collapse
|
14
|
Rabellino A, Khanna KK. The implication of the SUMOylation pathway in breast cancer pathogenesis and treatment. Crit Rev Biochem Mol Biol 2020; 55:54-70. [PMID: 32183544 DOI: 10.1080/10409238.2020.1738332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed malignancy in woman worldwide, and is the second most common cause of death in developed countries. The transformation of a normal cell into a malignant derivate requires the acquisition of diverse genomic and proteomic changes, including enzymatic post-translational modifications (PTMs) on key proteins encompassing critical cell signaling events. PTMs occur on proteins after translation, and regulate several aspects of proteins activity, including their localization, activation and turnover. Deregulation of PTMs can potentially lead to tumorigenesis, and several de-regulated PTM pathways contribute to abnormal cell proliferation during breast tumorigenesis. SUMOylation is a PTM that plays a pivotal role in numerous aspects of cell physiology, including cell cycle regulation, protein trafficking and turnover, and DNA damage repair. Consistently with this, the deregulation of the SUMO pathway is observed in different human pathologies, including breast cancer. In this review we will describe the role of SUMOylation in breast tumorigenesis and its implication for breast cancer therapy.
Collapse
Affiliation(s)
- Andrea Rabellino
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia
| |
Collapse
|
15
|
Monteiro AN, Bouwman P, Kousholt AN, Eccles DM, Millot GA, Masson JY, Schmidt MK, Sharan SK, Scully R, Wiesmüller L, Couch F, Vreeswijk MPG. Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. J Med Genet 2020; 57:509-518. [PMID: 32152249 DOI: 10.1136/jmedgenet-2019-106368] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alvaro N Monteiro
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Peter Bouwman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arne N Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Diana M Eccles
- Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Gael A Millot
- Hub-DBC, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shyam K Sharan
- National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Ralph Scully
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
16
|
Impact of proactive high-throughput functional assay data on BRCA1 variant interpretation in 3684 patients with breast or ovarian cancer. J Hum Genet 2020; 65:209-220. [PMID: 31907386 DOI: 10.1038/s10038-019-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022]
Abstract
The clinical utility of BRCA1/2 genotyping was recently extended from the selection of subjects at high risk for hereditary breast and ovary cancer to the identification of candidates for poly (ADP-ribose) polymerase (PARP) inhibitor treatment. This underscores the importance of accurate interpretation of BRCA1/2 genetic variants and of reducing the number of variants of uncertain significance (VUSs). Two recent studies by Findlay et al. and Starita et al. introduced high-throughput functional assays, and proactively analyzed variants in specific regions regardless of whether they had been previously observed. We retrospectively reviewed all BRCA1 and BRCA2 germline genetic test reports from patients with breast or ovarian cancer examined at Asan Medical Center (Seoul, Korea) between September 2011 and December 2018. Variants were assigned pathogenic or benign strong evidence codes according to the functional classification and were reclassified according to the ACMG/AMP 2015 guidelines. Among 3684 patients with available BRCA1 and BRCA2 germline genetic test reports, 429 unique variants (181 from BRCA1) were identified. Of 34 BRCA1 variants intersecting with the data reported by Findlay et al., three missense single-nucleotide variants from four patients (0.11%, 4/3684) were reclassified from VUSs to likely pathogenic variants. Four variants scored as functional were reclassified into benign or likely benign variants. Three variants that overlapped with the data reported by Starita et al. could not be reclassified. In conclusion, proactive high-throughput functional study data are useful for the reclassification of clinically observed VUSs. Integrating additional evidence, including functional assay results, may help reduce the number of VUSs.
Collapse
|
17
|
Miresmaeili SM, Jafari F. A Novel Mutation-BRCA1 Associated Hereditary Haplotype of Intragenic Markers of BRCA1 Gene in a Family with History of Breast Cancer. Asian Pac J Cancer Prev 2019; 20:611-614. [PMID: 30806067 PMCID: PMC6897036 DOI: 10.31557/apjcp.2019.20.2.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Breast cancer is the most common cancer diagnosed among women, Tumor suppressor genes such as BRCA1 involved in cell cycle control and repairing of DNA damage. BRCA1 is a risk factor gene that alteration in its protein cause in susceptibility to breast or ovarian cancer. Short tandem repeat (STR) polymorphism is linked to some disease. Objective: The aim of this study was screening a new mutation in patients with familial breast cancer. Materials and Methods: In this study, 200 women with breast cancer were participated. Among the patients, 40 women suffer from familial breast cancer. After DNA extraction from peripheral blood samples, Exons 16 to 23 of BRCA1 gene directly analyzed in SSCP gel electrophoresis followed by direct sequencing. Results: After direct sequencing, a new mutation was detected in intron 17 of BRCA1 gene. Three patients of one family have a germ line intronic mutation in the BRCA1 gene (IVS17-27delA). Also, this mutation in this family is linked to a haplotype of intragenic short tandem repeat (STR) in the BRCA1 gene. Conclusion: By Screening of gene mutations can be found association of mutation and incidence of disease. Also, studying the mutation in families and finding specific hereditary patterns in that family can be effective in prognosis of disease in other family members.
Collapse
|
18
|
Fernandes VC, Golubeva VA, Di Pietro G, Shields C, Amankwah K, Nepomuceno TC, de Gregoriis G, Abreu RBV, Harro C, Gomes TT, Silva RF, Suarez-Kurtz G, Couch FJ, Iversen ES, Monteiro ANA, Carvalho MA. Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation. J Biol Chem 2019; 294:5980-5992. [PMID: 30765603 DOI: 10.1074/jbc.ra118.005274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/06/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic testing for BRCA1, a DNA repair protein, can identify carriers of pathogenic variants associated with a substantially increased risk for breast and ovarian cancers. However, an association with increased risk is unclear for a large fraction of BRCA1 variants present in the human population. Most of these variants of uncertain clinical significance lead to amino acid changes in the BRCA1 protein. Functional assays are valuable tools to assess the potential pathogenicity of these variants. Here, we systematically probed the effects of substitutions in the C terminus of BRCA1: the N- and C-terminal borders of its tandem BRCT domain, the BRCT-[N-C] linker region, and the α1 and α'1 helices in BRCT-[N] and -[C]. Using a validated transcriptional assay based on a fusion of the GAL4 DNA-binding domain to the BRCA1 C terminus (amino acids 1396-1863), we assessed the functional impact of 99 missense variants of BRCA1. We include the data obtained for these 99 missense variants in a joint analysis to generate the likelihood of pathogenicity for 347 missense variants in BRCA1 using VarCall, a Bayesian integrative statistical model. The results from this analysis increase our understanding of BRCA1 regions less tolerant to changes, identify functional borders of structural domains, and predict the likelihood of pathogenicity for 98% of all BRCA1 missense variants in this region recorded in the population. This knowledge will be critical for improving risk assessment and clinical treatment of carriers of BRCA1 variants.
Collapse
Affiliation(s)
- Vanessa C Fernandes
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Volha A Golubeva
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Giuliano Di Pietro
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612; the Universidade Federal de Sergipe, Campus São Cristóvão, Brazil 49100-000
| | - Cara Shields
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Kwabena Amankwah
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Thales C Nepomuceno
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050; the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Giuliana de Gregoriis
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Renata B V Abreu
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Carly Harro
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612; the Department of Cell Biology, Microbiology, College of Arts and Sciences, University of South Florida Cancer Biology Ph.D. Program, Tampa, Florida 33612
| | - Thiago T Gomes
- the Instituto Federal do Rio de Janeiro, Rio de Janeiro 20270-021, Brazil
| | - Ricceli F Silva
- the Instituto Federal do Rio de Janeiro, Rio de Janeiro 20270-021, Brazil
| | - Guilherme Suarez-Kurtz
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Fergus J Couch
- the Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Edwin S Iversen
- the Department of Statistics, Duke University, Durham, North Carolina 27710
| | - Alvaro N A Monteiro
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612.
| | - Marcelo A Carvalho
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050.
| |
Collapse
|
19
|
Caleca L, Colombo M, van Overeem Hansen T, Lázaro C, Manoukian S, Parsons MT, Spurdle AB, Radice P. GFP-Fragment Reassembly Screens for the Functional Characterization of Variants of Uncertain Significance in Protein Interaction Domains of the BRCA1 and BRCA2 Genes. Cancers (Basel) 2019; 11:E151. [PMID: 30696104 PMCID: PMC6406614 DOI: 10.3390/cancers11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Genetic testing for BRCA1 and BRCA2 genes has led to the identification of many unique variants of uncertain significance (VUS). Multifactorial likelihood models that predict the odds ratio for VUS in favor or against cancer causality, have been developed, but their use is conditioned by the amount of necessary data, which are difficult to obtain if a variant is rare. As an alternative, variants mapping to the coding regions can be examined using in vitro functional assays. BRCA1 and BRCA2 proteins promote genome protection by interacting with different proteins. In this study, we assessed the functional effect of two sets of variants in BRCA genes by exploiting the green fluorescent protein (GFP)-reassembly in vitro assay, which was set-up to test the BRCA1/BARD1, BRCA1/UbcH5a, and BRCA2/DSS1 interactions. Based on the findings observed for the validation panels of previously classified variants, BRCA1/UbcH5a and BRCA2/DSS1 binding assays showed 100% sensitivity and specificity in identifying pathogenic and non-pathogenic variants. While the actual efficiency of these assays in assessing the clinical significance of BRCA VUS has to be verified using larger validation panels, our results suggest that the GFP-reassembly assay is a robust method to identify variants affecting normal protein functioning and contributes to the classification of VUS.
Collapse
Affiliation(s)
- Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Thomas van Overeem Hansen
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology. Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08900 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
20
|
Chasapis CT. Hierarchical core decomposition of RING structure as a method to capture novel functional residues within RING-type E3 ligases: a structural systems biology approach. Comput Biol Med 2018; 100:86-91. [DOI: 10.1016/j.compbiomed.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/15/2022]
|
21
|
BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes. Proc Natl Acad Sci U S A 2018; 115:1316-1321. [PMID: 29367421 DOI: 10.1073/pnas.1715467115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Missense mutations that disrupt the RING domain of the tumor suppressor gene BRCA1 lead to increased risk of breast and ovarian cancer. The BRCA1 RING domain is a ubiquitin ligase, whose structure and function rely critically on forming a heterodimer with BARD1, which also harbors a RING domain. The function of the BARD1 RING domain is unknown. In families severely affected with breast cancer, we identified inherited BARD1 missense mutations Cys53Trp, Cys71Tyr, and Cys83Arg that alter three zinc-binding residues of the BARD1 RING domain. Each of these mutant BARD1 proteins retained the ability to form heterodimeric complexes with BRCA1 to make an active ubiquitin ligase, but the mutant BRCA1/BARD1 complexes were deficient in binding to nucleosomes and in ubiquitylating histone H2A. The BARD1 mutations also caused loss of transcriptional repression of BRCA1-regulated estrogen metabolism genes CYP1A1 and CYP3A4; breast epithelial cells edited to create heterozygous loss of BARD1 showed significantly higher expression of CYP1A1 and CYP3A4 Reintroduction of wild-type BARD1 into these cells restored CYP1A1 and CYP3A4 transcription to normal levels, but introduction of the cancer-predisposing BARD1 RING mutants failed to do so. These results indicate that an intact BARD1 RING domain is critical to BRCA1/BARD1 binding to nucleosomes and hence to ubiquitylation of histone H2A and also critical to transcriptional repression of BRCA1-regulated genes active in estrogen metabolism.
Collapse
|
22
|
A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer. Oncotarget 2017; 7:19884-96. [PMID: 26943587 PMCID: PMC4991425 DOI: 10.18632/oncotarget.7865] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Triple negative (TNBCs) and the closely related Basal-like (BLBCs) breast cancers are a loosely defined collection of cancers with poor clinical outcomes. Both show strong similarities with BRCA1-mutant breast cancers and BRCA1 dysfunction, or ‘BRCAness’, is observed in a large proportion of sporadic BLBCs. BRCA1 expression and function has been shown in vitro to modulate responses to radiation and chemotherapy. Exploitation of this knowledge in the treatment of BRCA1-mutant patients has had varying degrees of success. This reflects the significant problem of accurately detecting those patients with BRCA1 dysfunction. Moreover, not all BRCA1 mutations/loss of function result in the same histology/pathology or indeed have similar effects in modulating therapeutic responses. Given the poor clinical outcomes and lack of targeted therapy for these subtypes, a better understanding of the biology underlying these diseases is required in order to develop novel therapeutic strategies. We have discovered a consistent NFκB hyperactivity associated with BRCA1 dysfunction as a consequence of increased Reactive Oxygen Species (ROS). This biology is found in a subset of BRCA1-mutant and triple negative breast cancer cases and confers good outcome. The increased NFκB signalling results in an anti-tumour microenvironment which may allow CD8+ cytotoxic T cells to suppress tumour progression. However, tumours lacking this NFκB-driven biology have a more tumour-promoting environment and so are associated with poorer prognosis. Tumour-derived gene expression data and cell line models imply that these tumours may benefit from alternative treatment strategies such as reprogramming the microenvironment and targeting the IGF and AR signalling pathways.
Collapse
|
23
|
Concolino P, Rizza R, Hackmann K, Paris I, Minucci A, De Paolis E, Scambia G, Zuppi C, Schrock E, Capoluongo E. Characterization of a new BRCA1 rearrangement in an Italian woman with hereditary breast and ovarian cancer syndrome. Breast Cancer Res Treat 2017; 164:497-503. [PMID: 28488140 DOI: 10.1007/s10549-017-4275-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND We report a novel BRCA1 LGR, involving the complete duplication of exon 3, in an Italian patient with a strong family history of breast and ovarian cancer. Our purpose is to provide an effective characterization of this LGR using a combination of different methods able to establish the exact breakpoints of the duplication. METHODS MAQ assay was used as primary screening method in LGRs detection. Array CGH, RT-PCR, and Long-PCR were used for a careful characterization of rearrangement and breakpoint regions. The Repeat Masker program was employed to identify Alu sequences at breakpoint junctions. RESULTS RNA analysis showed that this in tandem duplication of exon 3 causes an in frame insertion of 18 amino acids within the protein. Array CGH and Long-PCR strategies revealed that the duplication (g.100411_102863dup) involves exactly 2.452 nucleotides between intron 2 and intron 3 of the gene. In addition, while an Alu Sx sequence was identified at upstream breakpoint, no Alu repeats were found at downstream junction. This supports the hypothesis that the new duplication was the result of a non-homologous recombination event between Alu and Non-Alu sequences. CONCLUSION Our strategy, which combines a comprehensive set of methodologies, has been able to characterize the new BRCA1 duplication confirming, as previously reported, that MAQ assay represents a reliable and effective method for a primary screening of BRCA rearrangements. We underline the relevance of incorporating quantitative methods for BRCA genes dosage testing into routine diagnostic practice.
Collapse
Affiliation(s)
- Paola Concolino
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Roberta Rizza
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Karl Hackmann
- Institut fuer Klinische Genetik, Medizinische Fakultaet Carl Gustav Carus, Technische Universitaet Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Ida Paris
- Department of Obstetrics and Gynecology, Catholic University, Rome, Italy
| | - Angelo Minucci
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Elisa De Paolis
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University, Rome, Italy
| | - Cecilia Zuppi
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Evelin Schrock
- Institut fuer Klinische Genetik, Medizinische Fakultaet Carl Gustav Carus, Technische Universitaet Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Ettore Capoluongo
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
24
|
Fu W, Zhu J, Xiong SW, Jia W, Zhao Z, Zhu SB, Hu JH, Wang FH, Xia H, He J, Liu GC. BARD1 Gene Polymorphisms Confer Nephroblastoma Susceptibility. EBioMedicine 2017; 16:101-105. [PMID: 28161399 PMCID: PMC5474516 DOI: 10.1016/j.ebiom.2017.01.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
BRCA1-associated RING domain protein 1 (BARD1) is a tumor suppressor, which forms a heterodimer with BRCA1. Three BARD1 gene polymorphisms (rs7585356 G>A, rs6435862 T>G and rs3768716 A>G) were initially identified as high-risk neuroblastoma susceptibility loci by a previous GWAS. Because of the general tumor-suppressing function of BARD1, we hypothesized that these BARD1 gene polymorphisms might modify the susceptibility to nephroblastoma. We genotyped these polymorphisms in 145 cases and 531 controls using Taqman methods. Out of three polymorphisms, only the rs7585356 G>A polymorphism was significantly associated with increased susceptibility to nephroblastoma [AA vs. GG: adjusted odds ratio (OR)=1.78, 95% confidence interval (CI)=1.01-3.12]. Combined analysis of three polymorphisms indicated that subjects with 3 risk genotypes exhibited significantly elevated nephroblastoma risk, when compared with subjects with 0-2 risk genotypes (adjusted OR=1.72, 95% CI=1.02-2.89). Stratified analysis revealed that in term of clinical stage, rs7585356 AA carriers were associated with increased risk of developing clinical stage I+II nephroblastoma. The presence of three risk genotypes was significantly associated with nephroblastoma risk in females and clinical stage I+II nephroblastoma. Our results suggested that BARD1 rs7585356 G>A may be associated with nephroblastoma risk.
Collapse
Affiliation(s)
- Wen Fu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Si-Wei Xiong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhang Zhao
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Shi-Bo Zhu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jin-Hua Hu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Feng-Hua Wang
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Guo-Chang Liu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
25
|
Pesaran T, Karam R, Huether R, Li S, Farber-Katz S, Chamberlin A, Chong H, LaDuca H, Elliott A. Beyond DNA: An Integrated and Functional Approach for Classifying Germline Variants in Breast Cancer Genes. Int J Breast Cancer 2016; 2016:2469523. [PMID: 27822389 PMCID: PMC5086358 DOI: 10.1155/2016/2469523] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/04/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Genetic testing for hereditary breast cancer is an integral part of individualized care in the new era of precision medicine. The accuracy of an assay is reliant on not only the technology and bioinformatics analysis utilized but also the experience and infrastructure required to correctly classify genetic variants as disease-causing. Interpreting the clinical significance of germline variants identified by hereditary cancer testing is complex and has a significant impact on the management of patients who are at increased cancer risk. In this review we give an overview of our clinical laboratory's integrated approach to variant assessment. We discuss some of the nuances that should be considered in the assessment of genomic variants. In addition, we highlight lines of evidence such as functional assays and structural analysis that can be useful in the assessment of rare and complex variants.
Collapse
Affiliation(s)
- T. Pesaran
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - R. Karam
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - R. Huether
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - S. Li
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - S. Farber-Katz
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - A. Chamberlin
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - H. Chong
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - H. LaDuca
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - A. Elliott
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| |
Collapse
|
26
|
Rezvani K. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer. Int J Mol Sci 2016; 17:ijms17101724. [PMID: 27754413 PMCID: PMC5085755 DOI: 10.3390/ijms17101724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 12/15/2022] Open
Abstract
The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.
Collapse
Affiliation(s)
- Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA.
| |
Collapse
|
27
|
Densham RM, Garvin AJ, Stone HR, Strachan J, Baldock RA, Daza-Martin M, Fletcher A, Blair-Reid S, Beesley J, Johal B, Pearl LH, Neely R, Keep NH, Watts FZ, Morris JR. Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat Struct Mol Biol 2016; 23:647-55. [PMID: 27239795 PMCID: PMC6522385 DOI: 10.1038/nsmb.3236] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/02/2016] [Indexed: 01/03/2023]
Abstract
The opposing activities of 53BP1 and BRCA1 influence pathway choice in DNA double-strand-break repair. How BRCA1 counteracts the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2∼ubiquitin and demonstrate that BRCA1-BARD1's ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitination by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1-deficient cells. BRCA1-BARD1's function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin and optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning, and the need for SMARCAD1 in olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus, BRCA1-BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair.
Collapse
Affiliation(s)
- Ruth M Densham
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Helen R Stone
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Joanna Strachan
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert A Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Manuel Daza-Martin
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alice Fletcher
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sarah Blair-Reid
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - James Beesley
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Balraj Johal
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Robert Neely
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Nicholas H Keep
- Department of Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Zhang R, Zou Y, Zhu J, Zeng X, Yang T, Wang F, He J, Xia H. The Association between GWAS-identified BARD1 Gene SNPs and Neuroblastoma Susceptibility in a Southern Chinese Population. Int J Med Sci 2016; 13:133-8. [PMID: 26941572 PMCID: PMC4764780 DOI: 10.7150/ijms.13426] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
A previous genome-wide association study (GWAS) has found that some common variations in the BARD1 gene were associated with neuroblastoma susceptibility especially for high-risk subjects, and the associations have been validated in Caucasians and African-Americans. However, the associations between BARD1 gene polymorphisms and neuroblastoma susceptibility have not been studied among Asians, not to mention Chinese subjects. In the present study, we investigated the association of three BARD1 polymorphisms (rs7585356 G>A, rs6435862 T>G and rs3768716 A>G) with neuroblastoma susceptibility in 201 neuroblastoma patients and 531 controls using TaqMan methodology. Overall, none of these polymorphisms was significantly associated with neuroblastoma susceptibility. However, stratified analysis showed a more profound association between neuroblastoma risk and rs6435862 TG/GG variant genotypes among older children (adjusted OR=1.55, 95% CI=1.04-2.31), and children with adrenal gland-originated disease (adjusted OR=2.94, 95% CI=1.40-6.18), or with ISSN clinical stages III+IV disease (adjusted OR=1.75, 95% CI=1.09-2.84). Similar results were observed for the variant genotypes of rs3768716 A>G polymorphism among these three subgroups. Our results suggest that the BARD1 rs6435862 T>G and rs3768716 A>G polymorphisms may contribute to increased susceptibility to neuroblastoma, especially for the subjects at age ≥12 months, with adrenal gland-originated or with late clinical stage neuroblastoma. These findings need further validation by prospective studies with larger sample size with subjects enrolled from multicenter, involving different ethnicities.
Collapse
Affiliation(s)
- Ruizhong Zhang
- 1. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zou
- 1. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- 2. Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Xinhao Zeng
- 1. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Tianyou Yang
- 1. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Fenghua Wang
- 1. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- 1. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Huimin Xia, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel.: (+86-020) 38076001, Fax: (+86-020) 38076020; E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-020) 38076560, E-mail:
| | - Huimin Xia
- 1. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Huimin Xia, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel.: (+86-020) 38076001, Fax: (+86-020) 38076020; E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-020) 38076560, E-mail:
| |
Collapse
|
29
|
JRK is a positive regulator of β-catenin transcriptional activity commonly overexpressed in colon, breast and ovarian cancer. Oncogene 2015; 35:2834-41. [DOI: 10.1038/onc.2015.347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/22/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
|
30
|
Jhuraney A, Velkova A, Johnson RC, Kessing B, Carvalho RS, Whiley P, Spurdle AB, Vreeswijk MPG, Caputo SM, Millot GA, Vega A, Coquelle N, Galli A, Eccles D, Blok MJ, Pal T, van der Luijt RB, Santamariña Pena M, Neuhausen SL, Donenberg T, Machackova E, Thomas S, Vallée M, Couch FJ, Tavtigian SV, Glover JNM, Carvalho MA, Brody LC, Sharan SK, Monteiro AN. BRCA1 Circos: a visualisation resource for functional analysis of missense variants. J Med Genet 2015; 52:224-30. [PMID: 25643705 PMCID: PMC4392196 DOI: 10.1136/jmedgenet-2014-102766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inactivating germline mutations in the tumour suppressor gene BRCA1 are associated with a significantly increased risk of developing breast and ovarian cancer. A large number (>1500) of unique BRCA1 variants have been identified in the population and can be classified as pathogenic, non-pathogenic or as variants of unknown significance (VUS). Many VUS are rare missense variants leading to single amino acid changes. Their impact on protein function cannot be directly inferred from sequence information, precluding assessment of their pathogenicity. Thus, functional assays are critical to assess the impact of these VUS on protein activity. BRCA1 is a multifunctional protein and different assays have been used to assess the impact of variants on different biochemical activities and biological processes. METHODS AND RESULTS To facilitate VUS analysis, we have developed a visualisation resource that compiles and displays functional data on all documented BRCA1 missense variants. BRCA1 Circos is a web-based visualisation tool based on the freely available Circos software package. The BRCA1 Circos web tool (http://research.nhgri.nih.gov/bic/circos/) aggregates data from all published BRCA1 missense variants for functional studies, harmonises their results and presents various functionalities to search and interpret individual-level functional information for each BRCA1 missense variant. CONCLUSIONS This research visualisation tool will serve as a quick one-stop publically available reference for all the BRCA1 missense variants that have been functionally assessed. It will facilitate meta-analysis of functional data and improve assessment of pathogenicity of VUS.
Collapse
Affiliation(s)
- Ankita Jhuraney
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- University of South Florida Cancer Biology PhD Program, Tampa, Florida, USA
| | - Aneliya Velkova
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Randall C Johnson
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, Maryland, USA
| | - Bailey Kessing
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, Maryland, USA
| | - Renato S Carvalho
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Câncer, Divisão de Farmacologia, Rio de Janeiro, Brazil
| | - Phillip Whiley
- Genetics and Population Health Division, QIMR, BNE, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Population Health Division, QIMR, BNE, Brisbane, Queensland, Australia
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandrine M Caputo
- Service de Génétique, Institut Curie, Hôpital René Huguenin, Paris, France
| | - Gael A Millot
- Institut Curie, Université Pierre et Marie Curie, Paris, France
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Santiago, Spain
| | - Nicolas Coquelle
- Department of Biochemistry, University of Alberta, Alberta, Canada
| | - Alvaro Galli
- Instituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Tuya Pal
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Rob B van der Luijt
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Simon Thomas
- Salisbury District Hospital, Salisbury, Wiltshire, UK
| | - Maxime Vallée
- International Agency for Research on Cancer, Lyon, France
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, and Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Alberta, Canada
| | - Marcelo A Carvalho
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Câncer, Divisão de Farmacologia, Rio de Janeiro, Brazil
| | - Lawrence C Brody
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Shyam K Sharan
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | |
Collapse
|
31
|
Massively Parallel Functional Analysis of BRCA1 RING Domain Variants. Genetics 2015; 200:413-22. [PMID: 25823446 DOI: 10.1534/genetics.115.175802] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
Interpreting variants of uncertain significance (VUS) is a central challenge in medical genetics. One approach is to experimentally measure the functional consequences of VUS, but to date this approach has been post hoc and low throughput. Here we use massively parallel assays to measure the effects of nearly 2000 missense substitutions in the RING domain of BRCA1 on its E3 ubiquitin ligase activity and its binding to the BARD1 RING domain. From the resulting scores, we generate a model to predict the capacities of full-length BRCA1 variants to support homology-directed DNA repair, the essential role of BRCA1 in tumor suppression, and show that it outperforms widely used biological-effect prediction algorithms. We envision that massively parallel functional assays may facilitate the prospective interpretation of variants observed in clinical sequencing.
Collapse
|
32
|
BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development. PLoS One 2014; 9:e100068. [PMID: 24950059 PMCID: PMC4064996 DOI: 10.1371/journal.pone.0100068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.
Collapse
|
33
|
Pangon L, Mladenova D, Watkins L, Van Kralingen C, Currey N, Al-Sohaily S, Lecine P, Borg JP, Kohonen-Corish MRJ. MCC inhibits beta-catenin transcriptional activity by sequestering DBC1 in the cytoplasm. Int J Cancer 2014; 136:55-64. [PMID: 24824780 DOI: 10.1002/ijc.28967] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/28/2014] [Indexed: 01/04/2023]
Abstract
The mutated in colorectal cancer (MCC) is a multifunctional gene showing loss of expression in colorectal and liver cancers. MCC mutations can drive colon carcinogenesis in the mouse and in vitro experiments suggest that loss of MCC function promotes cancer through several important cellular pathways. In particular, the MCC protein is known to regulate beta-catenin (β-cat) signaling, but the mechanism is poorly understood. Here we show that the β-cat repressor function of MCC is strongly impaired by the presence of a disease-associated mutation. We also identify deleted in breast cancer 1 (DBC1) as a new MCC interacting partner and regulator of β-cat signaling. RNA interference experiments show that DBC1 promotes β-cat transcriptional activity and that the presence of DBC1 is required for MCC-mediated β-cat repression. In contrast to all other DBC1 interacting partners, MCC does not interact through the DBC1 Leucine Zipper domain but with a glutamic-acid rich region located between the Nudix and EF-hand domains. Furthermore, MCC overexpression relocalizes DBC1 from the nucleus to the cytoplasm and reduces β-cat K49 acetylation. Treatment of cells with the SIRT1 inhibitor Nicotinamide reverses MCC-induced deacetylation of β-cat K49. These data suggest that the cytoplasmic MCC-DBC1 interaction sequesters DBC1 away from the nucleus, thereby removing a brake on DBC1 nuclear targets, such as SIRT1. This study provides new mechanistic insights into the DBC1-MCC axis as a new APC independent β-cat inhibitory pathway.
Collapse
Affiliation(s)
- Laurent Pangon
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Christou CM, Hadjisavvas A, Kyratzi M, Flouri C, Neophytou I, Anastasiadou V, Loizidou MA, Kyriacou K. The BRCA1 variant p.Ser36Tyr abrogates BRCA1 protein function and potentially confers a moderate risk of breast cancer. PLoS One 2014; 9:e93400. [PMID: 24695549 PMCID: PMC3973689 DOI: 10.1371/journal.pone.0093400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.
Collapse
Affiliation(s)
- Charita M. Christou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Maria Kyratzi
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
- The University of Cyprus, Department of Biological Sciences, Nicosia, Cyprus
| | - Christina Flouri
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Ioanna Neophytou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Violetta Anastasiadou
- The Cyprus Institute of Neurology and Genetics, Department of Clinical Genetics, Nicosia, Cyprus
| | - Maria A. Loizidou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
35
|
Caleca L, Putignano AL, Colombo M, Congregati C, Sarkar M, Magliery TJ, Ripamonti CB, Foglia C, Peissel B, Zaffaroni D, Manoukian S, Tondini C, Barile M, Pensotti V, Bernard L, Papi L, Radice P. Characterization of an Italian founder mutation in the RING-finger domain of BRCA1. PLoS One 2014; 9:e86924. [PMID: 24516540 PMCID: PMC3916327 DOI: 10.1371/journal.pone.0086924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022] Open
Abstract
The identification of founder mutations in cancer predisposing genes is important to improve risk assessment in geographically defined populations, since it may provide specific targets resulting in cost-effective genetic testing. Here, we report the characterization of the BRCA1 c.190T>C (p.Cys64Arg) mutation, mapped to the RING-finger domain coding region, that we detected in 43 hereditary breast/ovarian cancer (HBOC) families, for the large part originating from the province of Bergamo (Northern Italy). Haplotype analysis was performed in 21 families, and led to the identification of a shared haplotype extending over three BRCA1-associated marker loci (0.4 cM). Using the DMLE+2.2 software program and regional population demographic data, we were able to estimate the age of the mutation to vary between 3,100 and 3,350 years old. Functional characterization of the mutation was carried out at both transcript and protein level. Reverse transcriptase-PCR analysis on lymphoblastoid cells revealed expression of full length mRNA from the mutant allele. A green fluorescent protein (GFP)-fragment reassembly assay showed that the p.Cys64Arg substitution prevents the binding of the BRCA1 protein to the interacting protein BARD1, in a similar way as proven deleterious mutations in the RING-domain. Overall, 55 of 83 (66%) female mutation carriers had a diagnosis of breast and/or ovarian cancer. Our observations indicate that the BRCA1 c.190T>C is a pathogenic founder mutation present in the Italian population. Further analyses will evaluate whether screening for this mutation can be suggested as an effective strategy for the rapid identification of at-risk individuals in the Bergamo area.
Collapse
Affiliation(s)
- Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), c/o Amadeolab, Milano, Italy
- * E-mail:
| | - Anna Laura Putignano
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
- FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), c/o Amadeolab, Milano, Italy
| | - Caterina Congregati
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Mohosin Sarkar
- Department of Chemistry and Department of Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Magliery
- Department of Chemistry and Department of Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Carla B. Ripamonti
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), c/o Amadeolab, Milano, Italy
| | - Claudia Foglia
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), c/o Amadeolab, Milano, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniela Zaffaroni
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Tondini
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Valeria Pensotti
- COGENTECH-Cancer Genetic Testing Laboratory, Milan, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Loris Bernard
- COGENTECH-Cancer Genetic Testing Laboratory, Milan, Italy
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy
| | - Laura Papi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), c/o Amadeolab, Milano, Italy
| |
Collapse
|
36
|
Multifactorial likelihood assessment of BRCA1 and BRCA2 missense variants confirms that BRCA1:c.122A>G(p.His41Arg) is a pathogenic mutation. PLoS One 2014; 9:e86836. [PMID: 24489791 PMCID: PMC3904950 DOI: 10.1371/journal.pone.0086836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022] Open
Abstract
Rare exonic, non-truncating variants in known cancer susceptibility genes such as BRCA1 and BRCA2 are problematic for genetic counseling and clinical management of relevant families. This study used multifactorial likelihood analysis and/or bioinformatically-directed mRNA assays to assess pathogenicity of 19 BRCA1 or BRCA2 variants identified following patient referral to clinical genetic services. Two variants were considered to be pathogenic (Class 5). BRCA1:c.4484G> C(p.Arg1495Thr) was shown to result in aberrant mRNA transcripts predicted to encode truncated proteins. The BRCA1:c.122A>G(p.His41Arg) RING-domain variant was found from multifactorial likelihood analysis to have a posterior probability of pathogenicity of 0.995, a result consistent with existing protein functional assay data indicating lost BARD1 binding and ubiquitin ligase activity. Of the remaining variants, seven were determined to be not clinically significant (Class 1), nine were likely not pathogenic (Class 2), and one was uncertain (Class 3).These results have implications for genetic counseling and medical management of families carrying these specific variants. They also provide additional multifactorial likelihood variant classifications as reference to evaluate the sensitivity and specificity of bioinformatic prediction tools and/or functional assay data in future studies.
Collapse
|
37
|
Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res 2013; 14:2-16. [PMID: 24103154 DOI: 10.1111/1567-1364.12094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
When the glucose supply is high, despite the presence of oxygen, Saccharomyces cerevisiae uses fermentation as its main metabolic pathway and switches to oxidative metabolism only when this carbon source is limited. There are similarities between glucose-induced repression of oxidative metabolism of yeast and metabolic reprogramming of tumor cells. The glucose-induced repression of oxidative metabolism is regulated by oncogene homologues in yeast, such as RAS and Sch9p, the yeast homologue of Akt. Yeast also undergoes an apoptosis-like programmed cell death process sharing several features with mammalian apoptosis, including oxidative stress and a major role played by mitochondria. Evasion of apoptosis and sustained proliferative signaling are hallmarks of cancer. This, together with the possibility of heterologous expression of human genes in yeast, has allowed new insights to be obtained into the function of mammalian oncogenes/oncosuppressors. Here, we elaborate on the similarities between tumor and yeast cells underpinning the use of this model organism in cancer research. We also review the achievements obtained through heterologous expression in yeast of p53, BRCA1, and BRCA2, which are among the best-known cancer-susceptibility genes, with the aim of understanding their role in tumorigenesis. Yeast-cell-based functional assays for cancer genetic testing will also be dealt with.
Collapse
|
38
|
Konstantopoulou I, Tsitlaidou M, Fostira F, Pertesi M, Stavropoulou AV, Triantafyllidou O, Tsotra E, Tsiftsoglou AP, Tsionou C, Droufakou S, Dimitrakakis C, Fountzilas G, Yannoukakos D. High prevalence ofBRCA1founder mutations in Greek breast/ovarian families. Clin Genet 2013; 85:36-42. [DOI: 10.1111/cge.12274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
- I Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - M Tsitlaidou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - F Fostira
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - M Pertesi
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - A-V Stavropoulou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - O Triantafyllidou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
- 1st Department of Obstetrics and Gynecology; Athens University Medical School; Athens Greece
| | - E Tsotra
- Department of Medical Oncology, Papageorgiou Hospital; Aristotle University of Thessaloniki School of Medicine; Thessaloniki Greece
| | - AP Tsiftsoglou
- Department of General Surgery, Breast Division; St Luke's Hospital; Thessaloniki Greece
| | - C Tsionou
- 2nd Breast Clinic; ‘Mitera’ Maternity Hospital; Athens Greece
| | - S Droufakou
- Department of Medical Oncology; Hippokration Hospital; Athens Greece
| | - C Dimitrakakis
- 1st Department of Obstetrics and Gynecology; Athens University Medical School; Athens Greece
| | - G Fountzilas
- Department of Medical Oncology, Papageorgiou Hospital; Aristotle University of Thessaloniki School of Medicine; Thessaloniki Greece
| | - D Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| |
Collapse
|
39
|
Bouwman P, van der Gulden H, van der Heijden I, Drost R, Klijn CN, Prasetyanti P, Pieterse M, Wientjens E, Seibler J, Hogervorst FBL, Jonkers J. A high-throughput functional complementation assay for classification of BRCA1 missense variants. Cancer Discov 2013; 3:1142-55. [PMID: 23867111 DOI: 10.1158/2159-8290.cd-13-0094] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein. We have developed a relatively fast and easy cDNA-based functional assay to classify BRCA1 VUSs based on their ability to functionally complement BRCA1-deficient mouse embryonic stem cells. Using this assay, we have analyzed 74 unclassified BRCA1 missense mutants for which all predicted pathogenic variants are confined to the BRCA1 RING and BRCT domains. SIGNIFICANCE BRCA1 VUSs are frequently found in patients with hereditary breast or ovarian cancer and present a serious problem for clinical geneticists. This article describes the generation, validation, and application of a reliable high-throughput assay for the functional classification of BRCA1 sequence variants of uncertain significance.
Collapse
Affiliation(s)
- Peter Bouwman
- 1Division of Molecular Pathology and Cancer Genomics Centre and 2Department of Pathology, The Netherlands Cancer Institute Amsterdam, The Netherlands; and 3TaconicArtemis GmbH, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1) account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary) breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s) is (are) most important for tumor suppression, nor is it clear why BRCA1-mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR), which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.
Collapse
Affiliation(s)
- Eliot M Rosen
- Department of Oncology, Georgetown University School of Medicine Washington, DC, USA ; Department of Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA ; Department of Radiation Medicine, Georgetown University School of Medicine Washington, DC, USA
| |
Collapse
|
41
|
Abstract
How does BRCA1's evolutionarily conserved E3 ligase activity contribute to DNA damage responses? Genetically engineered cells containing a BRCA1 RING domain mutation have been used to identify Claspin as a new target of BRCA1 E3 ligase activity in response to specific forms of DNA damage.
Collapse
Affiliation(s)
- Bernadette Aressy
- Department of Cancer Biology, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, USA
| | | |
Collapse
|
42
|
Ma T, Chen Y, Zhang F, Yang CY, Wang S, Yu X. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol Cell 2013; 49:897-907. [PMID: 23394999 DOI: 10.1016/j.molcel.2013.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/24/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites; this accumulation was dependent on an E2 enzyme (UBE2M) and an E3 ubiquitin ligase (RNF111). We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (motif interacting with ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process.
Collapse
Affiliation(s)
- Teng Ma
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
43
|
Towler WI, Zhang J, Ransburgh DJR, Toland AE, Ishioka C, Chiba N, Parvin JD. Analysis of BRCA1 variants in double-strand break repair by homologous recombination and single-strand annealing. Hum Mutat 2012; 34:439-45. [PMID: 23161852 DOI: 10.1002/humu.22251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/24/2012] [Indexed: 01/13/2023]
Abstract
Missense substitutions of uncertain clinical significance in the BRCA1 gene are a vexing problem in genetic counseling for women who have a family history of breast cancer. In this study, we evaluated the functions of 29 missense substitutions of BRCA1 in two DNA repair pathways. Repair of double-strand breaks by homology-directed recombination (HDR) had been previously analyzed for 16 of these BRCA1 variants, and 13 more variants were analyzed in this study. All 29 variants were also analyzed for function in double-strand break repair by the single-strand annealing (SSA) pathway. We found that among the pathogenic mutations in BRCA1, all were defective for DNA repair by either pathway. The HDR assay was accurate because all pathogenic mutants were defective for HDR, and all nonpathogenic variants were fully functional for HDR. Repair by SSA accurately identified pathogenic mutants, but several nonpathogenic variants were scored as defective or partially defective. These results indicated that specific amino acid residues of the BRCA1 protein have different effects in the two related DNA repair pathways, and these results validate the HDR assay as highly correlative with BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- William I Towler
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
BRCA1 is a key mediator of DNA repair pathways and participates in the maintenance of the genomic integrity of cells. The control of DNA damage repair mechanisms by BRCA1 is of great interest since molecular defects in this pathway may reflect a predictive value in terms of a cell’s sensitivity to DNA damaging agents or anticancer drugs. BRCA1 has been found to exhibit a hormone-dependent pattern of expression in breast cells. Wild-type BRCA1 is required for the inhibition of the growth of breast tumor cells in response to the pure steroidal ERα antagonist fulvestrant. Also a loss of BRCA1-mediated transcriptional activation of ERα expression results in increased resistance to ERα antagonists. Platinum-based drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, and their combination are currently included in chemotherapy regimens for breast cancer. Preclinical and clinical studies in a BRCA1-defective setting have recently indicated a rationale for the use of these compounds against hereditary breast cancers. Initial findings indicate that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations. Cisplatin produces a better response in triple-negative breast cancer (TNBC) than in non-TNBC diseases in both the neoadjuvant and adjuvant settings. This implies that TNBC cells may harbor a dysfunctional BRCA1 repair pathway.
Collapse
|
45
|
A DNA-damage selective role for BRCA1 E3 ligase in claspin ubiquitylation, CHK1 activation, and DNA repair. Curr Biol 2012; 22:1659-66. [PMID: 22863316 DOI: 10.1016/j.cub.2012.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/09/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND The breast and ovarian cancer suppressor BRCA1 is essential for cellular responses to DNA damage. It heterodimerizes with BARD1 to acquire an E3 ubiquitin (Ub) ligase activity that is often compromised by cancer-associated mutations. Neither the significance of this activity to damage responses, nor a relevant in vivo substrate, is clear. RESULTS We have separated DNA-damage responses requiring the BRCA1 E3 ligase from those independent of it, using a gene-targeted point mutation in vertebrate DT40 cells that abrogates BRCA1's catalytic activity without perturbing BARD1 binding. We show that BRCA1 ubiquitylates claspin, an essential coactivator of the CHK1 checkpoint kinase, after topoisomerase inhibition, but not DNA crosslinking by mitomycin C. BRCA1 E3 inactivation decreases chromatin-bound claspin levels and impairs homology-directed DNA repair by interrupting signal transduction from the damage-activated ATR kinase to its effector, CHK1. CONCLUSIONS Our findings identify claspin as an in vivo substrate for the BRCA1 E3 ligase and suggest that its modification selectively triggers CHK1 activation for the homology-directed repair of a subset of genotoxic lesions. This mechanism unexpectedly defines an essential but selective function for BRCA1 E3 ligase activity in cellular responses to DNA damage.
Collapse
|
46
|
Millot GA, Carvalho MA, Caputo SM, Vreeswijk MPG, Brown MA, Webb M, Rouleau E, Neuhausen SL, Hansen TVO, Galli A, Brandão RD, Blok MJ, Velkova A, Couch FJ, Monteiro ANA. A guide for functional analysis of BRCA1 variants of uncertain significance. Hum Mutat 2012; 33:1526-37. [PMID: 22753008 DOI: 10.1002/humu.22150] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 12/12/2022]
Abstract
Germline mutations in the tumor suppressor gene BRCA1 confer an estimated lifetime risk of 56-80% for breast cancer and 15-60% for ovarian cancer. Since the mid 1990s when BRCA1 was identified, genetic testing has revealed over 1,500 unique germline variants. However, for a significant number of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading to issues in risk assessment, counseling, and preventive care. Here, we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical significance. Importantly, these methods may provide a framework for genome-wide pathogenicity assignment.
Collapse
Affiliation(s)
- Gaël A Millot
- Institut Curie, CNRS, UMR 3244 Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pangon L, Van Kralingen C, Abas M, Daly RJ, Musgrove EA, Kohonen-Corish MRJ. The PDZ-binding motif of MCC is phosphorylated at position -1 and controls lamellipodia formation in colon epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1058-67. [PMID: 22480440 DOI: 10.1016/j.bbamcr.2012.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 01/05/2023]
Abstract
In this study, we describe a new post-translational modification at position -1 of the PDZ-binding motif in the mutated in colorectal cancer (MCC) protein and its role in lamellipodia formation. Serine 828 at position -1 of this motif is phosphorylated, which is predicted to increase MCC binding affinity with the polarity protein Scrib. We show that endogenous MCC localizes at the active migratory edge of cells, where it interacts with Scrib and the non-muscle motor protein Myosin-IIB. Expression of MCC harboring a phosphomimetic mutation MCC-S828D strongly impaired lamellipodia formation and resulted in accumulation of Myosin-IIB in the membrane cortex fraction. We propose that MCC regulates lamellipodia formation by binding to Scrib and its downstream partner Myosin-IIB in a multiprotein complex. Importantly, we propose that the function of this complex is under the regulation of a newly described phosphorylation of the PDZ-binding motif at position -1.
Collapse
Affiliation(s)
- Laurent Pangon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Functional characterization of residues required for the herpes simplex virus 1 E3 ubiquitin ligase ICP0 to interact with the cellular E2 ubiquitin-conjugating enzyme UBE2D1 (UbcH5a). J Virol 2012; 86:6323-33. [PMID: 22438555 DOI: 10.1128/jvi.07210-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The viral ubiquitin ligase ICP0 is required for efficient initiation of herpes simplex virus 1 (HSV-1) lytic infection and productive reactivation of viral genomes from latency. ICP0 has been shown to target a number of specific cellular proteins for proteasome-dependent degradation during lytic infection, including the promyelocytic leukemia protein (PML) and its small ubiquitin-like modified (SUMO) isoforms. We have shown previously that ICP0 can catalyze the formation of unanchored polyubiquitin chains and mediate the ubiquitination of specific substrate proteins in vitro in the presence of two E2 ubiquitin-conjugating enzymes, namely, UBE2D1 (UbcH5a) and UBE2E1 (UbcH6), in a RING finger-dependent manner. Using homology modeling in conjunction with site-directed mutagenesis, we identify specific residues required for the interaction between the RING finger domain of ICP0 and UBE2D1, and we report that point mutations at these residues compromise the ability of ICP0 to induce the colocalization of conjugated ubiquitin and the degradation of PML and its SUMO-modified isoforms. Furthermore, we show that RING finger mutants that are unable to interact with UBE2D1 fail not only to complement the plaque-forming defect of an ICP0-null mutant virus but also to mediate the derepression of quiescent HSV-1 genomes in cell culture. These data demonstrate that the ability of ICP0 to interact with cellular E2 ubiquitin-conjugating enzymes is fundamentally important for its biological functions during HSV-1 infection.
Collapse
|
49
|
Wang B. BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci 2012; 2:6. [PMID: 22369660 PMCID: PMC3315748 DOI: 10.1186/2045-3701-2-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 02/07/2023] Open
Abstract
Germline mutations of the BRCA1 tumor suppressor gene are a major cause of familial breast and ovarian cancer. BRCA1 plays critical roles in the DNA damage response that regulates activities of multiple repair and checkpoint pathways for maintaining genome stability. The BRCT domains of BRCA1 constitute a phospho-peptide binding domain recognizing a phospho-SPxF motif (S, serine; P, proline; × varies; F, phenylalanine). The BRCT domains are frequently targeted by clinically important mutations and most of these mutations disrupt the binding surface of the BRCT domains to phosphorylated peptides. The BRCT domain and its capability to bind phosphorylated protein is required for the tumor suppressor function of BRCA1. Through its BRCT phospho-binding ability BRCA1 forms at least three mutually exclusive complexes by binding to phosphorylated proteins Abraxas, Bach1 and CTIP. The A, B and C complexes, at lease partially undertake BRCA1's role in mechanisms of cell cycle checkpoint and DNA repair that maintain genome stability, thus may play important roles in BRCA1's tumor suppressor function.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, The University of Texas M,D, Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Caputo S, Benboudjema L, Sinilnikova O, Rouleau E, Béroud C, Lidereau R. Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases. Nucleic Acids Res 2011; 40:D992-1002. [PMID: 22144684 PMCID: PMC3245050 DOI: 10.1093/nar/gkr1160] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BRCA1 and BRCA2 are the two main genes responsible for predisposition to breast and ovarian cancers, as a result of protein-inactivating monoallelic mutations. It remains to be established whether many of the variants identified in these two genes, so-called unclassified/unknown variants (UVs), contribute to the disease phenotype or are simply neutral variants (or polymorphisms). Given the clinical importance of establishing their status, a nationwide effort to annotate these UVs was launched by laboratories belonging to the French GGC consortium (Groupe Génétique et Cancer), leading to the creation of the UMD-BRCA1/BRCA2 databases (http://www.umd.be/BRCA1/ and http://www.umd.be/BRCA2/). These databases have been endorsed by the French National Cancer Institute (INCa) and are designed to collect all variants detected in France, whether causal, neutral or UV. They differ from other BRCA databases in that they contain co-occurrence data for all variants. Using these data, the GGC French consortium has been able to classify certain UVs also contained in other databases. In this article, we report some novel UVs not contained in the BIC database and explore their impact in cancer predisposition based on a structural approach.
Collapse
Affiliation(s)
- Sandrine Caputo
- Institut Curie-Hôpital René Huguenin, Service d'Oncogénétique, U735 INSERM-Saint-Cloud, France.
| | | | | | | | | | | | | |
Collapse
|