1
|
Klaus F, Ng HX, Barbosa IG, Beunders A, Briggs F, Burdick KE, Dols A, Forlenza O, Gildengers A, Millett C, Mulsant BH, Orhan M, Rajji TK, Rej S, Sajatovic M, Sarna K, Schouws S, Sutherland A, Teixeira AL, Yala JA, Eyler LT. Cognition in older age bipolar disorder: An analysis of archival data across the globe. J Affect Disord 2024; 355:231-238. [PMID: 38548199 DOI: 10.1016/j.jad.2024.03.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/27/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cognitive deficits in bipolar disorder (BD) impact functioning and are main contributors to disability in older age BD (OABD). We investigated the difference between OABD and age-comparable healthy comparison (HC) participants and, among those with BD, the associations between age, global cognitive performance, symptom severity and functioning using a large, cross-sectional, archival dataset harmonized from 7 international OABD studies. METHODS Data from the Global Aging and Geriatric Experiments in Bipolar Disorder (GAGE-BD) database, spanning various standardized measures of cognition, functioning and clinical characteristics, were analyzed. The sample included 662 euthymic to mildly symptomatic participants aged minimum 50years (509 BD, 153 HC), able to undergo extensive cognitive testing. Linear mixed models estimated associations between diagnosis and global cognitive performance (g-score, harmonized across studies), and within OABD between g-score and severity of mania and depressive symptoms, duration of illness and lithium use and of global functioning. RESULTS After adjustment for study cohort, age, gender and employment status, there was no significant difference in g-score between OABD and HC, while a significant interaction emerged between employment status and diagnostic group (better global cognition associated with working) in BD. Within OABD, better g-scores were associated with fewer manic symptoms, higher education and better functioning. LIMITATIONS Cross-sectional design and loss of granularity due to harmonization. CONCLUSION More research is needed to understand heterogenous longitudinal patterns of cognitive change in BD and understand whether particular cognitive domains might be affected in OABD in order to develop new therapeutic efforts for cognitive dysfunction OABD.
Collapse
Affiliation(s)
- Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Hui Xin Ng
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Izabela G Barbosa
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandra Beunders
- GGZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Amsterdam, the Netherlands; Amsterdam UMC, Amsterdam Public Health research institute, Amsterdam, the Netherlands
| | - Farren Briggs
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Annemieke Dols
- Amsterdam UMC, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Orestes Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ariel Gildengers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, USA
| | - Caitlin Millett
- Institute of Behavioral Science, The Feinstein Institutes of Medical Research, New York, USA
| | - Benoit H Mulsant
- Department of Psychiatry, Center for Addiction & Mental Health, University of Toronto, Toronto, Canada
| | - Melis Orhan
- Institute of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Tarek K Rajji
- Department of Psychiatry, Center for Addiction & Mental Health, University of Toronto, Toronto, Canada
| | - Soham Rej
- Department of Psychiatry, Jewish General Hospital/Lady Davis Institute, McGill University, Montreal, Canada
| | - Martha Sajatovic
- Case Western Reserve University School of Medicine (MS), University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Kaylee Sarna
- Case Western Reserve University School of Medicine (MS), University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sigfried Schouws
- GZZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Amsterdam, the Netherlands
| | - Ashley Sutherland
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, University of Texas/McGovern Medical School, Houston, TX, USA; Faculdade Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - Joy A Yala
- Case Western Reserve University School of Medicine (MS), University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
2
|
Santos-Silva T, Lopes CFB, Hazar Ülgen D, Guimarães DA, Guimarães FS, Alberici LC, Sandi C, Gomes FV. Adolescent Stress-Induced Ventral Hippocampus Redox Dysregulation Underlies Behavioral Deficits and Excitatory/Inhibitory Imbalance Related to Schizophrenia. Schizophr Bull 2024:sbae033. [PMID: 38525594 DOI: 10.1093/schbul/sbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood. STUDY DESIGN After exposing adolescent animals to physical stress (postnatal day, PND31-40), we explored social and cognitive behaviors (PND47-49), the basal activity of pyramidal glutamate neurons, the number of parvalbumin (PV) interneurons, and the transcriptomic signature of the vHip (PND51). We also evaluated the impact of stress on the redox system, including mitochondrial respiratory function, reactive oxygen species (ROS) production, and glutathione (GSH) levels in the vHip and serum. STUDY RESULTS Adolescent-stressed animals exhibited loss of sociability, cognitive impairment, and vHip excitatory/inhibitory (E/I) imbalance. Genome-wide transcriptional profiling unveiled the impact of stress on redox system- and synaptic-related genes. Stress impacted mitochondrial respiratory function and changes in ROS levels in the vHip. GSH and glutathione disulfide (GSSG) levels were elevated in the serum of stressed animals, while GSSG was also increased in the vHip and negatively correlated with sociability. Additionally, PV interneuron deficits in the vHip caused by adolescent stress were associated with oxidative stress. CONCLUSIONS Our results highlight the negative impact of adolescent stress on vHip redox regulation and mitochondrial function, which are partially associated with E/I imbalance and behavioral abnormalities related to SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caio Fábio Baeta Lopes
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Doğukan Hazar Ülgen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Danielle A Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Martin EA, Jonas KG, Lian W, Foti D, Donaldson KR, Bromet EJ, Kotov R. Predicting Long-Term Outcomes in First-Admission Psychosis: Does the Hierarchical Taxonomy of Psychopathology Aid DSM in Prognostication? Schizophr Bull 2021; 47:1331-1341. [PMID: 33890112 PMCID: PMC8379532 DOI: 10.1093/schbul/sbab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The Hierarchical Taxonomy of Psychopathology (HiTOP) is an empirical, dimensional model of psychological symptoms and functioning. Its goals are to augment the use and address the limitations of traditional diagnoses, such as arbitrary thresholds of severity, within-disorder heterogeneity, and low reliability. HiTOP has made inroads to addressing these problems, but its prognostic validity is uncertain. The present study sought to test the prediction of long-term outcomes in psychotic disorders was improved when the HiTOP dimensional approach was considered along with traditional (ie, DSM) diagnoses. We analyzed data from the Suffolk County Mental Health Project (N = 316), an epidemiologic study of a first-admission psychosis cohort followed for 20 years. We compared 5 diagnostic groups (schizophrenia/schizoaffective, bipolar disorder with psychosis, major depressive disorder with psychosis, substance-induced psychosis, and other psychoses) and 5 dimensions derived from the HiTOP thought disorder spectrum (reality distortion, disorganization, inexpressivity, avolition, and functional impairment). Both nosologies predicted a significant amount of variance in most outcomes. However, except for cognitive functioning, HiTOP showed consistently greater predictive power across outcomes-it explained 1.7-fold more variance than diagnoses in psychiatric and physical health outcomes, 2.1-fold more variance in community functioning, and 3.4-fold more variance in neural responses. Even when controlling for diagnosis, HiTOP dimensions incrementally predicted almost all outcomes. These findings support a shift away from the exclusive use of categorical diagnoses and toward the incorporation of HiTOP dimensions for better prognostication and linkage with neurobiology.
Collapse
Affiliation(s)
- Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA
| | | | - Wenxuan Lian
- Department of Materials Science and Engineering and Department of Applied Math and Statistics, Stony Brook University, Stony Brook, NY
| | - Dan Foti
- Department of Psychological Sciences, Purdue University, West Lafayette, IN
| | | | - Evelyn J Bromet
- Department of Psychiatry, Stony Brook University, Stony Brook, NY
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY
| |
Collapse
|
4
|
Schoonover KE, Kennedy WM, Roberts RC. Cortical copper transporter expression in schizophrenia: interactions of risk gene dysbindin-1. J Neural Transm (Vienna) 2021; 128:701-709. [PMID: 33890175 PMCID: PMC11000637 DOI: 10.1007/s00702-021-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Schizophrenia susceptibility factor dysbindin-1 is associated with cognitive processes. Downregulated dysbindin-1 expression is associated with lower expression of copper transporters ATP7A and CTR1, required for copper transport to the central nervous system. We measured dysbindin-1 isoforms-1A and -1BC, CTR1, and ATP7A via Western blots of the postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects (n = 28) and matched controls (n = 14). In addition, we subdivided the schizophrenia group by treatment status and comorbidity of alcohol use disorder (AUD) and assessed the relationships between proteins. Schizophrenia subjects exhibited similar protein levels to that of controls, with no effect of antipsychotic treatment. We observed a shift towards more dysbindin-1A expression in schizophrenia, as revealed by the ratio of dysbindin-1 isoforms. Dysbindin-1A expression was negatively correlated with ATP7A in schizophrenia, with no correlation present in controls. AUD subjects exhibited less dysbindin-1BC and CTR1 than those without AUD. Our results, taken together with previous data, suggest that alterations in dysbindin-1 and copper transporters are brain-region specific. For example, protein levels of ATP7A, dysbindin 1BC, and CTR1 are lower in the substantia nigra in schizophrenia subjects. AUD in the DLPFC was associated with lower protein levels of dysbindin-1 and CTR1. Changes in dysbindin-1 isoform ratio and relationships appear to be prevalent in the disease, potentially impacting symptomology.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, The University of Alabama at Birmingham, 3811 O'Hara Street BST W1651, Pittsburgh, PA, 15213, USA.
| | - William M Kennedy
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| |
Collapse
|
5
|
Schoonover KE, Farmer CB, Morgan CJ, Sinha V, Odom L, Roberts RC. Abnormalities in the copper transporter CTR1 in postmortem hippocampus in schizophrenia: A subregion and laminar analysis. Schizophr Res 2021; 228:60-73. [PMID: 33434736 PMCID: PMC7987889 DOI: 10.1016/j.schres.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
Dysbindin-1 modulates copper transport, which is crucial for cellular homeostasis. Several brain regions implicated in schizophrenia exhibit decreased levels of dysbindin-1, which may affect copper homeostasis therein. Our recent study showed decreased levels of dysbindin-1, the copper transporter-1 (CTR1) and copper in the substantia nigra in schizophrenia, providing the first evidence of disrupted copper transport in schizophrenia. In the present study, we hypothesized that there would be lower levels of dysbindin-1 and CTR1 in the hippocampus in schizophrenia versus a comparison group. Using semi-quantitative immunohistochemistry for dysbindin1 and CTR1, we measured the optical density in a layer specific fashion in the hippocampus and entorhinal cortex in ten subjects with schizophrenia and ten comparison subjects. Both regions were richly immunolabeled for CTR1 and dysbindin1 in both groups. In the superficial layers of the entorhinal cortex, CTR1 immunolabeled neuropil and cells showed lower optical density values in patients versus the comparison group. In the molecular layer of the dentate gyrus, patients had higher optical density values of CTR1 versus the comparison group. The density and distribution of dysbindin-1 immunolabeling was similar between groups. These laminar specific alterations of CTR1 in schizophrenia suggest abnormal copper transport in those locations.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Charlene B. Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham
| | - Vidushi Sinha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Laura Odom
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
6
|
Okasha TA, Hussein H, Shorub E, Nagi H, Moustafa AA, El-Serafi D. Cognitive dysfunction among inpatients and outpatients with schizophrenia: relationship to positive and negative symptoms. MIDDLE EAST CURRENT PSYCHIATRY 2020. [DOI: 10.1186/s43045-020-00062-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cognitive impairment is an established feature of schizophrenia and is a strong predictor of eventual social and functional outcome. Few studies have investigated cognitive impairment in hospital long-stay patients with schizophrenia. This study evaluates and compares cognitive function among a sample of patients with schizophrenia in both inpatient and outpatient departments in order to determine the relationship between cognitive impairment and clinical variables.
A cross-sectional comparative study based on a semi-structured interview investigating 100 inpatients with schizophrenia recruited from El-Abassia Mental Health Hospital departments compared to 100 patients with schizophrenia selected from the outpatients’ clinic matched with cases. The assessment tools included SCID-I, the Adult Wechsler Intelligence Scale, the computerized version of Wisconsin Card Sorting Test (WCST), Mini-Mental State Examination (MMSE), and Positive and Negative Syndrome Scale (PANSS).
Results
Patients with schizophrenia showed significant deficits on cognitive function with no statistically significant difference between the inpatient and outpatient groups. Executive function was significantly correlated with verbal, non-verbal, and total IQ. Executive function was negatively correlated with the positive and general symptoms of PANSS and not correlated with its negative symptoms. In addition, we did not find any statistically significant relationship between cognitive functions and the duration of illness.
Conclusion
The study provides evidence that institutionalization is not an influential factor on cognitive impairment patients with schizophrenia. However, the psychopathological aspects of the disorder are one of the crucial factors affecting the cognitive function in schizophrenia.
Collapse
|
7
|
Waddington JL, Zhen X, O'Tuathaigh CMP. Developmental Genes and Regulatory Proteins, Domains of Cognitive Impairment in Schizophrenia Spectrum Psychosis and Implications for Antipsychotic Drug Discovery: The Example of Dysbindin-1 Isoforms and Beyond. Front Pharmacol 2020; 10:1638. [PMID: 32063853 PMCID: PMC7000454 DOI: 10.3389/fphar.2019.01638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alongside positive and negative symptomatology, deficits in working memory, attention, selective learning processes, and executive function have been widely documented in schizophrenia spectrum psychosis. These cognitive abnormalities are strongly associated with impairment across multiple function domains and are generally treatment-resistant. The DTNBP1 (dystrobrevin-binding protein-1) gene, encoding dysbindin, is considered a risk factor for schizophrenia and is associated with variation in cognitive function in both clinical and nonclinical samples. Downregulation of DTNBP1 expression in dorsolateral prefrontal cortex and hippocampal formation of patients with schizophrenia has been suggested to serve as a primary pathophysiological process. Described as a "hub," dysbindin is an important regulatory protein that is linked with multiple complexes in the brain and is involved in a wide variety of functions implicated in neurodevelopment and neuroplasticity. The expression pattern of the various dysbindin isoforms (-1A, -1B, -1C) changes depending upon stage of brain development, tissue areas and subcellular localizations, and can involve interaction with different protein partners. We review evidence describing how sequence variation in DTNBP1 isoforms has been differentially associated with schizophrenia-associated symptoms. We discuss results linking these isoform proteins, and their interacting molecular partners, with cognitive dysfunction in schizophrenia, including evidence from drosophila through to genetic mouse models of dysbindin function. Finally, we discuss preclinical evidence investigating the antipsychotic potential of molecules that influence dysbindin expression and functionality. These studies, and other recent work that has extended this approach to other developmental regulators, may facilitate identification of novel molecular pathways leading to improved antipsychotic treatments.
Collapse
Affiliation(s)
- John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Medical Education Unit, School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Desbonnet L, O'Tuathaigh CM, O'Leary C, Cox R, Tighe O, Petit EI, Wilson S, Waddington JL. Acute stress in adolescence vs early adulthood following selective deletion of dysbindin-1A: Effects on anxiety, cognition and other schizophrenia-related phenotypes. J Psychopharmacol 2019; 33:1610-1619. [PMID: 31556815 DOI: 10.1177/0269881119875465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND As exposure to stress has been linked to the onset and maintenance of psychotic illness, its pathogenesis may involve environmental stressors interacting with genetic vulnerability. AIM To establish whether acute stress interacts with a targeted mutation of the gene encoding the neurodevelopmental factor dystrobrevin-binding protein 1 (DTNBP1), resulting in a specific loss of the isoform dysbindin-1A, to influence schizophrenia-relevant phenotypes in mice during adolescence and adulthood. METHODS Male and female mice with a heterozygous or homozygous deletion of DTNBP1 were assessed in the open field test following acute restraint stress in adolescence (Day 35) and young adulthood (Day 60-70). Effects of acute restraint stress on memory retention in the novel object recognition test was also assessed in adulthood. Baseline corticosterone was measured in serum samples and, brain-derived neurotrophic factor (BDNF), glucocorticoid and mineralocorticoid receptor gene expression levels were measured in the hippocampus of adult mice. RESULTS In the open field, deletion of dysbindin-1A induced hyperactivity and attenuated the action of stress to reduce hyperactivity in adolescence but not in adulthood; in females deletion of dysbindin-1A attenuated the effect of acute stress to increase anxiety-related behaviour in adolescence but not in adulthood. In the novel object recognition test, deletion of dysbindin-1A impaired memory and also revealed an increase in anxiety-related behaviour and a decrease in hippocampal BDNF gene expression in males. CONCLUSIONS These data suggest that deletion of dysbindin-1A influences behaviours related to schizophrenia and anxiety more robustly in adolescence than in adulthood and that dysbindin-1A influences stress-related responses in a sex-dependent manner.
Collapse
Affiliation(s)
- Lieve Desbonnet
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Psychology, National University of Ireland, Galway, Ireland
| | - Colm Mp O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| | - Clare O'Leary
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 2019; 73:204-215. [PMID: 30666759 DOI: 10.1111/pcn.12823] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a chronic and severe psychiatric disorder that has profound impact on an individual's life and on society. Thus, developing more effective therapeutic interventions is essential. Over the past quarter-century, an abundance of evidence from pharmacologic challenges, post-mortem studies, brain imaging, and genetic studies supports the role of glutamatergic dysregulation in the pathophysiology of schizophrenia, and the results of recent randomized clinical trials based on this evidence have yielded promising results. In this article, we review the evidence that alterations in glutamatergic neurotransmission, especially focusing on the N-methyl-d-aspartate receptor (NMDAR) function, may be a critical causative feature of schizophrenia, how this contributes to pathologic circuit function in the brain, and how these insights are revealing whole new avenues for treatment development that could reduce treatment-resistant symptoms, which account for persistent disability.
Collapse
Affiliation(s)
- Yota Uno
- Department of Psychiatry, Harvard Medical School, Boston, USA.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, USA.,Department of Psychology, University of Bath, Bath, UK
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, USA.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, USA
| |
Collapse
|
10
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
11
|
Schoonover KE, Queern SL, Lapi SE, Roberts RC. Impaired copper transport in schizophrenia results in a copper-deficient brain state: A new side to the dysbindin story. World J Biol Psychiatry 2018; 21:13-28. [PMID: 30230404 PMCID: PMC6424639 DOI: 10.1080/15622975.2018.1523562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Several schizophrenia brain regions exhibit decreased dysbindin. Dysbindin modulates copper transport crucial for myelination, monoamine metabolism and cellular homeostasis. Schizophrenia patients (SZP) exhibit increased plasma copper, while copper-decreasing agents produce schizophrenia-like behavioural and pathological abnormalities. Therefore, we sought to determine dysbindin and copper transporter protein expression and copper content in SZP.Methods: We studied the copper-rich substantia nigra (SN) using Western blot and inductively-coupled plasma mass spectrometry. We characterised specific protein domains of copper transporters ATP7A, CTR1, ATP7B and dysbindin isoforms 1 A and 1B/C in SZP (n = 15) and matched controls (n = 11), and SN copper content in SZP (n = 14) and matched controls (n = 11). As a preliminary investigation, we compared medicated (ON; n = 11) versus unmedicated SZP (OFF; n = 4).Results: SZP exhibited increased C terminus, but not N terminus, ATP7A. SZP expressed less transmembrane CTR1 and dysbindin 1B/C than controls. ON exhibited increased C terminus ATP7A protein versus controls. OFF exhibited less N terminus ATP7A protein than controls and ON, suggesting medication-induced rescue of the ATP7A N terminus. SZP exhibited less SN copper content than controls.Conclusions: These results provide the first evidence of disrupted copper transport in schizophrenia SN that appears to result in a copper-deficient state. Furthermore, copper homeostasis may be modulated by specific dysbindin isoforms and antipsychotic treatment.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Stacy L. Queern
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
12
|
Scheggia D, Mastrogiacomo R, Mereu M, Sannino S, Straub RE, Armando M, Managò F, Guadagna S, Piras F, Zhang F, Kleinman JE, Hyde TM, Kaalund SS, Pontillo M, Orso G, Caltagirone C, Borrelli E, De Luca MA, Vicari S, Weinberger DR, Spalletta G, Papaleo F. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun 2018; 9:2265. [PMID: 29891954 PMCID: PMC5995960 DOI: 10.1038/s41467-018-04711-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Antipsychotics are the most widely used medications for the treatment of schizophrenia spectrum disorders. While such drugs generally ameliorate positive symptoms, clinical responses are highly variable in terms of negative symptoms and cognitive impairments. However, predictors of individual responses have been elusive. Here, we report a pharmacogenetic interaction related to a core cognitive dysfunction in patients with schizophrenia. We show that genetic variations reducing dysbindin-1 expression can identify individuals whose executive functions respond better to antipsychotic drugs, both in humans and in mice. Multilevel ex vivo and in vivo analyses in postmortem human brains and genetically modified mice demonstrate that such interaction between antipsychotics and dysbindin-1 is mediated by an imbalance between the short and long isoforms of dopamine D2 receptors, leading to enhanced presynaptic D2 function within the prefrontal cortex. These findings reveal one of the pharmacodynamic mechanisms underlying individual cognitive response to treatment in patients with schizophrenia, suggesting a potential approach for improving the use of antipsychotic drugs.
Collapse
Affiliation(s)
- Diego Scheggia
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center Lausanne, Prilly-Lausanne, CH-1008, Switzerland
| | - Rosa Mastrogiacomo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Maddalena Mereu
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti 2, 35131, Padova, Italy
| | - Sara Sannino
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Francesca Managò
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Simone Guadagna
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Sanne S Kaalund
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, 2400, Copenhagen, NV, Denmark
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Genny Orso
- IRCCS E. Medea Scientific Institute, 23842, Bosisio Parini, Italy
| | - Carlo Caltagirone
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | | | - Maria A De Luca
- Department of Biomedical Sciences, Università di Cagliari, 09124, Cagliari, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
- Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
13
|
Chang EH, Fernando K, Yeung LWE, Barbari K, Chandon TSS, Malhotra AK. Single point mutation on the gene encoding dysbindin results in recognition deficits. GENES BRAIN AND BEHAVIOR 2018; 17:e12449. [PMID: 29227583 DOI: 10.1111/gbb.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022]
Abstract
The dystrobrevin-binding protein 1 (DTNBP1) gene is a candidate risk factor for schizophrenia and has been associated with cognitive ability in both patient populations and healthy controls. DTNBP1 encodes dysbindin protein, which is localized to synaptic sites and is reduced in the prefrontal cortex and hippocampus of patients with schizophrenia, indicating a potential role in schizophrenia etiology. Most studies of dysbindin function have focused on the sandy (sdy) mice that lack dysbindin protein and have a wide range of abnormalities. In this study, we examined dysbindin salt and pepper (spp) mice that possess a single point mutation on the Dtnbp1 gene predicted to reduce, but not eliminate, dysbindin expression. By western blot analysis, we found that spp homozygous (spp -/-) mutants had reduced dysbindin and synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex, but unaltered levels in hippocampus. Behaviorally, spp mutants performed comparably to controls on a wide range of tasks assessing locomotion, anxiety, spatial recognition and working memory. However, spp -/- mice had selective deficits in tasks measuring novel object recognition and social novelty recognition. Our results indicate that reduced dysbindin and SNAP-25 protein in the prefrontal cortex of spp -/- is associated with selective impairments in recognition processing. These spp mice may prove useful as a novel mouse model to study cognitive deficits linked to dysbindin alterations. Our findings also suggest that aspects of recognition memory may be specifically influenced by DTNBP1 single nucleotide polymorphisms or risk haplotypes in humans and this connection should be further investigated.
Collapse
Affiliation(s)
- E H Chang
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York.,Department of Psychiatry, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York.,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York
| | - K Fernando
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - L W E Yeung
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - K Barbari
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - T-S S Chandon
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - A K Malhotra
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York.,Department of Psychiatry, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York.,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York
| |
Collapse
|
14
|
Why Enhancing Autonomy Is Not a Question of Improving Single Aspects of Reasoning Abilities through Neuroenhancement. NEUROETHICS-NETH 2017. [DOI: 10.1007/s12152-016-9299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Ellis L, Hoskin AW, Dutton E, Nyborg H. The Future of Secularism: a Biologically Informed Theory Supplemented with Cross-Cultural Evidence. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2017. [DOI: 10.1007/s40806-017-0090-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Bakanidze G, Brandl EJ, Hutzler C, Aurass F, Onken S, Rapp MA, Puls I. Association of Dystrobrevin-Binding Protein 1 Polymorphisms with Sustained Attention and Set-Shifting in Schizophrenia Patients. Neuropsychobiology 2017; 74:41-47. [PMID: 27798936 DOI: 10.1159/000450550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite extensive research in the past decades, the influence of genetics on cognitive functions in schizophrenia remains unclear. Dystrobrevin-binding protein 1 (DTNBP1) is one of the most promising candidate genes in schizophrenia. An association of DTNBP1 with cognitive dysfunction, particularly memory impairment, has been reported in a number of studies. However, the results remain inconsistent. The aim of this study was to measure the association between DTNBP1 polymorphisms and cognitive domains in a well-characterized sample. METHODS Ninety-one clinically stable schizophrenia outpatients underwent a battery of cognitive tests. Six single nucleotide polymorphisms (SNPs) of DTNBP1 were genotyped in all participants. Statistical and multivariate analyses were performed. RESULTS Factor analysis revealed 4 factors corresponding to distinct cognitive domains, namely sustained attention, set-shifting, executive functioning, and memory. We found a significant association of the rs909706 polymorphism with attention (p = 0.030) and a nonsignificant trend for set-shifting (p = 0.060). The other SNPs and haplotypes were not associated with cognitive function. DISCUSSION Replication of this finding in a larger sample is needed in order to confirm the importance of this particular polymorphism in the genetics of schizophrenia, particularly the distinct cognitive domains. In conclusion, the present study supports the involvement of DTNBP1 in the regulation of cognitive processes and demonstrates association in particular with sustained attention and set-shifting in schizophrenia patients.
Collapse
Affiliation(s)
- George Bakanidze
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Walter EE, Fernandez F, Snelling M, Barkus E. Genetic Consideration of Schizotypal Traits: A Review. Front Psychol 2016; 7:1769. [PMID: 27895608 PMCID: PMC5108787 DOI: 10.3389/fpsyg.2016.01769] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Schizotypal traits are of interest and importance in their own right and also have theoretical and clinical associations with schizophrenia. These traits comprise attenuated psychotic symptoms, social withdrawal, reduced cognitive capacity, and affective dysregulation. The link between schizotypal traits and psychotic disorders has long since been debated. The status of knowledge at this point is such schizotypal traits are a risk for psychotic disorders, but in and of themselves only confer liability, with other risk factors needing to be present before a transition to psychosis occurs. Investigation of schizotypal traits also has the possibility to inform clinical and research pursuits concerning those who do not make a transition to psychotic disorders. A growing body of literature has investigated the genetic underpinnings of schizotypal traits. Here, we review association, family studies and describe genetic disorders where the expression of schizotypal traits has been investigated. We conducted a thorough review of the existing literature, with multiple search engines, references, and linked articles being searched for relevance to the current review. All articles and book chapters in English were sourced and reviewed for inclusion. Family studies demonstrate that schizotypal traits are elevated with increasing genetic proximity to schizophrenia and some chromosomal regions have been associated with schizotypy. Genes associated with schizophrenia have provided the initial start point for the investigation of candidate genes for schizotypal traits; neurobiological pathways of significance have guided selection of genes of interest. Given the chromosomal regions associated with schizophrenia, some genetic disorders have also considered the expression of schizotypal traits. Genetic disorders considered all comprise a profile of cognitive deficits and over representation of psychotic disorders compared to the general population. We conclude that genetic variations associated with schizotypal traits require further investigation, perhaps with targeted phenotypes narrowed to assist in refining the clinical end point of significance.
Collapse
Affiliation(s)
- Emma E. Walter
- School of Psychology, University of WollongongWollongong, NSW, Australia
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, University of WollongongWollongong, NSW, Australia
| | - Mollie Snelling
- Illawarra Health and Medical Research Institute, University of WollongongWollongong, NSW, Australia
| | - Emma Barkus
- School of Psychology, University of WollongongWollongong, NSW, Australia
| |
Collapse
|
18
|
De-novo 'pure' partial trisomy (6)(p22.3→pter): a case report and review of the literature. Clin Dysmorphol 2016; 26:26-32. [PMID: 27759572 DOI: 10.1097/mcd.0000000000000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Partial trisomy of the short arm of chromosome 6 is a rare and clinically distinct syndrome. The breakpoints have been found to be variable ranging from bands 6p11 to 6p25. This study reports partial trisomy for 6p22.3→pter in a 2-year-old boy referred with a complaint of developmental delay and facial dysmorphism. Conventional cytogenetic analysis showed the presence of an abnormal chromosome 5 resulting from an unbalanced translocation in the proband. Array comparative genomic hybridization revealed trisomy of distal 6p which was confirmed by fluorescence in situ hybridization using subtelomeric probes for chromosomes 5 and 6. A comparison of the phenotypic features in similar cases of trisomy for different segments of 6p will facilitate an accurate karyotype-phenotype correlation and, subsequently, in the identification of the candidate genes through molecular characterization of the potential genes mapped to these loci.
Collapse
|
19
|
Kynurenine pathway and cognitive impairments in schizophrenia: Pharmacogenetics of galantamine and memantine. SCHIZOPHRENIA RESEARCH-COGNITION 2016; 4:4-9. [PMID: 27069875 PMCID: PMC4824953 DOI: 10.1016/j.scog.2016.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) project designed to facilitate the development of new drugs for the treatment of cognitive impairments in people with schizophrenia, identified three drug mechanisms of particular interest: dopaminergic, cholinergic, and glutamatergic. Galantamine is an acetylcholinesterase inhibitor and a positive allosteric modulator of the α7 nicotinic receptors. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist. There is evidence to suggest that the combination of galantamine and memantine may be effective in the treatment of cognitive impairments in schizophrenia. There is a growing body of evidence that excess kynurenic acid (KYNA) is associated with cognitive impairments in schizophrenia. The α-7 nicotinic and the NMDA receptors may counteract the effects of kynurenic acid (KYNA) resulting in cognitive enhancement. Galantamine and memantine through its α-7 nicotinic and NMDA receptors respectively may counteract the effects of KYNA thereby improving cognitive impairments. The Single Nucleotide Polymorphisms in the Cholinergic Receptor, Nicotinic, Alpha 7 gene (CHRNA7), Glutamate (NMDA) Receptor, Metabotropic 1 (GRM1) gene, Dystrobrevin Binding Protein 1 (DTNBP1) and kynurenine 3-monooxygenase (KMO) gene may predict treatment response to galantamine and memantine combination for cognitive impairments in schizophrenia in the kynurenine pathway.
Collapse
|
20
|
Abdolmaleky HM, Pajouhanfar S, Faghankhani M, Joghataei MT, Mostafavi A, Thiagalingam S. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168:687-96. [PMID: 26285059 DOI: 10.1002/ajmg.b.32361] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022]
Abstract
Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance.
Collapse
Affiliation(s)
- Hamid M Abdolmaleky
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, Massachusetts.,Mental Health Research Center, Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Pajouhanfar
- Mental Health Research Center, Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mostafavi
- Arian Salamat Counselling and Nursing Services Centre, Tehran, Iran
| | - Sam Thiagalingam
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Spiegel S, Chiu A, James AS, Jentsch JD, Karlsgodt KH. Recognition deficits in mice carrying mutations of genes encoding BLOC-1 subunits pallidin or dysbindin. GENES BRAIN AND BEHAVIOR 2015; 14:618-24. [PMID: 26294018 DOI: 10.1111/gbb.12240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 01/31/2023]
Abstract
Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin-binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC-1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild-type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC-1 expression and/or function.
Collapse
Affiliation(s)
- S Spiegel
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - A Chiu
- Department of Pharmacology, University of California Irvine, Irvine
| | - A S James
- Department of Psychology, UCLA, Los Angeles, CA
| | - J D Jentsch
- Department of Psychology, UCLA, Los Angeles, CA.,Department of Psychiatry, UCLA, Los Angeles, CA
| | - K H Karlsgodt
- Psychiatry Research Division, Zucker Hillside Hospital, Glen Oaks.,Psychiatry Research Division, Feinstein Institute for Medical Research, Manhasset.,Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| |
Collapse
|
22
|
Genetic polymorphism in DTNBP1 gene is associated with methamphetamine-induced panic disorder. J Addict Med 2015; 8:431-7. [PMID: 25303981 DOI: 10.1097/adm.0000000000000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The dysbindin-1 (dystrobrevin-binding protein-1 [DTNBP-1]) gene has repeatedly been shown to be associated with psychotic disorder across diverse populations. In this study, we attempted to investigate the association of the rs3213207 (P1635) genetic polymorphism of the DTNBP1 gene with methamphetamine dependence and with methamphetamine-induced psychosis, manic episodes, and panic disorder in a male Malaysian population. METHODS This polymorphism was genotyped in 233 male methamphetamine-dependent subjects and in 301 male controls of the following 4 different ethnicities: Malay, Chinese, Kadazan-Dusun, and Bajau. Intergroup statistical analyses were performed by using the χ(2) test and the Fisher exact test where necessary. In cases of multiple comparisons, the Bonferroni correction was performed. RESULTS Our results indicated that the DTNBP1 rs3213207 polymorphism did not show any significant association with risk of methamphetamine dependence, either in the pooled subjects or after stratification into the 4 different ethnic groups (P > 0.05). Furthermore, we did not find any association of this polymorphism with methamphetamine-induced psychosis and episodes of methamphetamine-induced mania. However, there was a strong association between this polymorphism and the occurrence of methamphetamine-induced panic disorder in the pooled subjects (odds ratio [OR] = 6.739, P < 0.001) and in the Malay (OR = 11.93, P = 0.022) and Kadazan-Dusun (OR = 115.0, P < 0.001) groups. CONCLUSIONS Our findings suggest that the DTNBP1 rs3213207 polymorphism may contribute to methamphetamine-induced panic disorder in the pooled Malaysian male population, especially in the Malay and Kadazan-Dusun ethnic groups. However, no association was found with methamphetamine dependence, methamphetamine-induced psychosis, or methamphetamine-induced mania.
Collapse
|
23
|
Fu C, Chen D, Chen R, Hu Q, Wang G. The Schizophrenia-Related Protein Dysbindin-1A Is Degraded and Facilitates NF-Kappa B Activity in the Nucleus. PLoS One 2015; 10:e0132639. [PMID: 26171858 PMCID: PMC4501731 DOI: 10.1371/journal.pone.0132639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
Dystrobrevin-binding protein 1 (DTNBP1), a gene encoding dysbindin-1, has been identified as a susceptibility gene for schizophrenia. Functioning with partners in synapses or the cytoplasm, this gene regulates neurite outgrowth and neurotransmitter release. Loss of dysbindin-1 affects schizophrenia pathology. Dysbindin-1 is also found in the nucleus, however, the characteristics of dysbindin in the nucleus are not fully understood. Here, we found that dysbindin-1A is degraded in the nucleus via the ubiquitin-proteasome system and that amino acids 2-41 at the N-terminus are required for this process. By interacting with p65, dysbindin-1A promotes the transcriptional activity of NF-kappa B in the nucleus and positively regulates MMP-9 expression. Taken together, the data obtained in this study demonstrate that dysbindin-1A protein levels are highly regulated in the nucleus and that dysbindin-1A regulates transcription factor NF-kappa B activity to promote the expression of MMP-9 and TNF-α.
Collapse
Affiliation(s)
- Cheng Fu
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences. Hefei, Anhui, China
| | - Dong Chen
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ruijie Chen
- Department of Clinical Pharmacy and Pharmacology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences. Hefei, Anhui, China
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
24
|
Varela-Gomez N, Mata I, Perez-Iglesias R, Rodriguez-Sanchez JM, Ayesa R, Fatjo-Vilas M, Crespo-Facorro B. Dysbindin gene variability is associated with cognitive abnormalities in first-episode non-affective psychosis. Cogn Neuropsychiatry 2015; 20:144-56. [PMID: 25530342 DOI: 10.1080/13546805.2014.991780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Dystrobrevin-binding protein 1 gene (dysbindin or DTNBP1) has been associated with schizophrenia and cognitive performance. Its expression in areas implicated in cognition such as the dorsolateral prefrontal cortex, as well as its role in dopaminergic and glutamatergic system, has been replicated by several studies. The main aim of this study was to examine the association between DTNBP1 variability and cognitive performance in a sample of 238 patients with a first episode of a non-affective psychosis. METHODS Patients, and a comparison sample of 47 healthy subjects, completed an extensive neuropsychological battery. Five single nucleotide polymorphisms (SNPs) within DTNBP1 (rs2619528, rs2619538, rs3213207, rs2619539 and rs760761) and three haplotypes (GACAC, GAGAC and GTGAC) were analysed. RESULTS In the group of patients, we found a significant association between two of the DTNBP1 SNPs and one of the haplotypes (rs2619539, rs3213207 and GACAC) and a measure of premorbid IQ [Wechsler Adult Intelligence Scale-3rd Edition (WAIS-III) Vocabulary subtest]. Moreover, one of these SNPs, rs2619539, was also associated with our measure of working memory (WAIS-III Backward digits subtest) and two haplotypes, GAGAC and GTGAC, with our measure of verbal memory (Rey Auditory Verbal Learning Test), of visual memory (Rey Complex Figure Test) in the case of GAGAC, and of speed of processing (WAIS-III Digit Symbol-coding) in the case of GTGAC. CONCLUSIONS Our findings add further evidence suggesting an association between dysbindin gene variability and cognitive abnormalities in schizophrenia, providing preliminary evidence of this association since the time of illness onset among minimally medicated patients.
Collapse
Affiliation(s)
- Noemí Varela-Gomez
- a Department of Psychiatry, School of Medicine, University Hospital Marques de Valdecilla, IFIMAV , University of Cantabria , Santander , Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Tan GKN, Tee SF, Tang PY. Genetic association of single nucleotide polymorphisms in dystrobrevin binding protein 1 gene with schizophrenia in a Malaysian population. Genet Mol Biol 2015; 38:138-46. [PMID: 26273215 PMCID: PMC4530642 DOI: 10.1590/s1415-4757382220140142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022] Open
Abstract
Dystrobrevin binding protein 1 (DTNBP1) gene is pivotal in regulating the glutamatergic system. Genetic variants of the DTNBP1 affect cognition and thus may be particularly relevant to schizophrenia. We therefore evaluated the association of six single nucleotide polymorphisms (SNPs) with schizophrenia in a Malaysian population (171 cases; 171 controls). Associations between these six SNPs and schizophrenia were tested in two stages. Association signals with p < 0.05 and minor allele frequency > 0.05 in stage 1 were followed by genotyping the SNPs in a replication phase (stage 2). Genotyping was performed with sequenced specific primer (PCR-SSP) and restriction fragment length polymorphism (PCR-RFLP). In our sample, we found significant associations between rs2619522 (allele p = 0.002, OR = 1.902, 95%CI = 1.266 – 2.859; genotype p = 0.002) and rs2619528 (allele p = 0.008, OR = 1.606, 95%CI = 1.130 – 2.281; genotype p = 6.18 × 10−5) and schizophrenia. Given that these two SNPs may be associated with the pathophysiology of schizophrenia, further studies on the other DTNBP1 variants are warranted.
Collapse
Affiliation(s)
- Grace Kang Ning Tan
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Affiliation(s)
- Ayman H. Fanous
- Mental Health Service Line, Washington VA Medical Center, Washington, DC;,Department of Psychiatry, Georgetown University School of Medicine, Washington, DC,*To whom correspondence should be addressed; 50 Irving Street, NW Washington, DC 20422, US; tel: 202-745-8000 ext. 5-6553; fax: 202-518-4645; e-mail:
| |
Collapse
|
27
|
Cheah SY, Lawford BR, Young RM, Morris CP, Voisey J. Dysbindin (DTNBP1) variants are associated with hallucinations in schizophrenia. Eur Psychiatry 2015; 30:486-91. [PMID: 25697573 DOI: 10.1016/j.eurpsy.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Dystrobrevin binding protein 1 (DTNBP1) is a schizophrenia susceptibility gene involved with neurotransmission regulation (especially dopamine and glutamate) and neurodevelopment. The gene is known to be associated with cognitive deficit phenotypes within schizophrenia. In our previous studies, DTNBP1 was found associated not only with schizophrenia but with other psychiatric disorders including psychotic depression, post-traumatic stress disorder, nicotine dependence and opiate dependence. These findings suggest that DNTBP1 may be involved in pathways that lead to multiple psychiatric phenotypes. In this study, we explored the association between DTNBP1 SNPs (single nucleotide polymorphisms) and multiple psychiatric phenotypes included in the Diagnostic Interview of Psychosis (DIP). METHODS Five DTNBP1 SNPs, rs17470454, rs1997679, rs4236167, rs9370822 and rs9370823, were genotyped in 235 schizophrenia subjects screened for various phenotypes in the domains of depression, mania, hallucinations, delusions, subjective thought disorder, behaviour and affect, and speech disorder. SNP-phenotype association was determined with ANOVA under general, dominant/recessive and over-dominance models. RESULTS Post hoc tests determined that SNP rs1997679 was associated with visual hallucination; SNP rs4236167 was associated with general auditory hallucination as well as specific features including non-verbal, abusive and third-person form auditory hallucinations; and SNP rs9370822 was associated with visual and olfactory hallucinations. SNPs that survived correction for multiple testing were rs4236167 for third-person and abusive form auditory hallucinations; and rs9370822 for olfactory hallucinations. CONCLUSION These data suggest that DTNBP1 is likely to play a role in development of auditory related, visual and olfactory hallucinations which is consistent with evidence of DTNBP1 activity in the auditory processing regions, in visual processing and in the regulation of glutamate and dopamine activity.
Collapse
Affiliation(s)
- S-Y Cheah
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - B R Lawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Discipline of Psychiatry, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| | - R M Young
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - C P Morris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - J Voisey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
28
|
Yap MYA, Lo YL, Talbot K, Ong WY. Oxidative stress reduces levels of dysbindin-1A via its PEST domain. Neurochem Int 2014; 79:65-9. [DOI: 10.1016/j.neuint.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/05/2023]
|
29
|
Malhotra AK. Genes and schizophrenia: from a Festschrift Seminar honoring William T. Carpenter Jr, MD. Schizophr Bull 2014; 40 Suppl 2:S117-22. [PMID: 24114706 PMCID: PMC3934405 DOI: 10.1093/schbul/sbt135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent data have begun to elucidate the genetic architecture of schizophrenia, as well as provide new insights into the relationships of specific genetic factors across diagnostic boundaries, with specific symptom domains, and in the prediction of antipsychotic treatment response. Not surprisingly, work conducted at the Maryland Psychiatric Research Center (MPRC), led by Dr William Carpenter, has helped to guide the thinking behind much of this work, as well as contributed valuable data toward these efforts. In this article, I will briefly summarize some of the major findings emerging from these lines of research and highlight the role of the Dr Carpenter and his colleagues at the MPRC in this area.
Collapse
Affiliation(s)
- Anil K. Malhotra
- *To whom correspondence should be addressed; Division of Psychiatry Research, The Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY 11004, US; tel: 718-470-8012, fax: 718-343-1659, e-mail:
| |
Collapse
|
30
|
Papaleo F, Burdick MC, Callicott JH, Weinberger DR. Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol Psychiatry 2014; 19:311-6. [PMID: 24145376 PMCID: PMC4845721 DOI: 10.1038/mp.2013.133] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/09/2023]
Abstract
Cognitive functions are highly heritable and the impact of complex genetic interactions, though undoubtedly important, has received little investigation. Here we show in an animal model and in a human neuroimaging experiment a consistent non-linear interaction between two genes--catechol-O-methyl transferase (COMT) and dysbindin (dys; dystrobrevin-binding protein 1 (DTNBP1))--implicated through different mechanisms in cortical dopamine signaling and prefrontal cognitive function. In mice, we found that a single genetic mutation reducing expression of either COMT or DTNBP1 alone produced working memory advantages, while, in dramatic contrast, genetic reduction of both in the same mouse produced working memory deficits. We found evidence of the same non-linear genetic interaction in prefrontal cortical function in humans. In healthy volunteers (N=176) studied with functional magnetic resonance imaging during a working memory paradigm, individuals homozygous for the COMT rs4680 Met allele that reduces COMT enzyme activity showed a relatively more efficient prefrontal engagement. In contrast, we found that the same genotype was less efficient on the background of a dys haplotype associated with decreased DTNBP1 expression. These results illustrate that epistasis can be functionally multi-directional and non-linear and that a putatively beneficial allele in one epistastic context is a relatively deleterious one in another. These data also have important implications for single-locus association analyses of complex traits.
Collapse
Affiliation(s)
- F Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy,Department of Scienze del Farmaco, Universita’ degli Studi di Padova, Padova, Italy,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - MC Burdick
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - JH Callicott
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - DR Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA,Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA,Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Volle J, Brocard J, Saoud M, Gory-Faure S, Brunelin J, Andrieux A, Suaud-Chagny MF. Reduced expression of STOP/MAP6 in mice leads to cognitive deficits. Schizophr Bull 2013; 39:969-78. [PMID: 23002183 PMCID: PMC3756782 DOI: 10.1093/schbul/sbs113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND STOP/MAP6 null (KO) mice recapitulate behavioral abnormalities related to positive and negative symptoms and cognitive deficits of schizophrenia. Here, we investigated whether decreased expression of STOP/MAP6 proteins in heterozygous mice (only one allele expressed) would result in abnormal behavior related to those displayed by STOP null mice. METHODS Using a comprehensive test battery, we investigated the behavioral phenotype of STOP heterozygous (Het) mice compared with STOP KO and wild type (WT) mice on animals raised either in standard conditions (controls) or submitted to maternal deprivation. RESULTS Control Het mice displayed prominent deficits in social interaction and learning, resembling KO mice. In contrast, they exhibited short-lasting locomotor hyperreactivity to acute mild stress and no impaired locomotor response to amphetamine, much like WT mice. Additionally, perinatal stress deteriorated Het mouse phenotype by exacerbating alterations related to positive symptoms such as their locomotor reactivity to acute mild stress and psychostimulant challenge. CONCLUSION Results show that the dosage of susceptibility genes modulates their putative phenotypic contribution and that STOP expression has a high penetrance on cognitive abilities. Hence, STOP Het mice might be useful to investigate cognitive defects related to those observed in mental diseases and ultimately might be a valuable experimental model to evaluate preventive treatments.
Collapse
Affiliation(s)
- Julien Volle
- Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Lyon, EA 4615
| | - Jacques Brocard
- Institut National de la Santé et de la Recherche Médicale Unité 836, Institut des Neurosciences de Grenoble, Université Joseph Fourier, 38042 Grenoble Cedex 9, France;,Groupe Physiopathologie du Cytosquelette, Institut de Recherches en Technologies et Sciences pour le Vivant Direction des Sciences du Vivant, Commissariat à l’Énergie Atomique, 38054 Grenoble Cedex 9, France
| | - Mohamed Saoud
- Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Lyon, EA 4615;,Centre Hospitalier le Vinatier, F-69677 Bron Cedex, France
| | - Sylvie Gory-Faure
- Institut National de la Santé et de la Recherche Médicale Unité 836, Institut des Neurosciences de Grenoble, Université Joseph Fourier, 38042 Grenoble Cedex 9, France;,Groupe Physiopathologie du Cytosquelette, Institut de Recherches en Technologies et Sciences pour le Vivant Direction des Sciences du Vivant, Commissariat à l’Énergie Atomique, 38054 Grenoble Cedex 9, France
| | - Jérôme Brunelin
- Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Lyon, EA 4615;,Centre Hospitalier le Vinatier, F-69677 Bron Cedex, France
| | - Annie Andrieux
- Institut National de la Santé et de la Recherche Médicale Unité 836, Institut des Neurosciences de Grenoble, Université Joseph Fourier, 38042 Grenoble Cedex 9, France;,Groupe Physiopathologie du Cytosquelette, Institut de Recherches en Technologies et Sciences pour le Vivant Direction des Sciences du Vivant, Commissariat à l’Énergie Atomique, 38054 Grenoble Cedex 9, France
| | - Marie-Françoise Suaud-Chagny
- Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Lyon, EA 4615;,Centre Hospitalier le Vinatier, F-69677 Bron Cedex, France;,To whom correspondence should be addressed; EA 4615, Pôle Est - Pr d’Amato, CH le vinatier, 95 bd Pinel, 69677 Bron cedex, France; tel: +33 4 37 91 55 65, fax: +33 4 37 91 55 49, e-mail:
| |
Collapse
|
33
|
Schaefer GO, Kahane G, Savulescu J. Autonomy and Enhancement. NEUROETHICS-NETH 2013; 7:123-136. [PMID: 25045410 PMCID: PMC4070419 DOI: 10.1007/s12152-013-9189-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
Some have objected to human enhancement on the grounds that it violates the autonomy of the enhanced. These objections, however, overlook the interesting possibility that autonomy itself could be enhanced. How, exactly, to enhance autonomy is a difficult problem due to the numerous and diverse accounts of autonomy in the literature. Existing accounts of autonomy enhancement rely on narrow and controversial conceptions of autonomy. However, we identify one feature of autonomy common to many mainstream accounts: reasoning ability. Autonomy can then be enhanced by improving people's reasoning ability, in particular through cognitive enhancement; given how valuable autonomy is usually taken to be, this gives us extra reason to pursue such cognitive enhancements. Moreover, autonomy-based objections will be especially weak against such enhancements. As we will argue, those who are worried that enhancements will inhibit people's autonomy should actually embrace those enhancements that will improve autonomy.
Collapse
Affiliation(s)
- G Owen Schaefer
- Lincoln College, University of Oxford, Turl Street, Oxford, OX1 3DR UK
| | - Guy Kahane
- Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Suite 8, Littlegate House 16/17 St Ebbe's St, Oxford, OX1 1PT UK
| | - Julian Savulescu
- Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Suite 8, Littlegate House 16/17 St Ebbe's St, Oxford, OX1 1PT UK
| |
Collapse
|
34
|
Matteucci A, Gaddini L, Macchia G, Varano M, Petrucci TC, Macioce P, Malchiodi-Albedi F, Ceccarini M. Developmental expression of dysbindin in Muller cells of rat retina. Exp Eye Res 2013; 116:1-8. [PMID: 23954924 DOI: 10.1016/j.exer.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023]
Abstract
Dysbindin, the product of the DTNBP1 gene, was identified by yeast two hybrid assay as a binding partner of dystrobrevin, a cytosolic component of the dystrophin protein complex. Although its functional role has not yet been completely elucidated, the finding that dysbindin assembles into the biogenesis of lysosome related organelles complex 1 (BLOC-1) suggests that it participates in intracellular trafficking and biogenesis of organelles and vesicles. Dysbindin is ubiquitous and in brain is expressed primarily in neurons. Variations at the dysbindin gene have been associated with increased risk for schizophrenia. As anomalies in retinal function have been reported in patients suffering from neuropsychiatric disorders, we investigated the expression of dysbindin in the retina. Our results show that differentially regulated dysbindin isoforms are expressed in rat retina during postnatal maturation. Interestingly, we found that dysbindin is mainly localized in Müller cells. The identification of dysbindin in glial cells may open new perspectives for a better understanding of the functional involvement of this protein in visual alterations associated to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Andrea Matteucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Empirical support for DSM-IV schizoaffective disorder: clinical and cognitive validators from a large patient sample. PLoS One 2013; 8:e63734. [PMID: 23737946 PMCID: PMC3667842 DOI: 10.1371/journal.pone.0063734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/04/2013] [Indexed: 12/03/2022] Open
Abstract
Objective The diagnosis of schizoaffective disorder has long maintained an uncertain status in psychiatric nosology. Studies comparing clinical and biological features of patients with schizoaffective disorder to patients with related disorders [e.g., schizophrenia and bipolar disorder] can provide an evidence base for judging the validity of the diagnostic category. However, because most prior studies of schizoaffective disorder have only evaluated differences between groups at a static timepoint, it is unclear how these disorders may be related when the entire illness course is taken into consideration. Methods We ascertained a large cohort [N = 993] of psychiatric patients with a range of psychotic diagnoses including schizophrenia with no history of major affective episodes [SZ−; N = 371], schizophrenia with a superimposed mood syndrome [SZ+; N = 224], schizoaffective disorder [SAD; N = 129] and bipolar I disorder with psychotic features [BPD+; N = 269]. Using cross-sectional data we designed key clinical and neurocognitive dependent measures that allowed us to test longitudinal hypotheses about the differences between these diagnostic entities. Results Large differences between diagnostic groups on several demographic and clinical variables were observed. Most notably, groups differed on a putative measure of cognitive decline. Specifically, the SAD group demonstrated significantly greater post-onset cognitive decline compared to the BP+ group, with the SZ− and SZ+ group both exhibiting levels of decline intermediate to BPD+ and SAD. Conclusions These results suggest that schizoaffective disorder may possess distinct features. Contrary to earlier formulations, schizoaffective disorder may be a more severe form of illness.
Collapse
|
36
|
Carr GV, Jenkins KA, Weinberger DR, Papaleo F. Loss of dysbindin-1 in mice impairs reward-based operant learning by increasing impulsive and compulsive behavior. Behav Brain Res 2013; 241:173-84. [PMID: 23261874 PMCID: PMC3556458 DOI: 10.1016/j.bbr.2012.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/08/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes the dysbindin-1 protein, is a potential schizophrenia susceptibility gene. Polymorphisms in the DTNBP1 gene have been associated with altered cognitive abilities. In the present study, dysbindin-1 null mutant (dys-/-), heterozygous (dys+/-), and wild-type (dys+/+) mice, on a C57BL/6J genetic background, were tested in either a match to sample or nonmatch to sample visual discrimination task. This visual discrimination task was designed to measure rule learning and detect any changes in response timing over the course of testing. Dys-/- mice displayed significant learning deficits and required more trials to acquire this task. However, once criterion was reached, there were no differences between the genotypes on any behavioral measures. Dys-/- mice exhibited increased compulsive and impulsive behaviors compared to control littermates suggesting the inability to suppress incorrectly-timed responses underlies their increased time to acquisition. Indeed, group comparisons of behavior differences between the first and last day of testing showed that only dys-/- mice consistently decreased measures of perseverative, premature, timeout, and total responses. These findings illustrate how some aspects of altered cognitive performance in dys-/- mice might be related to increased impulsive and compulsive behaviors, analogous to cognitive deficits in some individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Gregory V. Carr
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Kimberly A. Jenkins
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry, Neurology, and Neuroscience and the Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Francesco Papaleo
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dipartimento di Scienze del Farmaco, Universita’ degli Studi di Padova, Largo Meneghetti, 2, 35131 Padova, Italy
| |
Collapse
|
37
|
Goubau C, Buyse GM, Di Michele M, Van Geet C, Freson K. Regulated granule trafficking in platelets and neurons: a common molecular machinery. Eur J Paediatr Neurol 2013; 17:117-25. [PMID: 22951324 DOI: 10.1016/j.ejpn.2012.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 01/25/2023]
Abstract
Platelet function in primary hemostasis involves the secretion of granules upon activation, providing the localized delivery of effector proteins at sites of vascular injury. The sequential process of regulated secretion in platelets, from the biogenesis of the granules, through their transport and up to the exocytotic fusion process at the acceptor membrane, involves a complex molecular machinery conserved between some other specialized cells such as neurons. Mutations in genes encoding proteins involved in this process of granule trafficking have helped towards demystification of the underlying secretory mechanisms. Human diseases of trafficking encompass a broad symptomatology including a platelet-related bleeding diathesis and neuronal problems. In this review, we want to highlight the similarities in granule biology between platelets and neurons and further focus on some granule trafficking disorders that result in bleeding and neuropathology. This review provides evidence that platelet research can be expanded from traditional studies of isolated thrombopathies to the field of neuropathologies that include a platelet secretion defect.
Collapse
Affiliation(s)
- Christophe Goubau
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
38
|
Barøy T, Misceo D, Strømme P, Stray-Pedersen A, Holmgren A, Rødningen OK, Blomhoff A, Helle JR, Stormyr A, Tvedt B, Fannemel M, Frengen E. Haploinsufficiency of two histone modifier genes on 6p22.3, ATXN1 and JARID2, is associated with intellectual disability. Orphanet J Rare Dis 2013; 8:3. [PMID: 23294540 PMCID: PMC3675438 DOI: 10.1186/1750-1172-8-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nineteen patients with deletions in chromosome 6p22-p24 have been published so far. The syndromic phenotype is varied, and includes intellectual disability, behavioural abnormalities, dysmorphic features and structural organ defects. Heterogeneous deletion breakpoints and sizes (1-17 Mb) and overlapping phenotypes have made the identification of the disease causing genes challenging. We suggest JARID2 and ATXN1, both harbored in 6p22.3, as disease causing genes. METHODS AND RESULTS We describe five unrelated patients with de novo deletions (0.1-4.8 Mb in size) in chromosome 6p22.3-p24.1 detected by aCGH in a cohort of approximately 3600 patients ascertained for neurodevelopmental disorders. Two patients (Patients 4 and 5) carried non-overlapping deletions that were encompassed by the deletions of the remaining three patients (Patients 1-3), indicating the existence of two distinct dosage sensitive genes responsible for impaired cognitive function in 6p22.3 deletion-patients. The smallest region of overlap (SRO I) in Patients 1-4 (189 kb) included the genes JARID2 and DTNBP1, while SRO II in Patients 1-3 and 5 (116 kb) contained GMPR and ATXN1. Patients with deletion of SRO I manifested variable degrees of cognitive impairment, gait disturbance and distinct, similar facial dysmorphic features (prominent supraorbital ridges, deep set eyes, dark infraorbital circles and midface hypoplasia) that might be ascribed to the haploinsufficiency of JARID2. Patients with deletion of SRO II showed intellectual disability and behavioural abnormalities, likely to be caused by the deletion of ATXN1. Patients 1-3 presented with lower cognitive function than Patients 4 and 5, possibly due to the concomitant haploinsufficiency of both ATXN1 and JARID2. The chromatin modifier genes ATXN1 and JARID2 are likely candidates contributing to the clinical phenotype in 6p22-p24 deletion-patients. Both genes exert their effect on the Notch signalling pathway, which plays an important role in several developmental processes. CONCLUSIONS Patients carrying JARID2 deletion manifested with cognitive impairment, gait disturbance and a characteristic facial appearance, whereas patients with deletion of ATXN1 seemed to be characterized by intellectual disability and behavioural abnormalities. Due to the characteristic facial appearance, JARID2 haploinsufficiency might represent a clinically recognizable neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Tuva Barøy
- Department of Medical Genetics, University of Oslo, P,O, Box 1036, Blindern, Oslo N-0315, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
GABAergic interneurons of the cerebral cortex (cINs) play crucial roles in many aspects of cortical function. The diverse types of cINs are classified into subgroups according to their morphology, intrinsic physiology, neurochemical markers and synaptic targeting. Recent advances in mouse genetics, imaging and electrophysiology techniques have greatly advanced our efforts to understand the role of normal cIN function and its dysfunction in neuropsychiatric disorders. In schizophrenia (SCZ), a wealth of data suggests that cIN function is perturbed, and that interneuron dysfunction may underlie key symptoms of the disease. In this review, we discuss the link between cINs and SCZ, focusing on the evidence for GABAergic signaling deficits from both SCZ patients and mouse models.
Collapse
|
40
|
Baek JH, Kim JS, Ryu S, Oh S, Noh J, Lee WK, Park T, Lee YS, Lee D, Kwon JS, Hong KS. Association of genetic variations in DTNBP1 with cognitive function in schizophrenia patients and healthy subjects. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:841-9. [PMID: 22911901 DOI: 10.1002/ajmg.b.32091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 12/13/2022]
Abstract
The dystrobrevin-binding protein 1 gene (DTNBP1) has been regarded as a susceptibility gene for schizophrenia. Recent studies have investigated its role on cognitive function that is frequently impaired in schizophrenia patients, and generated inconsistent results. The present study was performed to elucidate effects of genetic variations in DTNBP1 on various cognitive domains in both schizophrenia patients and healthy subjects. Comprehensive neuropsychological tests were administered to 122 clinically stable schizophrenia patients and 119 healthy subjects. Based on positive findings reported in previous association studies, six SNPs were selected and genotyped. Compared to healthy subjects, schizophrenia patients showed expected lower performance for all of the cognitive domains. After adjusting for age, gender, and educational level, four SNPs showed a nominally significant association with cognitive domains. The association of rs760761 and rs1018381 with the attention and vigilance domain remained significant after applying the correction for multiple testing (P < 0.001). Similar association patterns were observed both, in patients and healthy subjects. The observed results suggest the involvement of DTNBP1 not only in the development of attention deficit of schizophrenia, but also in the inter-individual variability of this cognitive domain within the normal functional range.
Collapse
Affiliation(s)
- Ji Hyun Baek
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Donley G, Hull SC, Berkman BE. Prenatal whole genome sequencing: just because we can, should we? Hastings Cent Rep 2012; 42:28-40. [PMID: 22777977 DOI: 10.1002/hast.50] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Koide T, Banno M, Aleksic B, Yamashita S, Kikuchi T, Kohmura K, Adachi Y, Kawano N, Kushima I, Nakamura Y, Okada T, Ikeda M, Ohi K, Yasuda Y, Hashimoto R, Inada T, Ujike H, Iidaka T, Suzuki M, Takeda M, Iwata N, Ozaki N. Common variants in MAGI2 gene are associated with increased risk for cognitive impairment in schizophrenic patients. PLoS One 2012; 7:e36836. [PMID: 22649501 PMCID: PMC3359314 DOI: 10.1371/journal.pone.0036836] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 04/07/2012] [Indexed: 11/18/2022] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by positive symptoms, negative symptoms, and cognitive impairment. MAGI2, a relatively large gene (∼1.5 Mbps) that maps to chromosome 7q21, is involved in recruitment of neurotransmitter receptors such as AMPA- and NMDA-type glutamate receptors. A genetic association study designed to evaluate the association between MAGI2 and cognitive performance or schizophrenia has not been conducted. In this case-control study, we examined the relationship of single nucleotide polymorphism (SNP) variations in MAGI2 and risk for schizophrenia in a large Japanese sample and explored the potential relationships between variations in MAGI2 and aspects of human cognitive function related to glutamate activity. Based on the result of first schizophrenia genome-wide association study in a Japanese population (JGWAS), we selected four independent SNPs and performed an association study using a large independent Japanese sample set (cases 1624, controls 1621). Wisconsin Card Sorting Test (WCST) was used to evaluate executive function in 114 cases and 91 controls. We found suggestive evidence for genetic association of common SNPs within MAGI2 locus and schizophrenia in Japanese population. Furthermore in terms of association between MAGI2 and cognitive performance, we observed that genotype effect of rs2190665 on WCST score was significant (p = 0.034) and rs4729938 trended toward significance (p = 0.08). In conclusion, although we could not detect strong genetic evidence for association of common variants in MAGI2 and increased schizophrenia risk in a Japanese population, these SNPs may increase risk of cognitive impairment in schizophrenic patients.
Collapse
Affiliation(s)
- Takayoshi Koide
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Masahiro Banno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| | - Saori Yamashita
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Tsutomu Kikuchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Kunihiro Kohmura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Yasunori Adachi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Naoko Kawano
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, and Hamamatsu University Graduate School of Medicine, Osaka, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Toshiya Inada
- Department of Psychiatry, Seiwa Hospital, Institute of Neuropsychiatry, Tokyo, Japan
| | - Hiroshi Ujike
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Tetsuya Iidaka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, and Hamamatsu University Graduate School of Medicine, Osaka, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
43
|
Lutkenhoff E, Karlsgodt KH, Gutman B, Stein JL, Thompson PM, Cannon TD, Jentsch JD. Structural and functional neuroimaging phenotypes in dysbindin mutant mice. Neuroimage 2012; 62:120-9. [PMID: 22584233 DOI: 10.1016/j.neuroimage.2012.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/02/2012] [Accepted: 05/05/2012] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia is a highly heritable psychiatric disorder that is associated with a number of structural and functional neurophenotypes. DTNBP1, the gene encoding dysbindin-1, is a promising candidate gene for schizophrenia. Use of a mouse model carrying a large genomic deletion exclusively within the dysbindin gene permits a direct investigation of the gene in isolation. Here, we use manganese-enhanced magnetic resonance imaging (MEMRI) to explore the regional alterations in brain structure and function caused by loss of the gene encoding dysbindin-1. We report novel findings that uniquely inform our understanding of the relationship of dysbindin-1 to known schizophrenia phenotypes. First, in mutant mice, analysis of the rate of manganese uptake into the brain over a 24-hour period, putatively indexing basal cellular activity, revealed differences in dopamine rich brain regions, as well as in CA1 and dentate subregions of the hippocampus formation. Finally, novel tensor-based morphometry techniques were applied to the mouse MRI data, providing evidence for structural volume deficits in cortical regions, subiculum and dentate gyrus, and the striatum of dysbindin mutant mice. The affected cortical regions were primarily localized to the sensory cortices in particular the auditory cortex. This work represents the first application of manganese-enhanced small animal imaging to a mouse model of schizophrenia endophenotypes, and a novel combination of functional and structural measures. It revealed both hypothesized and novel structural and functional neural alterations related to dysbindin-1.
Collapse
Affiliation(s)
- Evan Lutkenhoff
- Interdisciplinary Neuroscience Program, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Vyas NS, Shamsi SA, Malhotra AK, Aitchison KJ, Kumari V. Can genetics inform the management of cognitive deficits in schizophrenia? J Psychopharmacol 2012; 26:334-48. [PMID: 22328662 DOI: 10.1177/0269881111434623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is no doubt that schizophrenia has a significant genetic component and a number of candidate genes have been identified for this debilitating disorder. Of note, several of these are implicated in cognition. Cognitive deficits constitute core symptoms of schizophrenia, and while current antipsychotic treatment strategies aim to help psychosis-related symptomatology, the cognitive symptom domain is largely inadequately treated. A number of other pharmacological approaches (e.g. using drugs that target specific neurotransmitter systems) have also been attempted for the amelioration of cognitive deficits in this population; however, these too have had limited success so far. Psychological interventions appear promising, though there has been speculation regarding whether or not these produce long-term functional improvements. Pharmacogenetic studies of the cognitive effects of currently available antipsychotics, although in relatively early stages, suggest that the treatment of cognitive deficits in schizophrenia may be advanced by focusing on genetic variants associated with specific cognitive dysfunctions in the general population and using this to match the most relevant pharmacological and/or psychological interventions with the genetic and cognitive profiles of the target population. Such a strategy would encourage bottom-up advances in drug development and provide a platform for individualised treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Nora S Vyas
- King's College London, Institute of Psychiatry, MRC SGDP Centre, London, UK.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Schizophrenia affects approximately 1% of the population and continues to be associated with poor outcome because of the limited efficacy of and noncompliance with existing antipsychotic medications. An alternative hypothesis invoking the excitatory neurotransmitter, glutamate, arose out of clinical observations that NMDA receptor antagonists, the dissociative anesthetics like ketamine, can replicate in normal individuals the full range of symptoms of schizophrenia including psychosis, negative symptoms, and cognitive impairments. Low dose ketamine can also re-create a number of physiologic abnormalities characteristic of schizophrenia. Postmortem studies have revealed abnormalities in endogenous modulators of NMDA receptors in schizophrenia as well as components of a postsynaptic density where NMDA receptors are localized. Gene association studies have revealed several genes that affect NMDA receptor function whose allelic variants are associated with increased risk for schizophrenia including genes encoding D-amino acid oxidase, its modulator G72, dysbindin, and neuregulin. The parvalbumin-positive, fast-firing GABAergic interneurons that provide recurrent inhibition to cortical-limbic pyramidal neurons seem to be most sensitive to NMDA receptor hypofunction. As a consequence, disinhibition of glutamatergic efferents disrupts cortical processing, causing cognitive impairments and negative symptoms, and drives subcortical dopamine release, resulting in psychosis. Drugs designed to correct the cortical-limbic dysregulated glutamatergic neurotransmission show promise for reducing negative and cognitive symptoms of schizophrenia as well as its positive symptoms.
Collapse
|
46
|
Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 2012; 17:85-98. [PMID: 20956979 PMCID: PMC3388848 DOI: 10.1038/mp.2010.106] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysbindin-1 regulates D2-receptor trafficking and is implicated in schizophrenia and related cognitive abnormalities, but whether this molecular effect mediates the clinical manifestations of the disorder is unknown. We explored in dysbindin-1-deficient mice (dys-/-) (1) schizophrenia-related behaviors, (2) molecular and electrophysiological changes in medial prefrontal cortex (mPFC) and (3) the dependence of these on D2-receptor stimulation. Dysbindin-1 disruption altered dopamine-related behaviors and impaired working memory under challenging/stressful conditions. Dys-/- pyramidal neurons in mPFC layers II/III were hyperexcitable at baseline but hypoexcitable following D2 stimulation. Dys-/- were also respectively more and less sensitive to D2 agonist- and antagonist-induced behavioral effects. Dys-/- had reduced expression of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and CaMKKβ in mPFC. Chronic D2 agonist treatment reproduced these changes in protein expression, and some of the dys-/- behavioral effects. These results elucidate dysbindin's modulation of D2-related behavior, cortical activity and mPFC CaMK components, implicating cellular and molecular mechanisms of the association of dysbindin with psychosis.
Collapse
Affiliation(s)
- F Papaleo
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | - F Yang
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA,Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - S Garcia
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - J Chen
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - B Lu
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - JN Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - DR Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Claes S, Tang YL, Gillespie CF, Cubells JF. Human genetics of schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:37-52. [DOI: 10.1016/b978-0-444-52002-9.00003-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Nickl-Jockschat T, Stöcker T, Markov V, Krug A, Huang R, Schneider F, Habel U, Zerres K, Nöthen MM, Treutlein J, Rietschel M, Shah NJ, Kircher T. The impact of a Dysbindin schizophrenia susceptibility variant on fiber tract integrity in healthy individuals: a TBSS-based diffusion tensor imaging study. Neuroimage 2011; 60:847-53. [PMID: 22019876 DOI: 10.1016/j.neuroimage.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder with high heritability, though its exact etiopathogenesis is yet unknown. An increasing number of studies point to the importance of white matter anomalies in the pathophysiology of schizophrenia. While several studies have identified the impact of schizophrenia susceptibility gene variants on gray matter anatomy in both schizophrenia patients and healthy risk variant carriers, studies dealing with the impact of these gene variants on white matter integrity are still scarce. We here present a study on the effects of a Dysbindin schizophrenia susceptibility gene variant on fiber tract integrity in healthy young subjects. 101 subjects genotyped for Dysbindin-gene variant rs1018381, though without personal or first degree relative history of psychiatric disorders underwent diffusion tensor imaging (DTI), 83 of them were included in the final analysis. We used Tract-Based Spatial Statistics (TBSS) analysis to delineate the major fiber tracts. Carriers of the minor allele T of the rs1018381 in the Dysbindin gene showed two clusters of reduced fractional anisotropy (FA) values in the perihippocampal region of the right temporal lobe compared to homozygote carriers of the major allele C. Clusters of increased FA values in T-allele carriers were found in the left prefrontal white matter, the right fornix, the right midbrain area, the left callosal body, the left cerebellum and in proximity of the right superior medial gyrus. Dysbindin has been implicated in neurite outgrowth and morphology. Impairments in anatomic connectivity as found associated with the minor Dysbindin allele in our study may result in increased risk for schizophrenia due to altered fiber tracts.
Collapse
|
49
|
Karlsgodt KH, Bachman P, Winkler AM, Bearden CE, Glahn DC. Genetic influence on the working memory circuitry: behavior, structure, function and extensions to illness. Behav Brain Res 2011; 225:610-22. [PMID: 21878355 DOI: 10.1016/j.bbr.2011.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
Abstract
Working memory is a highly heritable complex cognitive trait that is critical for a number of higher-level functions. However, the neural substrates of this behavioral phenotype are intricate and it is unknown through what precise biological mechanism variation in working memory is transmitted. In this review we explore different functional and structural components of the working memory circuitry, and the degree to which each of them is contributed to by genetic factors. Specifically, we consider dopaminergic function, glutamatergic function, white matter integrity and gray matter structure all of which provide potential mechanisms for the inheritance of working memory deficits. In addition to discussing the overall heritability of these measures we also address specific genes that may play a role. Each of these heritable components has the potential to uniquely contribute to the working memory deficits observed in genetic disorders, including 22q deletion syndrome, fragile X syndrome, phenylketonuria (PKU), and schizophrenia. By observing the individual contributions of disruptions in different components of the working memory circuitry to behavioral performance, we highlight the concept that there may be many routes to a working memory deficit; even though the same cognitive measure may be a valid endophenotype across different disorders, the underlying cause of, and treatment for, the deficit may differ. This has implications for our understanding of the transmission of working memory deficits in both healthy and disordered populations.
Collapse
Affiliation(s)
- Katherine H Karlsgodt
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
50
|
Papaleo F, Lipska BK, Weinberger DR. Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 2011; 62:1204-20. [PMID: 21557953 DOI: 10.1016/j.neuropharm.2011.04.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 04/08/2011] [Accepted: 04/20/2011] [Indexed: 01/27/2023]
Abstract
Cognitive dysfunction is a core feature of schizophrenia. Growing evidence indicates that a wide variety of genetic mutations and polymorphisms impact cognition and may thus be implicated in various aspects of this mental disorder. Despite differences between human and rodent brain structure and function, genetic mouse models have contributed critical information about brain mechanisms involved in cognitive processes. Here, we summarize discoveries of genetic modifications in mice that impact cognition. Based on functional hypotheses, gene modifications within five model systems are described: 1) dopamine (D1, D2, D3, D4, D5, DAT, COMT, MAO); 2) glutamate (GluR-A, NR1, NR2A, NR2B, GRM2, GRM3, GLAST); 3) GABA (α(5), γ(2), α(4), δGABA(A), GABA(B(1)), GAT1); 4) acetylcholine (nAChRβ2, α7, CHRM1); and 5) calcium (CaMKII-α, neurogranin, CaMKKβ, CaMKIV). We also consider other risk-associated genes for schizophrenia such as dysbindin (DTNBP1), neuregulin (NRG1), disrupted-in-schizophrenia1 (DISC1), reelin and proline dehydrogenase (PRODH). Because of the presumed importance of environmental factors, we further consider genetic modifications within the stress-sensitive systems of corticotropin-releasing factor (CRF), brain-derived neurotrophic factor (BDNF) and the endocannabinoid systems. We highlight the missing information and limitations of cognitive assays in genetically modified mice models relevant to schizophrenia pathology.
Collapse
Affiliation(s)
- Francesco Papaleo
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.
| | | | | |
Collapse
|