1
|
Fenner BJ, Whitmore SS, DeLuca AP, Andorf JL, Daggett HT, Luse MA, Haefeli LM, Riley JB, Critser DB, Wilkinson ME, Dumitrescu AV, Drack AV, Boyce TM, Russell JF, Binkley EM, Sohn EH, Russell SR, Boldt HC, Mullins RF, Tucker BA, Scheetz TE, Han IC, Stone EM. A Retrospective Longitudinal Study of 460 Patients with ABCA4-Associated Retinal Disease. Ophthalmology 2024; 131:985-997. [PMID: 38309476 PMCID: PMC11398085 DOI: 10.1016/j.ophtha.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024] Open
Abstract
PURPOSE To investigate the distribution of genotypes and natural history of ABCA4-associated retinal disease in a large cohort of patients seen at a single institution. DESIGN Retrospective, single-institution cohort review. PARTICIPANTS Patients seen at the University of Iowa between November 1986 and August 2022 clinically suspected to have disease caused by sequence variations in ABCA4. METHODS DNA samples from participants were subjected to a tiered testing strategy progressing from allele-specific screening to whole genome sequencing. Charts were reviewed, and clinical data were tabulated. The pathogenic severity of the most common alleles was estimated by studying groups of patients who shared 1 allele. Groups of patients with shared genotypes were reviewed for evidence of modifying factor effects. MAIN OUTCOME MEASURES Age at first uncorrectable vision loss, best-corrected visual acuity, and the area of the I2e isopter of the Goldmann visual field. RESULTS A total of 460 patients from 390 families demonstrated convincing clinical features of ABCA4-associated retinal disease. Complete genotypes were identified in 399 patients, and partial genotypes were identified in 61. The median age at first vision loss was 16 years (range, 4-76 years). Two hundred sixty-five families (68%) harbored a unique genotype, and no more than 10 patients shared any single genotype. Review of the patients with shared genotypes revealed evidence of modifying factors that in several cases resulted in a > 15-year difference in age at first vision loss. Two hundred forty-one different alleles were identified among the members of this cohort, and 161 of these (67%) were found in only a single individual. CONCLUSIONS ABCA4-associated retinal disease ranges from a very severe photoreceptor disease with an onset before 5 years of age to a late-onset retinal pigment epithelium-based condition resembling pattern dystrophy. Modifying factors frequently impact the ABCA4 disease phenotype to a degree that is similar in magnitude to the detectable ABCA4 alleles themselves. It is likely that most patients in any cohort will harbor a unique genotype. The latter observations taken together suggest that patients' clinical findings in most cases will be more useful for predicting their clinical course than their genotype. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Beau J Fenner
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa; Singapore National Eye Centre; Singapore Eye Research Institute; and Ophthalmology and Visual Sciences Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
| | - S Scott Whitmore
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Adam P DeLuca
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Jean L Andorf
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Heather T Daggett
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Meagan A Luse
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Lorena M Haefeli
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Janet B Riley
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Douglas B Critser
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Mark E Wilkinson
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Alina V Dumitrescu
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Arlene V Drack
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Timothy M Boyce
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Jonathan F Russell
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Elaine M Binkley
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Elliott H Sohn
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Stephen R Russell
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - H Culver Boldt
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Robert F Mullins
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Budd A Tucker
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Todd E Scheetz
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Ian C Han
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Edwin M Stone
- The University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.
| |
Collapse
|
2
|
Kalloniatis M, Wang H, Phu J, Tong J, Armitage J. Optical coherence tomography angiography in the diagnosis of ocular disease. Clin Exp Optom 2024; 107:482-498. [PMID: 38452795 DOI: 10.1080/08164622.2024.2323603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Clinical imaging provided by optical coherence tomography (OCT) and its variant, OCT-angiography (OCT-A), has revolutionised eyecare practice. The imaging techniques allow for the identification and quantification of ocular structures, supporting the diagnosis and prognosis of eye disease. In this review, an overview of the usefulness of OCT-A imaging in the diagnosis and management of a range of ocular conditions is provided when used in isolation or in combination with other imaging modalities and measures of visual function (visual field results). OCT-A imaging has the capacity to identify and quantify ocular vasculature non-invasively, thereby assisting the clinician in the diagnosis or to determine the efficacy of intervention in ocular conditions impacting retinal vasculature. Thus, additional clinically useful information can be obtained in eye diseases involving conditions such as those impacting retinal vessel occlusion, in diabetic retinopathy, inherited retinal dystrophy, age-related macular degeneration, choroidal neovascularisation and optic nerve disorders. Through a clinical case series, various ocular conditions are reviewed, and the impact of OCT-A imaging is discussed. Although OCT-A imaging has great promise and is already used in clinical management, there is a lack of set standards to characterise altered vascular features in disease and consequently for prognostication, primarily due to a lack of large-scale clinical trials and variability in OCT-A algorithms when generating quantitative parameters.
Collapse
Affiliation(s)
- Michael Kalloniatis
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
| | - Henrietta Wang
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia
| | - Jack Phu
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
| | - Janelle Tong
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia
| | - James Armitage
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
3
|
Chan J, Holdstock J, Shovelton J, Reid J, Speight G, Molha D, Pullabhatla V, Carpenter S, Uddin E, Washio T, Sato H, Izumi Y, Watanabe R, Niiro H, Fukushima Y, Ashida N, Hirose T, Maeda A. Clinical and analytical validation of an 82-gene comprehensive genome-profiling panel for identifying and interpreting variants responsible for inherited retinal dystrophies. PLoS One 2024; 19:e0305422. [PMID: 38870140 PMCID: PMC11175448 DOI: 10.1371/journal.pone.0305422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Inherited retinal dystrophies comprise a clinically complex and heterogenous group of diseases characterized by visual impairment due to pathogenic variants of over 300 different genes. Accurately identifying the causative gene and associated variant is crucial for the definitive diagnosis and subsequent selection of precise treatments. Consequently, well-validated genetic tests are required in the clinical practice. Here, we report the analytical and clinical validation of a next-generation sequencing targeted gene panel, the PrismGuide IRD Panel System. This system enables comprehensive genome profiling of 82 genes related to inherited retinal dystrophies. The PrismGuide IRD Panel System demonstrated 100% (n = 43) concordance with Sanger sequencing in detecting single-nucleotide variants, small insertions, and small deletions in the target genes and also in assessing their zygosity. It also identified copy-number loss in four out of five cases. When assessing precision, we evaluated the reproducibility of variant detection with 2,160 variants in 144 replicates and found 100% agreement in terms of single-nucleotide variants (n = 1,584) and small insertions and deletions (n = 576). Furthermore, the PrismGuide IRD Panel System generated sufficient read depth for variant calls across the purine-rich and highly repetitive open-reading frame 15 region of RPGR and detected all five variants tested. These results show that the PrismGuide IRD Panel System can accurately and consistently detect single-nucleotide variants and small insertions and deletions. Thus, the PrismGuide IRD Panel System could serve as useful tool that is applicable in clinical practice for identifying the causative genes based on the detection and interpretation of variants in patients with inherited retinal dystrophies and can contribute to a precise molecular diagnosis and targeted treatments.
Collapse
Affiliation(s)
- Jacqueline Chan
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Jolyon Holdstock
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - John Shovelton
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - James Reid
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Graham Speight
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Duarte Molha
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Venu Pullabhatla
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Stephanie Carpenter
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Ezam Uddin
- Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United Kingdom
| | - Takanori Washio
- Life Innovation Center, Riken Genesis Co. LTD, Kawasaki, Kanagawa, Japan
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hiroko Sato
- Life Innovation Center, Riken Genesis Co. LTD, Kawasaki, Kanagawa, Japan
| | - Yuuki Izumi
- Technology Innovation, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Reiko Watanabe
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Hayato Niiro
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | | | - Naoko Ashida
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Takashi Hirose
- Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Engfer ZJ, Lewandowski D, Dong Z, Palczewska G, Zhang J, Kordecka K, Płaczkiewicz J, Panas D, Foik AT, Tabaka M, Palczewski K. Distinct mouse models of Stargardt disease display differences in pharmacological targeting of ceramides and inflammatory responses. Proc Natl Acad Sci U S A 2023; 120:e2314698120. [PMID: 38064509 PMCID: PMC10723050 DOI: 10.1073/pnas.2314698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.
Collapse
Affiliation(s)
- Zachary J. Engfer
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Zhiqian Dong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Katarzyna Kordecka
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Jagoda Płaczkiewicz
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrzej T. Foik
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
6
|
Young B, Zhao PY, Shen LL, Fahim A, Jayasundera T. Local progression kinetics of macular atrophy in recessive Stargardt disease. Ophthalmic Genet 2023; 44:539-546. [PMID: 37381907 PMCID: PMC10755069 DOI: 10.1080/13816810.2023.2228891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND To determine the effect of lesion topography on progression in Stargardt disease (STGD1). METHODS Fundus autofluoresence (excitation 488 nm) images of 193 eyes in patients with proven ABCA4 mutation were semi-automatically segmented for autofluoresence changes: (DDAF) and questionably decreased autofluoresence (QDAF), which are proxies for retinal pigment epithelial (RPE) atrophy. We calculated topographic incidence of DDAF and DDAF + QDAF, as well as velocity of progression of the border of lesions using Euclidean distance mapping. RESULTS Incidence of atrophy was highest near the fovea, then decreased in incidence with increased foveal eccentricity. However, the rate of atrophy progression followed the opposite pattern; rate of atrophy increased with distance from foveal center. The mean growth rate 500 microns from the foveal center for DDAF + QDAF was 39 microns per year (95% CI = 28-49), whereas the mean growth rate 3000 microns from the foveal center was 342 microns per year (95% CI = 194-522). No difference in growth rate was noted by axis around the fovea. CONCLUSIONS Incidence and progression of atrophy by fundus autofluorescence follow opposite patterns in STGD1. Further, atrophy progression increases significantly with distance from foveal center, which should be taken into consideration in clinical trials.
Collapse
Affiliation(s)
- Benjamin Young
- Department of Ophthalmology, Oregon Health & Sciences University, Portland, OR USA
| | - Peter Y. Zhao
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA USA
| | - Liangbo L. Shen
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA USA
| | - Abigail Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI USA
| | - Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI USA
| |
Collapse
|
7
|
Li RTH, Roman AJ, Sumaroka A, Stanton CM, Swider M, Garafalo AV, Heon E, Vincent A, Wright AF, Megaw R, Aleman TS, Browning AC, Dhillon B, Cideciyan AV. Treatment Strategy With Gene Editing for Late-Onset Retinal Degeneration Caused by a Founder Variant in C1QTNF5. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 38133503 PMCID: PMC10746929 DOI: 10.1167/iovs.64.15.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Genome editing is an emerging group of technologies with the potential to ameliorate dominant, monogenic human diseases such as late-onset retinal degeneration (L-ORD). The goal of this study was to identify disease stages and retinal locations optimal for evaluating the efficacy of a future genome editing trial. Methods Twenty five L-ORD patients (age range, 33-77 years; median age, 59 years) harboring the founder variant S163R in C1QTNF5 were enrolled from three centers in the United Kingdom and United States. Patients were examined with widefield optical coherence tomography (OCT) and chromatic perimetry under dark-adapted and light-adapted conditions to derive phenomaps of retinal disease. Results were analyzed with a model of a shared natural history of a single delayed exponential across all subjects and all retinal locations. Results Critical age for the initiation of photoreceptor loss ranged from 48 years at the temporal paramacular retina to 74 years at the inferior midperipheral retina. Subretinal deposits (sRET-Ds) became more prevalent as critical age was approached. Subretinal pigment epithelial deposits (sRPE-Ds) were detectable in the youngest patients showing no other structural or functional abnormalities at the retina. The sRPE-D thickness continuously increased, reaching 25 µm in the extrafoveal retina and 19 µm in the fovea at critical age. Loss of light sensitivity preceded shortening of outer segments and loss of photoreceptors by more than a decade. Conclusions Retinal regions providing an ideal treatment window exist across all severity stages of L-ORD.
Collapse
Affiliation(s)
- Randa T. H. Li
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Alejandro J. Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Chloe M. Stanton
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V. Garafalo
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomas S. Aleman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Andrew C. Browning
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Artur V. Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Pfau M, Huryn LA, Boyle MP, Cukras CA, Zein WM, Turriff A, Ullah E, Hufnagel RB, Jeffrey BG, Brooks BP. Natural History of Visual Dysfunction in ABCA4 Retinopathy and Its Genetic Correlates. Am J Ophthalmol 2023; 253:224-232. [PMID: 37211138 PMCID: PMC10524499 DOI: 10.1016/j.ajo.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE To systematically assess the ability to detect change and retest reliability for a panel of visual function assessments in ABCA4 retinopathy. DESIGN Prospective natural history study (NCT01736293). METHODS Patients with at least 1 documented pathogenic ABCA4 variant and a clinical phenotype consistent with ABCA4 retinopathy were recruited from a tertiary referral center. Participants underwent longitudinal, multifaceted functional testing, including measures of function at fixation (best-corrected visual acuity, low-vision Cambridge Color Test), macular function (microperimetry), and retina-wide function (full-field electroretinography [ERG]). Two- and 5-year ability to detect change was determined based on the η2 statistic. RESULTS A total of 134 eyes from 67 participants with a mean follow-up of 3.65 years were included. In the 2-year interval, the microperimetry-derived perilesional sensitivity (η2 of 0.73 [0.53, 0.83]; -1.79 dB/y [-2.2, -1.37]) and mean sensitivity (η2 of 0.62 [0.38, 0.76]; -1.28 dB/y [-1.67, -0.89]) showed most change over time, but could only be recorded in 71.6% of the participants. In the 5-year interval, the dark-adapted ERG a- and b-wave amplitude showed marked change over time as well (eg, DA 30 a-wave amplitude with an η2 of 0.54 [0.34, 0.68]; -0.02 log10(µV)/y [-0.02, -0.01]). The genotype explained a large fraction of variability in the ERG-based age of disease initiation (adjusted R2 of 0.73) CONCLUSIONS: Microperimetry-based clinical outcome assessments were most sensitive to change but could only be acquired in a subset of participants. Across a 5-year interval, the ERG DA 30 a-wave amplitude was sensitive to disease progression, potentially allowing for more inclusive clinical trial designs encompassing the whole ABCA4 retinopathy spectrum.
Collapse
Affiliation(s)
- Maximilian Pfau
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laryssa A Huryn
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marisa P Boyle
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine A Cukras
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wadih M Zein
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy Turriff
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ehsan Ullah
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert B Hufnagel
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brett G Jeffrey
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Brian P Brooks
- From the National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Whitmore SS, DeLuca AP, Andorf JL, Cheng JL, Mansoor M, Fortenbach CR, Critser DB, Russell JF, Stone EM, Han IC. Modeling rod and cone photoreceptor cell survival in vivo using optical coherence tomography. Sci Rep 2023; 13:6896. [PMID: 37106000 PMCID: PMC10140056 DOI: 10.1038/s41598-023-33694-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Many retinal diseases involve the loss of light-sensing photoreceptor cells (rods and cones) over time. The severity and distribution of photoreceptor loss varies widely across diseases and affected individuals, so characterizing the degree and pattern of photoreceptor loss can clarify pathophysiology and prognosis. Currently, in vivo visualization of individual photoreceptors requires technology such as adaptive optics, which has numerous limitations and is not widely used. By contrast, optical coherence tomography (OCT) is nearly ubiquitous in daily clinical practice given its ease of image acquisition and detailed visualization of retinal structure. However, OCT cannot resolve individual photoreceptors, and no OCT-based method exists to distinguish between the loss of rods versus cones. Here, we present a computational model that quantitatively estimates rod versus cone photoreceptor loss from OCT. Using histologic data of human photoreceptor topography, we constructed an OCT-based reference model to simulate outer nuclear layer thinning caused by differential loss of rods and cones. The model was able to estimate rod and cone loss using in vivo OCT data from patients with Stargardt disease and healthy controls. Our model provides a powerful new tool to quantify photoreceptor loss using OCT data alone, with potentially broad applications for research and clinical care.
Collapse
Affiliation(s)
- S Scott Whitmore
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| | - Adam P DeLuca
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jeaneen L Andorf
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Justine L Cheng
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Mahsaw Mansoor
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Christopher R Fortenbach
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - D Brice Critser
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jonathan F Russell
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Ian C Han
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Kaltak M, de Bruijn P, Piccolo D, Lee SE, Dulla K, Hoogenboezem T, Beumer W, Webster AR, Collin RW, Cheetham ME, Platenburg G, Swildens J. Antisense oligonucleotide therapy corrects splicing in the common Stargardt disease type 1-causing variant ABCA4 c.5461-10T>C. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:674-688. [PMID: 36910710 PMCID: PMC9999166 DOI: 10.1016/j.omtn.2023.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 μM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.
Collapse
Affiliation(s)
- Melita Kaltak
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, and Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Petra de Bruijn
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Davide Piccolo
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Sang-Eun Lee
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Kalyan Dulla
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | | | - Wouter Beumer
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Andrew R. Webster
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
- Moorfields Eye Hospital, 162 City Road, EC1V 2PD London, UK
| | - Rob W.J. Collin
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, and Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | | | | | - Jim Swildens
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| |
Collapse
|
11
|
Pfau M, Zein WM, Huryn LA, Cukras CA, Jeffrey BG, Hufnagel RB, Brooks BP. Genotype-Phenotype Association in ABCA4-Associated Retinopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:289-295. [PMID: 37440047 PMCID: PMC11483471 DOI: 10.1007/978-3-031-27681-1_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Stargardt disease (STGD1) is the most common inherited retina degeneration. It is caused by biallelic ABCA4 variants, and no treatment is available to date. STGD1 shows marked phenotypic variability, especially regarding the age of onset. The underlying genotype can partially explain this variability. Notably, a subset of ABCA4 variants was previously associated with an earlier disease onset than truncating ABCA4 variants, pointing toward pathogenic mechanisms beyond the loss of gene function in these patients. On the other end of the spectrum, variants such as p.Gly1961Glu were associated with markedly slower extrafoveal disease progression. Given that these drastic differences in phenotype are based on genotype (resulting in important prognostic implications for patients), this chapter reviews previous approaches to genotype-phenotype correlation analyses in STGD1.
Collapse
Affiliation(s)
- Maximilian Pfau
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine A Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brett G Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert B Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Glinton SL, Calcagni A, Lilaonitkul W, Pontikos N, Vermeirsch S, Zhang G, Arno G, Wagner SK, Michaelides M, Keane PA, Webster AR, Mahroo OA, Robson AG. Phenotyping of ABCA4 Retinopathy by Machine Learning Analysis of Full-Field Electroretinography. Transl Vis Sci Technol 2022; 11:34. [PMID: 36178783 PMCID: PMC9527330 DOI: 10.1167/tvst.11.9.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Biallelic pathogenic variants in ABCA4 are the commonest cause of monogenic retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal dysfunction. We explored application of machine learning in ERG interpretation and in genotype-phenotype correlations. Methods International standard ERGs in 597 cases of ABCA4 retinopathy were classified into three functional phenotypes by human experts: macular dysfunction alone (group 1), or with additional generalized cone dysfunction (group 2), or both cone and rod dysfunction (group 3). Algorithms were developed for automatic selection and measurement of ERG components and for classification of ERG phenotype. Elastic-net regression was used to quantify severity of specific ABCA4 variants based on effect on retinal function. Results Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively. Compared with human experts, automated classification showed overall accuracy of 91.8% (SE, 0.169), and 96.7%, 39.3%, and 93.8% for groups 1, 2, and 3. When groups 2 and 3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regression model yielded phenotypic severity scores for the 47 commonest ABCA4 variants. Conclusions This study quantifies prevalence of phenotypic groups based on retinal function in a uniquely large single-center cohort of patients with electrophysiologically characterized ABCA4 retinopathy and shows applicability of machine learning. Novel regression-based analyses of ABCA4 variant severity could identify individuals predisposed to severe disease. Translational Relevance Machine learning can yield meaningful classifications of ERG data, and data-driven scoring of genetic variants can identify patients likely to benefit most from future therapies.
Collapse
Affiliation(s)
- Sophie L. Glinton
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Antonio Calcagni
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Watjana Lilaonitkul
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK (HDRUK), London, UK
| | - Nikolas Pontikos
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | | | - Gongyu Zhang
- Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Siegfried K. Wagner
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Pearse A. Keane
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Andrew R. Webster
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Omar A. Mahroo
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Anthony G. Robson
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| |
Collapse
|
13
|
Thirunavukarasu AJ, Ross AC, Gilbert RM. Vitamin A, systemic T-cells, and the eye: Focus on degenerative retinal disease. Front Nutr 2022; 9:914457. [PMID: 35923205 PMCID: PMC9339908 DOI: 10.3389/fnut.2022.914457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The first discovered vitamin, vitamin A, exists in a range of forms, primarily retinoids and provitamin carotenoids. The bioactive forms of vitamin A, retinol and retinoic acid, have many critical functions in body systems including the eye and immune system. Vitamin A deficiency is associated with dysfunctional immunity, and presents clinically as a characteristic ocular syndrome, xerophthalmia. The immune functions of vitamin A extend to the gut, where microbiome interactions and nutritional retinoids and carotenoids contribute to the balance of T cell differentiation, thereby determining immune status and contributing to inflammatory disease around the whole body. In the eye, degenerative conditions affecting the retina and uvea are influenced by vitamin A. Stargardt's disease (STGD1; MIM 248200) is characterised by bisretinoid deposits such as lipofuscin, produced by retinal photoreceptors as they use and recycle a vitamin A-derived chromophore. Age-related macular degeneration features comparable retinal deposits, such as drusen featuring lipofuscin accumulation; and is characterised by parainflammatory processes. We hypothesise that local parainflammatory processes secondary to lipofuscin deposition in the retina are mediated by T cells interacting with dietary vitamin A derivatives and the gut microbiome, and outline the current evidence for this. No cures exist for Stargardt's or age-related macular degeneration, but many vitamin A-based therapeutic approaches have been or are being trialled. The relationship between vitamin A's functions in systemic immunology and the eye could be further exploited, and further research may seek to leverage the interactions of the gut-eye immunological axis.
Collapse
Affiliation(s)
- Arun J. Thirunavukarasu
- Corpus Christi College, University of Cambridge, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Rose M. Gilbert
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
14
|
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of diseases that affect more than 2 million people worldwide. Gene therapy (GT) has emerged as an exciting treatment modality with the potential to provide long-term benefit to patients. Today, gene addition is the most straightforward GT for autosomal recessive IRDs. However, there are three scenarios where this approach falls short. First, in autosomal dominant diseases caused by gain-of-function or dominant-negative mutations, the toxic mutated protein needs to be silenced. Second, a number of IRD genes exceed the limited carrying capacity of adeno-associated virus vectors. Third, there are still about 30% of patients with unknown mutations. In the first two contexts, precise editing tools, such as CRISPR-Cas9, base editors, or prime editors, are emerging as potential GT solutions for the treatment of IRDs. Here, we review gene editing tools based on CRISPR-Cas9 technology that have been used in vivo and the recent first-in-human application of CRISPR-Cas9 in an IRD.
Collapse
Affiliation(s)
- Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
15
|
Wang Y, Sun W, Zhou J, Li X, Jiang Y, Li S, Jia X, Xiao X, Ouyang J, Wang Y, Zhou L, Long Y, Liu M, Li Y, Yi Z, Wang P, Zhang Q. Different Phenotypes Represent Advancing Stages of ABCA4-Associated Retinopathy: A Longitudinal Study of 212 Chinese Families From a Tertiary Center. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35608843 PMCID: PMC9150840 DOI: 10.1167/iovs.63.5.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the nature and association of different phenotypes associated with ABCA4 mutations in Chinese. Methods All patients were recruited from our pediatric and genetic eye clinic. Detailed ocular phenotypes were characterized. The disease course was evaluated by long-term follow-up observation, with a focus on fundus changes. Cox regression was used to identify the factors associated with disease progression. Results A systematic review of genetic and clinical data for 228 patients and follow-up data for 42 patients indicated specific features in patients with two ABCA4 variants. Of 185 patients with available fundus images, 107 (57.8%) showed focal lesions restricted to the central macula without flecks. Among these 107 patients, 30 patients (28.0%) initially presented with relatively preserved visual acuity and inconspicuous performance on routine fundus screening. A pigmentary change in the posterior pole was observed in 22 of 185 patients (11.9%), and this change mimicked retinitis pigmentosa in 10 cases (45.5%). Follow-up visits and sibling comparisons demonstrated disease progression from cone-rod dystrophy, Stargardt disease, to retinitis pigmentosa. An earlier age of onset was associated with a more rapid decrease in visual acuity (P = 0.03). Patients with two truncation variants had an earlier age of onset. Conclusion Phenotypic variation in ABCA4-associated retinopathy may represent sequential changes in a single disease: early-stage Stargardt disease may resemble cone-rod dystrophy, whereas the presence of diffuse pigmentation in the late stage may mimic retinitis pigmentosa. Recognizing the natural progression of fundus changes, especially those visualized by wide-field fundus autofluorescence, is valuable for diagnostics and therapeutic decision-making.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yueye Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxi Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mengchu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yongyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
16
|
Kong X, Ibrahim-Ahmed M, Bittencourt MG, Strauss RW, Birch DG, Cideciyan AV, Ervin AM, Ho A, Sunness JS, Audo IS, Michaelides M, Zrenner E, Sadda S, Ip MS, West S, Scholl HPN. Longitudinal Changes in Scotopic and Mesopic Macular Function as Assessed with Microperimetry in Patients With Stargardt Disease: SMART Study Report No. 2. Am J Ophthalmol 2022; 236:32-44. [PMID: 34695402 DOI: 10.1016/j.ajo.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To estimate and compare cross-sectional scotopic versus mesopic macular sensitivity losses measured by microperimetry, and to report and compare the longitudinal rates of scotopic and mesopic macular sensitivity losses in ABCA4 gene-associated Stargardt disease (STGD1). DESIGN This was a multicenter prospective cohort study. METHODS Participants comprised 127 molecularly confirmed STGD1 patients enrolled from 6 centers in the United States and Europe and followed up every 6 months for up to 2 years. The Nidek MP-1S device was used to measure macular sensitivities of the central 20° under mesopic and scotopic conditions. The mean deviations (MD) from normal for mesopic macular sensitivity for the fovea (within 2° eccentricity) and extrafovea (4°-10° eccentricity), and the MD for scotopic sensitivity for the extrafovea, were calculated. Linear mixed effects models were used to estimate mesopic and scotopic changes. Main outcome measures were baseline mesopic mean deviation (mMD) and scotopic MD (sMD) and rates of longitudinal changes in the mMDs and sMD. RESULTS At baseline, all eyes had larger sMD, and the difference between extrafoveal sMD and mMD was 10.7 dB (P < .001). Longitudinally, all eyes showed a statistically significant worsening trend: the rates of foveal mMD and extrafoveal mMD and sMD changes were 0.72 (95% CI = 0.37-1.07), 0.86 (95% CI = 0.58-1.14), and 1.12 (95% CI = 0.66-1.57) dB per year, respectively. CONCLUSIONS In STGD1, in extrafovea, loss of scotopic macular function preceded and was faster than the loss of mesopic macular function. Scotopic and mesopic macular sensitivities using microperimetry provide alternative visual function outcomes for STGD1 treatment trials.
Collapse
Affiliation(s)
- Xiangrong Kong
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA; Department of Biostatistics (X.K.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Epidemiology (X.K., A.-M.E.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Health Behavior and Society (X.K.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | - Millena G Bittencourt
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA
| | - Rupert W Strauss
- Moorfields Eye Hospital and UCL Institute of Ophthalmology (R.W.S., M.M.), London, UK; Department of Ophthalmology (R.W.S.), Kepler University Clinic, Linz, Linz, Austria; Department of Ophthalmology (R.W.S.), Medical University of Graz, Graz, Austria
| | - David G Birch
- Retina Foundation of the Southwest (D.G.B.), Dallas, Texas, USA
| | - Artur V Cideciyan
- Scheie Eye Institute (A.V.C.), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann-Margaret Ervin
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA; Department of Epidemiology (X.K., A.-M.E.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander Ho
- Doheny Image Reading Center (A.H., S.V.S., M.S.I.), Los Angeles, California, USA
| | - Janet S Sunness
- Greater Baltimore Medical Center (J.S.S.), Baltimore, Maryland, USA
| | - Isabelle S Audo
- CHNO des Quinze-Vingts (I.S.A.), DHU Sight Restore, INSERM-DHOS CIC 1423, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Michel Michaelides
- Moorfields Eye Hospital and UCL Institute of Ophthalmology (R.W.S., M.M.), London, UK
| | - Eberhart Zrenner
- Universitäts-Augenklinik (E.Z.), University of Tübingen, Tübingen, Germany
| | - SriniVas Sadda
- Doheny Image Reading Center (A.H., S.V.S., M.S.I.), Los Angeles, California, USA
| | - Michael S Ip
- Doheny Image Reading Center (A.H., S.V.S., M.S.I.), Los Angeles, California, USA
| | - Sheila West
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA
| | - Hendrik P N Scholl
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA; Institute of Molecular and Clinical Ophthalmology Basel (IOB) (H.P.N.S.), Basel, Switzerland; Department of Ophthalmology (H.P.N.S.), University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Cornelis SS, Runhart EH, Bauwens M, Corradi Z, De Baere E, Roosing S, Haer-Wigman L, Dhaenens CM, Vulto-van Silfhout AT, Cremers FP. Personalized genetic counseling for Stargardt disease: Offspring risk estimates based on variant severity. Am J Hum Genet 2022; 109:498-507. [PMID: 35120629 DOI: 10.1016/j.ajhg.2022.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.
Collapse
|
18
|
Molecular analysis of ABCA4 gene in an Iranian cohort with Stargardt disease. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Pfau M, Cukras CA, Huryn LA, Zein WM, Ullah E, Boyle MP, Turriff A, Chen MA, Hinduja AS, Siebel HE, Hufnagel RB, Jeffrey BG, Brooks BP. Photoreceptor degeneration in ABCA4-associated retinopathy and its genetic correlates. JCI Insight 2022; 7:155373. [PMID: 35076026 PMCID: PMC8855828 DOI: 10.1172/jci.insight.155373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Outcome measures sensitive to disease progression are needed for ATP-binding cassette, sub-family A, member 4–associated (ABCA4-associated) retinopathy. We aimed to quantify ellipsoid zone (EZ) loss and photoreceptor degeneration beyond EZ-loss in ABCA4-associated retinopathy and investigate associations between photoreceptor degeneration, genotype, and age. METHODS We analyzed 132 eyes from 66 patients (of 67 enrolled) with molecularly confirmed ABCA4-associated retinopathy from a prospective natural history study with a median [IQR] follow-up of 4.2 years [3.1, 5.1]. Longitudinal spectral-domain optical coherence tomography volume scans (37 B-scans, 30° × 15°) were segmented using a deep learning (DL) approach. For genotype-phenotype analysis, a model of ABCA4 variants was applied with the age of criterion EZ-loss (6.25 mm2) as the dependent variable. RESULTS Patients exhibited an average (square-root-transformed) EZ-loss progression rate of [95% CI] 0.09 mm/y [0.06, 0.11]. Outer nuclear layer (ONL) thinning extended beyond the area of EZ-loss. The average distance from the EZ-loss boundary to normalization of ONL thickness (to ±2 z score units) was 3.20° [2.53, 3.87]. Inner segment (IS) and outer segment (OS) thinning was less pronounced, with an average distance from the EZ-loss boundary to layer thickness normalization of 1.20° [0.91, 1.48] for the IS and 0.60° [0.49, 0.72] for the OS. An additive model of allele severity explained 52.7% of variability in the age of criterion EZ-loss. CONCLUSION Patients with ABCA4-associated retinopathy exhibited significant alterations of photoreceptors outside of EZ-loss. DL-based analysis of photoreceptor laminae may help monitor disease progression and estimate the severity of ABCA4 variants. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01736293. FUNDING National Eye Institute Intramural Research Program and German Research Foundation grant PF950/1-1.
Collapse
Affiliation(s)
- Maximilian Pfau
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laryssa A. Huryn
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wadih M. Zein
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ehsan Ullah
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marisa P. Boyle
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy Turriff
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle A. Chen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aarti S. Hinduja
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hermann E.A. Siebel
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert B. Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brett G. Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P. Brooks
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Darbari E, Ahmadieh H, Daftarian N, Rezaei Kanavi M, Suri F, Sabbaghi H, Elahi E. Mutation Screening of Six Exons of ABCA4 in Iranian Stargardt Disease Patients. J Ophthalmic Vis Res 2022; 17:51-58. [PMID: 35194496 PMCID: PMC8850862 DOI: 10.18502/jovr.v17i1.10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Stargardt disease type 1 (STGD1) is a recessively inherited retinal disorder that can cause severe visual impairment. ABCA4 mutations are the usual cause of STGD1. ABCA4 codes a transporter protein exclusively expressed in retinal photoreceptor cells. The genecontains 50 exons. Mutations are most frequent in exons 3, 6, 12, and 13, and exons 10 and 42 each contain two common variations. We aimed to screen these exons for mutations in Iranian STGD1 patients. Methods Eighteen STGD1 patients were recruited for genetic analysis. Diagnosis by retina specialists was based on standard criteria, including accumulation of lipofuscin. The six ABCA4 exons were PCR amplified and sequenced by the Sanger method. Results One or more ABCA4-mutated alleles were identified in 5 of the 18 patients (27.8%). Five different mutations including two splice site (c.1356+1G>A and c.5836-2A>G) and three missense mutations (p.Gly1961Glu, p.Gly1961Arg, and p.Gly550Arg) were found. The p.Gly1961Glu mutation was the only mutation observed in two patients. Conclusion As ABCA4 mutations in exons 6, 12, 10, and 42 were identified in approximately 25% of the patients studied, these may be appropriate exons for screening projects. As in other populations, STDG1 causative ABCA4 mutations are heterogeneous among Iranian patients, and p.Gly1961Glu may be relatively frequent.
Collapse
Affiliation(s)
- Ensieh Darbari
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Ahmadieh
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narsis Daftarian
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Lee W, Zernant J, Su PY, Nagasaki T, Tsang SH, Allikmets R. A genotype-phenotype correlation matrix for Stargardt/ABCA4 disease based on long-term prognostic outcomes. JCI Insight 2021; 7:156154. [PMID: 34874912 PMCID: PMC8855796 DOI: 10.1172/jci.insight.156154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background More than 1500 variants in the ATP-binding cassette, sub-family A, member 4 (ABCA4), locus underlie a heterogeneous spectrum of retinal disorders ranging from aggressive childhood-onset chorioretinopathy to milder late-onset macular disease. Genotype-phenotype correlation studies have been limited in clinical applicability as patient cohorts are typically small and seldom capture the full natural history of individual genotypes. To overcome these limitations, we constructed a genotype-phenotype correlation matrix that provides quantifiable probabilities of long-term disease outcomes associated with specific ABCA4 genotypes from a large, age-restricted patient cohort. Methods The study included 112 unrelated patients at least 50 years of age in whom 2 pathogenic variants were identified after sequencing of the ABCA4 locus. Clinical characterization was performed using the results of best corrected visual acuity, retinal imaging, and full-field electroretinogram testing. Results Four distinct prognostic groups were defined according to the spatial severity of disease features across the fundus. Recurring genotypes were observed in milder prognoses, including a newly defined class of rare hypomorphic alleles. PVS1 (predicted null) variants were enriched in the most severe prognoses; however, missense variants were present in a larger-than-expected fraction of these patients. Analysis of allele combinations and their respective prognostic severity showed that certain variants, such as p.(Gly1961Glu), and both rare and frequent hypomorphic alleles, were “clinically dominant” with respect to patient phenotypes irrespective of the allele in trans. Conclusion These results provide much-needed structure to the complex genetic and clinical landscape of ABCA4 disease and add a tool to the clinical repertoire to quantitatively assess individual genotype-specific prognoses in patients. FUNDING National Eye Institute, NIH, grants R01 EY028203, R01 EY028954, R01 EY029315, P30 19007 (Core Grant for Vision Research); the Foundation Fighting Blindness USA, grant no. PPA-1218-0751-COLU; and Research to Prevent Blindness.
Collapse
Affiliation(s)
- Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, United States of America
| | - Jana Zernant
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, United States of America
| | - Pei-Yin Su
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, United States of America
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, United States of America
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, United States of America
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, United States of America
| |
Collapse
|
22
|
Fars J, Pasutto F, Kremers J, Huchzermeyer C. Perifoveal Cone- and Rod-Mediated Temporal Contrast Sensitivities in Stargardt Disease/Fundus Flavimaculatus. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34807235 PMCID: PMC8626853 DOI: 10.1167/iovs.62.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to compare L-cone-driven, S-cone-driven, and rod-driven temporal contrast sensitivities (tCSs) in patients with Stargardt disease 1/fundus flavimaculatus (STGD1/FF). Methods Fourteen patients (eight male, six female; mean age, 43.21 ± 13.18 years) with genetically confirmed STGD1/FF participated in this study. A dedicated light-emitting diode stimulator was used to measure perifoveal tCSs in an annular test field (1°-6° of visual eccentricity) at temporal frequencies between 1 and 20 Hz. Photoreceptor classes were isolated with the triple silent substitution technique. To compare functional damage among photoreceptor classes, sensitivity deviations (decibels) were calculated based on age-related normal values and then averaged across those frequencies where perception is mediated by the same post-receptoral pathway (L-cone red-green opponent pathway: 1, 2, 4 Hz; luminance pathway: 12, 16, 20 Hz; S-cone pathway: 1, 2, 4 Hz; fast rod pathway: 8, 10, 12 Hz). Sensitivity deviations were compared with infrared scanning laser ophthalmoscopy (IR-SLO) and standard automated perimetry (SAP). Results Photoreceptor-driven tCSs were generally lower in patients with STGD1/FF than in normal subjects but were without systematic differences among photoreceptors. Although sensitivity deviations were significantly correlated between each other, only luminance-driven L-cone sensitivity deviations were significantly correlated with the IR-SLO area of hyporeflectance (AoH) and SAP central mean deviation within 6° eccentricity (MD6deg). Conclusions No systematic differences between photoreceptor classes were detected; however, our data suggest that temporal contrasts detected by the luminance pathway were closely correlated with other clinical parameters (AoH and MD6deg) and might be most useful as functional biomarkers in clinical trials.
Collapse
Affiliation(s)
- Julien Fars
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
|
24
|
Krishnan AK, Roman AJ, Swider M, Jacobson SG, Cideciyan AV. Macular Rod Function in Retinitis Pigmentosa Measured With Scotopic Microperimetry. Transl Vis Sci Technol 2021; 10:3. [PMID: 34473224 PMCID: PMC8419874 DOI: 10.1167/tvst.10.11.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose To investigate the validity and reliability of macular rod photoreceptor function measurement with a microperimeter. Methods Macular sensitivity in dark-adapted retinitis pigmentosa (RP) patients (22 eyes; 9–67 years of age) and controls (five eyes; 22–55 years of age) was assessed with a modified Humphrey field analyzer (mHFA), as well as a scotopic microperimeter (Nidek MP-1S). Sensitivity loss (SL) was estimated at rod-mediated locations. All RP eyes were re-evaluated at a second visit 6 months later. The dynamic range of the MP-1S was expanded with a range of neutral-density filters (NDFs). Results In controls, a 4 NDF was used at all macular locations tested. In patients with RP, 0 to 3 NDFs were used, depending on the local disease severity. At rod-mediated locations (n = 281), SL estimates obtained with the MP-1S were highly correlated (r = 0.80) with those of the mHFA. The inter-perimeter difference of SL averaged less than 3 decibels (dB) with all NDFs, except those with most severe locations evaluated with a 0 NDF, where the difference averaged more than 6 dB. The results were similar on the second visit. Conclusions The MP-1S estimates of SL are highly correlated with those of the mHFA over a wide range of disease severity replicated at two visits; however, there was an unexplained bias in the magnitude of SL estimated by the MP-1S especially at loci with severe disease. Translational Relevance MP-1S scotopic microperimetry can be used to evaluate changes to macular rod function, but evaluation of treatment potential by quantitative comparison of SL to retinal structure will be more challenging.
Collapse
Affiliation(s)
- Arun K Krishnan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Huang D, Heath Jeffery RC, Aung-Htut MT, McLenachan S, Fletcher S, Wilton SD, Chen FK. Stargardt disease and progress in therapeutic strategies. Ophthalmic Genet 2021; 43:1-26. [PMID: 34455905 DOI: 10.1080/13816810.2021.1966053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Stargardt disease (STGD1) is an autosomal recessive retinal dystrophy due to mutations in ABCA4, characterized by subretinal deposition of lipofuscin-like substances and bilateral centrifugal vision loss. Despite the tremendous progress made in the understanding of STGD1, there are no approved treatments to date. This review examines the challenges in the development of an effective STGD1 therapy.Materials and Methods: A literature review was performed through to June 2021 summarizing the spectrum of retinal phenotypes in STGD1, the molecular biology of ABCA4 protein, the in vivo and in vitro models used to investigate the mechanisms of ABCA4 mutations and current clinical trials.Results: STGD1 phenotypic variability remains an challenge for clinical trial design and patient selection. Pre-clinical development of therapeutic options has been limited by the lack of animal models reflecting the diverse phenotypic spectrum of STDG1. Patient-derived cell lines have facilitated the characterization of splice mutations but the clinical presentation is not always predicted by the effect of specific mutations on retinoid metabolism in cellular models. Current therapies primarily aim to delay vision loss whilst strategies to restore vision are less well developed.Conclusions: STGD1 therapy development can be accelerated by a deeper understanding of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Di Huang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
26
|
Al-Khuzaei S, Broadgate S, Foster CR, Shah M, Yu J, Downes SM, Halford S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes (Basel) 2021; 12:1241. [PMID: 34440414 PMCID: PMC8392661 DOI: 10.3390/genes12081241] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stargardt disease (STGD1) and ABCA4 retinopathies (ABCA4R) are caused by pathogenic variants in the ABCA4 gene inherited in an autosomal recessive manner. The gene encodes an importer flippase protein that prevents the build-up of vitamin A derivatives that are toxic to the RPE. Diagnosing ABCA4R is complex due to its phenotypic variability and the presence of other inherited retinal dystrophy phenocopies. ABCA4 is a large gene, comprising 50 exons; to date > 2000 variants have been described. These include missense, nonsense, splicing, structural, and deep intronic variants. Missense variants account for the majority of variants in ABCA4. However, in a significant proportion of patients with an ABCA4R phenotype, a second variant in ABCA4 is not identified. This could be due to the presence of yet unknown variants, or hypomorphic alleles being incorrectly classified as benign, or the possibility that the disease is caused by a variant in another gene. This underlines the importance of accurate genetic testing. The pathogenicity of novel variants can be predicted using in silico programs, but these rely on databases that are not ethnically diverse, thus highlighting the need for studies in differing populations. Functional studies in vitro are useful towards assessing protein function but do not directly measure the flippase activity. Obtaining an accurate molecular diagnosis is becoming increasingly more important as targeted therapeutic options become available; these include pharmacological, gene-based, and cell replacement-based therapies. The aim of this review is to provide an update on the current status of genotyping in ABCA4 and the status of the therapeutic approaches being investigated.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | | | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| |
Collapse
|
27
|
Cideciyan AV, Krishnan AK, Roman AJ, Sumaroka A, Swider M, Jacobson SG. Measures of Function and Structure to Determine Phenotypic Features, Natural History, and Treatment Outcomes in Inherited Retinal Diseases. Annu Rev Vis Sci 2021; 7:747-772. [PMID: 34255540 DOI: 10.1146/annurev-vision-032321-091738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherited retinal diseases (IRDs) are at the forefront of innovative gene-specific treatments because of the causation by single genes, the availability of microsurgical access for treatment delivery, and the relative ease of quantitative imaging and vision measurement. However, it is not always easy to choose a priori, from scores of potential measures, an appropriate subset to evaluate efficacy outcomes considering the wide range of disease stages with different phenotypic features. This article reviews measurements of visual function and retinal structure that our group has used over the past three decades to understand the natural history of IRDs. We include measures of light sensitivity, retinal structure, mapping of natural fluorophores, evaluation of pupillary light reflex, and oculomotor control. We provide historical context and examples of applicability. We also review treatment trial outcomes using these measures of function and structure. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Arun K Krishnan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Alejandro J Roman
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Alexander Sumaroka
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Malgorzata Swider
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
28
|
Targeted next-generation sequencing identifies ABCA4 mutations in Chinese families with childhood-onset and adult-onset Stargardt disease. Biosci Rep 2021; 41:228645. [PMID: 33988224 PMCID: PMC8173525 DOI: 10.1042/bsr20203497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Stargardt disease (STGD) is the most common form of juvenile macular dystrophy associated with progressive central vision loss, and is agenetically and clinically heterogeneous disease. Molecular diagnosis is of great significance in aiding the clinical diagnosis, helping to determine the phenotypic severity and visual prognosis. In the present study, we determined the clinical and genetic features of seven childhood-onset and three adult-onset Chinese STGD families. We performed capture next-generation sequencing (NGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Methods: In all, ten unrelated Chinese families were enrolled. Panel-based NGS was performed to identify potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes, including the five known STGD genes (ABCA4, PROM1, PRPH2, VMD2, and ELOVL4). Variant analysis, Sanger validation, and segregation tests were utilized to validate the disease-causing mutations in these families. Results: Using systematic data analysis with an established bioinformatics pipeline and segregation analysis, 17 pathogenic mutations in ABCA4 were identified in the 10 STGD families. Four of these mutations were novel: c.371delG, c.681T > G, c.5509C > T, and EX37del. Childhood-onset STGD was associated with severe visual loss, generalized retinal dysfunction and was due to more severe variants in ABCA4 than those found in adult-onset disease. Conclusions: We expand the existing spectrum of STGD and reveal the genotype–phenotype relationships of the ABCA4 mutations in Chinese patients. Childhood-onset STGD lies at the severe end of the spectrum of ABCA4-associated retinal phenotypes.
Collapse
|
29
|
Pfau M, Jolly JK, Wu Z, Denniss J, Lad EM, Guymer RH, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials. Prog Retin Eye Res 2021; 82:100907. [PMID: 33022378 DOI: 10.1016/j.preteyeres.2020.100907] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Fundus-controlled perimetry (FCP, also called 'microperimetry') allows for spatially-resolved mapping of visual sensitivity and measurement of fixation stability, both in clinical practice as well as research. The accurate spatial characterization of visual function enabled by FCP can provide insightful information about disease severity and progression not reflected by best-corrected visual acuity in a large range of disorders. This is especially important for monitoring of retinal diseases that initially spare the central retina in earlier disease stages. Improved intra- and inter-session retest-variability through fundus-tracking and precise point-wise follow-up examinations even in patients with unstable fixation represent key advantages of these technique. The design of disease-specific test patterns and protocols reduces the burden of extensive and time-consuming FCP testing, permitting a more meaningful and focused application. Recent developments also allow for photoreceptor-specific testing through implementation of dark-adapted chromatic and photopic testing. A detailed understanding of the variety of available devices and test settings is a key prerequisite for the design and optimization of FCP protocols in future natural history studies and clinical trials. Accordingly, this review describes the theoretical and technical background of FCP, its prior application in clinical and research settings, data that qualify the application of FCP as an outcome measure in clinical trials as well as ongoing and future developments.
Collapse
Affiliation(s)
- Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Jasleen Kaur Jolly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, USA.
| |
Collapse
|
30
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
31
|
Camp DA, Gemayel MC, Ciulla TA. Understanding the genetic pathology of Stargardt disease: a review of current findings and challenges. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1898373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Camp
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael C. Gemayel
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
32
|
Maggi J, Koller S, Bähr L, Feil S, Kivrak Pfiffner F, Hanson JVM, Maspoli A, Gerth-Kahlert C, Berger W. Long-Range PCR-Based NGS Applications to Diagnose Mendelian Retinal Diseases. Int J Mol Sci 2021; 22:ijms22041508. [PMID: 33546218 PMCID: PMC7913364 DOI: 10.3390/ijms22041508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study was to develop a flexible, cost-efficient, next-generation sequencing (NGS) protocol for genetic testing. Long-range polymerase chain reaction (PCR) amplicons of up to 20 kb in size were designed to amplify entire genomic regions for a panel (n = 35) of inherited retinal disease (IRD)-associated loci. Amplicons were pooled and sequenced by NGS. The analysis was applied to 227 probands diagnosed with IRD: (A) 108 previously molecularly diagnosed, (B) 94 without previous genetic testing, and (C) 25 undiagnosed after whole-exome sequencing (WES). The method was validated with 100% sensitivity on cohort A. Long-range PCR-based sequencing revealed likely causative variant(s) in 51% and 24% of proband from cohorts B and C, respectively. Breakpoints of 3 copy number variants (CNVs) could be characterized. Long-range PCR libraries spike-in extended coverage of WES. Read phasing confirmed compound heterozygosity in 5 probands. The proposed sequencing protocol provided deep coverage of the entire gene, including intronic and promoter regions. Our method can be used (i) as a first-tier assay to reduce genetic testing costs, (ii) to elucidate missing heritability cases, (iii) to characterize breakpoints of CNVs at nucleotide resolution, (iv) to extend WES data to non-coding regions by spiking-in long-range PCR libraries, and (v) to help with phasing of candidate variants.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Luzy Bähr
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - James V. M. Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Alessandro Maspoli
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-556-33-50
| |
Collapse
|
33
|
Polymorphisms of ATP-Binding Cassette, Sub-Family A, Member 4 (rs560426 and rs481931) and Non-Syndromic Cleft Lip/Palate: A Meta-Analysis. Life (Basel) 2021; 11:life11010058. [PMID: 33467554 PMCID: PMC7830788 DOI: 10.3390/life11010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background: A number of genes are associated with the incidence of non-syndromic cleft lip/palate (NSCL/P). Studies have shown a significant association between polymorphisms of ATP-binding cassette, sub-family A, member 4 (ABCA4) with the risk of NSCL/P. The present meta-analysis assessed the association between ABCA4 polymorphisms (rs560426 and rs481931) and the NSCL/P risk by reviewing case-control studies. Methods: Four databases (Scopus; Cochrane Library; Web of Science; and PubMed) were searched for articles published up to June 2020. The Review Manager 5.3 software was used to calculate the crude odds ratio (OR) and 95% confidence interval (CI). Both subgroup analyses for ethnicity and source of controls and a meta-regression related to publication year were conducted. Results: Of 94 retrieved studies, 12 were analyzed in this meta-analysis (2859 NSCL/P patients and 3792 controls for ABCA4 rs560426 polymorphism and 1333 NSCL/P patients and 1884 controls for ABCA4 rs481931 polymorphism). Overall, there was no significant association between both polymorphisms and the risk of NSCL/P. However, subgroup analysis demonstrated that there was a higher risk of NSCL/P for specific models: the allelic model (OR = 1.13; p = 0.03), the homozygote model (OR = 1.53; p = 0.04), and the recessive model (OR = 1.30; p = 0.03) in the Asian ethnicity for the rs560426 polymorphism. Conclusion: The findings confirmed that the NSCL/P risk was significantly associated with the G allele and GG genotype of rs560426 polymorphism but not for rs481931 polymorphism. There were no associations between both polymorphisms (rs560426 and rs481931) and the NSCL/P risk in those of European descent and the mixed ethnicities.
Collapse
|
34
|
Garces FA, Scortecci JF, Molday RS. Functional Characterization of ABCA4 Missense Variants Linked to Stargardt Macular Degeneration. Int J Mol Sci 2020; 22:ijms22010185. [PMID: 33375396 PMCID: PMC7796138 DOI: 10.3390/ijms22010185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter expressed in photoreceptors, where it transports its substrate, N-retinylidene-phosphatidylethanolamine (N-Ret-PE), across outer segment membranes to facilitate the clearance of retinal from photoreceptors. Mutations in ABCA4 cause Stargardt macular degeneration (STGD1), an autosomal recessive disorder characterized by a loss of central vision and the accumulation of bisretinoid compounds. The purpose of this study was to determine the molecular properties of ABCA4 variants harboring disease-causing missense mutations in the transmembrane domains. Thirty-eight variants expressed in culture cells were analyzed for expression, ATPase activities, and substrate binding. On the basis of these properties, the variants were divided into three classes: Class 1 (severe variants) exhibited significantly reduced ABCA4 expression and basal ATPase activity that was not stimulated by its substrate N-Ret-PE; Class 2 (moderate variants) showed a partial reduction in expression and basal ATPase activity that was modestly stimulated by N-Ret-PE; and Class 3 (mild variants) displayed expression and functional properties comparable to normal ABCA4. The p.R653C variant displayed normal expression and basal ATPase activity, but lacked substrate binding and ATPase activation, suggesting that arginine 653 contributes to N-Ret-PE binding. Our classification provides a basis for better understanding genotype–phenotype correlations and evaluating therapeutic treatments for STGD1.
Collapse
Affiliation(s)
- Fabian A. Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
| | - Jessica F. Scortecci
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
- Correspondence: ; Tel.: +1-604-822-6173
| |
Collapse
|
35
|
Kubota R, Birch DG, Gregory JK, Koester JM. Randomised study evaluating the pharmacodynamics of emixustat hydrochloride in subjects with macular atrophy secondary to Stargardt disease. Br J Ophthalmol 2020; 106:403-408. [PMID: 33214244 PMCID: PMC8867285 DOI: 10.1136/bjophthalmol-2020-317712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
Background/Aims Stargardt disease is a rare, inherited, degenerative disease of the retina that is the most common type of hereditary macular dystrophy. Currently, no approved treatments for the disease exist. The purpose of this study was to characterise the pharmacodynamics of emixustat, an orally available small molecule that targets the retinal pigment epithelium–specific 65 kDa protein (RPE65), in subjects with macular atrophy secondary to Stargardt disease. Methods In this multicentre study conducted at six study sites in the USA, 23 subjects with macular atrophy secondary to Stargardt disease were randomised to one of three doses of daily emixustat (2.5 mg, 5 mg or 10 mg) and treated for 1 month. The primary outcome was the suppression of the rod b-wave recovery rate on electroretinography after photobleaching, which is an indirect measure of RPE65 inhibition. Results Subjects who received 10 mg emixustat showed near-complete suppression of the rod b-wave amplitude recovery rate postphotobleaching (mean=91.86%, median=96.69%), whereas those who received 5 mg showed moderate suppression (mean=52.2%, median=68.0%). No effect was observed for subjects who received 2.5 mg emixustat (mean=−3.31%, median=−12.23%). The adverse event profile was consistent with prior studies in other patient populations and consisted primarily of ocular adverse events likely related to RPE65 inhibition. Conclusion This study demonstrated dose-dependent suppression of rod b-wave amplitude recovery postphotobleaching, confirming emixustat’s biological activity in patients with Stargardt disease. These findings informed dose selection for a 24-month phase 3 trial (SeaSTAR Study) that is now comparing emixustat to placebo in the treatment of Stargardt disease-associated macular atrophy.
Collapse
Affiliation(s)
- Ryo Kubota
- President, Kubota Vision Inc, Seattle, Washington, USA
| | - David G Birch
- Scientific Director, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Jeff K Gregory
- Clinical Development, Kubota Vision Inc, Seattle, Washington, USA
| | - John M Koester
- Clinical Development, Kubota Vision Inc, Seattle, Washington, USA
| |
Collapse
|
36
|
Simunovic MP, Hess K, Avery N, Mammo Z. Threshold versus intensity functions in two-colour automated perimetry. Ophthalmic Physiol Opt 2020; 41:157-164. [PMID: 33063858 DOI: 10.1111/opo.12743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Two-colour computerised perimetry is a technique developed for assessing cone- and rod-function at fixed background luminances in retinal disease. However, the state of adaptation during testing is unknown but crucial in the interpretation of results. We therefore aimed to determine the adaptational state of rod- and cone-mechanisms in two-colour perimetry. METHODS Sensitivity to 480 nm (blue) and 640 nm (red) Goldmann size V targets was determined for 10 normal subjects aged 16 to 46 years at 17 locations in the central 60 degrees of the visual field under scotopic conditions and then from -1.5 log cd m-2 to 2 log cd m-2 (white background) in 0.5 log unit steps. Data were fitted with threshold versus intensity (tvi) functions of the form logT = logT0 + log ((A + A0 )/A0 )n . RESULTS No clear rod-cone break was observed for 640 nm stimuli. For 480 nm stimuli, transition from rod-detection to cone-detection occurred at mesopic illumination levels, where rod adaptation approached Weber behaviour. Cone detection mechanisms did not display Weber-like adaptation until the background luminance approached 1 log cd.m-2 . Diseases resulting in a "filter effect" - including disorders of the photoreceptors - are therefore predicted to affect sensitivity when rod function is probed with short-wavelength targets under scotopic conditions, but less so under mesopic conditions. Filter effects are similarly anticipated to affect cone function measured using long-wavelength targets under mesopic conditions (e.g., during microperimetry), but less so under photopic conditions. CONCLUSIONS Asymmetries in adaptation in automated two-colour perimetry are predicted to artefactually favour the detection of losses in rod sensitivity under scotopic conditions and cones under mesopic conditions.
Collapse
Affiliation(s)
- Matthew P Simunovic
- Save Sight Institute, Discipline of Ophthalmology, University of Sydney, Sydney, Australia.,Retinal Unit, Sydney Eye Hospital, Sydney, Australia
| | - Kristina Hess
- Save Sight Institute, Discipline of Ophthalmology, University of Sydney, Sydney, Australia.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Neil Avery
- Retinal Unit, Sydney Eye Hospital, Sydney, Australia
| | - Zaid Mammo
- Retinal Unit, Sydney Eye Hospital, Sydney, Australia
| |
Collapse
|
37
|
ASSOCIATION BETWEEN GENOTYPE AND DISEASE PROGRESSION IN ITALIAN STARGARDT PATIENTS: A Retrospective Natural History Study. Retina 2020; 39:1399-1409. [PMID: 29642238 DOI: 10.1097/iae.0000000000002151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the natural history of Stargardt disease over a multiyear follow-up. METHODS We reviewed medical records of Stargardt disease patients, with clinical diagnosis of Stargardt disease at a single institution, which was also supported by molecular diagnosis. All patients underwent best-corrected visual acuity, fundus photography, optical coherence tomography, and full-field electroretinography. RESULTS The study cohort consisted of 157 Stargardt disease patients aged 30.4 ± 1.1 years. Longitudinal analysis (mean follow-up: 3 years) showed a significant worsening of best-corrected visual acuity at an average rate of 1.5 Early Treatment Diabetic Retinopathy Study letters/year (P < 0.001), an enlargement of retinal pigment epithelium lesion area by optical coherence tomography at an average linear rate of 0.10 mm/year (P < 0.001), and a thinning of central macular thickness at a mean rate of -1.42 μm/year (P < 0.001). Survival analysis showed that patients with 2 alleles harboring likely-null variants, on average, reached most severe disease stage, i.e., legal blindness, alteration in both dark-adapted and light-adapted electroretinographic responses, and retinal pigment epithelium lesion area larger than 2.5 mm significantly earlier than patients with at least one allele harboring a missense variant. CONCLUSION The current longitudinal study showed a significant genotype-phenotype correlation characterization, because patients harboring 2 likely-null alleles reach a severe disease stage about 10 years earlier than patients with at least one missense allele.
Collapse
|
38
|
Faster Sensitivity Loss around Dense Scotomas than for Overall Macular Sensitivity in Stargardt Disease: ProgStar Report No. 14. Am J Ophthalmol 2020; 216:219-225. [PMID: 32222369 DOI: 10.1016/j.ajo.2020.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE Mean sensitivity (MS) derived from a standard test grid using microperimetry is a sensitive outcome measure in clinical trials investigating new treatments for degenerative retinal diseases. This study hypothesizes that the functional decline is faster at the edge of the dense scotoma (eMS) than by using the overall MS. DESIGN Multicenter, international, prospective cohort study: ProgStar Study. METHODS Stargardt disease type 1 patients (carrying at least 1 mutation in the ABCA4 gene) were followed over 12 months using microperimetry with a Humphrey 10-2 test grid. Customized software was developed to automatically define and selectively follow the test points directly adjacent to the dense scotoma points and to calculate their mean sensitivity (eMS). RESULTS Among 361 eyes (185 patients), the mean age was 32.9 ± 15.1 years old. At baseline, MS was 10.4 ± 5.2 dB (n = 361), and the eMS was 9.3 ± 3.3 dB (n = 335). The yearly progression rate of MS (1.5 ± 2.1 dB/year) was significantly lower (β = -1.33; P < .001) than that for eMS (2.9 ± 2.9 dB/year). There were no differences between progression rates using automated grading and those using manual grading (β = .09; P = .461). CONCLUSIONS In Stargardt disease type 1, macular sensitivity declines significantly faster at the edge of the dense scotoma than in the overall test grid. An automated, time-efficient approach for extracting and grading eMS is possible and appears valid. Thus, eMS offers a valuable tool and sensitive outcome parameter with which to follow Stargardt patients in clinical trials, allowing clinical trial designs with shorter duration and/or smaller cohorts.
Collapse
|
39
|
Rod function deficit in retained photoreceptors of patients with class B Rhodopsin mutations. Sci Rep 2020; 10:12552. [PMID: 32724127 PMCID: PMC7387454 DOI: 10.1038/s41598-020-69456-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
A common inherited retinal disease is caused by mutations in RHO expressed in rod photoreceptors that provide vision in dim ambient light. Approximately half of all RHO mutations result in a Class B phenotype where mutant rods are retained in some retinal regions but show severe degeneration in other regions. We determined the natural history of dysfunction and degeneration of retained rods by serially evaluating patients. Even when followed for more than 20 years, rod function and structure at some retinal locations could remain unchanged. Other locations showed loss of both vision and photoreceptors but the rate of rod vision loss was greater than the rate of photoreceptor degeneration. This unexpected divergence in rates with disease progression implied the development of a rod function deficit beyond loss of cells. The divergence of progression rates was also detectable over a short interval of 2 years near the health-disease transition in the superior retina. A model of structure–function relationship supported the existence of a large rod function deficit which was also most prominent near regions of health-disease transition. Our studies support the realistic therapeutic goal of improved night vision for retinal regions specifically preselected for rod function deficit in patients.
Collapse
|
40
|
Garafalo AV, Cideciyan AV, Héon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, Jacobson SG. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res 2020; 77:100827. [PMID: 31899291 PMCID: PMC8714059 DOI: 10.1016/j.preteyeres.2019.100827] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022]
Abstract
Due to improved phenotyping and genetic characterization, the field of 'incurable' and 'blinding' inherited retinal diseases (IRDs) has moved substantially forward. Decades of ascertainment of IRD patient data from Philadelphia and Toronto centers illustrate the progress from Mendelian genetic types to molecular diagnoses. Molecular genetics have been used not only to clarify diagnoses and to direct counseling but also to enable the first clinical trials of gene-based treatment in these diseases. An overview of the recent reports of gene augmentation clinical trials by subretinal injections is used to reflect on the reasons why there has been limited success in this early venture into therapy. These first-in human experiences have taught that there is a need for advancing the techniques of delivery of the gene products - not only for refining further subretinal trials, but also for evaluating intravitreal delivery. Candidate IRDs for intravitreal gene delivery are then suggested to illustrate some of the disorders that may be amenable to improvement of remaining central vision with the least photoreceptor trauma. A more detailed understanding of the human IRDs to be considered for therapy and the calculated potential for efficacy should be among the routine prerequisites for initiating a clinical trial.
Collapse
Affiliation(s)
- Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rebecca Sheplock
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander Pearson
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Caberry WeiYang Yu
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Alexander Sumaroka
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Pfau M, Holz FG, Müller PL. Retinal light sensitivity as outcome measure in recessive Stargardt disease. Br J Ophthalmol 2020; 105:258-264. [PMID: 32345606 DOI: 10.1136/bjophthalmol-2020-316201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS To evaluate the applicability of mesopic light sensitivity measurements obtained by fundus-controlled perimetry (FCP, also termed 'microperimetry') as clinical trial endpoint in Stargardt disease (STGD1). METHODS In this retrospective, monocentre cohort study, 271 eyes of 136 patients (age, 37.1 years) with STGD1 and 87 eyes of 54 healthy controls (age, 41.0 years) underwent mesopic FCP, using a pattern of 50 stimuli (achromatic, 400-800 nm) centred on the fovea. The concurrent validity of mesopic FCP testing using the MAIA device (CenterVue, Italy), the retest variability and its determinants, and the progression of sensitivity loss over time were investigated using mixed-model analyses. The main outcomes were the average pointwise sensitivity loss in dependence of patients' demographic, functional and imaging characteristics, the intrasession 95% coefficient of repeatability, and the pointwise sensitivity loss over time. RESULTS Pointwise sensitivity loss was on average (estimate (95% CI)) 13.88 dB (12.55 to 15.21) along the horizontal meridian and was significantly associated with the electrophysiological subgroup, presence/absence of foveal sparing, best-corrected visual acuity and disease duration. The 95% coefficient of repeatability was 12.15 dB (10.78 to 13.38) and varied in dependence of the underlying mean sensitivity and local sensitivity slope. The global progression rate for the sensitivity loss was 0.45 dB/year (0.13 to 0.78) and was higher for the central and inner ETDRS subfields compared with more peripheral regions. CONCLUSIONS Mesopic light sensitivity measured by FCP is reliable and susceptible for functional changes. It constitutes a potential clinical outcome for both natural history studies as well as future interventional studies in patients with STGD1.
Collapse
Affiliation(s)
- Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany .,Center for Rare Diseases, University of Bonn, Bonn, Germany.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
42
|
Nakamura N, Tsunoda K, Mizuno Y, Usui T, Hatase T, Ueno S, Kuniyoshi K, Hayashi T, Katagiri S, Kondo M, Kameya S, Yoshitake K, Fujinami K, Iwata T, Miyake Y. Clinical Stages of Occult Macular Dystrophy Based on Optical Coherence Tomographic Findings. Invest Ophthalmol Vis Sci 2020; 60:4691-4700. [PMID: 31725168 DOI: 10.1167/iovs.19-27486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the course of occult macular dystrophy (OMD, Miyake's disease) and to propose stages of OMD based on the optical coherence tomographic (OCT) findings. Methods Sixty-one patients from 33 families with OMD who carried one of the proven variants of the RP1L1 gene were studied at seven centers in Japan. Ophthalmological examinations including the best-corrected visual acuity (BVCA) and OCT were performed. Results The median age at the last visit was 50 years with a range of 10 to 88 years, and the median age at the symptom onset was 30 years with a range of 3 to 60 years. There were significant negative correlations between the duration of OMD and BCVA, the central retinal thickness (CRT) and the thickness between external limiting membrane and retinal pigment epithelium (ERT). The BCVA gradually decreased for 10 years after symptom onset and was stable thereafter. Kaplan-Meier survival curves of the BCVA and retinal thickness showed that all of the patients had retained a vision of 1.0 logMAR, and over 80% of the patients had retained 50% thickness of the normal CRT and ERT for at least 60 years after symptom onset. The stages of OMD based on the visual symptoms and OCT findings are proposed. Conclusions The photoreceptors do not become completely atrophic even at the late stage, which may account for the good retinal pigment epithelium (RPE) structure and normal-appearing fundus. The proposed stages facilitate the investigation of the pathogenicity of OMD and provide information to determine the effectiveness of therapeutic procedures.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | | | | - Tetsuhisa Hatase
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,University College London Institute of Ophthalmology, London, United Kingdom.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Yozo Miyake
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Kobe Eye Center, Hyogo, Japan
| |
Collapse
|
43
|
Abu-Ameerh M, Mohammad H, Dardas Z, Barham R, Ali D, Bijawi M, Tawalbeh M, Amr S, Hatmal MM, Al-Bdour M, Awidi A, Azab B. Extending the spectrum of CLRN1- and ABCA4-associated inherited retinal dystrophies caused by novel and recurrent variants using exome sequencing. Mol Genet Genomic Med 2020; 8:e1123. [PMID: 31968401 PMCID: PMC7057102 DOI: 10.1002/mgg3.1123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/14/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023] Open
Abstract
Background Inherited retinal dystrophies (IRDs) are characterized by extreme genetic and clinical heterogeneity. There are many genes that are known to cause IRD which makes the identification of the underlying genetic causes quite challenging. And in view of the emergence of therapeutic options, it is essential to combine molecular and clinical data to correctly diagnose IRD patients. In this study, we aimed to identify the disease‐causing variants (DCVs) in four consanguineous Jordanian families with IRDs and describe genotype–phenotype correlations. Methods Exome sequencing (ES) was employed on the proband patients of each family, followed by segregation analysis of candidate variants in affected and unaffected family members by Sanger sequencing. Simulation analysis was done on one novel CLRN1 variant to characterize its effect on mRNA processing. Clinical evaluation included history, slit‐lamp biomicroscopy, and indirect ophthalmoscopy. Results We identified two novel variants in CLRN1 [(c.433+1G>A) and (c.323T>C, p.Leu108Pro)], and two recurrent variants in ABCA4 [(c.1648G>A, p.Gly550Arg) and (c.5460+1G>A)]. Two families with the same DCV were found to have different phenotypes and another family was shown to have sector RP. Moreover, simulation analysis for the CLRN1 splice donor variant (c.433+1G>A) showed that the variant might affect mRNA processing resulting in the formation of an abnormal receptor. Also, a family that was previously diagnosed with nonsyndromic RP was found to have Usher syndrome based on their genetic assessment and audiometry. Conclusion Our findings extend the spectrum of CLRN1‐ and ABCA4‐associated IRDs and describe new phenotypes for these genes. We also highlighted the importance of combining molecular and clinical data to correctly diagnose IRDs and the utility of simulation analysis to predict the effect of splice donor variants on protein formation and function.
Collapse
Affiliation(s)
- Mohammed Abu-Ameerh
- Department of Ophthalmology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | | | - Zain Dardas
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Raghda Barham
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Maysa Bijawi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mohamed Tawalbeh
- Department of Otolaryngology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Sami Amr
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Muawyah Al-Bdour
- Department of Ophthalmology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Medicine and Hematology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan.,Human and Molecular Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
44
|
Joo K, Seong MW, Park KH, Park SS, Woo SJ. Genotypic profile and phenotype correlations of ABCA4-associated retinopathy in Koreans. Mol Vis 2019; 25:679-690. [PMID: 31814693 PMCID: PMC6857773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE This study was conducted to analyze the clinical features associated with the pathogenic variants of ABCA4 in Korean patients with inherited retinal dystrophies (IRDs). METHODS We enrolled patients with IRDs who visited a tertiary referral hospital and identified the pathogenic variants of ABCA4 through targeted gene panel sequencing and whole exome sequencing. We analyzed the clinical characteristics and phenotypic spectrum according to genotype. RESULTS Eleven patients (from nine families) with IRDs and pathogenic variants in ABCA4 were included. Eight patients (from seven families) with Stargardt disease (STGD), two (from one family) with cone-rod dystrophy (CRD), and one with early-onset retinitis pigmentosa (RP) were included. Two heterozygous mutations were identified in eight families, and one variant was found in a patient with fundus flavimaculatus. Two variants, p.Gln294Ter and p.Gln636Lys, were associated with severe phenotypes, such as early-onset RP and CRD. Four novel pathogenic variants, p.Gln636Lys, p.Ile1114del, p.Thr1117Ala, and p.Asn1588Tyr, were identified. p.Gln294Ter, p.Leu1157Ter, and p.Lys2049ArgfsTer12 were repeatedly detected in Koreans with ABCA4-associated retinal diseases (ABCA4-RD). CONCLUSIONS Various pathogenic variants of ABCA4, including four novel variants, were identified, and ABCA4-RD exhibited various phenotypes and disease severities in a Korean IRD cohort. These findings will be useful for understanding the clinical features of ABCA4-RD and ethnicity-specific variants in East Asians.
Collapse
Affiliation(s)
- Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
45
|
Antioxidant Saffron and Central Retinal Function in ABCA4-Related Stargardt Macular Dystrophy. Nutrients 2019; 11:nu11102461. [PMID: 31618812 PMCID: PMC6835540 DOI: 10.3390/nu11102461] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Retinal oxidative damage, associated with an ATP-binding cassette, sub-family A, member 4, also known as ABCA4 gene mutation, has been implicated as a major underlying mechanism for Stargardt disease/fundus flavimaculatus (STG/FF). Recent findings indicate that saffron carotenoid constituents crocins and crocetin may counteract retinal oxidative damage, inflammation and protect retinal cells from apoptosis. This pilot study aimed to evaluate central retinal function following saffron supplementation in STG/FF patients carrying ABCA4 mutations. Methods: in a randomized, double-blind, placebo-controlled study (clinicaltrials.gov: NCT01278277), 31 patients with ABCA4-related STG/FF and a visual acuity >0.25 were randomly assigned to assume oral saffron (20 mg) or placebo over a six month period and then reverted to P or S for a further six month period. Full ophthalmic examinations, as well as central 18° focal electroretinogram (fERG) recordings, were performed at baseline and after six months of either saffron or placebo. The fERG fundamental harmonic component was isolated by Fourier analysis. Main outcome measures were fERG amplitude (in µV) and phase (in degrees). The secondary outcome measure was visual acuity. Results: supplement was well tolerated by all patients throughout follow-up. After saffron, fERG amplitude was unchanged; after placebo, amplitude tended to decrease from baseline (mean change: −0.18 log µV, p < 0.05). Reverting the treatments, amplitude did not change significantly. fERG phase and visual acuity were unchanged throughout follow-up. Conclusions: short-term saffron supplementation was well tolerated and had no detrimental effects on the electroretinographic responses of the central retina and visual acuity. The current findings warrant further long-term clinical trials to assess the efficacy of saffron supplementation in slowing down the progression of central retinal dysfunction in ABCA4-related STG/FF.
Collapse
|
46
|
Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 2019; 74:100774. [PMID: 31472235 DOI: 10.1016/j.preteyeres.2019.100774] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
Collapse
|
47
|
Valkenburg D, Runhart EH, Bax NM, Liefers B, Lambertus SL, Sánchez CI, Cremers FPM, Hoyng CB. Highly Variable Disease Courses in Siblings with Stargardt Disease. Ophthalmology 2019; 126:1712-1721. [PMID: 31522899 DOI: 10.1016/j.ophtha.2019.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To investigate intersibling phenotypic concordance in Stargardt disease (STGD1). DESIGN Retrospective cohort study. PARTICIPANTS Siblings with genetically confirmed STGD1 and at least 1 available fundus autofluorescence (FAF) image of both eyes. METHODS We compared age at onset within families. Disease duration was matched to investigate differences in best-corrected visual acuity (BCVA) and compared the survival time for reaching severe visual impairment (<20/200 Snellen or >1.0 logarithm of the minimum angle of resolution [logMAR]). Central retinal atrophy area was quantified independently by 2 experienced graders using semiautomated software and compared between siblings. Both graders performed qualitative assessment of FAF and spectral-domain (SD) OCT images to identify phenotypic differences. MAIN OUTCOME MEASURES Differences in age at onset, disease duration-matched BCVA, time to severe visual impairment development, FAF atrophy area, FAF patterns, and genotypes. RESULTS Substantial differences in age at onset were present in 5 of 17 families, ranging from 13 to 39 years. Median BCVA at baseline was 0.60 logMAR (range, -0.20 to 2.30 logMAR; Snellen equivalent, 20/80 [range, 20/12-hand movements]) in the right eye and 0.50 logMAR (range, -0.20 to 2.30 logMAR; Snellen equivalent, 20/63 [range, 20/12-hand movements]) in the left eye. Disease duration-matched BCVA was investigated in 12 of 17 families, and the median difference was 0.41 logMAR (range, 0.00-1.10 logMAR) for the right eye and 0.41 logMAR (range, 0.00-1.08 logMAR) for the left eye. We observed notable differences in time to severe visual impairment development in 7 families, ranging from 1 to 29 years. Median central retinal atrophy area was 11.38 mm2 in the right eye (range, 1.98-44.78 mm2) and 10.59 mm2 in the left eye (range, 1.61-40.59 mm2) and highly comparable between siblings. Similarly, qualitative FAF and SD OCT phenotypes were highly comparable between siblings. CONCLUSIONS Phenotypic discordance between siblings with STGD1 carrying the same ABCA4 variants is a prevalent phenomenon. Although the FAF phenotypes are highly comparable between siblings, functional outcomes differ substantially. This complicates both sibling-based prognosis and genotype-phenotype correlations and has important implications for patient care and management.
Collapse
Affiliation(s)
- Dyon Valkenburg
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esmee H Runhart
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart Liefers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stanley L Lambertus
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Clara I Sánchez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Allikmets R, Zernant J, Lee W. Penetrance of the ABCA4 p.Asn1868Ile Allele in Stargardt Disease. Invest Ophthalmol Vis Sci 2019; 59:5564-5565. [PMID: 30480703 PMCID: PMC6735614 DOI: 10.1167/iovs.18-25579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rando Allikmets
- Departments of Ophthalmology, Columbia University, New York, New York, United States.,Pathology & Cell Biology, Columbia University, New York, New York, United States
| | - Jana Zernant
- Departments of Ophthalmology, Columbia University, New York, New York, United States
| | - Winston Lee
- Departments of Ophthalmology, Columbia University, New York, New York, United States
| |
Collapse
|
49
|
Garces F, Jiang K, Molday LL, Stöhr H, Weber BH, Lyons CJ, Maberley D, Molday RS. Correlating the Expression and Functional Activity of ABCA4 Disease Variants With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci 2019; 59:2305-2315. [PMID: 29847635 PMCID: PMC5937799 DOI: 10.1167/iovs.17-23364] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Stargardt disease (STGD1), the most common early-onset recessive macular degeneration, is caused by mutations in the gene encoding the ATP-binding cassette transporter ABCA4. Although extensive genetic studies have identified more than 1000 mutations that cause STGD1 and related ABCA4-associated diseases, few studies have investigated the extent to which mutations affect the biochemical properties of ABCA4. The purpose of this study was to correlate the expression and functional activities of missense mutations in ABCA4 identified in a cohort of Canadian patients with their clinical phenotype. Methods Eleven patients from British Columbia were diagnosed with STGD1. The exons and exon-intron boundaries were sequenced to identify potential pathologic mutations in ABCA4. Missense mutations were expressed in HEK293T cells and their level of expression, retinoid substrate binding properties, and ATPase activities were measured and correlated with the phenotype of the STGD1 patients. Results Of the 11 STGD1 patients analyzed, 7 patients had two mutations in ABCA4, 3 patients had one detected mutation, and 1 patient had no mutations in the exons and flanking regions. Included in this cohort of patients was a severely affected 11-year-old child who was homozygous for the novel p.Ala1794Pro mutation. Expression and functional analysis of this variant and other disease-associated variants compared favorably with the phenotypes of this cohort of STGD1 patients. Conclusions Although many factors contribute to the phenotype of STGD1 patients, the expression and residual activity of ABCA4 mutants play a major role in determining the disease severity of STGD1 patients.
Collapse
Affiliation(s)
- Fabian Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kailun Jiang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Christopher J Lyons
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Maberley
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Molday LL, Wahl D, Sarunic MV, Molday RS. Localization and functional characterization of the p.Asn965Ser (N965S) ABCA4 variant in mice reveal pathogenic mechanisms underlying Stargardt macular degeneration. Hum Mol Genet 2019; 27:295-306. [PMID: 29145636 DOI: 10.1093/hmg/ddx400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/08/2017] [Indexed: 11/12/2022] Open
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) proteins that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across outer segment disc membranes thereby facilitating the removal of potentially toxic retinoid compounds from photoreceptor cells. Mutations in the gene encoding ABCA4 are responsible for Stargardt disease (STGD1), an autosomal recessive retinal degenerative disease that causes severe vision loss. To define the molecular basis for STGD1 associated with the p.Asn965Ser (N965S) mutation in the Walker A motif of nucleotide binding domain 1 (NBD1), we generated a p.Asn965Ser knockin mouse and compared the subcellular localization and molecular properties of the disease variant with wild-type (WT) ABCA4. Here, we show that the p.Asn965Ser ABCA4 variant expresses at half the level of WT ABCA4, partially mislocalizes to the endoplasmic reticulum (ER) of photoreceptors, is devoid of N-Ret-PE activated ATPase activity, and causes an increase in autofluorescence and the bisretinoid A2E associated with lipofuscin deposits in retinal pigment epithelial cells as found in Stargardt patients and Abca4 knockout mice. We also show for the first time that a significant fraction of WT ABCA4 is retained in the inner segment of photoreceptors. On the basis of these studies we conclude that loss in substrate-dependent ATPase activity and protein misfolding are mechanisms underlying STGD1 associated with the p.Asn965Ser mutation in ABCA4. Functional and molecular modeling studies further suggest that similar pathogenic mechanisms are responsible for Tangiers disease associated with the p.Asn935Ser (N935S) mutation in the NBD1 Walker A motif of ABCA1.
Collapse
Affiliation(s)
- Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Daniel Wahl
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada V5Z 3N9
| |
Collapse
|