1
|
Zin OA, Neves LM, Motta FL, Junior DC, Cunha DP, Agonigi BNS, Malacarne J, Rodrigues APS, Rodrigues GD, Tinoco MLC, Horovitz DDG, Carvalho AB, Zin AA, Vasconcelos ZFM, Sallum JMF. Genotype-Phenotype Correlations of Nance-Horan Syndrome in Male and Female Carriers of a Novel Variant. Genes (Basel) 2025; 16:91. [PMID: 39858638 PMCID: PMC11765327 DOI: 10.3390/genes16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Nance-Horan syndrome (NHS) is a rare, frequently underdiagnosed, X-linked disease caused by mutations in the NHS gene. In males, it causes bilateral dense pediatric cataracts, dental anomalies, and facial dysmorphisms. Females traditionally have a more subtle phenotype with discrete lens opacities as an isolated feature. The objective of this case report is to describe a novel variant in NHS, as well as to discuss genotype-phenotype correlations. METHODS Whole-exome sequencing was performed in 3 affected individuals (2 males and 1 female) with pediatric cataracts from the same family, as well as in 2 unaffected members from the same family. Ophthalmological and clinical genetic evaluations were conducted. RESULTS The likely pathogenic variant c.3333del (p.Phe1111Leufs*9) was found in all affected individuals, as well as in one unaffected female family member. Our family was initially diagnosed with isolated hereditary cataracts, but only after the sequencing results was the phenotype revealed, with the systemic features being identified. CONCLUSIONS This reinforces the importance of genetic testing of bilateral familial pediatric cataracts, especially since systemic features such as dental anomalies and intellectual disability may take years before they develop. Not only did genetic testing help to identify extraocular features, but it also made possible accurate family counseling essential in all pediatric cataract cases.
Collapse
Affiliation(s)
- Olivia A. Zin
- Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil; (O.A.Z.)
- Instituto Brasileiro de Oftalmologia, Rio de Janeiro 22250-040, Brazil
| | - Luiza M. Neves
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
- Ophthalmology Department, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | | | - Daltro C. Junior
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
| | - Daniela P. Cunha
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
| | - Bruna N. S. Agonigi
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
| | - Jocieli Malacarne
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
| | - Ana Paula S. Rodrigues
- Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil; (O.A.Z.)
| | - Gabriela D. Rodrigues
- Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil; (O.A.Z.)
| | - Maria Luisa C. Tinoco
- Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil; (O.A.Z.)
| | - Dafne D. G. Horovitz
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
| | | | - Andrea A. Zin
- Instituto Brasileiro de Oftalmologia, Rio de Janeiro 22250-040, Brazil
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
- Instituto Catarata Infantil, Rio de Janeiro 22250-040, Brazil
| | - Zilton F. M. Vasconcelos
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil (Z.F.M.V.)
| | - Juliana M. Ferraz Sallum
- Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil; (O.A.Z.)
- Instituto de Genética Ocular, São Paulo 04552-050, Brazil
| |
Collapse
|
2
|
Wen H, Li Q, Mei S, Cai J, Huang X, Zhao J. A novel frameshift mutation in the NHS gene causes Nance-Horan syndrome in a Chinese family. Gene 2024; 907:148268. [PMID: 38350513 DOI: 10.1016/j.gene.2024.148268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Affiliation(s)
- Huaming Wen
- Department of Ophthalmology, Chang'an Hospital of Dongguan, Dongguan 538240, Guangdong, China
| | - Qianwen Li
- Department of Oral & Maxillofacial Surgery, Shenzhen Stomatology Hospital, The Affiliated Shenzhen stomatology Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Shaoyi Mei
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China
| | - Jiamin Cai
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China
| | - Xiaosheng Huang
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China.
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzen 518020, Guangdong, China.
| |
Collapse
|
3
|
Yener S, Şahin C, Ilce Z. Retrospective Evaluation of Urological Problems in Rare Childhood Syndromes. Cureus 2023; 15:e41577. [PMID: 37554621 PMCID: PMC10406510 DOI: 10.7759/cureus.41577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Objective Rare syndromes are defined as diseases that affect a small number of people compared to the general population. In the literature, rare syndromes have variable definitions according to countries. In this study, patients diagnosed with various rare syndromes who were referred to the pediatric urology clinic were examined in terms of associated urological anomalies. Patients and methods In this study, patients who were referred to our outpatient clinic between 2017 and 2022 with a diagnosis of a rare syndrome with or without urological or urogenital findings were retrospectively analyzed. The urinary system ultrasonography and scrotal ultrasonography of the patients were also recorded. Comorbidities, diseases, and surgeries they had undergone were determined through detailed medical history. Results A total of 32 patients were identified. Eleven (35%) of the patients were female and 21 (65%) were male. The average age of the patients was 6.5 years. The syndromes observed in the patients, in order of frequency, were microdeletion syndromes (n = 4), Roberts syndrome (n = 3), and Ehlers-Danlos syndrome (n = 2), and a variety of different syndromes were found in the remaining 22 patients. Despite having no symptoms, the second patient was found to have left hydronephrosis, and the third patient was found to have right renal ectopia on their urinary system ultrasound. Pathological findings were observed in 10 (31.2%) patients on their urinary system ultrasound. Conclusion Although only a small portion of these findings require surgery, the presence of urological anomalies should be investigated. Therefore, we recommend urological evaluation for all patients with rare syndromes, regardless of whether they have symptoms or not.
Collapse
Affiliation(s)
- Sevim Yener
- Department of Pediatric Urology, University of Health Sciences, Umraniye Training and Research Hospital, Istanbul, TUR
| | - Ceyhan Şahin
- Department of Pediatric Surgery, University of Health Sciences, Umraniye Training and Research Hospital, Istanbul, TUR
| | - Zekeriya Ilce
- Department of Pediatric Surgery, University of Health Sciences, Umraniye Training and Research Hospital, Istanbul, TUR
| |
Collapse
|
4
|
Guven Y, Saracoglu HP, Aksakal SD, Kalayci T, Altunoglu U, Uyguner ZO, Eraslan S, Borklu E, Kayserili H. Nance-Horan Syndrome: characterization of dental, clinical and molecular features in three new families. BMC Oral Health 2023; 23:314. [PMID: 37221585 DOI: 10.1186/s12903-023-03029-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Nance-Horan syndrome (NHS; MIM 302,350) is an extremely rare X-linked dominant disease characterized by ocular and dental anomalies, intellectual disability, and facial dysmorphic features. CASE PRESENTATION We report on five affected males and three carrier females from three unrelated NHS families. In Family 1, index (P1) showing bilateral cataracts, iris heterochromia, microcornea, mild intellectual disability, and dental findings including Hutchinson incisors, supernumerary teeth, bud-shaped molars received clinical diagnosis of NHS and targeted NHS gene sequencing revealed a novel pathogenic variant, c.2416 C > T; p.(Gln806*). In Family 2, index (P2) presenting with global developmental delay, microphthalmia, cataracts, and ventricular septal defect underwent SNP array testing and a novel deletion encompassing 22 genes including the NHS gene was detected. In Family 3, two half-brothers (P3 and P4) and maternal uncle (P5) had congenital cataracts and mild to moderate intellectual deficiency. P3 also had autistic and psychobehavioral features. Dental findings included notched incisors, bud-shaped permanent molars, and supernumerary molars. Duo-WES analysis on half-brothers showed a hemizygous novel deletion, c.1867delC; p.(Gln623ArgfsTer26). CONCLUSIONS Dental professionals can be the first-line specialists involved in the diagnosis of NHS due to its distinct dental findings. Our findings broaden the spectrum of genetic etiopathogenesis associated with NHS and aim to raise awareness among dental professionals.
Collapse
Affiliation(s)
- Yeliz Guven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Vezneciler, Istanbul, Turkey.
| | | | - Sermin Dicle Aksakal
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Tugba Kalayci
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Koc University School of Medicine (KUSoM), Sarıyer, Istanbul, Turkey
- Genetic Diseases Evaluation Center, Koc University Hospital, Zeytinburnu, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Serpil Eraslan
- Genetic Diseases Evaluation Center, Koc University Hospital, Zeytinburnu, Istanbul, Turkey
| | - Esra Borklu
- Genetic Diseases Evaluation Center, Koc University Hospital, Zeytinburnu, Istanbul, Turkey
| | - Hulya Kayserili
- Department of Medical Genetics, Koc University School of Medicine (KUSoM), Sarıyer, Istanbul, Turkey
- Genetic Diseases Evaluation Center, Koc University Hospital, Zeytinburnu, Istanbul, Turkey
| |
Collapse
|
5
|
Huang Y, Ma L, Zhang Z, Nie S, Zhou Y, Zhang J, Wang C, Fang X, Quan Y, He T, Liu A, Peng D. Nance-Horan syndrome pedigree due to a novel microdeletion and skewed X chromosome inactivation. Mol Genet Genomic Med 2022; 11:e2100. [PMID: 36370055 PMCID: PMC9938751 DOI: 10.1002/mgg3.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Nance-Horan syndrome (NHS) is a rare and often overlooked X-linked dominant disorder characterized by dense congenital cataracts, dental abnormalities, and mental retardation. The majority of NHS variations include frameshift mutations, nonsense mutations, microdeletions, and insertions. METHODS Copy number variation sequencing was performed to determine the microdeletion. The expression of NHS was detected by RT-PCR. Four family members were tested for X chromosome inactivation. RESULTS In this study, all members were examined for systemic examinations and genetic testing of four members and two affected subjects are observed. We identified a heterozygous microdeletion of -0.52 Mb at Xp22.13 in a female proband presenting NHS phenotypically. The microdeletion contains the REPS2 and NHS genes and was inherited from a phenotypically normal mother. Of interest, the expression NHS of proband was reduced and the skewed X chromosome inactivation rate reached more than 85% compared with her mother and the control. It was concluded that the haploinsufficiency of the NHS gene may account for the majority of clinical symptoms in the affected subjects. The variability among female carriers presumably results from nonrandom X chromosome inactivation. CONCLUSION Our findings broaden the spectrum of NHS mutations and provide molecular insight into NHS clinical prenatal genetic diagnosis.
Collapse
Affiliation(s)
- Yazhou Huang
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Linya Ma
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Zhaoxia Zhang
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Shujuan Nie
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Yuan Zhou
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Jibo Zhang
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Chao Wang
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Xingxin Fang
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Yingting Quan
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Ting He
- Department of Medical GeneticsChangde First People's HospitalChangdeChina
| | - Anhui Liu
- Affiliated Hospital of Changde CityUniversity of South ChinaHengyangChina
| | - Dan Peng
- Department of Medical GeneticsChangde First People's HospitalChangdeChina,Affiliated Hospital of Changde CityUniversity of South ChinaHengyangChina
| |
Collapse
|
6
|
Grillos AS, Roach JM, de Mestre AM, Foote AK, Kinglsey NB, Mienaltowski MJ, Bellone RR. First reported case of fragile foal syndrome type 1 in the Thoroughbred caused by PLOD1 c.2032G>A. Equine Vet J 2022; 54:1086-1093. [PMID: 34939209 PMCID: PMC9213567 DOI: 10.1111/evj.13547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Warmblood Fragile Foal Syndrome Type 1 (WFFS) is an autosomal recessive disorder reported previously only in warmbloods and thought to be caused by a variant in the gene procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 (PLOD1, c.2032G>A, p.Gly678Arg). Given the presentation of this Thoroughbred case, we hypothesised that a similar genetic mechanism caused this phenotype. OBJECTIVES To describe the pathological and genetic findings on a foal presenting to a veterinary practice in the UK with skin lesions similar to other Ehlers-Danlos Syndromes, including those documented for warmbloods with WFFS. STUDY DESIGN A single case report describing a genetic investigation. METHODS A Thoroughbred foal presenting as dystocia was euthanised for multiple skin lesions and developmental abnormalities. DNA extracted from the foal was tested for the PLOD1 variant (c.2032G>A, p.Gly678Arg) using the commercially available assay. To confirm causality and further interrogate potential novel causes of Ehlers-Danlos Syndrome, 1799 functional candidate genes, including PLOD1, were analysed using whole genome sequencing data generated from DNA extracted from the foal's muscle. These data were compared to 34 control samples from at least 11 other breeds. Variants were prioritised for further evaluation based on predicted impact on protein function. RESULTS Post-mortem evaluation concluded that this foal suffered from a condition of collagen dysplasia. The foal was homozygous for the c.2032G>A PLOD1 variant. Only two other missense variants identified from whole genome sequencing data were also computationally predicted to be deleterious to protein function, (NPHP3 c.1253T>C, p.Leu418Pro, EPDR1 c.154G>C, p.Glu52Gln). Neither of these genes have been linked to similar phenotypes, or Ehlers-Danlos Syndrome in humans or other species and thus further investigation of these variants as the cause of EDS was not warranted. MAIN LIMITATIONS This study is a single case report in the Thoroughbred with no additional cases from this breed yet identified to replicate this finding. CONCLUSIONS Given the clinical presentation similar to WFFS, homozygosity for the PLOD1 variant, and absence of another more plausible causal variant from the WGS experiment, we conclude that PLOD1 c.2032G>A is the likely cause of this foal's condition. This is the first documented evidence of fragile foal syndrome caused by the PLOD1 variant in a breed outside of warmbloods, the Thoroughbred. We therefore recommend a change in the name of this disorder to fragile foal syndrome type 1 (FFS) and utilisation of genetic testing in Thoroughbreds to avoid producing affected foals.
Collapse
Affiliation(s)
- Alexandra S Grillos
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Jessica M Roach
- Equine Pregnancy Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Amanda M de Mestre
- Equine Pregnancy Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hertfordshire, UK
| | | | - Nicole B Kinglsey
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Michael J Mienaltowski
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, California, USA
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
7
|
Lopez Martinolich M, Northrup H, Mancias P, Hillman P, Rao K, Mowrey K. Identification of a novel microdeletion causative of Nance-Horan syndrome. Mol Genet Genomic Med 2022; 10:e1879. [PMID: 35122698 PMCID: PMC8922954 DOI: 10.1002/mgg3.1879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Nance-Horan syndrome (NHS) is a rare X-linked genetic disorder characterized by ophthalmologic and dental anomalies as well as dysmorphic facies. The clinical phenotype in males includes congenital cataracts, vision loss, microcornea, nystagmus, microphthalmia, glaucoma, screwdriver blade-shaped incisors, supernumerary maxillary incisors, diastema, delays, intellectual disability, and dysmorphic facies. With the evolution of array-CGH technology, a total of five kindreds with NHS have been reported in the medical literature with microdeletions encompassing the NHS gene rather than sequencing variants. METHODS The patient is a 19-year-old male born to non-consanguineous parents with a past medical history of bilateral congenital cataracts, nystagmus, poor vision, glaucoma, screwdriver blade-shaped incisors, global developmental delay, intellectual disability, bilateral sensorineural hearing loss, axial hypotonia, and bilateral foot contractures. RESULTS A chromosomal microarray (CMA) was performed and revealed a 1.83-Mb interstitial microdeletion at Xp22.2p22.13 (16,604,890-18,435,836) (GRCh37/hg19) that included NHS, CTPS2, S100G, TXLNG, RBBP7, REPS2, SCML1, RAI2, and SCML2. CONCLUSION Here, we report the second largest microdeletion causative of NHS which also encompasses the remaining four kindreds in hopes of offering a unique perspective at the clinical variability within NHS, investigate genes of interest, and expand the phenotype.
Collapse
Affiliation(s)
- Mariana Lopez Martinolich
- Department of PediatricsDivision of Medical GeneticsMcGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann HospitalHoustonTexasUSA
| | - Hope Northrup
- Department of PediatricsDivision of Medical GeneticsMcGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann HospitalHoustonTexasUSA
| | - Pedro Mancias
- Department of PediatricsDivision of Child and Adolescent NeurologyMcGovern MedicalSchool at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann HospitalHoustonTexasUSA
| | - Paul Hillman
- Department of PediatricsDivision of Medical GeneticsMcGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann HospitalHoustonTexasUSA
| | - Kavya Rao
- Department of PediatricsDivision of Medical GeneticsMcGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann HospitalHoustonTexasUSA
| | - Kate Mowrey
- Department of PediatricsDivision of Medical GeneticsMcGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann HospitalHoustonTexasUSA
| |
Collapse
|
8
|
Damián A, Ionescu RO, Rodríguez de Alba M, Tamayo A, Trujillo-Tiebas MJ, Cotarelo-Pérez MC, Pérez Rodríguez O, Villaverde C, de la Fuente L, Romero R, Núñez-Moreno G, Mínguez P, Ayuso C, Cortón M. Fine Breakpoint Mapping by Genome Sequencing Reveals the First Large X Inversion Disrupting the NHS Gene in a Patient with Syndromic Cataracts. Int J Mol Sci 2021; 22:ijms222312713. [PMID: 34884523 PMCID: PMC8657747 DOI: 10.3390/ijms222312713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Inversions are structural variants that are generally balanced. However, they could lead to gene disruptions or have positional effects leading to diseases. Mutations in the NHS gene cause Nance-Horan syndrome, an X-linked disorder characterised by congenital cataracts and dental anomalies. Here, we aimed to characterise a balanced pericentric inversion X(p22q27), maternally inherited, in a child with syndromic bilateral cataracts by breakpoint mapping using whole-genome sequencing (WGS). 30× Illumina paired-end WGS was performed in the proband, and breakpoints were confirmed by Sanger sequencing. EdU assays and FISH analysis were used to assess skewed X-inactivation patterns. RNA expression of involved genes in the breakpoint boundaries was evaluated by droplet-digital PCR. We defined the breakpoint position of the inversion at Xp22.13, with a 15 bp deletion, disrupting the unusually large intron 1 of the canonical NHS isoform, and also perturbing topologically-associated domains (TADs). Moreover, a microhomology region of 5 bp was found on both sides. RNA analysis confirmed null and reduced NHS expression in the proband and his unaffected mother, respectively. In conclusion, we report the first chromosomal inversion disrupting NHS, fine-mapped by WGS. Our data expand the clinical spectrum and the pathogenic mechanisms underlying the NHS defects.
Collapse
Affiliation(s)
- Alejandra Damián
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
| | - Raluca Oancea Ionescu
- Department of Medical Genetics, University Hospital Clínico San Carlos, 28040 Madrid, Spain; (R.O.I.); (M.C.C.P.)
| | - Marta Rodríguez de Alba
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
| | - Alejandra Tamayo
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
| | - María Carmen Cotarelo-Pérez
- Department of Medical Genetics, University Hospital Clínico San Carlos, 28040 Madrid, Spain; (R.O.I.); (M.C.C.P.)
| | - Olga Pérez Rodríguez
- Department of Pediatrics, University Hospital Clínico San Carlos, 28040 Madrid, Spain;
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Raquel Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (A.D.); (M.R.d.A.); (A.T.); (M.J.T.-T); (C.V.); (L.d.l.F.); (R.R.); (G.N.-M); (P.M.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28290 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Miller C, Gertsen BG, Schroeder AL, Fong CT, Iqbal MA, Zhang B. Allelic and dosage effects of NHS in X-linked cataract and Nance-Horan syndrome: a family study and literature review. Mol Cytogenet 2021; 14:48. [PMID: 34620209 PMCID: PMC8496034 DOI: 10.1186/s13039-021-00566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder caused by mutation in the NHS gene on chromosome Xp22.13. (OMIM 302350). Classic NHS manifested in males is characterized by congenital cataracts, dental anomalies, dysmorphic facial features and occasionally intellectual disability. Females typically have a milder presentation. The majority of reported cases of NHS are the result of nonsense mutations and small deletions. Isolated X-linked congenital cataract is caused by non-recurrent rearrangement-associated aberrant NHS transcription. Classic NHS in females associated with gene disruption by balanced X-autosome translocation has been infrequently reported. We present a familial NHS associated with translocation t(X;19) (Xp22.13;q13.1). The proband, a 28-year-old female, presented with intellectual disability, dysmorphic features, short stature, primary amenorrhea, cleft palate, and horseshoe kidney, but no NHS phenotype. A karyotype and chromosome microarray analysis (CMA) revealed partial monosomy Xp/partial trisomy 19q with the breakpoint at Xp22.13 disrupting the NHS gene. Family history revealed congenital cataracts and glaucoma in the patient’s mother, and congenital cataracts in maternal half-sister and maternal grandmother. The same balanced translocation t(X;19) was subsequently identified in both the mother and maternal half-sister, and further clinical evaluation of the maternal half-sister made a diagnosis of NHS. This study describes the clinical implication of NHS gene disruption due to balanced X-autosome translocations as a unique mechanism causing Nance–Horan syndrome, refines dose effects of NHS on disease presentation and phenotype expressivity, and justifies consideration of karyotype and fluorescence in situ hybridization (FISH) analysis for female patients with familial NHS if single-gene analysis of NHS is negative.
Collapse
Affiliation(s)
- Caroline Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Benjamin G Gertsen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Audrey L Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Anwar Iqbal
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA.
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA. .,Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,Department of Pathology and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA.
| |
Collapse
|
10
|
Prominent and Regressive Brain Developmental Disorders Associated with Nance-Horan Syndrome. Brain Sci 2021; 11:brainsci11091150. [PMID: 34573171 PMCID: PMC8465299 DOI: 10.3390/brainsci11091150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder caused mainly by loss of function variants in the NHS gene. NHS is characterized by congenital cataracts, dental anomalies, and distinctive facial features, and a proportion of the affected individuals also present intellectual disability and congenital cardiopathies. Despite identification of at least 40 distinct hemizygous variants leading to NHS, genotype-phenotype correlations remain largely elusive. In this study, we describe a Sicilian family affected with congenital cataracts and dental anomalies and diagnosed with NHS by whole-exome sequencing (WES). The affected boy from this family presented a late regression of cognitive, motor, language, and adaptive skills, as well as broad behavioral anomalies. Furthermore, brain imaging showed corpus callosum anomalies and periventricular leukoencephalopathy. We expand the phenotypic and mutational NHS spectrum and review potential disease mechanisms underlying the central neurological anomalies and the potential neurodevelopmental features associated with NHS.
Collapse
|
11
|
Jones JL, Corbett MA, Yeaman E, Zhao D, Gecz J, Gasperini RJ, Charlesworth JC, Mackey DA, Elder JE, Craig JE, Burdon KP. A 127 kb truncating deletion of PGRMC1 is a novel cause of X-linked isolated paediatric cataract. Eur J Hum Genet 2021; 29:1206-1215. [PMID: 33867527 PMCID: PMC8385038 DOI: 10.1038/s41431-021-00889-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 02/02/2023] Open
Abstract
Inherited paediatric cataract is a rare Mendelian disease that results in visual impairment or blindness due to a clouding of the eye's crystalline lens. Here we report an Australian family with isolated paediatric cataract, which we had previously mapped to Xq24. Linkage at Xq24-25 (LOD = 2.53) was confirmed, and the region refined with a denser marker map. In addition, two autosomal regions with suggestive evidence of linkage were observed. A segregating 127 kb deletion (chrX:g.118373226_118500408del) in the Xq24-25 linkage region was identified from whole-genome sequencing data. This deletion completely removed a commonly deleted long non-coding RNA gene LOC101928336 and truncated the protein coding progesterone receptor membrane component 1 (PGRMC1) gene following exon 1. A literature search revealed a report of two unrelated males with non-syndromic intellectual disability, as well as congenital cataract, who had contiguous gene deletions that accounted for their intellectual disability but also disrupted the PGRMC1 gene. A morpholino-induced pgrmc1 knockdown in a zebrafish model produced significant cataract formation, supporting a role for PGRMC1 in lens development and cataract formation. We hypothesise that the loss of PGRMC1 causes cataract through disrupted PGRMC1-CYP51A1 protein-protein interactions and altered cholesterol biosynthesis. The cause of paediatric cataract in this family is the truncating deletion of PGRMC1, which we report as a novel cataract gene.
Collapse
Affiliation(s)
- Johanna L. Jones
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Mark A. Corbett
- grid.1010.00000 0004 1936 7304Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Elise Yeaman
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Duran Zhao
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Jozef Gecz
- grid.1010.00000 0004 1936 7304Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Robert J. Gasperini
- grid.1009.80000 0004 1936 826XSchool of Medicine, University of Tasmania, Hobart, TAS Australia
| | - Jac C. Charlesworth
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - David A. Mackey
- grid.1489.40000 0000 8737 8161Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA Australia
| | - James E. Elder
- grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Jamie E. Craig
- grid.1014.40000 0004 0367 2697Department of Ophthalmology, Flinders University, Bedford Park, SA Australia
| | - Kathryn P. Burdon
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia ,grid.1014.40000 0004 0367 2697Department of Ophthalmology, Flinders University, Bedford Park, SA Australia
| |
Collapse
|
12
|
Burdon KP. The utility of genomic testing in the ophthalmology clinic: A review. Clin Exp Ophthalmol 2021; 49:615-625. [PMID: 34231298 DOI: 10.1111/ceo.13970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
Genomic testing assesses many genes in one test. It is often used in the diagnosis of heterogeneous single gene disorders where pathogenic variation in one of many genes are known to cause similar phenotypes, or where a clinical diagnosis is difficult to reach. In the ophthalmic setting, genomic testing can be used to diagnose several groups of diseases, including inherited retinal dystrophies, paediatric cataract, glaucoma and anterior segment dysgenesis and other syndromic developmental disorders with eye involvement. The testing can encompass several modalities ranging from whole genome sequencing to exome sequencing or targeted gene panels. The advantages to the patient of receiving a molecular diagnosis include an end to the diagnostic odyssey, determination of prognosis and clarification of treatment, access to accurate genetic counselling, and confirming eligibility for clinical trials or genetic specific therapies. Genomic testing is a powerful addition to the diagnosis and management of inherited eye disease.
Collapse
Affiliation(s)
- Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
13
|
Fan F, Luo Y, Wu J, Gao C, Liu X, Mei H, Zhou X. The mutation spectrum in familial versus sporadic congenital cataract based on next-generation sequencing. BMC Ophthalmol 2020; 20:361. [PMID: 32883240 PMCID: PMC7469093 DOI: 10.1186/s12886-020-01567-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Congenital cataract (CC) is a significant cause of lifelong visual loss, and its genetic diagnosis is challenging due to marked genetic heterogeneity. The purpose of this article is to report the genetic findings in sporadic and familial CC patients. METHODS Patients (n = 53) who were clinically diagnosed with CC and their parents were recruited. Blood samples were collected in our hospital. Mutations were detected by panel-based next-generation DNA sequencing (NGS) targeting 792 genes frequently involved in common inherited eye diseases. RESULTS We identified variants in 10/37 cases (27.02%) of sporadic CC and 14/16 cases (87.5%) of familial CC, which indicated a significant difference (P = 0.000). Of the 13 variants identified in sporadic cases, nine were previously reported mutations, and three were novel mutations, including one de novo mutation (CRYBB2 c.487C > T). The most frequent variants in our cohort were in crystallins and cytoskeletal genes (5/27, 18.52%), followed by proteins associated with X-linked syndromic conditions (14.81%) and transcriptional factors (11.11%). Additional information on the possibility of complications with inherited ocular or systemic diseases other than CC was provided in 17/27 (62.96%) variants. CONCLUSIONS These results contribute to expanding the mutation spectrum and frequency of genes responsible for CC. Targeted NGS in CC provided significant diagnostic information and enabled more accurate genetic counselling. This study reports the different distributions of mutation genes in familial and sporadic CC cases.
Collapse
Affiliation(s)
- Fan Fan
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Luo
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Jihong Wu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao Gao
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin Liu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hengjun Mei
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiyue Zhou
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
14
|
Bell SJ, Oluonye N, Harding P, Moosajee M. Congenital cataract: a guide to genetic and clinical management. THERAPEUTIC ADVANCES IN RARE DISEASE 2020; 1:2633004020938061. [PMID: 37180497 PMCID: PMC10032449 DOI: 10.1177/2633004020938061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Worldwide 20,000-40,000 children with congenital or childhood cataract are born every year with varying degrees and patterns of lens opacification with a broad aetiology. In most cases of bilateral cataract, a causative genetic mutation can be identified, with autosomal dominant inheritance being most common in 44% of cases. Variants in genes involve lens-specific proteins or those that regulate eye development, thus giving rise to other associated ocular abnormalities. Approximately 15% of cases have systemic features, hence paediatric input is essential to minimise comorbidities and support overall development of children at high risk of visual impairment. In some metabolic conditions, congenital cataract may be the presenting sign, and therefore prompt diagnosis is important where there is an available treatment. Multidisciplinary management of children is essential, including ophthalmic surgeons, orthoptists, paediatricians, geneticists and genetic counsellors, and should extend beyond the medical team to include school and local paediatric visual support services. Early surgery and close follow up in ophthalmology is important to optimise visual potential and prevent amblyopia. Routine genetic testing is essential for the complete clinical management of patients, with next-generation sequencing of 115 genes shown to expedite molecular diagnosis, streamline care pathways and inform genetic counselling and reproductive options for the future. Lay abstract Childhood cataract: how to manage patients Cataract is a clouding of the lens in the eye. Cataract occurring in children has many different causes, which may include infections passed from mother to child during pregnancy, trauma, medications and exposure to radiation. In most cases of cataract occurring in both eyes, a genetic cause can be found which may be inherited from parents or occur sporadically in the developing baby itself while in the womb. Cataracts may occur on their own, with other eye conditions or be present with other disorders in the body as part of a syndrome. Genetic testing is important for all children with cataract as it can provide valuable information about cause, inheritance and risk to further children and signpost any other features of the disease in the rest of the body, permitting the assembly of the correct multidisciplinary care team. Genetic testing currently involves screening for mutations in 115 genes already known to cause cataract and has been shown to expedite diagnosis and help better manage children. Genetic counselling services can support families in understanding their diagnosis and inform future family planning. In order to optimise vision, early surgery for cataract in children is important. This is because the brain is still developing and an unobstructed pathway for light to reach the back of the eye is required for normal visual development. Any obstruction (such as cataract) if left untreated may lead to permanent sight impairment or blindness, even if it is removed later. A multidisciplinary team involved in the care of a child with cataract should include ophthalmic surgeons, orthoptists, paediatricians, geneticists and genetic counsellors, and should extend beyond the medical team to include school and local child visual support services. They will help to diagnose and manage systemic conditions, optimise vision potential and help patients and their families access best supportive care.
Collapse
Affiliation(s)
| | - Ngozi Oluonye
- Department of Genetics, Moorfields Eye Hospital,
London, UK
- Department of Ophthalmology, Great Ormond Street
Hospital for Children, London, UK
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology 11-43 Bath Street
London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital,
London, UK
- Department of Ophthalmology, Great Ormond Street
Hospital for Children, London, UK
| |
Collapse
|
15
|
Wei M, Qi A, Mo H, Wu K, Ma X, Wang B. A novel NHS mutation in a Chinese family with Nance‑Horan Syndrome. Mol Med Rep 2019; 19:4419-4424. [PMID: 30942463 DOI: 10.3892/mmr.2019.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022] Open
Abstract
Nance‑Horan syndrome (NHS) is a rare X‑linked disorder with various clinical manifestations. The present study aimed to identify the pathogenic mutation causing NHS in a three‑generation Chinese family with 4 individuals presenting primarily with congenital cataracts. The genomic DNA of 5 individuals was collected, and family history and clinical information were recorded. Whole exome sequencing was performed on the proband, and candidate mutations were filtered by a series of screening processes and validated by Sanger sequencing. The identified pathogenic mutation was confirmed by co‑segregation analysis. Finally, a novel frameshift mutation (NM_001291867.1: c.302dupA; p.Ala102fs) was identified in the NHS actin remodeling regulator (NHS) gene, which co‑segregated with congenital cataracts in this family. Carrier females exhibited similar but milder clinical symptoms compared with the affected male. These clinical symptoms were consistent with the phenotypic features of the NHS‑associated disease, NHS. In summary, the present study identified a novel NHS mutation in a Chinese family with atypical NHS; the results broaden the known pathogenic mutation spectrum of NHS and will aid in the genetic counseling of patients with NHS. The data from the present study also suggest that genetic analysis may be required for the diagnosis of this disease.
Collapse
Affiliation(s)
- Meirong Wei
- Department of Ophthalmology, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi 545001, P.R. China
| | - Anhui Qi
- Graduate School of Peking Union Medical College, Beijing 100730, P.R. China
| | - Haiming Mo
- Department of Ophthalmology, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi 545001, P.R. China
| | - Kailin Wu
- Department of Ophthalmology, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi 545001, P.R. China
| | - Xu Ma
- Center for Genetics, National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Binbin Wang
- Graduate School of Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
16
|
Ling C, Sui R, Yao F, Wu Z, Zhang X, Zhang S. Whole exome sequencing identified a novel truncation mutation in the NHS gene associated with Nance-Horan syndrome. BMC MEDICAL GENETICS 2019; 20:14. [PMID: 30642278 PMCID: PMC6332535 DOI: 10.1186/s12881-018-0725-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022]
Abstract
Background Nance-Horan syndrome (NHS) is an X-linked inheritance disorder characterized by bilateral congenital cataracts, and facial and dental dysmorphism. This disorder is caused by mutations in the NHS gene. However, NHS may be difficult to detect in individuals with subtle facial dysmorphism and dental abnormalities in whom congenital cataracts are the primary clinical manifestations. Methods In this study, we present a three-generation family with NHS. Whole exome sequencing was performed to determine the potential pathogenic variant in the proband. Further validation was explored with Sanger sequencing in 9 of the available individuals of the family and additional 200 controls. Results A novel truncation mutation in gene NHS (c.C4449G, p.Tyr1483Ter) was found in the proband, who presented with a long-narrow face, prominent nose and large anteverted pinnae ear, screw-driver like incisors, mild mulberry like molars, one missing maxillary second molar and malocclusion. We found this mutation was detected in 2 male patients and 4 female carriers in the family. However, the mutation was never detected in the control subjects. Conclusions In conclusion, we identified a novel truncation mutation in the NHS gene, which might associate with NHS. Our review on the NHS studies illustrated that NHS has significantly clinical heterogeneity. And NHS mutations in the NHS-affected individuals typically result in premature truncation of the protein. And the new mutation revealed in this study would highlight the understanding of the causative mutations of NHS. Electronic supplementary material The online version of this article (10.1186/s12881-018-0725-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Ling
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Fengxia Yao
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhihong Wu
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. .,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
17
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
18
|
Copy Number Variants and Exome Sequencing Analysis in Six Pairs of Chinese Monozygotic Twins Discordant for Congenital Heart Disease. Twin Res Hum Genet 2018; 20:521-532. [PMID: 29192580 PMCID: PMC5729853 DOI: 10.1017/thg.2017.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.
Collapse
|
19
|
A novel small deletion in the NHS gene associated with Nance-Horan syndrome. Sci Rep 2018; 8:2398. [PMID: 29402928 PMCID: PMC5799206 DOI: 10.1038/s41598-018-20787-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/24/2018] [Indexed: 11/29/2022] Open
Abstract
Nance-Horan syndrome is a rare X-linked recessive inherited disease with clinical features including severe bilateral congenital cataracts, characteristic facial and dental abnormalities. Data from Chinese Nance-Horan syndrome patients are limited. We assessed the clinical manifestations of a Chinese Nance-Horan syndrome pedigree and identified the genetic defect. Genetic analysis showed that 3 affected males carried a novel small deletion in NHS gene, c.263_266delCGTC (p.Ala89TrpfsTer106), and 2 female carriers were heterozygous for the same variant. All 3 affected males presented with typical Nance-Horan syndrome features. One female carrier displayed lens opacities centered on the posterior Y-suture in both eyes, as well as mild dental abnormalities. We recorded the clinical features of a Chinese Nance-Horan syndrome family and broadened the spectrum of mutations in the NHS gene.
Collapse
|
20
|
Kammoun M, Brady P, De Catte L, Deprest J, Devriendt K, Vermeesch JR. Congenital diaphragmatic hernia as a part of Nance-Horan syndrome? Eur J Hum Genet 2018; 26:359-366. [PMID: 29358614 DOI: 10.1038/s41431-017-0032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Nance-Horan syndrome is a rare X-linked developmental disorder characterized by bilateral congenital cataract, dental anomalies, facial dysmorphism, and intellectual disability. Here, we identify a patient with Nance-Horan syndrome caused by a new nonsense NHS variant. In addition, the patient presented congenital diaphragmatic hernia. NHS gene expression in murine fetal diaphragm was demonstrated, suggesting a possible involvement of NHS in diaphragm development. Congenital diaphragmatic hernia could result from NHS loss of function in pleuroperitoneal fold or in somites-derived muscle progenitor cells leading to an impairment of their cells migration.
Collapse
Affiliation(s)
- Molka Kammoun
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Paul Brady
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Luc De Catte
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Jan Deprest
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium.
| |
Collapse
|
21
|
Gómez-Laguna L, Martínez-Herrera A, Reyes-de la Rosa ADP, García-Delgado C, Nieto-Martínez K, Fernández-Ramírez F, Valderrama-Atayupanqui TY, Morales-Jiménez AB, Villa-Morales J, Kofman S, Cervantes A, Morán-Barroso VF. Nance-Horan syndrome in females due to a balanced X;1 translocation that disrupts the NHS gene: Familial case report and review of the literature. Ophthalmic Genet 2017; 39:56-62. [PMID: 28922055 DOI: 10.1080/13816810.2017.1363245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Nance-Horan syndrome is an X-linked disorder characterized by congenital cataract, facial features, microcornea, microphthalmia, and dental anomalies; most of the cases are due to NHS gene mutations on Xp22.13. Heterozygous carrier females generally present less severe features, and up to 30% of the affected males have intellectual disability. We describe two patients, mother and daughter, manifesting Nance-Horan syndrome. The cytogenetic and molecular analyses demonstrated a 46,X,t(X;1)(p22.13;q22) karyotype in each of them. No copy-number genomic imbalances were detected by high-density microarray analysis. The mother had a preferential inactivation of the normal X chromosome; expression analysis did not detect any mRNA isoform of NHS. This is the first report of Nance-Horan syndrome due to a skewed X chromosome inactivation resulting from a balanced translocation t(X;1) that disrupts the NHS gene expression, with important implications for clinical presentation and genetic counseling.
Collapse
Affiliation(s)
- Laura Gómez-Laguna
- a Service of Genetics , Hospital General de México Dr. Eduardo Liceaga , Mexico City , Mexico
| | | | | | | | - Karem Nieto-Martínez
- b Faculty of Medicine , Universidad Nacional Autónoma de México (UNAM) , Mexico City , Mexico
| | | | | | | | - Judith Villa-Morales
- c Department of Genetics , Hospital Infantil de México Federico Gómez , Mexico City , Mexico
| | - Susana Kofman
- a Service of Genetics , Hospital General de México Dr. Eduardo Liceaga , Mexico City , Mexico
| | - Alicia Cervantes
- a Service of Genetics , Hospital General de México Dr. Eduardo Liceaga , Mexico City , Mexico.,b Faculty of Medicine , Universidad Nacional Autónoma de México (UNAM) , Mexico City , Mexico
| | | |
Collapse
|
22
|
Shoshany N, Avni I, Morad Y, Weiner C, Einan-Lifshitz A, Pras E. NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome. Curr Eye Res 2017; 42:1240-1244. [PMID: 28557584 DOI: 10.1080/02713683.2017.1304560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. METHODS Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. RESULTS An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. CONCLUSIONS Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.
Collapse
Affiliation(s)
- Nadav Shoshany
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel.,b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel
| | - Isaac Avni
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel.,b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Yair Morad
- b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Chen Weiner
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel
| | - Adi Einan-Lifshitz
- b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Eran Pras
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel.,b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
23
|
Li J, Xia CH, Wang E, Yao K, Gong X. Screening, genetics, risk factors, and treatment of neonatal cataracts. Birth Defects Res 2017; 109:734-743. [PMID: 28544770 DOI: 10.1002/bdr2.1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/21/2022]
Abstract
Neonatal cataracts remain the most common cause of visual loss in children worldwide and have diverse, often unknown, etiologies. This review summarizes current knowledge about the detection, treatment, genetics, risk factors, and molecular mechanisms of congenital cataracts. We emphasize significant progress and topics requiring further study in both clinical cataract therapy and basic lens research. Advances in genetic screening and surgical technologies have improved the diagnosis, management, and visual outcomes of affected children. For example, mutations in lens crystallins and membrane/cytoskeletal components that commonly underlie genetically inherited cataracts are now known. However, many questions still remain regarding the causes, progression, and pathology of neonatal cataracts. Further investigations are also required to improve diagnostic criteria for determining the timing of appropriate interventions, such as the implantation of intraocular lenses and postoperative management strategies, to ensure safety and predictable visual outcomes for children. Birth Defects Research 109:734-743, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinyu Li
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Ke Yao
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| |
Collapse
|
24
|
Accogli A, Traverso M, Madia F, Bellini T, Vari MS, Pinto F, Capra V. A novel Xp22.13 microdeletion in Nance-Horan syndrome. Birth Defects Res 2017; 109:866-868. [PMID: 28464487 DOI: 10.1002/bdr2.1032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder characterized by congenital cataract, dental anomalies and facial dysmorphisms. Notably, up to 30% of NHS patients have intellectual disability and a few patients have been reported to have congenital cardiac defects. Nance-Horan syndrome is caused by mutations in the NHS gene that is highly expressed in the midbrain, retina, lens, tooth, and is conserved across vertebrate species. Although most pathogenic mutations are nonsense mutations, a few genomic rearrangements involving NHS locus have been reported, suggesting a possible pathogenic role of the flanking genes. METHODS Here, we report a microdeletion of 170,6 Kb at Xp22.13 (17.733.948-17.904.576) (GRCh37/hg19), detected by array-based comparative genomic hybridization in an Italian boy with NHS syndrome. RESULTS The microdeletion harbors the NHS, SCLML1, and RAI2 genes and results in a phenotype consistent with NSH syndrome and developmental delay. CONCLUSION We compare our case with the previous Xp22.13 microdeletions and discuss the possible pathogenetic role of the flanking genes. Birth Defects Research 109:866-868, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Accogli
- Istituto G. Gaslini, Genova, Italy.,Università degli Studi di Genova, Italy
| | - Monica Traverso
- Istituto G. Gaslini, Genova, Italy.,Università degli Studi di Genova, Italy
| | | | - Tommaso Bellini
- Istituto G. Gaslini, Genova, Italy.,Università degli Studi di Genova, Italy
| | | | | | | |
Collapse
|
25
|
Siggs OM, Javadiyan S, Sharma S, Souzeau E, Lower KM, Taranath DA, Black J, Pater J, Willoughby JG, Burdon KP, Craig JE. Partial duplication of the CRYBB1-CRYBA4 locus is associated with autosomal dominant congenital cataract. Eur J Hum Genet 2017; 25:711-718. [PMID: 28272538 DOI: 10.1038/ejhg.2017.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Congenital cataract is a rare but severe paediatric visual impediment, often caused by variants in one of several crystallin genes that produce the bulk of structural proteins in the lens. Here we describe a pedigree with autosomal dominant isolated congenital cataract and linkage to the crystallin gene cluster on chromosome 22. No rare single nucleotide variants or short indels were identified by exome sequencing, yet copy number variant analysis revealed a duplication spanning both CRYBB1 and CRYBA4. While the CRYBA4 duplication was complete, the CRYBB1 duplication was not, with the duplicated CRYBB1 product predicted to create a gain of function allele. This association suggests a new genetic mechanism for the development of isolated congenital cataract.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Shari Javadiyan
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia, Australia
| | - Deepa A Taranath
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Jo Black
- Department of Ophthalmology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - John Pater
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia.,Department of Ophthalmology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - John G Willoughby
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
26
|
Cheong SS, Hull S, Jones B, Chana R, Thornton N, Plagnol V, Moore AT, Hardcastle AJ. Pleiotropic effect of a novel mutation in GCNT2 causing congenital cataract and a rare adult i blood group phenotype. Hum Genome Var 2017; 4:17004. [PMID: 28224043 PMCID: PMC5311056 DOI: 10.1038/hgv.2017.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/09/2022] Open
Abstract
Mutations in GCNT2 have been associated with the rare adult i blood group phenotype with or without congenital cataract. We report a novel homozygous frameshift mutation c.1163_1166delATCA, p.(Asn388Argfs*20) as the cause of congenital cataract in two affected siblings. Blood group typing confirmed that both affected males have the rare adult i phenotype, supporting the hypothesis that the partial association of I/i phenotype and congenital cataract is due to the differential expression of GCNT2 isoforms.
Collapse
Affiliation(s)
| | | | - Benjamin Jones
- IBGRL Red Cell Reference Laboratory, NHS Blood and Transplant , Bristol, UK
| | | | - Nicole Thornton
- IBGRL Red Cell Reference Laboratory, NHS Blood and Transplant , Bristol, UK
| | | | - Anthony T Moore
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Ophthalmology Department, UCSF School of Medicine, San Francisco, CA, USA
| | | |
Collapse
|
27
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|
28
|
Tian Q, Li Y, Kousar R, Guo H, Peng F, Zheng Y, Yang X, Long Z, Tian R, Xia K, Lin H, Pan Q. A novel NHS mutation causes Nance-Horan Syndrome in a Chinese family. BMC MEDICAL GENETICS 2017; 18:2. [PMID: 28061824 PMCID: PMC5219716 DOI: 10.1186/s12881-016-0360-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/02/2016] [Indexed: 11/21/2022]
Abstract
Background Nance-Horan Syndrome (NHS) (OMIM: 302350) is a rare X-linked developmental disorder characterized by bilateral congenital cataracts, with occasional dental anomalies, characteristic dysmorphic features, brachymetacarpia and mental retardation. Carrier females exhibit similar manifestations that are less severe than in affected males. Methods Here, we report a four-generation Chinese family with multiple affected individuals presenting Nance-Horan Syndrome. Whole-exome sequencing combined with RT-PCR and Sanger sequencing was used to search for a genetic cause underlying the disease phenotype. Results Whole-exome sequencing identified in all affected individuals of the family a novel donor splicing site mutation (NM_198270: c.1045 + 2T > A) in intron 4 of the gene NHS, which maps to chromosome Xp22.13. The identified mutation results in an RNA processing defect causing a 416-nucleotide addition to exon 4 of the mRNA transcript, likely producing a truncated NHS protein. Conclusions The donor splicing site mutation NM_198270: c.1045 + 2T > A of the NHS gene is the causative mutation in this Nance-Horan Syndrome family. This research broadens the spectrum of NHS gene mutations, contributing to our understanding of the molecular genetics of NHS. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0360-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Tian
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rizwana Kousar
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China.,Department of Biology, Allama Iqbal Open University, Islamabad, Pakistan
| | - Hui Guo
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fenglan Peng
- ChangSha Health Vocational Collage, Changsha, Hunan, China
| | - Yu Zheng
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaohua Yang
- Shenzhen Baoan District Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Zhigao Long
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Runyi Tian
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haiying Lin
- Shenzhen Baoan District Maternal and Child Health Hospital, Shenzhen, Guangdong, China.
| | - Qian Pan
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Gjørup H, Haubek D, Jacobsen P, Ostergaard JR. Nance-Horan syndrome-The oral perspective on a rare disease. Am J Med Genet A 2016; 173:88-98. [PMID: 27616609 DOI: 10.1002/ajmg.a.37963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/21/2016] [Indexed: 11/11/2022]
Abstract
The present study describes seven patients with Nance-Horan syndrome, all referred to a specialized oral care unit in the Central Denmark Region. A literature search on "Nance Horan Syndrome" resulted in 53 publications among which 29 reported on dental findings. Findings reported in these papers have been systematized to obtain an overview of the reported findings and the terminology on dental morphology. All seven patients included in the present study showed deviations of crown morphology on incisors and/or molars. The only consistent and very clear dental aberration was alterations in the tooth morphology that is screwdriver-shaped incisors and bud molars being most pronounced in the permanent dentition, but were also present in the primary dentition. In addition, three patients had supernumerary teeth, and three had dental agenesis. In conclusion, a dental examination as a part of the diagnostic process may reveal distinct characteristics of the dental morphology, which could be of diagnostic value and facilitate an early diagnosis. In the description of molar morphology in NHS patients, it is recommended to use the term "bud molar." The combination of congenital cataract, screwdriwer-shaped incisors and bud-shaped molars is a strong clinical indication of Nance-Horan syndrome. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hans Gjørup
- Section of Oral Health in Rare Diseases, Department of Maxillofacial Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Pernille Jacobsen
- Department of Specialized Oral Health Care, Viborg Regional Hospital, Central Jutland, Viborg, Denmark
| | - John R Ostergaard
- Center for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Lubinsky M, Kantaputra PN. Syndromes with supernumerary teeth. Am J Med Genet A 2016; 170:2611-6. [DOI: 10.1002/ajmg.a.37763] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/12/2016] [Indexed: 01/24/2023]
Affiliation(s)
| | - Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research; Chiang Mai University; Chiang Mai Thailand
- Division of Pediatric Dentistry; Faculty of Dentistry; Department of Orthodontics and Pediatric Dentistry; Chiang Mai University; Chiang Mai Thailand
- Dentaland Clinic; Chiang Mai Thailand
| |
Collapse
|
31
|
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 2016; 17:224-38. [PMID: 26924765 DOI: 10.1038/nrg.2015.25] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Costain G, Lionel AC, Ogura L, Marshall CR, Scherer SW, Silversides CK, Bassett AS. Genome-wide rare copy number variations contribute to genetic risk for transposition of the great arteries. Int J Cardiol 2015; 204:115-21. [PMID: 26655555 DOI: 10.1016/j.ijcard.2015.11.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Transposition of the great arteries (TGA) is an uncommon but severe congenital heart malformation of unknown etiology. Rare copy number variations (CNVs) have been implicated in other, more common conotruncal heart defects like tetralogy of Fallot (TOF), but there are as yet no CNV studies dedicated to TGA. METHODS Using high-resolution genome-wide microarrays and rigorous methods, we investigated CNVs in a group of prospectively recruited adults with TGA (n=101) from a single center. We compared rare CNV burden to well-matched cohorts of controls and TOF cases, adjudicating rarity using 10,113 independent population-based controls and excluding all subjects with 22q11.2 deletions. We identified candidate genes for TGA based on rare CNVs that overlapped the same gene in unrelated individuals, and pre-existing evidence suggesting a role in cardiac development. RESULTS The TGA group was significantly enriched for large rare CNVs (2.3-fold increase, p=0.04) relative to controls, to a degree comparable with the TOF group. Extra-cardiac features were not reliable predictors of rare CNV burden. Smaller rare CNVs helped to narrow critical regions for conotruncal defects at chromosomes 10q26 and 13q13. Established and novel candidate susceptibility genes identified included ACKR3, IFT57, ITGB8, KL, NF1, NKX1-2, RERE, SLC8A1, SOX18, and ULK1. CONCLUSIONS These data demonstrate a genome-wide role for rare CNVs in genetic risk for TGA. The findings provide further support for a genetically-related spectrum of congenital heart disease that includes TGA and TOF.
Collapse
Affiliation(s)
- Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Medical Genetics Residency Training Program, University of Toronto, and Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anath C Lionel
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucas Ogura
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Candice K Silversides
- The Toronto Congenital Cardiac Centre for Adults & Division of Cardiology in the Department of Medicine, University Health Network, Toronto, Ontario, Canada.
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; The Toronto Congenital Cardiac Centre for Adults & Division of Cardiology in the Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; The Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Abstract
Lens opacities or cataract(s) represent a universally important cause of visual impairment and blindness. Typically, cataract is acquired with aging as a complex disorder involving environmental and genetic risk factors. Cataract may also be inherited with an early onset either in association with other ocular and/or systemic abnormalities or as an isolated lens phenotype. Here we briefly review recent advances in gene discovery for inherited and age-related forms of cataract that are providing new insights into lens development and aging.
Collapse
|
34
|
Li A, Li B, Wu L, Yang L, Chen N, Ma Z. Identification of a novel NHS mutation in a Chinese family with Nance-Horan syndrome. Curr Eye Res 2014; 40:434-8. [PMID: 25266737 DOI: 10.3109/02713683.2014.959606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identiy the disease causing mutation in a Chinese family presenting with early-onset cataract and dental anomalies. MATERIALS AND METHODS A specific Hereditary Eye Disease Enrichment Panel (HEDEP) (personalized customization by MyGenostics, Baltimore, MD) based on targeted exome capture technology was used to collect the protein coding regions of 30 early-onset cataract associated genes, and high throughput sequencing was done with Illumina HiSeq 2000 platform. The identified variant was confirmed with Sanger sequencing. RESULTS A novel deletion in exon 4 (c.852delG) of NHS gene was identified; the identified 1 bp deletion altered the reading frame and was predicted to result in a premature stop codon after the addition of twelve novel amino acid (p.S285PfsX13). This mutation co-segregated in affected males and obligate female carriers, but was absent in 100 matched controls. CONCLUSIONS Our findings broaden the spectrum of NHS mutations causing Nance-Horan syndrome and phenotypic spectrum of the disease in Chinese patients.
Collapse
Affiliation(s)
- Aijun Li
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University Eye Center, Peking University Third Hospital , Beijing , P. R. China
| | | | | | | | | | | |
Collapse
|
35
|
Hong N, Chen YH, Xie C, Xu BS, Huang H, Li X, Yang YQ, Huang YP, Deng JL, Qi M, Gu YS. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing. J Zhejiang Univ Sci B 2014; 15:727-34. [PMID: 25091991 DOI: 10.1631/jzus.b1300321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. METHODS Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. RESULTS A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. CONCLUSIONS We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis.
Collapse
Affiliation(s)
- Nan Hong
- Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China; School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China; Functional Genomics Center, Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, West Henrietta, NY 14586, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ayers E, Kennedy D, Wiebe C. Clinical recommendations for management of mesiodens and unerupted permanent maxillary central incisors. Eur Arch Paediatr Dent 2014; 15:421-8. [PMID: 24994110 DOI: 10.1007/s40368-014-0132-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/20/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Un-erupted maxillary incisors may result secondary to supernumerary teeth. Despite the removal of such mesiodentes, orthodontic traction of a permanent un-erupted maxillary incisor may be required. REVIEW The literature regarding the impacted maxillary central incisor(s) was reviewed and all pertinent publications on the subject assessed. The review specifically relative to mesiodentes, surgical exposure and orthodontic management was interpreted together with the clinical experience of a number of the authors' cases. From this analysis a set of recommendations was developed. RECOMMENDATIONS (1) A sufficient arch space has to be ensured or orthodontically created for permanent maxillary central incisor(s). (2) Early surgical extraction of a mesiodens or mesiodentes (ideally before 7 years of age), with simultaneous closed surgical exposure of the permanent impacted maxillary incisor with bonding of an attachment with gold chain. (3) Re-evaluation after 2-3 months to assess for any natural eruption of the maxillary central incisor. (4) Application of orthodontic traction in the event of non-eruption. CONCLUSION Early diagnosis of the presence of mesiodentes is imperative. Appropriate surgical and/or orthodontic traction is often indicated with regular post-surgical follow-up assessments.
Collapse
Affiliation(s)
- E Ayers
- Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada,
| | | | | |
Collapse
|
37
|
Sun W, Xiao X, Li S, Guo X, Zhang Q. Exome sequencing of 18 Chinese families with congenital cataracts: a new sight of the NHS gene. PLoS One 2014; 9:e100455. [PMID: 24968223 PMCID: PMC4072665 DOI: 10.1371/journal.pone.0100455] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/23/2014] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the mutation spectrum and frequency of 34 known genes in 18 Chinese families with congenital cataracts. METHODS Genomic DNA and clinical data was collected from 18 families with congenital cataracts. Variations in 34 cataract-associated genes were screened by whole exome sequencing and then validated by Sanger sequencing. RESULTS Eleven candidate variants in seven of the 34 genes were detected by exome sequencing and then confirmed by Sanger sequencing, including two variants predicted to be benign and the other pathogenic mutations. The nine mutations were present in 9 of the 18 (50%) families with congenital cataracts. Of the four families with mutations in the X-linked NHS gene, no other abnormalities were recorded except for cataract, in which a pseudo-dominant inheritance form was suggested, as female carriers also had different forms of cataracts. CONCLUSION This study expands the mutation spectrum and frequency of genes responsible for congenital cataract. Mutation in NHS is a common cause of nonsyndromic congenital cataract with pseudo-autosomal dominant inheritance. Combined with our previous studies, a genetic basis could be identified in 67.6% of families with congenital cataracts in our case series, in which mutations in genes encoding crystallins, genes encoding connexins, and NHS are responsible for 29.4%, 14.7%, and 11.8% of families, respectively. Our results suggest that mutations in NHS are the common cause of congenital cataract, both syndromic and nonsyndromic.
Collapse
Affiliation(s)
- Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
38
|
Deng H, Yuan L. Molecular genetics of congenital nuclear cataract. Eur J Med Genet 2013; 57:113-22. [PMID: 24384146 DOI: 10.1016/j.ejmg.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 12/22/2013] [Indexed: 01/28/2023]
Abstract
A cataract is defined as opacification of the normally transparent crystalline lens. Congenital cataract (CC) is a type of cataract that presents at birth or during early childhood. CC is one of the most common causes of visual impairment or blindness in children worldwide. Approximately 50% of all CC cases may have a genetic cause which is quite heterogeneous. CC occurs in a variety of morphologic configurations, including polar/subcapsular, nuclear, lamellar, sutural, cortical, membranous/capsular and complete. Nuclear cataract refers to the opacification limited to the embryonic and/or fetal nuclei of the lens. Although congenital nuclear cataract can be caused by multiple factors, genetic mutation remains to be the most common cause. It can be inherited in one of the three patterns: autosomal dominant, autosomal recessive, or X-linked transmission. Autosomal dominant inheritance is the most frequent mode with high penetrance. There may be no obvious correlation between the genotype and phenotype of congenital nuclear cataract. Animal models have been established to study the pathogenesis of congenital nuclear cataract and to identify candidate genes. In this review, we highlight identified genetic mutations that account for congenital nuclear cataract. Our review may be helpful for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, China.
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, China
| |
Collapse
|
39
|
Wang SK, Choi M, Richardson AS, Reid BM, Lin BP, Wang SJ, Kim JW, Simmer JP, Hu JCC. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta. Hum Mol Genet 2013; 23:2157-63. [PMID: 24305999 DOI: 10.1093/hmg/ddt611] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tug E, Dilek NF, Javadiyan S, Burdon KP, Percin FE. A Turkish family with Nance-Horan Syndrome due to a novel mutation. Gene 2013; 525:141-5. [PMID: 23566852 DOI: 10.1016/j.gene.2013.03.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/26/2022]
Abstract
Nance-Horan Syndrome (NHS) is a rare X-linked syndrome characterized by congenital cataract which leads to profound vision loss, characteristic dysmorphic features and specific dental anomalies. Microcornea, microphthalmia and mild or moderate mental retardation may accompany these features. Heterozygous females often manifest similarly but with less severe features than affected males. We describe two brothers who have the NHS phenotype and their carrier mother who had microcornea but not cataract. We identified a previously unreported frameshift mutation (c.558insA) in exon 1 of the NHS gene in these patients and their mother which is predicted to result in the incorporation of 11 aberrant amino acids prior to a stop codon (p.E186Efs11X). We also discussed genotype-phenotype correlation according to relevant literature.
Collapse
Affiliation(s)
- Esra Tug
- Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Klinefelter syndrome is caused by the presence of one or more additional X chromosomes in an affected male. Patients often exhibit gynecomastia, small testes, and infertility. Though the characteristics of Klinefelter have been well-documented, associated ocular abnormalities have been only occasionally reported. Here we present a 2-month-old infant with Klinefelter syndrome and a unique combination of ocular abnormalities including microphthalmia, cataracts, and malformed pupils.
Collapse
Affiliation(s)
- Alexander T Juhn
- Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
42
|
A family of oculofaciocardiodental syndrome (OFCD) with a novel BCOR mutation and genomic rearrangements involving NHS. J Hum Genet 2012; 57:197-201. [DOI: 10.1038/jhg.2012.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Khan AO, Aldahmesh MA, Mohamed JY, Alkuraya FS. Phenotype-genotype correlation in potential female carriers of X-linked developmental cataract (Nance-Horan syndrome). Ophthalmic Genet 2012; 33:89-95. [PMID: 22229851 DOI: 10.3109/13816810.2011.634881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To correlate clinical examination with underlying genotype in asymptomatic females who are potential carriers of X-linked developmental cataract (Nance-Horan syndrome). METHODS An ophthalmologist blind to the pedigree performed comprehensive ophthalmic examination for 16 available family members (two affected and six asymptomatic females, five affected and three asymptomatic males). Facial features were also noted. Venous blood was collected for sequencing of the gene NHS. RESULTS All seven affected family members had congenital or infantile cataract and facial dysmorphism (long face, bulbous nose, abnormal dentition). The six asymptomatic females ranged in age from 4-35 years old. Four had posterior Y-suture centered lens opacities; these four also exhibited the facial dysmorphism of the seven affected family members. The fifth asymptomatic girl had scattered fine punctate lens opacities (not centered on the Y-suture) while the sixth had clear lenses, and neither exhibited the facial dysmorphism. A novel NHS mutation (p.Lys744AsnfsX15 [c.2232delG]) was found in the seven patients with congenital or infantile cataract. This mutation was also present in the four asymptomatic girls with Y-centered lens opacities but not in the other two asymptomatic girls or in the three asymptomatic males (who had clear lenses). CONCLUSIONS Lens opacities centered around the posterior Y-suture in the context of certain facial features were sensitive and specific clinical signs of carrier status for NHS mutation in asymptomatic females. Lens opacities that did not have this characteristic morphology in a suspected female carrier were not a carrier sign, even in the context of her affected family members.
Collapse
Affiliation(s)
- Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
44
|
The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly. Eur J Hum Genet 2011; 19:851-6. [PMID: 21559051 DOI: 10.1038/ejhg.2011.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.
Collapse
|
45
|
Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis 2010; 16:2007-15. [PMID: 21042563 PMCID: PMC2965572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/04/2010] [Indexed: 11/07/2022] Open
Abstract
Lens opacities, or cataract(s), may be inherited as a classic Mendelian disorder usually with early-onset or, more commonly, acquired with age as a multi-factorial or complex trait. Many genetic forms of cataract have been described in mice and other animal models. Considerable progress has been made in mapping and identifying the genes and mutations responsible for inherited forms of cataract, and genetic determinants of age-related cataract are beginning to be discovered. To provide a convenient and accurate summary of current information focused on the increasing genetic complexity of Mendelian and age-related cataract we have created an online chromosome map and reference database for cataract in humans and mice (Cat-Map).
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| |
Collapse
|
46
|
Liao HM, Niu DM, Chen YJ, Fang JS, Chen SJ, Chen CH. Identification of a microdeletion at Xp22.13 in a Taiwanese family presenting with Nance-Horan syndrome. J Hum Genet 2010; 56:8-11. [PMID: 20882036 DOI: 10.1038/jhg.2010.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital cataracts, dental anomalies and mental retardation. The disease has been linked to a novel gene termed NHS located at Xp22.13. The majority of pathogenic mutations of the disease include nonsense mutations and small deletions and insertions that lead to truncation of the NHS protein. In this study, we identified a microdeletion of ∼ 0.92 Mb at Xp22.13 detected by array-based comparative genomic hybridization in two brothers presenting congenital cataract, dental anomalies, facial dysmorphisms and mental retardation. The deleted region encompasses the REPS2, NHS, SCML1 and RAI2 genes, and was transmitted from their carrier mother who presented only mild cataract. Our findings are in line with several recent case reports to indicate that genomic rearrangement involving the NHS gene is an important genetic etiology underlying NHS.
Collapse
Affiliation(s)
- Hsiao-Mei Liao
- Institute of Biotechnology and Graduate Program of Biotechnology in Medicine, National Tsing-Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet 2010; 53:347-57. [PMID: 20624502 DOI: 10.1016/j.ejmg.2010.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 07/04/2010] [Indexed: 01/20/2023]
Abstract
Congenital cataracts are a major cause of induced blindness in children, and inherited cataracts are the major cause of congenital cataracts. Inherited congenital cataracts have been associated with mutations in specific genes, including those of crystallins, gap junction proteins, membrane transport and channel proteins, the cytoskeleton, and growth and transcription factors. Locating and identifying the genes and mutations involved in cataractogenesis are essential to gaining an understanding of the molecular defects and pathophysiologic characteristics of inherited congenital cataracts. In this review, we summarize the current research in this field.
Collapse
Affiliation(s)
- Bingyu Huang
- Medical Genetics Laboratory, Department of Obstetrics and Gynecology, Second Teaching Hospital, Jilin University, 218 Zhiqiang, Changchun, 130041, China.
| | | |
Collapse
|
48
|
Thorson L, Bryke C, Rice G, Artzer A, Schilz C, Israel J, Huber S, Laffin J, Raca G. Clinical and molecular characterization of overlapping interstitial Xp21-p22 duplications in two unrelated individuals. Am J Med Genet A 2010; 152A:904-15. [DOI: 10.1002/ajmg.a.33340] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Brooks SP, Coccia M, Tang HR, Kanuga N, Machesky LM, Bailly M, Cheetham ME, Hardcastle AJ. The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology. Hum Mol Genet 2010; 19:2421-32. [PMID: 20332100 PMCID: PMC2876887 DOI: 10.1093/hmg/ddq125] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nance–Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell–cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development.
Collapse
Affiliation(s)
- Simon P Brooks
- 1UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | | | |
Collapse
|