1
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
2
|
McNamee SM, Akula M, Love Z, Nasraty N, Nystuen K, Singh P, Upadhyay AK, DeAngelis MM, Haider NB. Evaluating therapeutic potential of NR2E3 doses in the rd7 mouse model of retinal degeneration. Sci Rep 2024; 14:16490. [PMID: 39019967 PMCID: PMC11254931 DOI: 10.1038/s41598-024-67095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Retinitis Pigmentosa is a leading cause of severe vision loss. Retinitis Pigmentosa can present with a broad range of phenotypes impacted by disease age of onset, severity, and progression. This variation is influenced both by different gene mutations as well as unique variants within the same gene. Mutations in the nuclear hormone receptor 2 family e, member 3 are associated with several forms of retinal degeneration, including Retinitis Pigmentosa. In our previous studies we demonstrated that subretinal administration of one Nr2e3 dose attenuated retinal degeneration in rd7 mice for at least 3 months. Here we expand the studies to evaluate the efficacy and longitudinal impact of the NR2E3 therapeutic by examining three different doses administered at early or intermediate stages of retinal degeneration in the rd7 mice. Our study revealed retinal morphology was significantly improved 6 months post for all doses in the early-stage treatment groups and for the low and mid doses in the intermediate stage treatment groups. Similarly, photoreceptor function was significantly improved in the early stage for all doses and intermediate stage low and mid dose groups 6 months post treatment. This study demonstrated efficacy in multiple doses of NR2E3 therapy.
Collapse
Affiliation(s)
- Shannon M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Zoe Love
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Neelaab Nasraty
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Kaden Nystuen
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Neena B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02138, USA.
| |
Collapse
|
3
|
Kitamata M, Otake Y, Kitagori H, Zhang X, Maki Y, Boku R, Takeuchi M, Nakagoshi H. Functional opsin patterning for Drosophila color vision is established through signaling pathways in adjacent object-detection neurons. Development 2024; 151:dev202388. [PMID: 38421315 PMCID: PMC10984275 DOI: 10.1242/dev.202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Vision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively. Expression of opsin genes in R7 and R8 is highly coordinated through the instructive signal from R7 to R8, and two major ommatidial subtypes are distributed stochastically; pale type expresses Rh3/Rh5 and yellow type expresses Rh4/Rh6 in R7/R8. The homeodomain protein Defective proventriculus (Dve) is expressed in yellow-type R7 and in six outer PRs, and it is involved in Rh3 repression to specify the yellow-type R7. dve mutant eyes exhibited atypical coupling, Rh3/Rh6 and Rh4/Rh5, indicating that Dve activity is required for proper opsin coupling. Surprisingly, Dve activity in R1 is required for the instructive signal, whereas activity in R6 and R7 blocks the signal. Our results indicate that functional coupling of two different neurons is established through signaling pathways from adjacent neurons that are functionally different.
Collapse
Affiliation(s)
- Manabu Kitamata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Otake
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideaki Kitagori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Xuanshuo Zhang
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Maki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Rika Boku
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masato Takeuchi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
5
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The Lost and Found: Unraveling the Functions of Orphan Genes. J Dev Biol 2023; 11:27. [PMID: 37367481 PMCID: PMC10299390 DOI: 10.3390/jdb11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.
Collapse
Affiliation(s)
| | | | | | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Kumari A, Borooah S. The Role of Microglia in Inherited Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:197-205. [PMID: 37440034 DOI: 10.1007/978-3-031-27681-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inherited retinal diseases (IRDs) are a leading cause of irreversible visual loss in the developed world. The primary driver of pathology in IRDs is pathogenic genetic variant. However, there is increasing evidence, from recent studies, for a role of the immune system in disease mechanism, particularly retinal microglia. Microglia are the primary immune cells in the retina and actively contribute to disease pathogenesis when activated locally by phagocytosing photoreceptors, inducing inflammation and signaling infiltration of circulating monocytes. In this article, we discuss the evidence for the contribution of retinal microglia to IRD pathogenesis reported so far using mice model.
Collapse
Affiliation(s)
- Asha Kumari
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Sun C, Chen S. Disease-causing mutations in genes encoding transcription factors critical for photoreceptor development. Front Mol Neurosci 2023; 16:1134839. [PMID: 37181651 PMCID: PMC10172487 DOI: 10.3389/fnmol.2023.1134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptor development of the vertebrate visual system is controlled by a complex transcription regulatory network. OTX2 is expressed in the mitotic retinal progenitor cells (RPCs) and controls photoreceptor genesis. CRX that is activated by OTX2 is expressed in photoreceptor precursors after cell cycle exit. NEUROD1 is also present in photoreceptor precursors that are ready to specify into rod and cone photoreceptor subtypes. NRL is required for the rod fate and regulates downstream rod-specific genes including the orphan nuclear receptor NR2E3 which further activates rod-specific genes and simultaneously represses cone-specific genes. Cone subtype specification is also regulated by the interplay of several transcription factors such as THRB and RXRG. Mutations in these key transcription factors are responsible for ocular defects at birth such as microphthalmia and inherited photoreceptor diseases such as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and allied dystrophies. In particular, many mutations are inherited in an autosomal dominant fashion, including the majority of missense mutations in CRX and NRL. In this review, we describe the spectrum of photoreceptor defects that are associated with mutations in the above-mentioned transcription factors, and summarize the current knowledge of molecular mechanisms underlying the pathogenic mutations. At last, we deliberate the outstanding gaps in our understanding of the genotype-phenotype correlations and outline avenues for future research of the treatment strategies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Chi Sun,
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Krueger LA, Morris AC. Eyes on CHARGE syndrome: Roles of CHD7 in ocular development. Front Cell Dev Biol 2022; 10:994412. [PMID: 36172288 PMCID: PMC9512043 DOI: 10.3389/fcell.2022.994412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate visual system involves complex morphogenetic interactions of cells derived from multiple embryonic lineages. Disruptions in this process are associated with structural birth defects such as microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC), and inherited retinal degenerative diseases such as retinitis pigmentosa and allied dystrophies. MAC and retinal degeneration are also observed in systemic congenital malformation syndromes. One important example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Mutations in the gene encoding Chromodomain helicase DNA binding protein 7 (CHD7) cause the majority of CHARGE syndrome cases. However, the pathogenetic mechanisms that connect loss of CHD7 to the ocular complications observed in CHARGE syndrome have not been identified. In this review, we provide a general overview of ocular development and congenital disorders affecting the eye. This is followed by a comprehensive description of CHARGE syndrome, including discussion of the spectrum of ocular defects that have been described in this disorder. In addition, we discuss the current knowledge of CHD7 function and focus on its contributions to the development of ocular structures. Finally, we discuss outstanding gaps in our knowledge of the role of CHD7 in eye formation, and propose avenues of investigation to further our understanding of how CHD7 activity regulates ocular and retinal development.
Collapse
Affiliation(s)
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Ortega JT, Jastrzebska B. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:61-77. [PMID: 34962636 DOI: 10.1007/5584_2021_682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Ammar MJ, Scavelli KT, Uyhazi KE, Bedoukian EC, Serrano LW, Edelstein ID, Vergilio G, Cooper RF, Morgan JIW, Kumar P, Aleman TS. ENHANCED S-CONE SYNDROME: VISUAL FUNCTION, CROSS-SECTIONAL IMAGING, AND CELLULAR STRUCTURE WITH ADAPTIVE OPTICS OPHTHALMOSCOPY. Retin Cases Brief Rep 2021; 15:694-701. [PMID: 31306293 PMCID: PMC6980308 DOI: 10.1097/icb.0000000000000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe in detail the phenotype of a patient with enhanced S-cone syndrome. METHODS We describe a 13-year-old boy who presented with blurred vision, vitreous cells, cystoid macular edema refractory to steroid treatment, and a negative uveitic workup. The patient underwent a complete ophthalmic examination, full-field electroretinograms (ffERG), automatic static perimetry and multimodal imaging with spectral domain optical coherence tomography, and adaptive optics scanning laser ophthalmoscopy (AOSLO). RESULTS Spectral domain optical coherence tomography demonstrated cystoid macular edema and a hyperthick, delaminated midperipheral retina. Fluorescein angiography did not demonstrate macular leakage. Rod-mediated ffERGs were undetectable, and there was a supernormal response to short-wavelength stimuli compared with photopically matched longer wavelengths of light consistent with enhanced S-cone syndrome. Gene screening was positive for compound heterozygous mutations NR2E3: a known (c.119-2 A>C) and a novel (c.119-1G>A) mutation. By perimetry, sensitivities were normal or above normal for short-wavelength stimuli; there was no detectable rod-mediated vision. AOSLO demonstrated higher than normal cone densities in the perifoveal retina and evidence for smaller outer segment cone diameters. CONCLUSION Evidence for supernumerary cones (at least twice the normal complement) by AOSLO and spectral domain optical coherence tomography was associated with supernormal S-cone sensitivities and electroretinogram responses confirming previous in vivo findings in postmortem human specimens. Smaller than normal cones in enhanced S-cone syndrome may represent "hybrid" photoreceptors analogous to the rd7/rd7 murine model of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jessica I. W. Morgan
- Scheie Eye Institute
- the Center for Advanced Retinal and Ocular Therapeutics (CAROT), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tomas S. Aleman
- Scheie Eye Institute
- The Children’s Hospital of Philadelphia
- the Center for Advanced Retinal and Ocular Therapeutics (CAROT), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Venturini G, Kokona D, Steiner BL, Bulla EG, Jovanovic J, Zinkernagel MS, Escher P. In vivo analysis of onset and progression of retinal degeneration in the Nr2e3 rd7/rd7 mouse model of enhanced S-cone sensitivity syndrome. Sci Rep 2021; 11:19032. [PMID: 34561487 PMCID: PMC8463594 DOI: 10.1038/s41598-021-98271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
The photoreceptor-specific nuclear receptor Nr2e3 is not expressed in Nr2e3rd7/rd7 mice, a mouse model of the recessively inherited retinal degeneration enhanced S-cone sensitivity syndrome (ESCS). We characterized in detail C57BL/6J Nr2e3rd7/rd7 mice in vivo by fundus photography, optical coherence tomography and fluorescein angiography and, post mortem, by histology and immunohistochemistry. White retinal spots and so-called 'rosettes' first appear at postnatal day (P) 12 in the dorsal retina and reach maximal expansion at P21. The highest density in 'rosettes' is observed within a region located between 100 and 350 µM from the optic nerve head. 'Rosettes' disappear between 9 to 12 months. Non-apoptotic cell death markers are detected during the slow photoreceptor degeneration, at a rate of an approximately 3% reduction of outer nuclear layer thickness per month, as observed from 7 to 31 months of age. In vivo analysis of Nr2e3rd7/rd7 Cx3cr1gfp/+ retinas identified microglial cells within 'rosettes' from P21 on. Subretinal macrophages were observed in vivo and by confocal microscopy earliest in 12-months-old Nr2e3rd7/rd7 retinas. At P21, S-opsin expression and the number of S-opsin expressing dorsal cones was increased. The dorso-ventral M-cone gradient was present in Nr2e3rd7/rd7 retinas, but M-opsin expression and M-opsin expressing cones were decreased. Retinal vasculature was normal.
Collapse
Affiliation(s)
- Giulia Venturini
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Beatrice L Steiner
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Emanuele G Bulla
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Joel Jovanovic
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Retinal Organoid Technology: Where Are We Now? Int J Mol Sci 2021; 22:ijms221910244. [PMID: 34638582 PMCID: PMC8549701 DOI: 10.3390/ijms221910244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
It is difficult to regenerate mammalian retinal cells once the adult retina is damaged, and current clinical approaches to retinal damages are very limited. The introduction of the retinal organoid technique empowers researchers to study the molecular mechanisms controlling retinal development, explore the pathogenesis of retinal diseases, develop novel treatment options, and pursue cell/tissue transplantation under a certain genetic background. Here, we revisit the historical background of retinal organoid technology, categorize current methods of organoid induction, and outline the obstacles and potential solutions to next-generation retinal organoids. Meanwhile, we recapitulate recent research progress in cell/tissue transplantation to treat retinal diseases, and discuss the pros and cons of transplanting single-cell suspension versus retinal organoid sheet for cell therapies.
Collapse
|
13
|
Li S, Datta S, Brabbit E, Love Z, Woytowicz V, Flattery K, Capri J, Yao K, Wu S, Imboden M, Upadhyay A, Arumugham R, Thoreson WB, DeAngelis MM, Haider NB. Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Ther 2021; 28:223-241. [PMID: 32123325 PMCID: PMC7483267 DOI: 10.1038/s41434-020-0134-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Collapse
Affiliation(s)
- Sujun Li
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shyamtanu Datta
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Brabbit
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zoe Love
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Victoria Woytowicz
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kyle Flattery
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jessica Capri
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katie Yao
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Siqi Wu
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Iannaccone A, Brabbit E, Lopez-Miro C, Love Z, Griffiths V, Kedrov M, Haider NB. Interspecies Correlations between Human and Mouse NR2E3-Associated Recessive Disease. J Clin Med 2021; 10:jcm10030475. [PMID: 33513943 PMCID: PMC7865474 DOI: 10.3390/jcm10030475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
NR2E3-associated recessive disease in humans is historically defined by congenital night blinding retinopathy, characterized by an initial increase in short-wavelength (S)-cone sensitivity and progressive loss of rod and cone function. The retinal degeneration 7 (rd7) murine model, harboring a recessive mutation in the mouse ortholog of NR2E3, has been a well-studied disease model and recently evaluated as a therapeutic model for NR2E3-associated retinal degenerations. This study aims to draw parallels between human and mouse NR2E3-related disease through examination of spectral domain optical coherence tomography (SD-OCT) imaging between different stage of human disease and its murine counterpart. We propose that SD-OCT is a useful non-invasive diagnostic tool to compare human clinical dystrophy presentation with that of the rd7 mouse and make inference that may be of therapeutically relevance. Additionally, a longitudinal assessment of rd7 disease progression, utilizing available clinical data from our patients as well as extensive retrospective analysis of visual acuity data from published cases of human NR2E3-related disease, was curated to identify further valuable correlates between human and mouse Nr2e3 disease. Results of this study validate the slow progression of NR2E3-associated disease in humans and the rd7 mice and identify SD-OCT characteristics in patients at or near the vascular arcades that correlate well with the whorls and rosettes that are seen also in the rd7 mouse and point to imaging features that appear to be associated with better preserved S-cone mediated retinal function. The correlation of histological findings between rd7 mice and human imaging provides a solid foundation for diagnostic use of pathophysiological and prognostic information to further define characteristics and a relevant timeline for therapeutic intervention in the field of NR2E3-associated retinopathies.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
- Correspondence: (A.I.); (N.B.H.)
| | - Emily Brabbit
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (E.B.); (Z.L.)
| | - Christiaan Lopez-Miro
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
| | - Zoe Love
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (E.B.); (Z.L.)
| | - Victoria Griffiths
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
| | - Marina Kedrov
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (E.B.); (Z.L.)
- Correspondence: (A.I.); (N.B.H.)
| |
Collapse
|
15
|
Nr2e3 functional domain ablation by CRISPR-Cas9D10A identifies a new isoform and generates retinitis pigmentosa and enhanced S-cone syndrome models. Neurobiol Dis 2020; 146:105122. [PMID: 33007388 DOI: 10.1016/j.nbd.2020.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Mutations in NR2E3 cause retinitis pigmentosa (RP) and enhanced S-cone syndrome (ESCS) in humans. This gene produces a large isoform encoded in 8 exons and a previously unreported shorter isoform of 7 exons, whose function is unknown. We generated two mouse models by targeting exon 8 of Nr2e3 using CRISPR/Cas9-D10A nickase. Allele Δ27 is an in-frame deletion of 27 bp that ablates the dimerization domain H10, whereas allele ΔE8 (full deletion of exon 8) produces only the short isoform, which lacks the C-terminal part of the ligand binding domain (LBD) that encodes both H10 and the AF2 domain involved in the Nr2e3 repressor activity. The Δ27 mutant shows developmental alterations and a non-progressive electrophysiological dysfunction that resembles the ESCS phenotype. The ΔE8 mutant exhibits progressive retinal degeneration, as occurs in human RP patients. Our mutants suggest a role for Nr2e3 as a cone-patterning regulator and provide valuable models for studying mechanisms of NR2E3-associated retinal dystrophies and evaluating potential therapies.
Collapse
|
16
|
Targeting of the NRL Pathway as a Therapeutic Strategy to Treat Retinitis Pigmentosa. J Clin Med 2020; 9:jcm9072224. [PMID: 32668775 PMCID: PMC7408925 DOI: 10.3390/jcm9072224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy (IRD) with a prevalence of 1:4000, characterized by initial rod photoreceptor loss and subsequent cone photoreceptor loss with accompanying nyctalopia, visual field deficits, and visual acuity loss. A diversity of causative mutations have been described with autosomal dominant, autosomal recessive, and X-linked inheritance and sporadic mutations. The diversity of mutations makes gene therapy challenging, highlighting the need for mutation-agnostic treatments. Neural leucine zipper (NRL) and NR2E3 are factors important for rod photoreceptor cell differentiation and homeostasis. Germline mutations in NRL or NR2E3 leads to a loss of rods and an increased number of cones with short wavelength opsin in both rodents and humans. Multiple groups have demonstrated that inhibition of NRL or NR2E3 activity in the mature retina could endow rods with certain properties of cones, which prevents cell death in multiple rodent RP models with diverse mutations. In this review, we summarize the literature on NRL and NR2E3, therapeutic strategies of NRL/NR2E3 modulation in preclinical RP models, as well as future directions of research. In summary, inhibition of the NRL/NR2E3 pathway represents an intriguing mutation agnostic and disease-modifying target for the treatment of RP.
Collapse
|
17
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
18
|
Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9. Genes (Basel) 2019; 10:genes10040278. [PMID: 30959774 PMCID: PMC6523438 DOI: 10.3390/genes10040278] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Enhanced S-cone syndrome (ESCS) is caused by recessive mutations in the photoreceptor cell transcription factor NR2E3. Loss of NR2E3 is characterized by repression of rod photoreceptor cell gene expression, over-expansion of the S-cone photoreceptor cell population, and varying degrees of M- and L-cone photoreceptor cell development. In this study, we developed a CRISPR-based homology-directed repair strategy and corrected two different disease-causing NR2E3 mutations in patient-derived induced pluripotent stem cells (iPSCs) generated from two affected individuals. In addition, one patient’s iPSCs were differentiated into retinal cells and NR2E3 transcription was evaluated in CRISPR corrected and uncorrected clones. The patient’s c.119-2A>C mutation caused the inclusion of a portion of intron 1, the creation of a frame shift, and generation of a premature stop codon. In summary, we used a single set of CRISPR reagents to correct different mutations in iPSCs generated from two individuals with ESCS. In doing so we demonstrate the advantage of using retinal cells derived from affected patients over artificial in vitro model systems when attempting to demonstrate pathophysiologic mechanisms of specific mutations.
Collapse
|
19
|
Kong Y, Zhao L, Charette JR, Hicks WL, Stone L, Nishina PM, Naggert JK. An FRMD4B variant suppresses dysplastic photoreceptor lesions in models of enhanced S-cone syndrome and of Nrl deficiency. Hum Mol Genet 2019; 27:3340-3352. [PMID: 29947801 DOI: 10.1093/hmg/ddy238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Photoreceptor dysplasia, characterized by formation of folds and (pseudo-)rosettes in the outer retina, is associated with loss of functional nuclear receptor subfamily 2 group E member 3 (NR2E3) and neural retina leucine-zipper (NRL) in both humans and mice. A sensitized chemical mutagenesis study to identify genetic modifiers that suppress photoreceptor dysplasia in Nr2e3rd7mutant mice identified line Tvrm222, which exhibits a normal fundus appearance in the presence of the rd7 mutation. The Tvrm222 modifier of Nr2e3rd7/rd7 was localized to Chromosome 6 and identified as a missense mutation in the FERM domain containing 4B (Frmd4b) gene. The variant is predicted to cause the substitution of a serine residue 938 with proline (S938P). The Frmd4bTvrm222 allele was also found to suppress outer nuclear layer (ONL) rosettes in Nrl-/- mice. Fragmentation of the external limiting membrane (ELM), normally observed in rd7 and Nrl-/-mouse retinas, was absent in the presence of the Frmd4bTvrm222 allele. FRMD4B, a binding partner of cytohesin 3, is proposed to participate in cell junction remodeling. Its biological function in photoreceptor dysplasia has not been previously examined. In vitro experiments showed that the FRMD4B938P variant fails to be efficiently recruited to the cell surface upon insulin stimulation. In addition, we found a reduction in protein kinase B phosphorylation and increased levels of cell junction proteins, Catenin beta 1 and tight junction protein 1, associated with the cell membrane in Tvrm222 retinas. Taken together, this study reveals a critical role of FRMD4B in maintaining ELM integrity and in rescuing morphological abnormalities of the ONL in photoreceptor dysplasia.
Collapse
Affiliation(s)
- Yang Kong
- Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Cehajic-Kapetanovic J, Cottriall CL, Jolly JK, Shanks M, Clouston P, Charbel Issa P, MacLaren RE. Electrophysiological verification of enhanced S-cone syndrome caused by a novel c.755T>C NR2E3 missense variant. Ophthalmic Genet 2019; 40:29-33. [PMID: 30466340 DOI: 10.1080/13816810.2018.1547912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nuclear hormone receptor gene, NR2E3, plays a critical role in retinogenesis and determination of the rod photoreceptor phenotype. Mutations in NR2E3 typically lead to recessive enhanced S-cone syndrome (ESCS), where affected individuals show higher sensitivity to short wavelength light and early onset rod dysfunction. Patients with ESCS present in early childhood with nyctalopia, enhanced sensitivity to blue light and display a very heterogeneic retinal phenotype with varying degrees of clumped pigmentation and occasional retinoschisis. PURPOSE To confirm the pathogenicity of a novel mutation in NR2E3 using electrophysiological studies. MATERIALS AND METHODS Patient underwent detailed clinical evaluation and ophthalmic imaging followed by next generation sequencing analysis and electrophysiological studies. RESULTS We describe a case of a young man of Greek descent with a family history of retinal degeneration. His fundal features at presentation were atypical of ESCS, with striking macular involvement in both eyes, including fibrotic subretinal material overlying the pigment epithelial detachment in one eye and schisis in the other. Genetic testing revealed a novel homozygous variant in NR2E3 gene of uncertain pathogenicity. Instead of performing further genetic analyses, electrophysiological studies showed pathognomonic changes in the S-cone response. CONCLUSIONS With the recent clinical endorsement of a gene therapy for RPE65 related-inherited retinal degeneration it is of paramount importance to correctly identify the pathogenic genetic mutation. In this particular syndrome, we highlight the value of electrophysiology to confirm the pathogenicity of a novel mutation in NR2E3 and aid the diagnosis of ESCS, with potential for gene therapy in the future.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Charles L Cottriall
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Jasleen K Jolly
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Morag Shanks
- c Oxford Medical Genetics Laboratories , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Penny Clouston
- c Oxford Medical Genetics Laboratories , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Peter Charbel Issa
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Robert E MacLaren
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| |
Collapse
|
21
|
Minnella AM, Pagliei V, Savastano MC, Federici M, Bertelli M, Maltese PE, Placidi G, Corbo G, Falsini B, Caporossi A. Swept source optical coherence tomography and optical coherence tomography angiography in pediatric enhanced S-cone syndrome: a case report. J Med Case Rep 2018; 12:287. [PMID: 30285900 PMCID: PMC6169104 DOI: 10.1186/s13256-018-1819-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 08/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Enhanced S-cone syndrome is an autosomal recessive retinal dystrophy related to a defect in a nuclear receptor gene (NR2E3) that leads to alteration in cells development from rod to S-cone. This retinal dystrophy may be associated with retinal schisis. The aim of this report is to describe structural optical coherence tomography and optical coherence tomography angiography features in a case of enhanced S-cone syndrome associated with macular schisis. Case presentation A Caucasian 13-year-old girl underwent measurement of best corrected visual acuity, ophthalmoscopic evaluation, and fundus autofluorescence examination. Photopic and scotopic electroretinography were carried out as well. Enhanced S-cone syndrome was suspected on the basis of clinical and electrophysiological findings. Structural optical coherence tomography and optical coherence tomography angiography allowed the further characterization of the associated macular schisis. Genetic analysis not only confirmed the diagnosis but increased the clinical novelty of this case report by showing two variations in the NR2E3 gene probably related to the phenotype: a missense variation c.1118T>C which leads to the substitution of leucine with proline in amino acid position 373, and c.349+5G>C, which involves a gene sequence near a splicing site. Conclusions Swept source structural optical coherence tomography (B scans and “en face” images) and optical coherence tomography angiography allowed the observation of retinal structural details and the involvement of each retinal layer and capillary plexus in enhanced S-cone syndrome. Of interest, neither of the two NR2E3 gene variants found in this case report have been linked to any form of retinopathy.
Collapse
Affiliation(s)
- Angelo Maria Minnella
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy.
| | - Valeria Pagliei
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Maria Cristina Savastano
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Matteo Federici
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | | | | | - Giorgio Placidi
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Giovanni Corbo
- Department of Ophthalmology, Università La Sapienza, Rome, Italy
| | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Aldo Caporossi
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
22
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Nakamura PA, Shimchuk AA, Tang S, Wang Z, DeGolier K, Ding S, Reh TA. Small molecule Photoregulin3 prevents retinal degeneration in the RhoP23H mouse model of retinitis pigmentosa. eLife 2017; 6. [PMID: 29148976 PMCID: PMC5693111 DOI: 10.7554/elife.30577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
Regulation of rod gene expression has emerged as a potential therapeutic strategy to treat retinal degenerative diseases like retinitis pigmentosa (RP). We previously reported on a small molecule modulator of the rod transcription factor Nr2e3, Photoregulin1 (PR1), that regulates the expression of photoreceptor-specific genes. Although PR1 slows the progression of retinal degeneration in models of RP in vitro, in vivo analyses were not possible with PR1. We now report a structurally unrelated compound, Photoregulin3 (PR3) that also inhibits rod photoreceptor gene expression, potentially though Nr2e3 modulation. To determine the effectiveness of PR3 as a potential therapy for RP, we treated RhoP23H mice with PR3 and assessed retinal structure and function. PR3-treated RhoP23H mice showed significant structural and functional photoreceptor rescue compared with vehicle-treated littermate control mice. These results provide further support that pharmacological modulation of rod gene expression provides a potential strategy for the treatment of RP. There are several diseases that cause people to lose their eyesight and become blind. One of these diseases, called retinitis pigmentosa, kills cells at the back of the eye known as rod cells. At first, it affects vision in low light and peripheral vision, but later it affects vision during the daytime as well. There are no effective treatments for patients with retinitis pigmentosa. Yet previous genetic studies have shown that disrupting the activity of genes in rod cells can slow the progression of the disease and preserve vision in mice. As for all genes, proteins called transcription factors regulate the activity of rod cell genes. Nakamura et al. now report the discovery of a small drug-like molecule, that they name Photoregulin3, which alters the activity of a transcription factor that regulates rod genes. In follow-up experiments, mice with a mutation that replicates many of the features of retinitis pigmentosa were given Photoregulin3 to see if it could slow the progression of the disease. Indeed, Photoregulin3 could stop many of the rod cells from degenerating in the treated mice. At the end of the experiment, the mice treated with this small molecule had about twice as many rods as the control mice. The treated mice also responded better to flashes of light. Nakamura et al. hope that the findings will one day benefit patients with retinitis pigmentosa. But first more research needs to be done before testing Photoregulin3 in humans. For example, the drug-like molecule needs to be made more potent, and if possible adapted to work when given orally, meaning patients could take it as a pill.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Andy A Shimchuk
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Shibing Tang
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, University of California, San Francisco, San Francisco, United States
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Kole DeGolier
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Sheng Ding
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, University of California, San Francisco, San Francisco, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| |
Collapse
|
24
|
The nuclear hormone receptor gene Nr2c1 (Tr2) is a critical regulator of early retina cell patterning. Dev Biol 2017; 429:343-355. [DOI: 10.1016/j.ydbio.2017.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
|
25
|
Campi I, Cammarata G, Bianchi Marzoli S, Beck-Peccoz P, Santarsiero D, Dazzi D, Bottari de Castello A, Taroni EG, Viola F, Mian C, Watutantrige-Fernando S, Pelusi C, Muzza M, Maffini MA, Persani L. Retinal Photoreceptor Functions Are Compromised in Patients With Resistance to Thyroid Hormone Syndrome (RTHβ). J Clin Endocrinol Metab 2017; 102:2620-2627. [PMID: 28379567 DOI: 10.1210/jc.2016-3671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/27/2017] [Indexed: 01/29/2023]
Abstract
CONTEXT In animal models, disruption of thyroid hormone (TH) receptor-β (TRβ) reduces the long/medium wavelength (L/M) and increases the short-wavelength (S) cones. Retinal photoreceptor (RP) functions are unknown in patients with resistance to TH syndrome (RTHβ) with dominant-negative TRβ mutations. OBJECTIVE To investigate RP functions in RTHβ. DESIGN, SETTING, AND PARTICIPANTS Case-control study involving 27 RTHβ patients and 31 age/sex-matched controls, conducted in two tertiary referral centers in Italy. MAIN OUTCOME MEASURES Color vision sensitivity assessed by Farnsworth; central macular thickness (CMT) of the outer retinal layer measured by spectral-domain optical coherence tomography; and retinal function tested by full-field electroretinogram (ERG) and S-cone ERG. RESULTS Color sensitivity was worse in RTHβ patients than controls (P = 0.002). CMT was overlapping between the study groups but directly correlated with sex hormone-binding globuline levels in RTHβ. We found a significant reduction in amplitude of the cone (P = 0.024) and of the rod response (P = 0.006) in the ERG of RTHβ patients compared with controls. The response of the L/M cones measured by a specialized ERG test was lower in RTHβ than controls (P = 0.027), whereas no differences were found in the S-cone response. No correlations were found between TH levels, total error score, or electrophysiological results. Furthermore, no differences were found between patients with maternal or de novo/paternal inheritance. CONCLUSIONS We report, to our knowledge, the first in vivo evidence of functional defects of RP in RTHβ. These changes occur independently of endogenous TH levels or the prenatal exposure to high or normal maternal TH.
Collapse
Affiliation(s)
- Irene Campi
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Gabriella Cammarata
- Neuro-Ophthalmology Service, Electrophysiology Laboratory, Department of Ophthalmology, Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Stefania Bianchi Marzoli
- Neuro-Ophthalmology Service, Electrophysiology Laboratory, Department of Ophthalmology, Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Paolo Beck-Peccoz
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Diletta Santarsiero
- Neuro-Ophthalmology Service, Electrophysiology Laboratory, Department of Ophthalmology, Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Davide Dazzi
- Division of Internal Medicine, Ospedale Vaio, 43036 Fidenza, Parma, Italy
| | | | - Elena Giuliana Taroni
- Ophthalmology Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda, 20122 Milan, Italy
| | - Francesco Viola
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Ophthalmology Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda, 20122 Milan, Italy
| | - Caterina Mian
- Department of Medicine, Endocrinology Unit-University of Padua, 35128 Padova, Italy
| | | | - Carla Pelusi
- Department of Medical and Surgical Sciences, Division of Endocrinology, University of Bologna, Sant'Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Marina Muzza
- Endocrine Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda, 20122 Milan, Italy
| | - Maria Antonia Maffini
- Endocrine Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda, 20122 Milan, Italy
| | - Luca Persani
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
26
|
Nakamura PA, Tang S, Shimchuk AA, Ding S, Reh TA. Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2017; 57:6407-6415. [PMID: 27893103 PMCID: PMC5134355 DOI: 10.1167/iovs.16-20177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in rod photoreceptor genes can cause retinitis pigmentosa (RP). Rod gene expression is regulated by the nuclear hormone receptor, Nr2e3. Genetic deletion of Nr2e3 reprograms rods into cells that resemble cone photoreceptors, and might therefore prevent their death from some forms of RP. There are no identified ligands for Nr2e3; however, reverse agonists might mimic the genetic rescue effect and may be therapeutically useful for the treatment of RP. Methods We screened for small molecule modulators of Nr2e3 using primary retinal cell cultures and characterized the most potent, which we have named photoregulin1 (PR1), in vitro and in vivo. We also tested the ability of PR1 to slow the progression of photoreceptor degeneration in two common mouse models of autosomal dominant RP, the RhoP23H and the Pde6brd1 mutations. Results In developing retina, PR1 causes a decrease in rod gene expression and an increase in S opsin+ cones. Photoregulin1 continues to inhibit rod gene expression in adult mice. When applied to two mouse models of RP, PR1 slows the degeneration of photoreceptors. Conclusions Chemical compounds identified as modulators of Nr2e3 activity may be useful for the treatment of RP through their effects on expression of disease-causing mutant genes.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Shibing Tang
- University of California-San Francisco, UCSF School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco California, United States
| | - Andy A Shimchuk
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Sheng Ding
- University of California-San Francisco, UCSF School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco California, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, Washington, United States
| |
Collapse
|
27
|
Olivares AM, Jelcick AS, Reinecke J, Leehy B, Haider A, Morrison MA, Cheng L, Chen DF, DeAngelis MM, Haider NB. Multimodal Regulation Orchestrates Normal and Complex Disease States in the Retina. Sci Rep 2017; 7:690. [PMID: 28386079 PMCID: PMC5429617 DOI: 10.1038/s41598-017-00788-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Regulation of biological processes occurs through complex, synergistic mechanisms. In this study, we discovered the synergistic orchestration of multiple mechanisms regulating the normal and diseased state (age related macular degeneration, AMD) in the retina. We uncovered gene networks with overlapping feedback loops that are modulated by nuclear hormone receptors (NHR), miRNAs, and epigenetic factors. We utilized a comprehensive filtering and pathway analysis strategy comparing miRNA and microarray data between three mouse models and human donor eyes (normal and AMD). The mouse models lack key NHRS (Nr2e3, RORA) or epigenetic (Ezh2) factors. Fifty-four total miRNAs were differentially expressed, potentially targeting over 150 genes in 18 major representative networks including angiogenesis, metabolism, and immunity. We identified sixty-eight genes and 5 miRNAS directly regulated by NR2E3 and/or RORA. After a comprehensive analysis, we discovered multimodal regulation by miRNA, NHRs, and epigenetic factors of three miRNAs (miR-466, miR1187, and miR-710) and two genes (Ell2 and Entpd1) that are also associated with AMD. These studies provide insight into the complex, dynamic modulation of gene networks as well as their impact on human disease, and provide novel data for the development of innovative and more effective therapeutics.
Collapse
Affiliation(s)
- A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - A S Jelcick
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - J Reinecke
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - B Leehy
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - A Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M A Morrison
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - L Cheng
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M M DeAngelis
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
28
|
Temporal profiling of photoreceptor lineage gene expression during murine retinal development. Gene Expr Patterns 2017; 23-24:32-44. [PMID: 28288836 DOI: 10.1016/j.gep.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023]
Abstract
Rod and cone photoreceptors are photosensitive cells in the retina that convert light to electrical signals that are transmitted to visual processing centres in the brain. During development, cones and rods are generated from a common pool of multipotent retinal progenitor cells (RPCs) that also give rise to other retinal cell types. Cones and rods differentiate in two distinct waves, peaking in mid-embryogenesis and the early postnatal period, respectively. As RPCs transition from making cones to generating rods, there are changes in the expression profiles of genes involved in photoreceptor cell fate specification and differentiation. To better understand the temporal transition from cone to rod genesis, we assessed the timing of onset and offset of expression of a panel of 11 transcription factors and 7 non-transcription factors known to function in photoreceptor development, examining their expression between embryonic day (E) 12.5 and postnatal day (P) 60. Transcription factor expression in the photoreceptor layer was observed as early as E12.5, beginning with Crx, Otx2, Rorb, Neurod1 and Prdm1 expression, followed at E15.5 with the expression of Thrb, Neurog1, Sall3 and Rxrg expression, and at P0 by Nrl and Nr2e3 expression. Of the non-transcription factors, peanut agglutinin lectin staining and cone arrestin protein were observed as early as E15.5 in the developing outer nuclear layer, while transcripts for the cone opsins Opn1mw and Opn1sw and Recoverin protein were detected in photoreceptors by P0. In contrast, Opn1mw and Opn1sw protein were not observed in cones until P7, when rod-specific Gnat1 transcripts and rhodopsin protein were also detected. We have thus identified four transitory stages during murine retina photoreceptor differentiation marked by the period of onset of expression of new photoreceptor lineage genes. By characterizing these stages, we have clarified the dynamic nature of gene expression during the period when photoreceptor identities are progressively acquired during development.
Collapse
|
29
|
Karunakaran DKP, Al Seesi S, Banday AR, Baumgartner M, Olthof A, Lemoine C, Măndoiu II, Kanadia RN. Network-based bioinformatics analysis of spatio-temporal RNA-Seq data reveals transcriptional programs underpinning normal and aberrant retinal development. BMC Genomics 2016; 17 Suppl 5:495. [PMID: 27586787 PMCID: PMC5009874 DOI: 10.1186/s12864-016-2822-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The retina as a model system with extensive information on genes involved in development/maintenance is of great value for investigations employing deep sequencing to capture transcriptome change over time. This in turn could enable us to find patterns in gene expression across time to reveal transition in biological processes. Methods We developed a bioinformatics pipeline to categorize genes based on their differential expression and their alternative splicing status across time by binning genes based on their transcriptional kinetics. Genes within same bins were then leveraged to query gene annotation databases to discover molecular programs employed by the developing retina. Results Using our pipeline on RNA-Seq data obtained from fractionated (nucleus/cytoplasm) developing retina at embryonic day (E) 16 and postnatal day (P) 0, we captured high-resolution as in the difference between the cytoplasm and the nucleus at the same developmental time. We found de novo transcription of genes whose transcripts were exclusively found in the nuclear transcriptome at P0. Further analysis showed that these genes enriched for functions that are known to be executed during postnatal development, thus showing that the P0 nuclear transcriptome is temporally ahead of that of its cytoplasm. We extended our strategy to perform temporal analysis comparing P0 data to either P21-Nrl-wildtype (WT) or P21-Nrl-knockout (KO) retinae, which predicted that the KO retina would have compromised vasculature. Indeed, histological manifestation of vasodilation has been reported at a later time point (P60). Conclusions Thus, our approach was predictive of a phenotype before it presented histologically. Our strategy can be extended to investigating the development and/or disease progression of other tissue types. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2822-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sahar Al Seesi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Abdul Rouf Banday
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Marybeth Baumgartner
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Anouk Olthof
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.,Utrecht University, 3508 TC, Utrecht, The Netherlands
| | - Christopher Lemoine
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ion I Măndoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
30
|
Collison FT, Park JC, Fishman GA, Stone EM, McAnany JJ. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations. Doc Ophthalmol 2016; 132:157-66. [PMID: 27033713 DOI: 10.1007/s10633-016-9535-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this study was to evaluate pupillary light reflexes (PLRs) mediated by rod, cone, and intrinsically photosensitive retinal ganglion cell pathways as indices of outer- and inner-retinal function in patients who have enhanced S-cone syndrome (ESCS) due to NR2E3 mutations. METHODS Four patients with ESCS (ages 16-23 years) participated in the study. Subjects were tested with long- and short-wavelength single-flash full-field ERG stimuli under light-adapted conditions. They were also tested with an established pupillometry protocol involving 1-s duration, long- and short-wavelength stimuli under dark- and light-adapted conditions. The PLR was measured as a function of stimulus luminance. Transient PLRs were measured under all conditions, and sustained PLRs were measured under the highest luminance dark-adapted condition. RESULTS Two-color light-adapted full-field ERGs demonstrated larger amplitude responses for short-wavelength stimuli relative to long-wavelength stimuli of the same photopic luminance, with three of four ESCS patients having super-normal a-wave amplitudes to the short-wavelength stimulus. b/a wave ratios were reduced in all four cases. Transient PLRs elicited by low-luminance stimuli under dark-adapted conditions (rod-mediated) were unrecordable, whereas the sustained PLRs elicited by high-luminance stimuli (melanopsin-mediated) were normal. Cone-mediated PLRs were recordable for all four patients, but generally lower than normal in amplitude. However, the cone-mediated PLR was larger for the short-wavelength stimulus compared to the photopically matched long-wavelength stimulus at high luminances, a pattern that was not observed for control subjects. None of the PLR conditions demonstrated "super-normal" responses. CONCLUSION ESCS patients appear to have generally well-preserved cone- and melanopsin-mediated PLRs, indicating intact inner-retinal function. Two-color pupillometry demonstrates greater sensitivity to short-wavelength light under higher-luminance conditions and could complement the ERG as a tool for evaluating retinal function in ESCS.
Collapse
Affiliation(s)
- Frederick T Collison
- The Pangere Center for Hereditary Retinal Diseases, The Chicago Lighthouse, 1850 West Roosevelt Rd., Chicago, IL, 60608, USA
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, 1905 West Taylor St., Chicago, IL, 60612, USA
| | - Gerald A Fishman
- The Pangere Center for Hereditary Retinal Diseases, The Chicago Lighthouse, 1850 West Roosevelt Rd., Chicago, IL, 60608, USA. .,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, 1905 West Taylor St., Chicago, IL, 60612, USA.
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 375 Newton Rd. 4111 MERF, Iowa City, IA, 52242, USA
| | - J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, 1905 West Taylor St., Chicago, IL, 60612, USA
| |
Collapse
|
31
|
Abstract
Photoreceptors--the light-sensitive cells in the vertebrate retina--have been extremely well-characterized with regards to their biochemistry, cell biology and physiology. They therefore provide an excellent model for exploring the factors and mechanisms that drive neural progenitors into a differentiated cell fate in the nervous system. As a result, great progress in understanding the transcriptional network that controls photoreceptor specification and differentiation has been made over the last 20 years. This progress has also enabled the production of photoreceptors from pluripotent stem cells, thereby aiding the development of regenerative medical approaches to eye disease. In this Review, we outline the signaling and transcription factors that drive vertebrate photoreceptor development and discuss how these function together in gene regulatory networks to control photoreceptor cell fate specification.
Collapse
Affiliation(s)
- Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Popova EY, Pinzon-Guzman C, Salzberg AC, Zhang SSM, Barnstable CJ. LSD1-Mediated Demethylation of H3K4me2 Is Required for the Transition from Late Progenitor to Differentiated Mouse Rod Photoreceptor. Mol Neurobiol 2015; 53:4563-81. [PMID: 26298666 DOI: 10.1007/s12035-015-9395-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
Epigenetic modifiers can work in concert with transcription factors to control the transition of cells from proliferating progenitors into quiescent terminally differentiated cells. This transition involves changes in histone methylation and one of the key regulators of this is the H3K4me2/1 histone demethylase LSD1. Here, we show that the highest expression of LSD1 occurs in postmitotic retinal cells during the peak period of rod photoreceptor differentiation. Pharmacological inhibition of LSD1 in retinal explants cultured from PN1 to PN8 had three major effects. It prevented the normal decrease in expression of genes associated with progenitor function, it blocked rod photoreceptor development, and it increased expression of genes associated with other retinal cell types. The maintained expression of progenitor genes was associated with a maintained level of H3K4me2 over the gene and its promoter. Among the genes whose expression was maintained was Hes1, a repressor known to block rod photoreceptor development. The inhibition of rod photoreceptor gene expression occurred in spite of the normal expression of transcription factors CRX and NRL, and the normal accumulation of H3K4me2 marks over the promoter and gene body. We suggest that LSD1 acts in concert with a series of nuclear receptors to modify chromatin structure and repress progenitor genes as well as to inhibit ectopic patterns of gene expression in the differentiating postmitotic retinal cells.
Collapse
Affiliation(s)
- Evgenya Y Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Carolina Pinzon-Guzman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Anna C Salzberg
- Bioinformatics Core, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Samuel Shao-Min Zhang
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Henan Eye Institute, 7 Weiwu Road, Zhengzhou, Henan, 450007, China.
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
34
|
Yang HJ, Ratnapriya R, Cogliati T, Kim JW, Swaroop A. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Prog Retin Eye Res 2015; 46:1-30. [PMID: 25668385 PMCID: PMC4402139 DOI: 10.1016/j.preteyeres.2015.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA.
| |
Collapse
|
35
|
von Alpen D, Tran HV, Guex N, Venturini G, Munier FL, Schorderet DF, Haider NB, Escher P. Differential dimerization of variants linked to enhanced S-cone sensitivity syndrome (ESCS) located in the NR2E3 ligand-binding domain. Hum Mutat 2015; 36:599-610. [PMID: 25703721 DOI: 10.1002/humu.22775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/10/2015] [Indexed: 11/11/2022]
Abstract
NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.
Collapse
Affiliation(s)
- Désirée von Alpen
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,EPFL-Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hoai Viet Tran
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Francis L Munier
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel F Schorderet
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,EPFL-Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Neena B Haider
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Boston, Massachusetts
| | - Pascal Escher
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Fu Y, Liu H, Ng L, Kim JW, Hao H, Swaroop A, Forrest D. Feedback induction of a photoreceptor-specific isoform of retinoid-related orphan nuclear receptor β by the rod transcription factor NRL. J Biol Chem 2014; 289:32469-80. [PMID: 25296752 DOI: 10.1074/jbc.m114.605774] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor β gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORβ2 in photoreceptors and RORβ1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORβ2 or RORβ1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb(-/-) mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORβ isoform into retinal explants from Rorb(-/-) neonates reactivated Nrl and rod genes but, in Nrl(-/-) explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORβ isoforms in rod differentiation. Unexpectedly, RORβ2 expression was lost in Nrl(-/-) mice. Moreover, NRL activated the RORβ2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation.
Collapse
Affiliation(s)
- Yulong Fu
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| | - Hong Liu
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| | - Lily Ng
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hong Hao
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Douglas Forrest
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| |
Collapse
|
37
|
Tan MHE, Zhou XE, Soon FF, Li X, Li J, Yong EL, Melcher K, Xu HE. The crystal structure of the orphan nuclear receptor NR2E3/PNR ligand binding domain reveals a dimeric auto-repressed conformation. PLoS One 2013; 8:e74359. [PMID: 24069298 PMCID: PMC3771917 DOI: 10.1371/journal.pone.0074359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 01/20/2023] Open
Abstract
Photoreceptor-specific nuclear receptor (PNR, NR2E3) is a key transcriptional regulator of human photoreceptor differentiation and maintenance. Mutations in the NR2E3-encoding gene cause various retinal degenerations, including Enhanced S-cone syndrome, retinitis pigmentosa, and Goldman-Favre disease. Although physiological ligands have not been identified, it is believed that binding of small molecule agonists, receptor desumoylation, and receptor heterodimerization may switch NR2E3 from a transcriptional repressor to an activator. While these features make NR2E3 a potential therapeutic target for the treatment of retinal diseases, there has been a clear lack of structural information for the receptor. Here, we report the crystal structure of the apo NR2E3 ligand binding domain (LBD) at 2.8 Å resolution. Apo NR2E3 functions as transcriptional repressor in cells and the structure of its LBD is in a dimeric auto-repressed conformation. In this conformation, the putative ligand binding pocket is filled with bulky hydrophobic residues and the activation-function-2 (AF2) helix occupies the canonical cofactor binding site. Mutations designed to disrupt either the AF2/cofactor-binding site interface or the dimer interface compromised the transcriptional repressor activity of this receptor. Together, these results reveal several conserved structural features shared by related orphan nuclear receptors, suggest that most disease-causing mutations affect the receptor's structural integrity, and allowed us to model a putative active conformation that can accommodate small ligands in its pocket.
Collapse
Affiliation(s)
- M. H. Eileen Tan
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - X. Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Fen-Fen Soon
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaodan Li
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Li
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eu-Leong Yong
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Van Andel Research Institute/Shanghai Institute of Materia Medica Center, Chinese Academy of Sciences-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Abstract
AbstractS cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.
Collapse
|
39
|
Boucherie C, Mukherjee S, Henckaerts E, Thrasher AJ, Sowden JC, Ali RR. Brief report: self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors. Stem Cells 2013; 31:408-14. [PMID: 23132794 DOI: 10.1002/stem.1268] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/11/2012] [Indexed: 01/10/2023]
Abstract
Retinitis pigmentosa, other inherited retinal diseases, and age-related macular degeneration lead to untreatable blindness because of the loss of photoreceptors. We have recently shown that transplantation of mouse photoreceptors can result in improved vision. It is therefore timely to develop protocols for efficient derivation of photoreceptors from human pluripotent stem (hPS) cells. Current methods for photoreceptor derivation from hPS cells require long periods of culture and are rather inefficient. Here, we report that formation of a transient self-organized neuroepithelium from human embryonic stem cells cultured together with extracellular matrix is sufficient to induce a rapid conversion into retinal progenitors in 5 days. These retinal progenitors have the ability to differentiate very efficiently into Crx(+) photoreceptor precursors after only 10 days and subsequently acquire rod photoreceptor identity within 4 weeks. Directed differentiation into photoreceptors using this protocol is also possible with human-induced pluripotent stem (hiPS) cells, facilitating the use of patient-specific hiPS cell lines for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Cédric Boucherie
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Chakraborty D, Conley SM, Naash MI. Overexpression of retinal degeneration slow (RDS) protein adversely affects rods in the rd7 model of enhanced S-cone syndrome. PLoS One 2013; 8:e63321. [PMID: 23650562 PMCID: PMC3641132 DOI: 10.1371/journal.pone.0063321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/01/2013] [Indexed: 11/24/2022] Open
Abstract
The nuclear receptor NR2E3 promotes expression of rod photoreceptor genes while repressing cone genes. Mice lacking NR2E3 (Nr2e3rd7/rd7 referred to here as rd7) are a model for enhanced S-cone syndrome, a disease associated with increased sensitivity to blue light and night blindness. Rd7 retinas have reduced levels of the outer segment (OS) structural protein retinal degeneration slow (RDS). We test the hypothesis that increasing RDS levels would improve the Rd7 phenotype. Transgenic mice over-expressing normal mouse peripherin/RDS (NMP) in rods and cones were crossed onto the rd7 background. Disease phenotypes were assessed in NMP/rd7 eyes and compared to wild-type (WT) and rd7 eyes at postnatal day 30. NMP/rd7 retinas expressed total RDS (transgenic and endogenous) message at WT levels, and NMP protein was correctly localized to the OS. NMP/rd7 retinas have shorter OSs compared to rd7 and WT and significantly reduced number of rosettes. NMP/rd7 mice also exhibited significant deficits in scotopic ERG amplitudes compared to rd7 while photopic amplitudes remained unaffected. Protein levels of rhodopsin, RDS, and the RDS homologue ROM-1 were significantly reduced in the NMP/rd7 retinas compared to rd7. We show that correcting the levels of RDS gene expression does not improve the phenotype of the rd7 suggesting that RDS deficiency is not responsible for the defect in this model. We suggest that the specific rod defect in the NMP/rd7 is likely associated with ongoing problems in the rd7 that are related to the expression of cone genes in rod cells, a characteristic of the model.
Collapse
Affiliation(s)
- Dibyendu Chakraborty
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | | | | |
Collapse
|
41
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
42
|
Forrest D, Swaroop A. Minireview: the role of nuclear receptors in photoreceptor differentiation and disease. Mol Endocrinol 2012; 26:905-15. [PMID: 22556342 DOI: 10.1210/me.2012-1010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease.
Collapse
Affiliation(s)
- Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
Stuck MW, Conley SM, Naash MI. Defects in the outer limiting membrane are associated with rosette development in the Nrl-/- retina. PLoS One 2012; 7:e32484. [PMID: 22427845 PMCID: PMC3299663 DOI: 10.1371/journal.pone.0032484] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/30/2012] [Indexed: 01/23/2023] Open
Abstract
The neural retinal leucine zipper (Nrl) knockout mouse is a widely used model to study cone photoreceptor development, physiology, and molecular biology in the absence of rods. In the Nrl−/− retina, rods are converted into functional cone-like cells. The Nrl−/− retina is characterized by large undulations of the outer nuclear layer (ONL) commonly known as rosettes. Here we explore the mechanism of rosette development in the Nrl−/− retina. We report that rosettes first appear at postnatal day (P)8, and that the structure of nascent rosettes is morphologically distinct from what is seen in the adult retina. The lumen of these nascent rosettes contains a population of aberrant cells protruding into the subretinal space that induce infolding of the ONL. Morphologically adult rosettes do not contain any cell bodies and are first detected at P15. The cells found in nascent rosettes are photoreceptors in origin but lack inner and outer segments. We show that the adherens junctions between photoreceptors and Müller glia which comprise the retinal outer limiting membrane (OLM) are not uniformly formed in the Nrl−/− retina and thus allow protrusion of a population of developing photoreceptors into the subretinal space where their maturation becomes delayed. These data suggest that the rosettes of the Nrl−/− retina arise due to defects in the OLM and delayed maturation of a subset of photoreceptors, and that rods may play an important role in the proper formation of the OLM.
Collapse
Affiliation(s)
| | | | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|