1
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
2
|
Ortiz-Vega N, Lobato AG, Canic T, Zhu Y, Lazopulo S, Syed S, Zhai RG. Regulation of proteostasis by sleep through autophagy in Drosophila models of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402681. [PMID: 39237365 PMCID: PMC11377308 DOI: 10.26508/lsa.202402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Sleep and circadian rhythm dysfunctions are common clinical features of Alzheimer's disease (AD). Increasing evidence suggests that in addition to being a symptom, sleep disturbances can also drive the progression of neurodegeneration. Protein aggregation is a pathological hallmark of AD; however, the molecular pathways behind how sleep affects protein homeostasis remain elusive. Here we demonstrate that sleep modulation influences proteostasis and the progression of neurodegeneration in Drosophila models of tauopathy. We show that sleep deprivation enhanced Tau aggregational toxicity resulting in exacerbated synaptic degeneration. In contrast, sleep induction using gaboxadol led to reduced toxic Tau accumulation in neurons as a result of modulated autophagic flux and enhanced clearance of ubiquitinated Tau, suggesting altered protein processing and clearance that resulted in improved synaptic integrity and function. These findings highlight the complex relationship between sleep and regulation of protein homeostasis and the neuroprotective potential of sleep-enhancing therapeutics to slow the progression or delay the onset of neurodegeneration.
Collapse
Affiliation(s)
- Natalie Ortiz-Vega
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda G Lobato
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Tijana Canic
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - R Grace Zhai
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Nair S, Jiang Y, Marchal IS, Chernobelsky E, Huang HW, Suh S, Pan R, Kong XP, Ryoo HD, Sigurdsson EM. Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects. Cell Death Dis 2024; 15:543. [PMID: 39079958 PMCID: PMC11289317 DOI: 10.1038/s41419-024-06927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth Chernobelsky
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Huai-Wei Huang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah Suh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
7
|
Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12:1329. [PMID: 37174729 PMCID: PMC10177113 DOI: 10.3390/cells12091329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Zhang S, Zhu Y, Lu J, Liu Z, Lobato AG, Zeng W, Liu J, Qiang J, Zeng S, Zhang Y, Liu C, Liu J, He Z, Zhai RG, Li D. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology. eLife 2022; 11:79898. [PMID: 36048712 PMCID: PMC9436411 DOI: 10.7554/elife.79898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid aggregation of phosphorylated Tau (pTau) into neurofibrillary tangles is closely associated with Alzheimer's disease (AD). Several molecular chaperones have been reported to bind Tau and impede its pathological aggregation. Recent findings of elevated levels of Hsp27 in the brains of patients with AD suggested its important role in pTau pathology. However, the molecular mechanism of Hsp27 in pTau aggregation remains poorly understood. Here, we show that Hsp27 partially co-localizes with pTau tangles in the brains of patients with AD. Notably, phosphorylation of Tau by microtubule affinity regulating kinase 2 (MARK2), dramatically enhances the binding affinity of Hsp27 to Tau. Moreover, Hsp27 efficiently prevents pTau fibrillation in vitro and mitigates neuropathology of pTau aggregation in a Drosophila tauopathy model. Further mechanistic study reveals that Hsp27 employs its N-terminal domain to directly interact with multiple phosphorylation sites of pTau for specific binding. Our work provides the structural basis for the specific recognition of Hsp27 to pathogenic pTau, and highlights the important role of Hsp27 in preventing abnormal aggregation and pathology of pTau in AD.
Collapse
Affiliation(s)
- Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jinxia Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Amanda G Lobato
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, United States
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Huang C, Lu J, Ma X, Qiang J, Wang C, Liu C, Fang Y, Zhang Y, Jiang L, Li D, Zhang S. The mouse nicotinamide mononucleotide adenylyltransferase (NMNAT) chaperones diverse pathological amyloid client proteins. J Biol Chem 2022; 298:101912. [PMID: 35398355 PMCID: PMC9108885 DOI: 10.1016/j.jbc.2022.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022] Open
Abstract
Molecular chaperones safeguard cellular protein homeostasis and obviate proteotoxicity. In the process of aging, as chaperone networks decline, aberrant protein amyloid aggregation accumulates in a mechanism that underpins neurodegeneration, leading to pathologies such as Alzheimer’s disease and Parkinson’s disease. Thus, it is important to identify and characterize chaperones for preventing such protein aggregation. In this work, we identified that the NAD+ synthase–nicotinamide mononucleotide adenylyltransferase (NMNAT) 3 from mouse (mN3) exhibits potent chaperone activity to antagonize aggregation of a wide spectrum of pathological amyloid client proteins including α-synuclein, Tau (K19), amyloid β, and islet amyloid polypeptide. By combining NMR spectroscopy, cross-linking mass spectrometry, and computational modeling, we further reveal that mN3 uses different region of its amphiphilic surface near the active site to directly bind different amyloid client proteins. Our work demonstrates a client recognition mechanism of NMNAT via which it chaperones different amyloid client proteins against pathological aggregation and implies a potential protective role for NMNAT in different amyloid-associated diseases.
Collapse
|
10
|
Zhu Y, Lobato AG, Zhai RG, Pinto M. Human Nmnat1 Promotes Autophagic Clearance of Amyloid Plaques in a Drosophila Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:852972. [PMID: 35401143 PMCID: PMC8988035 DOI: 10.3389/fnagi.2022.852972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by irreversible cognitive decline with limited therapeutic approaches. We characterized a Drosophila model of amyloid pathology that expresses human amyloid-beta precursor protein (APP695) and β-site APP cleaving enzyme (BACE) in the nervous system. Our model recapitulates in vivo the age-dependent accumulation of BACE-derived C-terminal fragment (CTF) and amyloid plaques in the brain, one of the key pathological hallmarks of AD. Using this model, we assessed the effects on plaque formation of Nicotinamide mononucleotide adenylyltransferase (Nmnat), an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase involved in cellular metabolism and neuroprotection. We compared the effects of overexpression of Drosophila Nmnat (dNmnat), human Nmnat1 (hNmnat1), human Nmnat2 (hNmnat2), and human Nmnat3 (hNmnat3), and observed that hNmnat1 has the highest efficacy in reducing amyloid aggregation and APP-CTF accumulation. Interestingly, we demonstrated that overexpression of hNmnat1 reduces amyloid plaques by promoting autophagic clearance. Our findings uncover a role of hNmnat1 in amyloid clearance and suggest an exciting neuroprotective potential of hNmnat1 in amyloid pathology.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Amanda G. Lobato
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Milena Pinto,
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Milena Pinto,
| |
Collapse
|
11
|
Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration. Cell Rep 2021; 37:110108. [PMID: 34910914 PMCID: PMC8692746 DOI: 10.1016/j.celrep.2021.110108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/24/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Activation of the pro-degenerative protein SARM1 after diverse physical and disease-relevant injuries causes programmed axon degeneration. Original studies indicate that substantially decreased SARM1 levels are required for neuroprotection. However, we demonstrate, in Sarm1 haploinsufficient mice, that lowering SARM1 levels by 50% delays programmed axon degeneration in vivo after sciatic nerve transection and partially prevents neurite outgrowth defects in mice lacking the pro-survival factor NMNAT2. In vitro, the rate of degeneration in response to traumatic, neurotoxic, and genetic triggers of SARM1 activation is also slowed. Finally, we demonstrate that Sarm1 antisense oligonucleotides decrease SARM1 levels by more than 50% in vitro, which delays or prevents programmed axon degeneration. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injury. These data demonstrate that axon protection occurs in a Sarm1 gene dose-responsive manner and that SARM1-lowering agents have therapeutic potential, making Sarm1-targeting antisense oligonucleotides a promising therapeutic strategy. SARM1-dependent axon degeneration occurs after diverse neurotoxic triggers Silencing one allele of pro-degenerative SARM1 slows programmed axon degeneration Sarm1 ASOs can mimic this, delaying axon degeneration in multiple contexts Decreasing SARM1 expression even partially may be therapeutically valuable
Collapse
|
12
|
Cheng XS, Shi FX, Zhao KP, Lin W, Li XY, Zhang J, Bu YY, Zhu R, Li XH, Duan DX, Ji XY, Wei JS, Wang JZ, Du J, Zhou XW. Nmnat2 attenuates amyloidogenesis and up-regulates ADAM10 in AMPK activity-dependent manner. Aging (Albany NY) 2021; 13:23620-23636. [PMID: 34644262 PMCID: PMC8580354 DOI: 10.18632/aging.203634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) accumulating is considered as a causative factor for formation of senile plaque in Alzheimer’s disease (AD), but its mechanism is still elusive. The Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2), a key redox cofactor for energy metabolism, is reduced in AD. Accumulative evidence has shown that the decrease of α-secretase activity, a disintegrin and metalloprotease domain 10 (ADAM10), is responsible for the increase of Aβ productions in AD patient’s brain. Here, we observe that the activity of α-secretase ADAM10 and levels of Nmnat2 are significantly decreased, meanwhile there is a simultaneous elevation of Aβ in Tg2576 mice. Over-expression of Nmnat2 increases the mRNA expression of α-secretase ADAM10 and its activity and inhibits Aβ production in N2a/APPswe cells, which can be abolished by Compound C, an AMPK antagonist, suggesting that AMPK is involved in over-expression of Nmnat2 against Aβ production. The further assays demonstrate that Nmnat2 activates AMPK by up-regulating the ratio of NAD+/NADH, moreover AMPK agonist AICAR can also increase ADAM10 activity and reduces Aβ1-40/1-42. Taken together, Nmnat2 suppresses Aβ production and up-regulates ADAM10 in AMPK activity-dependent manner, suggesting that Nmnat2 may serve as a new potential target in arresting AD.
Collapse
Affiliation(s)
- Xiang-Shu Cheng
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Fang-Xiao Shi
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kun-Peng Zhao
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Psychiatry, Henan Key Lab of Biological Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, Henan, China
| | - Wang Lin
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Ying Li
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Jun Zhang
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Yao-Yao Bu
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Rui Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Hong Li
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dong-Xiao Duan
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xin-Ying Ji
- Department of Microbiology, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jian-She Wei
- Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jin Du
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Respiratory, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Xin-Wen Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
13
|
Giong HK, Subramanian M, Yu K, Lee JS. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. Int J Mol Sci 2021; 22:8465. [PMID: 34445171 PMCID: PMC8395099 DOI: 10.3390/ijms22168465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathy refers to a group of progressive neurodegenerative diseases, including frontotemporal lobar degeneration and Alzheimer's disease, which correlate with the malfunction of microtubule-associated protein Tau (MAPT) due to abnormal hyperphosphorylation, leading to the formation of intracellular aggregates in the brain. Despite extensive efforts to understand tauopathy and develop an efficient therapy, our knowledge is still far from complete. To find a solution for this group of devastating diseases, several animal models that mimic diverse disease phenotypes of tauopathy have been developed. Rodents are the dominating tauopathy models because of their similarity to humans and established disease lines, as well as experimental approaches. However, powerful genetic animal models using Drosophila, zebrafish, and C. elegans have also been developed for modeling tauopathy and have contributed to understanding the pathophysiology of tauopathy. The success of these models stems from the short lifespans, versatile genetic tools, real-time in-vivo imaging, low maintenance costs, and the capability for high-throughput screening. In this review, we summarize the main findings on mechanisms of tauopathy and discuss the current tauopathy models of these non-rodent genetic animals, highlighting their key advantages and limitations in tauopathy research.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Manivannan Subramanian
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kweon Yu
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
14
|
Tan Q, Liang N, Zhang X, Li J. Dynamic Aging: Channeled Through Microenvironment. Front Physiol 2021; 12:702276. [PMID: 34366891 PMCID: PMC8334186 DOI: 10.3389/fphys.2021.702276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Aging process is a complicated process that involves deteriorated performance at multiple levels from cellular dysfunction to organ degeneration. For many years research has been focused on how aging changes things within cell. However, new findings suggest that microenvironments, circulating factors or inter-tissue communications could also play important roles in the dynamic progression of aging. These out-of-cell mechanisms pass on the signals from the damaged aging cells to other healthy cells or tissues to promote systematic aging phenotypes. This review discusses the mechanisms of how senescence and their secretome, NAD+ metabolism or circulating factors change microenvironments to regulate systematic aging, as well as the potential therapeutic strategies based on these findings for anti-aging interventions.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Pinkerton M, Ruetenik A, Bazylianska V, Nyvltova E, Barrientos A. Salvage NAD+ biosynthetic pathway enzymes moonlight as molecular chaperones to protect against proteotoxicity. Hum Mol Genet 2021; 30:672-686. [PMID: 33749726 DOI: 10.1093/hmg/ddab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Human neurodegenerative proteinopathies are disorders associated with abnormal protein depositions in brain neurons. They include polyglutamine (polyQ) conditions such as Huntington's disease (HD) and α-synucleinopathies such as Parkinson's disease (PD). Overexpression of NMNAT/Nma1, an enzyme in the NAD+ biosynthetic salvage pathway, acts as an efficient suppressor of proteotoxicities in yeast, fly and mouse models. Screens in yeast models of HD and PD allowed us to identify three additional enzymes of the same pathway that achieve similar protection against proteotoxic stress: Npt1, Pnc1 and Qns1. The mechanism by which these proteins maintain proteostasis has not been identified. Here, we report that their ability to maintain proteostasis in yeast models of HD and PD is independent of their catalytic activity and does not require cellular protein quality control systems such as the proteasome or autophagy. Furthermore, we show that, under proteotoxic stress, the four proteins are recruited as molecular chaperones with holdase and foldase activities. The NAD+ salvage proteins act by preventing misfolding and, together with the Hsp90 chaperone, promoting the refolding of extended polyQ domains and α-synuclein (α-Syn). Our results illustrate the existence of an evolutionarily conserved strategy of repurposing or moonlighting housekeeping enzymes under stress conditions to maintain proteostasis. We conclude that the entire salvage NAD+ biosynthetic pathway links NAD+ metabolism and proteostasis and emerges as a target for therapeutics to combat age-associated neurodegenerative proteotoxicities.
Collapse
Affiliation(s)
- Meredith Pinkerton
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Ruetenik
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Viktoriia Bazylianska
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,MS in Biochemistry and Molecular Biology, Wayne State University, School of Medicine. Detroit, MI 48201, USA
| | - Eva Nyvltova
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine. Miami, FL 33136, USA
| |
Collapse
|
16
|
Losev Y, Frenkel-Pinter M, Abu-Hussien M, Viswanathan GK, Elyashiv-Revivo D, Geries R, Khalaila I, Gazit E, Segal D. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer's disease-related neurodegeneration. Cell Mol Life Sci 2021; 78:2231-2245. [PMID: 32926180 PMCID: PMC11072875 DOI: 10.1007/s00018-020-03643-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Amyloid assemblies of Tau are associated with Alzheimer's disease (AD). In AD Tau undergoes several abnormal post-translational modifications, including hyperphosphorylation and glycosylation, which impact disease progression. N-glycosylated Tau was reported to be found in AD brain tissues but not in healthy counterparts. This is surprising since Tau is a cytosolic protein whereas N-glycosylation occurs in the ER-Golgi. Previous in vitro studies indicated that N-glycosylation of Tau facilitated its phosphorylation and contributed to maintenance of its Paired Helical Filament structure. However, the specific Tau residue(s) that undergo N-glycosylation and their effect on Tau-engendered pathology are unknown. High-performance liquid chromatography and mass spectrometry (LC-MS) analysis indicated that both N359 and N410 were N-glycosylated in wild-type (WT) human Tau (hTau) expressed in human SH-SY5Y cells. Asparagine to glutamine mutants, which cannot undergo N-glycosylation, at each of three putative N-glycosylation sites in hTau (N167Q, N359Q, and N410Q) were generated and expressed in SH-SY5Y cells and in transgenic Drosophila. The mutants modulated the levels of hTau phosphorylation in a site-dependent manner in both cell and fly models. Additionally, N359Q ameliorated, whereas N410Q exacerbated various aspects of hTau-engendered neurodegeneration in transgenic flies.
Collapse
Affiliation(s)
- Yelena Losev
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Moran Frenkel-Pinter
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Malak Abu-Hussien
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Guru Krishnakumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Donna Elyashiv-Revivo
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Rana Geries
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Isam Khalaila
- Department of Biotechnology Engineering, Ben-Gurion University of Negev, 84105, Beer Sheva, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel.
- Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel.
| |
Collapse
|
17
|
Ma X, Zhu Y, Lu J, Xie J, Li C, Shin WS, Qiang J, Liu J, Dou S, Xiao Y, Wang C, Jia C, Long H, Yang J, Fang Y, Jiang L, Zhang Y, Zhang S, Zhai RG, Liu C, Li D. Nicotinamide mononucleotide adenylyltransferase uses its NAD + substrate-binding site to chaperone phosphorylated Tau. eLife 2020; 9:51859. [PMID: 32250733 PMCID: PMC7136026 DOI: 10.7554/elife.51859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/21/2020] [Indexed: 01/07/2023] Open
Abstract
Tau hyper-phosphorylation and deposition into neurofibrillary tangles have been found in brains of patients with Alzheimer's disease (AD) and other tauopathies. Molecular chaperones are involved in regulating the pathological aggregation of phosphorylated Tau (pTau) and modulating disease progression. Here, we report that nicotinamide mononucleotide adenylyltransferase (NMNAT), a well-known NAD+ synthase, serves as a chaperone of pTau to prevent its amyloid aggregation in vitro as well as mitigate its pathology in a fly tauopathy model. By combining NMR spectroscopy, crystallography, single-molecule and computational approaches, we revealed that NMNAT adopts its enzymatic pocket to specifically bind the phosphorylated sites of pTau, which can be competitively disrupted by the enzymatic substrates of NMNAT. Moreover, we found that NMNAT serves as a co-chaperone of Hsp90 for the specific recognition of pTau over Tau. Our work uncovers a dedicated chaperone of pTau and suggests NMNAT as a key node between NAD+ metabolism and Tau homeostasis in aging and neurodegeneration.
Collapse
Affiliation(s)
- Xiaojuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of the Chinese Academy of SciencesBeijingChina
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Jinxia Lu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Jingfei Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of the Chinese Academy of SciencesBeijingChina
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Woo Shik Shin
- Department of Neurology, Molecular Biology Institute, and Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of the Chinese Academy of SciencesBeijingChina
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiChina
| | - Shuai Dou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Yi Xiao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of the Chinese Academy of SciencesBeijingChina
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of the Chinese Academy of SciencesBeijingChina
| | - Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of the Chinese Academy of SciencesBeijingChina
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Lin Jiang
- Department of Neurology, Molecular Biology Institute, and Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Rong Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Dan Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
18
|
Hsieh YC, Guo C, Yalamanchili HK, Abreha M, Al-Ouran R, Li Y, Dammer EB, Lah JJ, Levey AI, Bennett DA, De Jager PL, Seyfried NT, Liu Z, Shulman JM. Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA Splicing and Neurodegeneration in Alzheimer's Disease. Cell Rep 2019; 29:301-316.e10. [PMID: 31597093 PMCID: PMC6919331 DOI: 10.1016/j.celrep.2019.08.104] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
In Alzheimer's disease (AD), spliceosomal proteins with critical roles in RNA processing aberrantly aggregate and mislocalize to Tau neurofibrillary tangles. We test the hypothesis that Tau-spliceosome interactions disrupt pre-mRNA splicing in AD. In human postmortem brain with AD pathology, Tau coimmunoprecipitates with spliceosomal components. In Drosophila, pan-neuronal Tau expression triggers reductions in multiple core and U1-specific spliceosomal proteins, and genetic disruption of these factors, including SmB, U1-70K, and U1A, enhances Tau-mediated neurodegeneration. We further show that loss of function in SmB, encoding a core spliceosomal protein, causes decreased survival, progressive locomotor impairment, and neuronal loss, independent of Tau toxicity. Lastly, RNA sequencing reveals a similar profile of mRNA splicing errors in SmB mutant and Tau transgenic flies, including intron retention and non-annotated cryptic splice junctions. In human brains, we confirm cryptic splicing errors in association with neurofibrillary tangle burden. Our results implicate spliceosome disruption and the resulting transcriptome perturbation in Tau-mediated neurodegeneration in AD.
Collapse
Affiliation(s)
- Yi-Chen Hsieh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caiwei Guo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hari K Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Measho Abreha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rami Al-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Nisha, Aggarwal P, Sarkar S. Adequate expression of Globin1 is required for development and maintenance of nervous system in Drosophila. Mol Cell Neurosci 2019; 100:103398. [DOI: 10.1016/j.mcn.2019.103398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022] Open
|
20
|
Zhu Y, Li C, Tao X, Brazill JM, Park J, Diaz-Perez Z, Zhai RG. Nmnat restores neuronal integrity by neutralizing mutant Huntingtin aggregate-induced progressive toxicity. Proc Natl Acad Sci U S A 2019; 116:19165-19175. [PMID: 31484760 PMCID: PMC6754563 DOI: 10.1073/pnas.1904563116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulative aggregation of mutant Huntingtin (Htt) is a primary neuropathological hallmark of Huntington's disease (HD). Currently, mechanistic understanding of the cytotoxicity of mutant Htt aggregates remains limited, and neuroprotective strategies combating mutant Htt-induced neurodegeneration are lacking. Here, we show that in Drosophila models of HD, neuronal compartment-specific accumulation of mutant Htt aggregates causes neurodegenerative phenotypes. In addition to the increase in the number and size, we discovered an age-dependent acquisition of thioflavin S+, amyloid-like adhesive properties of mutant Htt aggregates and a concomitant progressive clustering of aggregates with mitochondria and synaptic proteins, indicating that the amyloid-like adhesive property underlies the neurotoxicity of mutant Htt aggregation. Importantly, nicotinamide mononucleotide adenylyltransferase (NMNAT), an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase and neuroprotective factor, significantly mitigates mutant Htt-induced neurodegeneration by reducing mutant Htt aggregation through promoting autophagic clearance. Additionally, Nmnat overexpression reduces progressive accumulation of amyloid-like Htt aggregates, neutralizes adhesiveness, and inhibits the clustering of mutant Htt with mitochondria and synaptic proteins, thereby restoring neuronal function. Conversely, partial loss of endogenous Nmnat exacerbates mutant Htt-induced neurodegeneration through enhancing mutant Htt aggregation and adhesive property. Finally, conditional expression of Nmnat after the onset of degenerative phenotypes significantly delays the progression of neurodegeneration, revealing the therapeutic potential of Nmnat-mediated neuroprotection at advanced stages of HD. Our study uncovers essential mechanistic insights to the neurotoxicity of mutant Htt aggregation and describes the molecular basis of Nmnat-mediated neuroprotection in HD.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
21
|
Park J, Zhu Y, Tao X, Brazill JM, Li C, Wuchty S, Zhai RG. MicroRNA miR-1002 Enhances NMNAT-Mediated Stress Response by Modulating Alternative Splicing. iScience 2019; 19:1048-1064. [PMID: 31522116 PMCID: PMC6745518 DOI: 10.1016/j.isci.2019.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 05/07/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
Understanding endogenous regulation of stress resistance and homeostasis maintenance is critical to developing neuroprotective therapies. Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a conserved essential enzyme that confers extraordinary protection and stress resistance in many neurodegenerative disease models. Drosophila Nmnat is alternatively spliced to two mRNA variants, RA and RB. RB translates to protein isoform PD with robust protective activity and is upregulated upon stress to confer enhanced neuroprotection. The mechanisms regulating the alternative splicing and stress response of NMNAT remain unclear. We have discovered a Drosophila microRNA, dme-miR-1002, which promotes the splicing of NMNAT pre-mRNA to RB by disrupting a pre-mRNA stem-loop structure. NMNAT pre-mRNA is preferentially spliced to RA in basal conditions, whereas miR-1002 enhances NMNAT PD-mediated stress protection by binding via RISC component Argonaute1 to the pre-mRNA, facilitating the splicing switch to RB. These results outline a new process for microRNAs in regulating alternative splicing and modulating stress resistance.
Collapse
Affiliation(s)
- Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
22
|
Perini G, Ciasca G, Minelli E, Papi M, Palmieri V, Maulucci G, Nardini M, Latina V, Corsetti V, Florenzano F, Calissano P, De Spirito M, Amadoro G. Dynamic structural determinants underlie the neurotoxicity of the N-terminal tau 26-44 peptide in Alzheimer's disease and other human tauopathies. Int J Biol Macromol 2019; 141:278-289. [PMID: 31470053 DOI: 10.1016/j.ijbiomac.2019.08.220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
The intrinsically disordered tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and other human tauopathies. Abnormal post-translational modifications of tau, such as truncation, are causally involved in the onset/development of these neurodegenerative diseases. In this context, the AD-relevant N-terminal fragment mapping between 26 and 44 amino acids of protein (tau26-44) is interesting, being endowed with potent neurotoxic effects in vitro and in vivo. However, the understanding of the mechanism(s) of tau26-44 toxicity is a challenging task because, similarly to the full-length tau, it does not have a unique 3D structure but exists as dynamic ensemble of conformations. Here we use Atomic Force Spectroscopy, Small Angle X-ray Scattering and Molecular Dynamics simulation to gather structural and functional information on the tau26-44. We highlight the presence, the type and the location of its temporary secondary structures and we unveil the occurrence of relevant transient tertiary conformations that could contribute to tau26-44 toxicity. Data are compared with those obtained on the biologically-inactive, reverse-sequence (tau44-26 peptide) which has the same mass, charge, aminoacidic composition as well as the same overall unfolded character of tau26-44.
Collapse
Affiliation(s)
- Giordano Perini
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Gabriele Ciasca
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy.
| | - Eleonora Minelli
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Massimiliano Papi
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Valentina Palmieri
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Giuseppe Maulucci
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Matteo Nardini
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Veronica Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Marco De Spirito
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
23
|
Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci 2019; 24:371-383. [PMID: 31280708 DOI: 10.1080/1028415x.2019.1637504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that mediates various redox reactions. Particularly, mitochondrial NAD plays a critical role in energy production pathways, including the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and oxidative phosphorylation. NAD also serves as a substrate for ADP-ribosylation and deacetylation by poly(ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response. Numerous studies have demonstrated the involvement of NAD metabolism in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and retinal degenerative diseases. Mitochondrial dysfunction is considered crucial pathogenesis for neurodegenerative diseases such as AD and PD. Maintaining appropriate NAD levels is important for mitochondrial function. Indeed, decreased NAD levels are observed in AD and PD, and supplementation of NAD precursors ameliorates disease phenotypes by activating mitochondrial functions. NAD metabolism also plays an important role in axonal degeneration, a characteristic feature of peripheral neuropathy and neurodegenerative diseases. In addition, dysregulated NAD metabolism is implicated in retinal degenerative diseases such as glaucoma and Leber congenital amaurosis, and NAD metabolism is considered a therapeutic target for these diseases. In this review, we summarize the involvement of NAD metabolism in axon degeneration and various neurodegenerative diseases and discuss perspectives of nutritional intervention using NAD precursors.
Collapse
Affiliation(s)
- Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
24
|
d'Orange M, Aurégan G, Cheramy D, Gaudin-Guérif M, Lieger S, Guillermier M, Stimmer L, Joséphine C, Hérard AS, Gaillard MC, Petit F, Kiessling MC, Schmitz C, Colin M, Buée L, Panayi F, Diguet E, Brouillet E, Hantraye P, Bemelmans AP, Cambon K. Potentiating tangle formation reduces acute toxicity of soluble tau species in the rat. Brain 2019; 141:535-549. [PMID: 29253129 PMCID: PMC5837551 DOI: 10.1093/brain/awx342] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the aggregation of tau protein. These pathologies exhibit a wide variety of clinical and anatomo-pathological presentations, which may result from different pathological mechanisms. Although tau inclusions are a common feature in all these diseases, recent evidence instead implicates small oligomeric aggregates as drivers of tau-induced toxicity. Hence in vivo model systems displaying either soluble or fibrillary forms of wild-type or mutant tau are needed to better identify their respective pathological pathways. Here we used adeno-associated viruses to mediate gene transfer of human tau to the rat brain to develop models of pure tauopathies. Two different constructs were used, each giving rise to a specific phenotype developing in less than 3 months. First, hTAUWT overexpression led to a strong hyperphosphorylation of the protein, which was associated with neurotoxicity in the absence of any significant aggregation. In sharp contrast, its co-expression with the pro-aggregation peptide TauRD-ΔK280 in the hTAUProAggr group strongly promoted its aggregation into Gallyas-positive neurofibrillary tangles, while preserving neuronal survival. Our results support the hypothesis that soluble tau species are key players of tau-induced neurodegeneration.
Collapse
Affiliation(s)
- Marie d'Orange
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Gwénaelle Aurégan
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Dimitri Cheramy
- Institut de Recherches Servier, DRD-RDNPS, 125 chemin de ronde, 78 290 Croissy sur Seine, France
| | - Mylène Gaudin-Guérif
- Institut de Recherches Servier, DRD-RDNPS, 125 chemin de ronde, 78 290 Croissy sur Seine, France
| | - Sarah Lieger
- Inserm, UMR-S 1172, Lille, France.,Université Lille 2, Faculté de Médecine, IMPRT, JPARC, Lille, France.,CMRR, CHR, Lille, France
| | - Martine Guillermier
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Lev Stimmer
- MIRCen, INSERM-CEA, Platform for experimental pathology, U1169 and US27, F- 92265 Fontenay-aux-Roses, France
| | - Charlène Joséphine
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Fanny Petit
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | | | - Christoph Schmitz
- Department of Neuroanatomy, Ludwig-Maximilians-University, Munich, Germany
| | - Morvane Colin
- Inserm, UMR-S 1172, Lille, France.,Université Lille 2, Faculté de Médecine, IMPRT, JPARC, Lille, France.,CMRR, CHR, Lille, France
| | - Luc Buée
- Inserm, UMR-S 1172, Lille, France.,Université Lille 2, Faculté de Médecine, IMPRT, JPARC, Lille, France.,CMRR, CHR, Lille, France
| | - Fany Panayi
- Institut de Recherches Servier, DRD-RDNPS, 125 chemin de ronde, 78 290 Croissy sur Seine, France
| | - Elsa Diguet
- Institut de Recherches Servier, DRD-RDNPS, 125 chemin de ronde, 78 290 Croissy sur Seine, France
| | - Emmanuel Brouillet
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Karine Cambon
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| |
Collapse
|
25
|
Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp Neurol 2019; 320:112961. [PMID: 31136762 DOI: 10.1016/j.expneurol.2019.112961] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD+) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD+ synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder. SIGNIFICANCE: Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron carrier Nicotinamide Adenine Dinucleotide (NAD+) and acts a protein chaperone. NMNAT2 has emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in neurodegeneration. While the role of NMNAT2 in neurodegeneration has been extensively studied, the role of NMNAT2 in human development remains unclear. In this work, we present the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both NMNAT2 NAD+ synthase and chaperone functions. This work identifies the critical role of NMNAT2 in human development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Xiuna Yang
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| |
Collapse
|
26
|
Tang BL. Why is NMNAT Protective against Neuronal Cell Death and Axon Degeneration, but Inhibitory of Axon Regeneration? Cells 2019; 8:cells8030267. [PMID: 30901919 PMCID: PMC6468476 DOI: 10.3390/cells8030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT), a key enzyme for NAD+ synthesis, is well known for its activity in neuronal survival and attenuation of Wallerian degeneration. Recent investigations in invertebrate models have, however, revealed that NMNAT activity negatively impacts upon axon regeneration. Overexpression of Nmnat in laser-severed Drosophila sensory neurons reduced axon regeneration, while axon regeneration was enhanced in injured mechanosensory axons in C. elegansnmat-2 null mutants. These diametrically opposite effects of NMNAT orthologues on neuroprotection and axon regeneration appear counterintuitive as there are many examples of neuroprotective factors that also promote neurite outgrowth, and enhanced neuronal survival would logically facilitate regeneration. We suggest here that while NMNAT activity and NAD+ production activate neuroprotective mechanisms such as SIRT1-mediated deacetylation, the same mechanisms may also activate a key axonal regeneration inhibitor, namely phosphatase and tensin homolog (PTEN). SIRT1 is known to deacetylate and activate PTEN which could, in turn, suppress PI3 kinase–mTORC1-mediated induction of localized axonal protein translation, an important process that determines successful regeneration. Strategic tuning of Nmnat activity and NAD+ production in axotomized neurons may thus be necessary to promote initial survival without inhibiting subsequent regeneration.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
27
|
Russo A, Goel P, Brace EJ, Buser C, Dickman D, DiAntonio A. The E3 ligase Highwire promotes synaptic transmission by targeting the NAD-synthesizing enzyme dNmnat. EMBO Rep 2019; 20:e46975. [PMID: 30692130 PMCID: PMC6399608 DOI: 10.15252/embr.201846975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
The ubiquitin ligase Highwire restrains synaptic growth and promotes evoked neurotransmission at NMJ synapses in Drosophila Highwire regulates synaptic morphology by downregulating the MAP3K Wallenda, but excess Wallenda signaling does not account for the decreased presynaptic release observed in highwire mutants. Hence, Highwire likely has a second substrate that inhibits neurotransmission. Highwire targets the NAD+ biosynthetic and axoprotective enzyme dNmnat to regulate axonal injury responses. dNmnat localizes to synapses and interacts with the active zone protein Bruchpilot, leading us to hypothesize that Highwire promotes evoked release by downregulating dNmnat. Here, we show that excess dNmnat is necessary in highwire mutants and sufficient in wild-type larvae to reduce quantal content, likely via disruption of active zone ultrastructure. Catalytically active dNmnat is required to drive defects in evoked release, and depletion of a second NAD+ synthesizing enzyme is sufficient to suppress these defects in highwire mutants, suggesting that excess NAD+ biosynthesis is the mechanism inhibiting neurotransmission. Thus, Highwire downregulates dNmnat to promote evoked synaptic release, suggesting that Highwire balances the axoprotective and synapse-inhibitory functions of dNmnat.
Collapse
Affiliation(s)
- Alexandra Russo
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - E J Brace
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Chris Buser
- Oak Crest Institute of Science, Monrovia, CA, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Papanikolopoulou K, Mudher A, Skoulakis E. An assessment of the translational relevance of Drosophila in drug discovery. Expert Opin Drug Discov 2019; 14:303-313. [PMID: 30664368 DOI: 10.1080/17460441.2019.1569624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Drosophila melanogaster offers a powerful expedient and economical system with facile genetics. Because of the high sequence and functional conservation with human disease-associated genes, it has been cardinal in deciphering disease mechanisms at the genetic and molecular level. Drosophila are amenable to and respond well to pharmaceutical treatment which coupled to their genetic tractability has led to discovery, repositioning, and validation of a number of compounds. Areas covered: This review summarizes the generation of fly models of human diseases, their advantages and use in elucidation of human disease mechanisms. Representative studies provide examples of the utility of this system in modeling diseases and the discovery, repositioning and testing on pharmaceuticals to ameliorate them. Expert opinion: Drosophila offers a facile and economical whole animal system with many homologous organs to humans, high functional conservation and established methods of generating and validating human disease models. Nevertheless, it remains relatively underused as a drug discovery tool probably because its relevance to mammalian systems remains under question. However, recent exciting success stories using Drosophila disease models for drug screening, repositioning and validation strongly suggest that fly models should figure prominently in the drug discovery pipeline from bench to bedside.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| | - Amrit Mudher
- b Centre for Biological Sciences , University of Southampton , Southampton , UK
| | - Efthimios Skoulakis
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| |
Collapse
|
29
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
30
|
Sivanantharajah L, Mudher A, Shepherd D. An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer's disease. J Neurosci Methods 2019; 319:77-88. [PMID: 30633936 DOI: 10.1016/j.jneumeth.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Work spanning almost two decades using the fruit fly, Drosophila melanogaster, to study tau-mediated neurodegeneration has provided valuable and novel insights into the causes and mechanisms of tau-mediated toxicity and dysfunction in tauopathies such as Alzheimer's disease (AD). The fly has proven to be an excellent model for human diseases because of its cost efficiency, and the availability of powerful genetic tools for use in a comparatively less-complicated, but evolutionarily conserved, in vivo system. In this review, we provide a critical evaluation of the insights provided by fly models, highlighting both the advantages and limitations of the system. The fly has contributed to a greater understanding of the causes of tau abnormalities, the role of these abnormalities in mediating toxicity and/or dysfunction, and the nature of causative species mediating tau-toxicity. However, it is not possible to perfectly model all aspects of human degenerative diseases. What sets the fly apart from other animal models is its genetic tractability, which makes it highly amenable to overcoming experimental limitations. The explosion of genetic technology since the first fly disease models were established has translated into fly lines that allow for greater temporal control in restricting tau expression to single neuron types, and lines that can label and monitor the function of subcellular structures and components; thus, fly models offer an unprecedented view of the neurodegenerative process. Emerging genetic technology means that the fly provides an ever-evolving experimental platform for studying disease.
Collapse
Affiliation(s)
| | - Amritpal Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - David Shepherd
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
31
|
Nishioka C, Liang HF, Barsamian B, Sun SW. Amyloid-beta induced retrograde axonal degeneration in a mouse tauopathy model. Neuroimage 2019; 189:180-191. [PMID: 30630081 DOI: 10.1016/j.neuroimage.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
White matter abnormalities, revealed by Diffusion Tensor Imaging (DTI), are observed in patients with Alzheimer's Disease (AD), representing neural network deficits that underlie gradual cognitive decline in patients. However, how DTI changes related to the development of Amyloid beta (Aβ) and tau pathology, two key hallmarks of AD, remain elusive. We hypothesized that tauopathy induced by Aβ could initiate an axonal degeneration, leading to DTI-detectable white matter abnormalities. We utilized the visual system of the transgenic p301L tau mice as a model system. Aβ was injected in Lateral Geniculate Nucleus (LGN), where the Retinal Ganglion Cell (RGC) axons terminate. Longitudinal DTI was conducted to detect changes in the optic tract (OT) and optic nerve (ON), containing the distal and proximal segments of RGC axons, respectively. Our results showed DTI changes in OT (significant 13.2% reduction in axial diffusion, AxD vs. vehicle controls) followed by significant alterations in ON AxD and fractional anisotropy, FA. Histology data revealed loss of synapses, RGC axons and cell bodies resulting from the Aβ injection. We further tested whether microtubule-stabilizing compound Epothilone D (EpoD) could ameliorate the damage. EpoD co-treatment with Aβ was sufficient to prevent Aβ-induced axon and cell loss. Using an acute injection paradigm, our data suggest that EpoD may mediate its protective effect by blocking localized, acute Aβ-induced tau phosphorylation. This study demonstrates white matter disruption resulting from localized Aβ, the importance of tau pathology induction to changes in white matter connectivity, and the use of EpoD as a potential therapeutic avenue to prevent the axon loss in AD.
Collapse
Affiliation(s)
- Christopher Nishioka
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA; Neuroscience Graduate Program, University of California, Riverside, USA
| | - Hsiao-Fang Liang
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA
| | - Barsam Barsamian
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA; Neuroscience Graduate Program, University of California, Riverside, USA
| | - Shu-Wei Sun
- Basic Sciences, School of Medicine, Loma Linda University, CA, USA; Neuroscience Graduate Program, University of California, Riverside, USA; Pharmaceutical Science, School of Pharmacy, Loma Linda University, CA, USA.
| |
Collapse
|
32
|
Kizhakke P. A, Olakkaran S, Antony A, Tilagul K. S, Hunasanahally P. G. Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model. J Chem Neuroanat 2019; 95:115-122. [DOI: 10.1016/j.jchemneu.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/27/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
|
33
|
Passarella D, Goedert M. Beta-sheet assembly of Tau and neurodegeneration in Drosophila melanogaster. Neurobiol Aging 2018; 72:98-105. [PMID: 30240946 PMCID: PMC6327151 DOI: 10.1016/j.neurobiolaging.2018.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/21/2018] [Accepted: 07/29/2018] [Indexed: 12/23/2022]
Abstract
The assembly of Tau into abundant β-sheet-rich filaments characterizes human tauopathies. A pathological pathway leading from monomeric to filamentous Tau is believed to be at the heart of these diseases. However, in Drosophila models of Tauopathy, neurodegeneration has been observed in the absence of abundant Tau filaments. Here we investigated the role of Tau assembly into β-sheets by expressing wild-type and Δ306-311 human Tau-383 in the retina and brain of Drosophila. We analyzed both lines for eye abnormalities, brain vacuolization, Tau phosphorylation and assembly, as well as climbing activity and survival. Flies expressing wild-type Tau-383 showed MC-1 staining, Tau hyperphosphorylation, and neurodegeneration. By contrast, flies expressing Δ306-311 Tau-383 had less MC-1 staining, reduced Tau hyperphosphorylation, and no detectable neurodegeneration. Their climbing ability and lifespan were similar to those of nontransgenic flies. Fluorescence spectroscopy after addition of Thioflavin T, a dye that interacts with β-sheets, showed no signal when Δ306-311 Tau-383 was incubated with heparin. These findings demonstrate that the assembly of Tau into β-sheets is necessary for neurodegeneration.
Collapse
|
34
|
Liu X, Liu M, Tang C, Xiang Z, Li Q, Ruan X, Xiong K, Zheng L. Overexpression of Nmnat improves the adaption of health span in aging Drosophila. Exp Gerontol 2018; 108:276-283. [DOI: 10.1016/j.exger.2018.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
35
|
Rossi F, Geiszler PC, Meng W, Barron MR, Prior M, Herd-Smith A, Loreto A, Lopez MY, Faas H, Pardon MC, Conforti L. NAD-biosynthetic enzyme NMNAT1 reduces early behavioral impairment in the htau mouse model of tauopathy. Behav Brain Res 2018; 339:140-152. [PMID: 29175372 PMCID: PMC5769520 DOI: 10.1016/j.bbr.2017.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/04/2022]
Abstract
NAD metabolism and the NAD biosynthetic enzymes nicotinamide nucleotide adenylyltransferases (NMNATs) are thought to play a key neuroprotective role in tauopathies, including Alzheimer's disease. Here, we investigated whether modulating the expression of the NMNAT nuclear isoform NMNAT1, which is important for neuronal maintenance, influences the development of behavioral and neuropathological abnormalities in htau mice, which express non-mutant human tau isoforms and represent a model of tauopathy relevant to Alzheimer's disease. Prior to the development of cognitive symptoms, htau mice exhibit tau hyperphosphorylation associated with a selective deficit in food burrowing, a behavior reminiscent to activities of daily living which are impaired early in Alzheimer's disease. We crossed htau mice with Nmnat1 transgenic and knockout mice and tested the resulting offspring until the age of 6 months. We show that overexpression of NMNAT1 ameliorates the early deficit in food burrowing characteristic of htau mice. At 6 months of age, htau mice did not show neurodegenerative changes in both the cortex and hippocampus, and these were not induced by downregulating NMNAT1 levels. Modulating NMNAT1 levels produced a corresponding effect on NMNAT enzymatic activity but did not alter NAD levels in htau mice. Although changes in local NAD levels and subsequent modulation of NAD-dependent enzymes cannot be ruled out, this suggests that the effects seen on behavior may be due to changes in tau phosphorylation. Our results suggest that increasing NMNAT1 levels can slow the progression of symptoms and neuropathological features of tauopathy, but the underlying mechanisms remain to be established.
Collapse
Affiliation(s)
- Francesca Rossi
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK; Department of Biomedical Sciences, Cagliari University, Cagliari 09042, Italy
| | - Philippine C Geiszler
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Weina Meng
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Matthew R Barron
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Malcolm Prior
- Department of Biomedical Sciences, Cagliari University, Cagliari 09042, Italy
| | - Anna Herd-Smith
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Andrea Loreto
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Maria Yanez Lopez
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Medical School, Nottingham NG7 2UH, UK; Faculty of Medicine, Department of Medicine, Imperial College London, Burlington Danes, Hammersmith campus, London W12 0NN, UK
| | - Henryk Faas
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Medical School, Nottingham NG7 2UH, UK
| | - Marie-Christine Pardon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK.
| | - Laura Conforti
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| |
Collapse
|
36
|
Abstract
Parkinson's disease (PD) is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn), and the loss of dopaminergic (DA) neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ). Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In addition, α-Syn is able to interact with and reduce the activity of VMAT2 and DAT. The resulting dysregulation of dopamine levels directly contributes to the formation of toxic α-Syn oligomers. Together these data suggest a vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Jessika C Bridi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Frank Hirth
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| |
Collapse
|
37
|
Short-term exposure to dim light at night disrupts rhythmic behaviors and causes neurodegeneration in fly models of tauopathy and Alzheimer's disease. Biochem Biophys Res Commun 2017; 495:1722-1729. [PMID: 29217196 DOI: 10.1016/j.bbrc.2017.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
The accumulation and aggregation of phosphorylated tau proteins in the brain are the hallmarks for the onset of Alzheimer's disease (AD). In addition, disruptions in circadian rhythms (CRs) with altered sleep-wake cycles, dysregulation of locomotion, and increased memory defects have been reported in patients with AD. Drosophila flies that have an overexpression of human tau protein in neurons exhibit most of the symptoms of human patients with AD, including locomotion defects and neurodegeneration. Using the fly model for tauopathy/AD, we investigated the effects of an exposure to dim light at night on AD symptoms. We used a light intensity of 10 lux, which is considered the lower limit of light pollution in many countries. After the tauopathy flies were exposed to the dim light at night for 3 days, the flies showed disrupted CRs, altered sleep-wake cycles due to increased pTau proteins and neurodegeneration, in the brains of the AD flies. The results indicate that the nighttime exposure of tauopathy/AD model Drosophila flies to dim light disrupted CR and sleep-wake behavior and promoted neurodegeneration.
Collapse
|
38
|
Galasso A, Cameron CS, Frenguelli BG, Moffat KG. An AMPK-dependent regulatory pathway in tau-mediated toxicity. Biol Open 2017; 6:1434-1444. [PMID: 28808138 PMCID: PMC5665459 DOI: 10.1242/bio.022863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurodegenerative tauopathies are characterised by accumulation of hyperphosphorylated tau aggregates primarily degraded by autophagy. The 5′AMP-activated protein kinase (AMPK) is expressed in most cells, including neurons. Alongside its metabolic functions, it is also known to be activated in Alzheimer's brains, phosphorylate tau, and be a critical autophagy activator. Whether it plays a neurotoxic or neuroprotective role remains unclear. In tauopathies stress conditions can result in AMPK activation, enhancing tau-mediated toxicity. Paradoxically, in these cases AMPK activation does not always lead to protective autophagic responses. Using a Drosophila in vivo quantitative approach, we have analysed the impact of AMPK and autophagy on tau-mediated toxicity, recapitulating the AMPK-mediated tauopathy condition: increased tau phosphorylation, without corresponding autophagy activation. We have demonstrated that AMPK binding to and phosphorylating tau at Ser-262, a site reported to facilitate soluble tau accumulation, affects its degradation. This phosphorylation results in exacerbation of tau toxicity and is ameliorated via rapamycin-induced autophagy stimulation. Our findings support the development of combinatorial therapies effective at reducing tau toxicity targeting tau phosphorylation and AMPK-independent autophagic induction. The proposed in vivo tool represents an ideal readout to perform preliminary screening for drugs promoting this process. Summary: Dissection of the impact of AMPK and autophagy on tau-mediated toxicity by using an in vivo Drosophila tool as readout to perform preliminary drug screening supported by quantitative analyses.
Collapse
Affiliation(s)
- Alessia Galasso
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Charles S Cameron
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
39
|
Chanu SI, Sarkar S. Targeted downregulation of dMyc restricts neurofibrillary tangles mediated pathogenesis of human neuronal tauopathies in Drosophila. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2111-2119. [DOI: 10.1016/j.bbadis.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
40
|
Brazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It's an NAD + synthase… It's a chaperone… It's a neuroprotector. Curr Opin Genet Dev 2017; 44:156-162. [PMID: 28445802 DOI: 10.1016/j.gde.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Nicotinamide mononucleotide adenylyl transferases (NMNATs) are a family of highly conserved proteins indispensable for cellular homeostasis. NMNATs are classically known for their enzymatic function of catalyzing NAD+ synthesis, but also have gained a reputation as essential neuronal maintenance factors. NMNAT deficiency has been associated with various human diseases with pronounced consequences on neural tissues, underscoring the importance of the neuronal maintenance and protective roles of these proteins. New mechanistic studies have challenged the role of NMNAT-catalyzed NAD+ production in delaying Wallerian degeneration and have specified new mechanisms of NMNAT's chaperone function critical for neuronal health. Progress in understanding the regulation of NMNAT has uncovered a neuronal stress response with great therapeutic promise for treating various neurodegenerative conditions.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
41
|
Ali YO, Bradley G, Lu HC. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep 2017; 7:43846. [PMID: 28266613 PMCID: PMC5358788 DOI: 10.1038/srep43846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.
Collapse
Affiliation(s)
- Yousuf O Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gillian Bradley
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
42
|
Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy in Drosophila Tauopathy Models. Sci Rep 2017; 7:40764. [PMID: 28112163 PMCID: PMC5256094 DOI: 10.1038/srep40764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023] Open
Abstract
Tau-mediated neurodegeneration in Alzheimer’s disease and tauopathies is generally assumed to start in a normally developed brain. However, several lines of evidence suggest that impaired Tau isoform expression during development could affect mitosis and ploidy in post-mitotic differentiated tissue. Interestingly, the relative expression levels of Tau isoforms containing either 3 (3R-Tau) or 4 repeats (4R-Tau) play an important role both during brain development and neurodegeneration. Here, we used genetic and cellular tools to study the link between 3R and 4R-Tau isoform expression, mitotic progression in neuronal progenitors and post-mitotic neuronal survival. Our results illustrated that the severity of Tau-induced adult phenotypes depends on 4R-Tau isoform expression during development. As recently described, we observed a mitotic delay in 4R-Tau expressing cells of larval eye discs and brains. Live imaging revealed that the spindle undergoes a cycle of collapse and recovery before proceeding to anaphase. Furthermore, we found a high level of aneuploidy in post-mitotic differentiated tissue. Finally, we showed that overexpression of wild type and mutant 4R-Tau isoform in neuroblastoma SH-SY5Y cell lines is sufficient to induce monopolar spindles. Taken together, our results suggested that neurodegeneration could be in part linked to neuronal aneuploidy caused by 4R-Tau expression during brain development.
Collapse
|
43
|
|
44
|
Frenkel-Pinter M, Tal S, Scherzer-Attali R, Abu-Hussien M, Alyagor I, Eisenbaum T, Gazit E, Segal D. Naphthoquinone-Tryptophan Hybrid Inhibits Aggregation of the Tau-Derived Peptide PHF6 and Reduces Neurotoxicity. J Alzheimers Dis 2016; 51:165-78. [PMID: 26836184 DOI: 10.3233/jad-150927] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tauopathies, such as Alzheimer's disease (AD), are a group of disorders characterized neuropathologically by intracellular toxic accumulations of abnormal protein aggregates formed by misfolding of the microtubule-associated protein tau. Since protein self-assembly appears to be an initial key step in the pathology of this group of diseases, intervening in this process can be both a prophylactic measure and a means for modifying the course of the disease for therapeutic purposes. We and others have shown that aromatic small molecules can be effective inhibitors of aggregation of various protein assemblies, by binding to the aromatic core in aggregation-prone motifs and preventing their self-assembly. Specifically, we have designed a series of small aromatic naphthoquinone-tryptophan hybrid molecules as candidate aggregation inhibitors of β -sheet based assembly and demonstrated their efficacy toward inhibiting aggregation of the amyloid-β peptide, another culprit of AD, as well as of various other aggregative proteins involved in other protein misfolding diseases. Here we tested whether a leading naphthoquinone-tryptophan hybrid molecule, namely NQTrp, can be repurposed as an inhibitor of the aggregation of the tau protein in vitro and in vivo. We show that the molecule inhibits the in vitro assembly of PHF6, the aggregation-prone fragment of tau protein, reduces hyperphosphorylated tau deposits and ameliorates tauopathy-related behavioral defect in an established transgenic Drosophila model expressing human tau. We suggest that NQTrp, or optimized versions of it, could act as novel disease modifying drugs for AD and other tauopathies.
Collapse
|
45
|
Chen L, Nye DM, Stone MC, Weiner AT, Gheres KW, Xiong X, Collins CA, Rolls MM. Mitochondria and Caspases Tune Nmnat-Mediated Stabilization to Promote Axon Regeneration. PLoS Genet 2016; 12:e1006503. [PMID: 27923046 PMCID: PMC5173288 DOI: 10.1371/journal.pgen.1006503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 12/20/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
Axon injury can lead to several cell survival responses including increased stability and axon regeneration. Using an accessible Drosophila model system, we investigated the regulation of injury responses and their relationship. Axon injury stabilizes the rest of the cell, including the entire dendrite arbor. After axon injury we found mitochondrial fission in dendrites was upregulated, and that reducing fission increased stabilization or neuroprotection (NP). Thus axon injury seems to both turn on NP, but also dampen it by activating mitochondrial fission. We also identified caspases as negative regulators of axon injury-mediated NP, so mitochondrial fission could control NP through caspase activation. In addition to negative regulators of NP, we found that nicotinamide mononucleotide adenylyltransferase (Nmnat) is absolutely required for this type of NP. Increased microtubule dynamics, which has previously been associated with NP, required Nmnat. Indeed Nmnat overexpression was sufficient to induce NP and increase microtubule dynamics in the absence of axon injury. DLK, JNK and fos were also required for NP. Because NP occurs before axon regeneration, and NP seems to be actively downregulated, we tested whether excessive NP might inhibit regeneration. Indeed both Nmnat overexpression and caspase reduction reduced regeneration. In addition, overexpression of fos or JNK extended the timecourse of NP and dampened regeneration in a Nmnat-dependent manner. These data suggest that NP and regeneration are conflicting responses to axon injury, and that therapeutic strategies that boost NP may reduce regeneration. Unlike many other cell types, most neurons last a lifetime. When injured, these cells often activate survival and repair strategies rather than dying. One such response is regeneration of the axon after it is injured. Axon regeneration is a conserved process activated by the same signaling cascade in worms, flies and mammals. Surprisingly we find that this signaling cascade first initiates a different response. This first response stabilizes the cell, and its downregulation by mitochondrial fission and caspases allows for maximum regeneration at later times. We propose that neurons respond to axon injury in a multi-step process with an early lock-down phase in which the cell is stabilized, followed by a more plastic state in which regeneration is maximized.
Collapse
Affiliation(s)
- Li Chen
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Derek M. Nye
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michelle C. Stone
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alexis T. Weiner
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyle W. Gheres
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xin Xiong
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine A. Collins
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa M. Rolls
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Narne P, Pandey V, Simhadri PK, Phanithi PB. Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: The death knell tolls for neurons. Semin Cell Dev Biol 2016; 63:154-166. [PMID: 27867042 DOI: 10.1016/j.semcdb.2016.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Neurodegeneration is a salient feature of chronic refractory brain disorders like Alzheimer's, Parkinson's, Huntington's, amyotropic lateral sclerosis and acute conditions like cerebral ischemia/reperfusion etc. The pathological protein aggregates, mitochondrial mutations or ischemic insults typifying these disease conditions collude with and intensify existing oxidative stress and attendant mitochondrial dysfunction. Interlocking these mechanisms is poly(ADP-ribose) polymerase (PARP-1) hyperactivation that invokes a distinct form of neuronal cell death viz., 'parthanatos'. PARP-1, a typical 'moonlighting protein' by virtue of its ability to poly(ADP-ribosyl)ate a plethora of cellular proteins exerts diverse functions that impinge significantly on cellular processes. In addition, its interactions with various nuclear proteins like transcription factors and chromatin modifiers elicit varied transcriptional outcomes that wield pathological cellular responses. Further, emerging leitmotifs like mitochondrial and nucleolar PARPs and the novel aspects of gene expression regulation by PARP-1 and poly(ADP-ribosyl)ation can provide a holistic view of PARP-1's influence on cell vitality. In this review, we discuss the pathological underpinnings of PARP-1, with a special emphasis on mitochondrial dysfunction and cell death subroutines, in the realm of neurodegeneration. This would provide a deeper insight into the functions of PARP-1 in neurodegenerative conditions that would enable the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Parimala Narne
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Praveen Kumar Simhadri
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Prakash Babu Phanithi
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
47
|
Frenkel-Pinter M, Tal S, Scherzer-Attali R, Abu-Hussien M, Alyagor I, Eisenbaum T, Gazit E, Segal D. Cl-NQTrp Alleviates Tauopathy Symptoms in a Model Organism through the Inhibition of Tau Aggregation-Engendered Toxicity. NEURODEGENER DIS 2016; 17:73-82. [PMID: 27760426 DOI: 10.1159/000448518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most abundant tauopathy and is characterized by Aβ-derived plaques and tau-derived tangles, resulting from the unfolding of the corresponding monomeric subunits into ordered β-sheet oligomers and fibrils. Intervening in the toxic aggregation process is a promising therapeutic approach, but, to date, a disease-modifying therapy is neither available for AD nor for other tauopathies. Along these lines, we have previously demonstrated that a small naphthoquinone-tryptophan hybrid, termed NQTrp, is an effective modulator of tauopathy in vitro and in vivo. However, NQTrp is difficult to synthesize and is not very stable. Therefore, we tested whether a more stable and easier-to-synthesize modified version of NQTrp, containing a Cl ion, namely Cl-NQTrp, is also an effective inhibitor of tau aggregation in vitro and in vivo. Cl-NQTrp was previously shown to efficiently inhibit the aggregation of various amyloidogenic proteins and peptides. We demonstrate that Cl-NQTrp inhibits the in vitro assembly of PHF6, the aggregation-prone fragment of tau, and alleviates tauopathy symptoms in a transgenic Drosophila model through the inhibition of tau aggregation-engendered toxicity. These results suggest that Cl-NQTrp could be a unique potential therapeutic for AD since it targets aggregation of both Aβ and tau.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- Department of Molecular Microbiology and Biotechnology, Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Musiek ES, Xiong DD, Patel T, Sasaki Y, Wang Y, Bauer AQ, Singh R, Finn SL, Culver JP, Milbrandt J, Holtzman DM. Nmnat1 protects neuronal function without altering phospho-tau pathology in a mouse model of tauopathy. Ann Clin Transl Neurol 2016; 3:434-42. [PMID: 27547771 PMCID: PMC4891997 DOI: 10.1002/acn3.308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022] Open
Abstract
Objective The nicotinamide‐nucleotide adenylyltransferase protein Nmnat1 is a potent inhibitor of axonal degeneration in models of acute axonal injury. Hyperphosphorylation and aggregation of the microtubule‐associated protein Tau are associated with neurodegeneration in Alzheimer's Disease and other disorders. Previous studies have demonstrated that other Nmnat isoforms can act both as axonoprotective agents and have protein chaperone function, exerting protective effects in drosophila and mouse models of tauopathy. Nmnat1 targeted to the cytoplasm (cytNmnat1) is neuroprotective in a mouse model of neonatal hypoxia‐ischemia, but the effect of cytNmnat1 on tauopathy remains unknown. Methods We examined the impact of overexpression of cytNmnat1 on tau pathology, neurodegeneration, and brain functional connectivity in the P301S mouse model of chronic tauopathy. Results Overexpression of cytNmnat1 preserved cortical neuron functional connectivity in P301S mice in vivo. However, whereas Nmnat1 overexpression decreased the accumulation of detergent‐insoluble tau aggregates in the cerebral cortex, it exerted no effect on immunohistochemical evidence of pathologic tau phosphorylation and misfolding, hippocampal atrophy, or inflammatory markers in P301S mice. Interpretation Our results demonstrate that cytNmnat1 partially preserves neuronal function and decreases biochemically insoluble tau in a mouse model of chronic tauopathy without preventing tau phosphorylation, formation of soluble aggregates, or tau‐induced inflammation and atrophy. Nmnat1 might thus represent a therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Erik S Musiek
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - David D Xiong
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Tirth Patel
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Yo Sasaki
- Genetics Washington University School of Medicine St. Louis Missouri
| | - Yinong Wang
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Adam Q Bauer
- Radiology Washington University School of Medicine St. Louis Missouri
| | - Risham Singh
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Samantha L Finn
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Joseph P Culver
- Radiology Washington University School of Medicine St. Louis Missouri
| | - Jeffrey Milbrandt
- Genetics Washington University School of Medicine St. Louis Missouri
| | - David M Holtzman
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
49
|
Targeted Downregulation of dMyc Suppresses Pathogenesis of Human Neuronal Tauopathies in Drosophila by Limiting Heterochromatin Relaxation and Tau Hyperphosphorylation. Mol Neurobiol 2016; 54:2706-2719. [DOI: 10.1007/s12035-016-9858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
|
50
|
Alternative splicing of Drosophila Nmnat functions as a switch to enhance neuroprotection under stress. Nat Commun 2015; 6:10057. [PMID: 26616331 PMCID: PMC4674693 DOI: 10.1038/ncomms10057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 10/28/2015] [Indexed: 01/09/2023] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a conserved enzyme in the NAD synthetic pathway. It has also been identified as an effective and versatile neuroprotective factor. However, it remains unclear how healthy neurons regulate the dual functions of NMNAT and achieve self-protection under stress. Here we show that Drosophila Nmnat (DmNmnat) is alternatively spliced into two mRNA variants, RA and RB, which translate to protein isoforms with divergent neuroprotective capacities against spinocerebellar ataxia 1-induced neurodegeneration. Isoform PA/PC translated from RA is nuclear-localized with minimal neuroprotective ability, and isoform PB/PD translated from RB is cytoplasmic and has robust neuroprotective capacity. Under stress, RB is preferably spliced in neurons to produce the neuroprotective PB/PD isoforms. Our results indicate that alternative splicing functions as a switch that regulates the expression of functionally distinct DmNmnat variants. Neurons respond to stress by driving the splicing switch to produce the neuroprotective variant and therefore achieve self-protection. Nicotinamide mononucleotide adenylyltransferase (NMNAT) acts in the NAD biosynthesis pathway and has neuroprotective activity. Ruan et al. show that the neuroprotective activity of NMNAT is restricted to a splice variant of the enzyme, and that this variant is preferentially spliced in response to stress.
Collapse
|